1 /* 2 * mm/kmemleak.c 3 * 4 * Copyright (C) 2008 ARM Limited 5 * Written by Catalin Marinas <catalin.marinas@arm.com> 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, write to the Free Software 18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 19 * 20 * 21 * For more information on the algorithm and kmemleak usage, please see 22 * Documentation/kmemleak.txt. 23 * 24 * Notes on locking 25 * ---------------- 26 * 27 * The following locks and mutexes are used by kmemleak: 28 * 29 * - kmemleak_lock (rwlock): protects the object_list modifications and 30 * accesses to the object_tree_root. The object_list is the main list 31 * holding the metadata (struct kmemleak_object) for the allocated memory 32 * blocks. The object_tree_root is a red black tree used to look-up 33 * metadata based on a pointer to the corresponding memory block. The 34 * kmemleak_object structures are added to the object_list and 35 * object_tree_root in the create_object() function called from the 36 * kmemleak_alloc() callback and removed in delete_object() called from the 37 * kmemleak_free() callback 38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to 39 * the metadata (e.g. count) are protected by this lock. Note that some 40 * members of this structure may be protected by other means (atomic or 41 * kmemleak_lock). This lock is also held when scanning the corresponding 42 * memory block to avoid the kernel freeing it via the kmemleak_free() 43 * callback. This is less heavyweight than holding a global lock like 44 * kmemleak_lock during scanning 45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for 46 * unreferenced objects at a time. The gray_list contains the objects which 47 * are already referenced or marked as false positives and need to be 48 * scanned. This list is only modified during a scanning episode when the 49 * scan_mutex is held. At the end of a scan, the gray_list is always empty. 50 * Note that the kmemleak_object.use_count is incremented when an object is 51 * added to the gray_list and therefore cannot be freed. This mutex also 52 * prevents multiple users of the "kmemleak" debugfs file together with 53 * modifications to the memory scanning parameters including the scan_thread 54 * pointer 55 * 56 * Locks and mutexes are acquired/nested in the following order: 57 * 58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING) 59 * 60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex 61 * regions. 62 * 63 * The kmemleak_object structures have a use_count incremented or decremented 64 * using the get_object()/put_object() functions. When the use_count becomes 65 * 0, this count can no longer be incremented and put_object() schedules the 66 * kmemleak_object freeing via an RCU callback. All calls to the get_object() 67 * function must be protected by rcu_read_lock() to avoid accessing a freed 68 * structure. 69 */ 70 71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 72 73 #include <linux/init.h> 74 #include <linux/kernel.h> 75 #include <linux/list.h> 76 #include <linux/sched.h> 77 #include <linux/jiffies.h> 78 #include <linux/delay.h> 79 #include <linux/export.h> 80 #include <linux/kthread.h> 81 #include <linux/rbtree.h> 82 #include <linux/fs.h> 83 #include <linux/debugfs.h> 84 #include <linux/seq_file.h> 85 #include <linux/cpumask.h> 86 #include <linux/spinlock.h> 87 #include <linux/mutex.h> 88 #include <linux/rcupdate.h> 89 #include <linux/stacktrace.h> 90 #include <linux/cache.h> 91 #include <linux/percpu.h> 92 #include <linux/hardirq.h> 93 #include <linux/mmzone.h> 94 #include <linux/slab.h> 95 #include <linux/thread_info.h> 96 #include <linux/err.h> 97 #include <linux/uaccess.h> 98 #include <linux/string.h> 99 #include <linux/nodemask.h> 100 #include <linux/mm.h> 101 #include <linux/workqueue.h> 102 #include <linux/crc32.h> 103 104 #include <asm/sections.h> 105 #include <asm/processor.h> 106 #include <linux/atomic.h> 107 108 #include <linux/kasan.h> 109 #include <linux/kmemcheck.h> 110 #include <linux/kmemleak.h> 111 #include <linux/memory_hotplug.h> 112 113 /* 114 * Kmemleak configuration and common defines. 115 */ 116 #define MAX_TRACE 16 /* stack trace length */ 117 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */ 118 #define SECS_FIRST_SCAN 60 /* delay before the first scan */ 119 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */ 120 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */ 121 122 #define BYTES_PER_POINTER sizeof(void *) 123 124 /* GFP bitmask for kmemleak internal allocations */ 125 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \ 126 __GFP_NOACCOUNT)) | \ 127 __GFP_NORETRY | __GFP_NOMEMALLOC | \ 128 __GFP_NOWARN) 129 130 /* scanning area inside a memory block */ 131 struct kmemleak_scan_area { 132 struct hlist_node node; 133 unsigned long start; 134 size_t size; 135 }; 136 137 #define KMEMLEAK_GREY 0 138 #define KMEMLEAK_BLACK -1 139 140 /* 141 * Structure holding the metadata for each allocated memory block. 142 * Modifications to such objects should be made while holding the 143 * object->lock. Insertions or deletions from object_list, gray_list or 144 * rb_node are already protected by the corresponding locks or mutex (see 145 * the notes on locking above). These objects are reference-counted 146 * (use_count) and freed using the RCU mechanism. 147 */ 148 struct kmemleak_object { 149 spinlock_t lock; 150 unsigned long flags; /* object status flags */ 151 struct list_head object_list; 152 struct list_head gray_list; 153 struct rb_node rb_node; 154 struct rcu_head rcu; /* object_list lockless traversal */ 155 /* object usage count; object freed when use_count == 0 */ 156 atomic_t use_count; 157 unsigned long pointer; 158 size_t size; 159 /* minimum number of a pointers found before it is considered leak */ 160 int min_count; 161 /* the total number of pointers found pointing to this object */ 162 int count; 163 /* checksum for detecting modified objects */ 164 u32 checksum; 165 /* memory ranges to be scanned inside an object (empty for all) */ 166 struct hlist_head area_list; 167 unsigned long trace[MAX_TRACE]; 168 unsigned int trace_len; 169 unsigned long jiffies; /* creation timestamp */ 170 pid_t pid; /* pid of the current task */ 171 char comm[TASK_COMM_LEN]; /* executable name */ 172 }; 173 174 /* flag representing the memory block allocation status */ 175 #define OBJECT_ALLOCATED (1 << 0) 176 /* flag set after the first reporting of an unreference object */ 177 #define OBJECT_REPORTED (1 << 1) 178 /* flag set to not scan the object */ 179 #define OBJECT_NO_SCAN (1 << 2) 180 181 /* number of bytes to print per line; must be 16 or 32 */ 182 #define HEX_ROW_SIZE 16 183 /* number of bytes to print at a time (1, 2, 4, 8) */ 184 #define HEX_GROUP_SIZE 1 185 /* include ASCII after the hex output */ 186 #define HEX_ASCII 1 187 /* max number of lines to be printed */ 188 #define HEX_MAX_LINES 2 189 190 /* the list of all allocated objects */ 191 static LIST_HEAD(object_list); 192 /* the list of gray-colored objects (see color_gray comment below) */ 193 static LIST_HEAD(gray_list); 194 /* search tree for object boundaries */ 195 static struct rb_root object_tree_root = RB_ROOT; 196 /* rw_lock protecting the access to object_list and object_tree_root */ 197 static DEFINE_RWLOCK(kmemleak_lock); 198 199 /* allocation caches for kmemleak internal data */ 200 static struct kmem_cache *object_cache; 201 static struct kmem_cache *scan_area_cache; 202 203 /* set if tracing memory operations is enabled */ 204 static int kmemleak_enabled; 205 /* same as above but only for the kmemleak_free() callback */ 206 static int kmemleak_free_enabled; 207 /* set in the late_initcall if there were no errors */ 208 static int kmemleak_initialized; 209 /* enables or disables early logging of the memory operations */ 210 static int kmemleak_early_log = 1; 211 /* set if a kmemleak warning was issued */ 212 static int kmemleak_warning; 213 /* set if a fatal kmemleak error has occurred */ 214 static int kmemleak_error; 215 216 /* minimum and maximum address that may be valid pointers */ 217 static unsigned long min_addr = ULONG_MAX; 218 static unsigned long max_addr; 219 220 static struct task_struct *scan_thread; 221 /* used to avoid reporting of recently allocated objects */ 222 static unsigned long jiffies_min_age; 223 static unsigned long jiffies_last_scan; 224 /* delay between automatic memory scannings */ 225 static signed long jiffies_scan_wait; 226 /* enables or disables the task stacks scanning */ 227 static int kmemleak_stack_scan = 1; 228 /* protects the memory scanning, parameters and debug/kmemleak file access */ 229 static DEFINE_MUTEX(scan_mutex); 230 /* setting kmemleak=on, will set this var, skipping the disable */ 231 static int kmemleak_skip_disable; 232 /* If there are leaks that can be reported */ 233 static bool kmemleak_found_leaks; 234 235 /* 236 * Early object allocation/freeing logging. Kmemleak is initialized after the 237 * kernel allocator. However, both the kernel allocator and kmemleak may 238 * allocate memory blocks which need to be tracked. Kmemleak defines an 239 * arbitrary buffer to hold the allocation/freeing information before it is 240 * fully initialized. 241 */ 242 243 /* kmemleak operation type for early logging */ 244 enum { 245 KMEMLEAK_ALLOC, 246 KMEMLEAK_ALLOC_PERCPU, 247 KMEMLEAK_FREE, 248 KMEMLEAK_FREE_PART, 249 KMEMLEAK_FREE_PERCPU, 250 KMEMLEAK_NOT_LEAK, 251 KMEMLEAK_IGNORE, 252 KMEMLEAK_SCAN_AREA, 253 KMEMLEAK_NO_SCAN 254 }; 255 256 /* 257 * Structure holding the information passed to kmemleak callbacks during the 258 * early logging. 259 */ 260 struct early_log { 261 int op_type; /* kmemleak operation type */ 262 const void *ptr; /* allocated/freed memory block */ 263 size_t size; /* memory block size */ 264 int min_count; /* minimum reference count */ 265 unsigned long trace[MAX_TRACE]; /* stack trace */ 266 unsigned int trace_len; /* stack trace length */ 267 }; 268 269 /* early logging buffer and current position */ 270 static struct early_log 271 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata; 272 static int crt_early_log __initdata; 273 274 static void kmemleak_disable(void); 275 276 /* 277 * Print a warning and dump the stack trace. 278 */ 279 #define kmemleak_warn(x...) do { \ 280 pr_warning(x); \ 281 dump_stack(); \ 282 kmemleak_warning = 1; \ 283 } while (0) 284 285 /* 286 * Macro invoked when a serious kmemleak condition occurred and cannot be 287 * recovered from. Kmemleak will be disabled and further allocation/freeing 288 * tracing no longer available. 289 */ 290 #define kmemleak_stop(x...) do { \ 291 kmemleak_warn(x); \ 292 kmemleak_disable(); \ 293 } while (0) 294 295 /* 296 * Printing of the objects hex dump to the seq file. The number of lines to be 297 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The 298 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called 299 * with the object->lock held. 300 */ 301 static void hex_dump_object(struct seq_file *seq, 302 struct kmemleak_object *object) 303 { 304 const u8 *ptr = (const u8 *)object->pointer; 305 int i, len, remaining; 306 unsigned char linebuf[HEX_ROW_SIZE * 5]; 307 308 /* limit the number of lines to HEX_MAX_LINES */ 309 remaining = len = 310 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE)); 311 312 seq_printf(seq, " hex dump (first %d bytes):\n", len); 313 for (i = 0; i < len; i += HEX_ROW_SIZE) { 314 int linelen = min(remaining, HEX_ROW_SIZE); 315 316 remaining -= HEX_ROW_SIZE; 317 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE, 318 HEX_GROUP_SIZE, linebuf, sizeof(linebuf), 319 HEX_ASCII); 320 seq_printf(seq, " %s\n", linebuf); 321 } 322 } 323 324 /* 325 * Object colors, encoded with count and min_count: 326 * - white - orphan object, not enough references to it (count < min_count) 327 * - gray - not orphan, not marked as false positive (min_count == 0) or 328 * sufficient references to it (count >= min_count) 329 * - black - ignore, it doesn't contain references (e.g. text section) 330 * (min_count == -1). No function defined for this color. 331 * Newly created objects don't have any color assigned (object->count == -1) 332 * before the next memory scan when they become white. 333 */ 334 static bool color_white(const struct kmemleak_object *object) 335 { 336 return object->count != KMEMLEAK_BLACK && 337 object->count < object->min_count; 338 } 339 340 static bool color_gray(const struct kmemleak_object *object) 341 { 342 return object->min_count != KMEMLEAK_BLACK && 343 object->count >= object->min_count; 344 } 345 346 /* 347 * Objects are considered unreferenced only if their color is white, they have 348 * not be deleted and have a minimum age to avoid false positives caused by 349 * pointers temporarily stored in CPU registers. 350 */ 351 static bool unreferenced_object(struct kmemleak_object *object) 352 { 353 return (color_white(object) && object->flags & OBJECT_ALLOCATED) && 354 time_before_eq(object->jiffies + jiffies_min_age, 355 jiffies_last_scan); 356 } 357 358 /* 359 * Printing of the unreferenced objects information to the seq file. The 360 * print_unreferenced function must be called with the object->lock held. 361 */ 362 static void print_unreferenced(struct seq_file *seq, 363 struct kmemleak_object *object) 364 { 365 int i; 366 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies); 367 368 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n", 369 object->pointer, object->size); 370 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n", 371 object->comm, object->pid, object->jiffies, 372 msecs_age / 1000, msecs_age % 1000); 373 hex_dump_object(seq, object); 374 seq_printf(seq, " backtrace:\n"); 375 376 for (i = 0; i < object->trace_len; i++) { 377 void *ptr = (void *)object->trace[i]; 378 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr); 379 } 380 } 381 382 /* 383 * Print the kmemleak_object information. This function is used mainly for 384 * debugging special cases when kmemleak operations. It must be called with 385 * the object->lock held. 386 */ 387 static void dump_object_info(struct kmemleak_object *object) 388 { 389 struct stack_trace trace; 390 391 trace.nr_entries = object->trace_len; 392 trace.entries = object->trace; 393 394 pr_notice("Object 0x%08lx (size %zu):\n", 395 object->pointer, object->size); 396 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n", 397 object->comm, object->pid, object->jiffies); 398 pr_notice(" min_count = %d\n", object->min_count); 399 pr_notice(" count = %d\n", object->count); 400 pr_notice(" flags = 0x%lx\n", object->flags); 401 pr_notice(" checksum = %u\n", object->checksum); 402 pr_notice(" backtrace:\n"); 403 print_stack_trace(&trace, 4); 404 } 405 406 /* 407 * Look-up a memory block metadata (kmemleak_object) in the object search 408 * tree based on a pointer value. If alias is 0, only values pointing to the 409 * beginning of the memory block are allowed. The kmemleak_lock must be held 410 * when calling this function. 411 */ 412 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias) 413 { 414 struct rb_node *rb = object_tree_root.rb_node; 415 416 while (rb) { 417 struct kmemleak_object *object = 418 rb_entry(rb, struct kmemleak_object, rb_node); 419 if (ptr < object->pointer) 420 rb = object->rb_node.rb_left; 421 else if (object->pointer + object->size <= ptr) 422 rb = object->rb_node.rb_right; 423 else if (object->pointer == ptr || alias) 424 return object; 425 else { 426 kmemleak_warn("Found object by alias at 0x%08lx\n", 427 ptr); 428 dump_object_info(object); 429 break; 430 } 431 } 432 return NULL; 433 } 434 435 /* 436 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note 437 * that once an object's use_count reached 0, the RCU freeing was already 438 * registered and the object should no longer be used. This function must be 439 * called under the protection of rcu_read_lock(). 440 */ 441 static int get_object(struct kmemleak_object *object) 442 { 443 return atomic_inc_not_zero(&object->use_count); 444 } 445 446 /* 447 * RCU callback to free a kmemleak_object. 448 */ 449 static void free_object_rcu(struct rcu_head *rcu) 450 { 451 struct hlist_node *tmp; 452 struct kmemleak_scan_area *area; 453 struct kmemleak_object *object = 454 container_of(rcu, struct kmemleak_object, rcu); 455 456 /* 457 * Once use_count is 0 (guaranteed by put_object), there is no other 458 * code accessing this object, hence no need for locking. 459 */ 460 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) { 461 hlist_del(&area->node); 462 kmem_cache_free(scan_area_cache, area); 463 } 464 kmem_cache_free(object_cache, object); 465 } 466 467 /* 468 * Decrement the object use_count. Once the count is 0, free the object using 469 * an RCU callback. Since put_object() may be called via the kmemleak_free() -> 470 * delete_object() path, the delayed RCU freeing ensures that there is no 471 * recursive call to the kernel allocator. Lock-less RCU object_list traversal 472 * is also possible. 473 */ 474 static void put_object(struct kmemleak_object *object) 475 { 476 if (!atomic_dec_and_test(&object->use_count)) 477 return; 478 479 /* should only get here after delete_object was called */ 480 WARN_ON(object->flags & OBJECT_ALLOCATED); 481 482 call_rcu(&object->rcu, free_object_rcu); 483 } 484 485 /* 486 * Look up an object in the object search tree and increase its use_count. 487 */ 488 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias) 489 { 490 unsigned long flags; 491 struct kmemleak_object *object = NULL; 492 493 rcu_read_lock(); 494 read_lock_irqsave(&kmemleak_lock, flags); 495 object = lookup_object(ptr, alias); 496 read_unlock_irqrestore(&kmemleak_lock, flags); 497 498 /* check whether the object is still available */ 499 if (object && !get_object(object)) 500 object = NULL; 501 rcu_read_unlock(); 502 503 return object; 504 } 505 506 /* 507 * Look up an object in the object search tree and remove it from both 508 * object_tree_root and object_list. The returned object's use_count should be 509 * at least 1, as initially set by create_object(). 510 */ 511 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias) 512 { 513 unsigned long flags; 514 struct kmemleak_object *object; 515 516 write_lock_irqsave(&kmemleak_lock, flags); 517 object = lookup_object(ptr, alias); 518 if (object) { 519 rb_erase(&object->rb_node, &object_tree_root); 520 list_del_rcu(&object->object_list); 521 } 522 write_unlock_irqrestore(&kmemleak_lock, flags); 523 524 return object; 525 } 526 527 /* 528 * Save stack trace to the given array of MAX_TRACE size. 529 */ 530 static int __save_stack_trace(unsigned long *trace) 531 { 532 struct stack_trace stack_trace; 533 534 stack_trace.max_entries = MAX_TRACE; 535 stack_trace.nr_entries = 0; 536 stack_trace.entries = trace; 537 stack_trace.skip = 2; 538 save_stack_trace(&stack_trace); 539 540 return stack_trace.nr_entries; 541 } 542 543 /* 544 * Create the metadata (struct kmemleak_object) corresponding to an allocated 545 * memory block and add it to the object_list and object_tree_root. 546 */ 547 static struct kmemleak_object *create_object(unsigned long ptr, size_t size, 548 int min_count, gfp_t gfp) 549 { 550 unsigned long flags; 551 struct kmemleak_object *object, *parent; 552 struct rb_node **link, *rb_parent; 553 554 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp)); 555 if (!object) { 556 pr_warning("Cannot allocate a kmemleak_object structure\n"); 557 kmemleak_disable(); 558 return NULL; 559 } 560 561 INIT_LIST_HEAD(&object->object_list); 562 INIT_LIST_HEAD(&object->gray_list); 563 INIT_HLIST_HEAD(&object->area_list); 564 spin_lock_init(&object->lock); 565 atomic_set(&object->use_count, 1); 566 object->flags = OBJECT_ALLOCATED; 567 object->pointer = ptr; 568 object->size = size; 569 object->min_count = min_count; 570 object->count = 0; /* white color initially */ 571 object->jiffies = jiffies; 572 object->checksum = 0; 573 574 /* task information */ 575 if (in_irq()) { 576 object->pid = 0; 577 strncpy(object->comm, "hardirq", sizeof(object->comm)); 578 } else if (in_softirq()) { 579 object->pid = 0; 580 strncpy(object->comm, "softirq", sizeof(object->comm)); 581 } else { 582 object->pid = current->pid; 583 /* 584 * There is a small chance of a race with set_task_comm(), 585 * however using get_task_comm() here may cause locking 586 * dependency issues with current->alloc_lock. In the worst 587 * case, the command line is not correct. 588 */ 589 strncpy(object->comm, current->comm, sizeof(object->comm)); 590 } 591 592 /* kernel backtrace */ 593 object->trace_len = __save_stack_trace(object->trace); 594 595 write_lock_irqsave(&kmemleak_lock, flags); 596 597 min_addr = min(min_addr, ptr); 598 max_addr = max(max_addr, ptr + size); 599 link = &object_tree_root.rb_node; 600 rb_parent = NULL; 601 while (*link) { 602 rb_parent = *link; 603 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node); 604 if (ptr + size <= parent->pointer) 605 link = &parent->rb_node.rb_left; 606 else if (parent->pointer + parent->size <= ptr) 607 link = &parent->rb_node.rb_right; 608 else { 609 kmemleak_stop("Cannot insert 0x%lx into the object " 610 "search tree (overlaps existing)\n", 611 ptr); 612 /* 613 * No need for parent->lock here since "parent" cannot 614 * be freed while the kmemleak_lock is held. 615 */ 616 dump_object_info(parent); 617 kmem_cache_free(object_cache, object); 618 object = NULL; 619 goto out; 620 } 621 } 622 rb_link_node(&object->rb_node, rb_parent, link); 623 rb_insert_color(&object->rb_node, &object_tree_root); 624 625 list_add_tail_rcu(&object->object_list, &object_list); 626 out: 627 write_unlock_irqrestore(&kmemleak_lock, flags); 628 return object; 629 } 630 631 /* 632 * Mark the object as not allocated and schedule RCU freeing via put_object(). 633 */ 634 static void __delete_object(struct kmemleak_object *object) 635 { 636 unsigned long flags; 637 638 WARN_ON(!(object->flags & OBJECT_ALLOCATED)); 639 WARN_ON(atomic_read(&object->use_count) < 1); 640 641 /* 642 * Locking here also ensures that the corresponding memory block 643 * cannot be freed when it is being scanned. 644 */ 645 spin_lock_irqsave(&object->lock, flags); 646 object->flags &= ~OBJECT_ALLOCATED; 647 spin_unlock_irqrestore(&object->lock, flags); 648 put_object(object); 649 } 650 651 /* 652 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 653 * delete it. 654 */ 655 static void delete_object_full(unsigned long ptr) 656 { 657 struct kmemleak_object *object; 658 659 object = find_and_remove_object(ptr, 0); 660 if (!object) { 661 #ifdef DEBUG 662 kmemleak_warn("Freeing unknown object at 0x%08lx\n", 663 ptr); 664 #endif 665 return; 666 } 667 __delete_object(object); 668 } 669 670 /* 671 * Look up the metadata (struct kmemleak_object) corresponding to ptr and 672 * delete it. If the memory block is partially freed, the function may create 673 * additional metadata for the remaining parts of the block. 674 */ 675 static void delete_object_part(unsigned long ptr, size_t size) 676 { 677 struct kmemleak_object *object; 678 unsigned long start, end; 679 680 object = find_and_remove_object(ptr, 1); 681 if (!object) { 682 #ifdef DEBUG 683 kmemleak_warn("Partially freeing unknown object at 0x%08lx " 684 "(size %zu)\n", ptr, size); 685 #endif 686 return; 687 } 688 689 /* 690 * Create one or two objects that may result from the memory block 691 * split. Note that partial freeing is only done by free_bootmem() and 692 * this happens before kmemleak_init() is called. The path below is 693 * only executed during early log recording in kmemleak_init(), so 694 * GFP_KERNEL is enough. 695 */ 696 start = object->pointer; 697 end = object->pointer + object->size; 698 if (ptr > start) 699 create_object(start, ptr - start, object->min_count, 700 GFP_KERNEL); 701 if (ptr + size < end) 702 create_object(ptr + size, end - ptr - size, object->min_count, 703 GFP_KERNEL); 704 705 __delete_object(object); 706 } 707 708 static void __paint_it(struct kmemleak_object *object, int color) 709 { 710 object->min_count = color; 711 if (color == KMEMLEAK_BLACK) 712 object->flags |= OBJECT_NO_SCAN; 713 } 714 715 static void paint_it(struct kmemleak_object *object, int color) 716 { 717 unsigned long flags; 718 719 spin_lock_irqsave(&object->lock, flags); 720 __paint_it(object, color); 721 spin_unlock_irqrestore(&object->lock, flags); 722 } 723 724 static void paint_ptr(unsigned long ptr, int color) 725 { 726 struct kmemleak_object *object; 727 728 object = find_and_get_object(ptr, 0); 729 if (!object) { 730 kmemleak_warn("Trying to color unknown object " 731 "at 0x%08lx as %s\n", ptr, 732 (color == KMEMLEAK_GREY) ? "Grey" : 733 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown"); 734 return; 735 } 736 paint_it(object, color); 737 put_object(object); 738 } 739 740 /* 741 * Mark an object permanently as gray-colored so that it can no longer be 742 * reported as a leak. This is used in general to mark a false positive. 743 */ 744 static void make_gray_object(unsigned long ptr) 745 { 746 paint_ptr(ptr, KMEMLEAK_GREY); 747 } 748 749 /* 750 * Mark the object as black-colored so that it is ignored from scans and 751 * reporting. 752 */ 753 static void make_black_object(unsigned long ptr) 754 { 755 paint_ptr(ptr, KMEMLEAK_BLACK); 756 } 757 758 /* 759 * Add a scanning area to the object. If at least one such area is added, 760 * kmemleak will only scan these ranges rather than the whole memory block. 761 */ 762 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp) 763 { 764 unsigned long flags; 765 struct kmemleak_object *object; 766 struct kmemleak_scan_area *area; 767 768 object = find_and_get_object(ptr, 1); 769 if (!object) { 770 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n", 771 ptr); 772 return; 773 } 774 775 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp)); 776 if (!area) { 777 pr_warning("Cannot allocate a scan area\n"); 778 goto out; 779 } 780 781 spin_lock_irqsave(&object->lock, flags); 782 if (size == SIZE_MAX) { 783 size = object->pointer + object->size - ptr; 784 } else if (ptr + size > object->pointer + object->size) { 785 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr); 786 dump_object_info(object); 787 kmem_cache_free(scan_area_cache, area); 788 goto out_unlock; 789 } 790 791 INIT_HLIST_NODE(&area->node); 792 area->start = ptr; 793 area->size = size; 794 795 hlist_add_head(&area->node, &object->area_list); 796 out_unlock: 797 spin_unlock_irqrestore(&object->lock, flags); 798 out: 799 put_object(object); 800 } 801 802 /* 803 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give 804 * pointer. Such object will not be scanned by kmemleak but references to it 805 * are searched. 806 */ 807 static void object_no_scan(unsigned long ptr) 808 { 809 unsigned long flags; 810 struct kmemleak_object *object; 811 812 object = find_and_get_object(ptr, 0); 813 if (!object) { 814 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr); 815 return; 816 } 817 818 spin_lock_irqsave(&object->lock, flags); 819 object->flags |= OBJECT_NO_SCAN; 820 spin_unlock_irqrestore(&object->lock, flags); 821 put_object(object); 822 } 823 824 /* 825 * Log an early kmemleak_* call to the early_log buffer. These calls will be 826 * processed later once kmemleak is fully initialized. 827 */ 828 static void __init log_early(int op_type, const void *ptr, size_t size, 829 int min_count) 830 { 831 unsigned long flags; 832 struct early_log *log; 833 834 if (kmemleak_error) { 835 /* kmemleak stopped recording, just count the requests */ 836 crt_early_log++; 837 return; 838 } 839 840 if (crt_early_log >= ARRAY_SIZE(early_log)) { 841 kmemleak_disable(); 842 return; 843 } 844 845 /* 846 * There is no need for locking since the kernel is still in UP mode 847 * at this stage. Disabling the IRQs is enough. 848 */ 849 local_irq_save(flags); 850 log = &early_log[crt_early_log]; 851 log->op_type = op_type; 852 log->ptr = ptr; 853 log->size = size; 854 log->min_count = min_count; 855 log->trace_len = __save_stack_trace(log->trace); 856 crt_early_log++; 857 local_irq_restore(flags); 858 } 859 860 /* 861 * Log an early allocated block and populate the stack trace. 862 */ 863 static void early_alloc(struct early_log *log) 864 { 865 struct kmemleak_object *object; 866 unsigned long flags; 867 int i; 868 869 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr)) 870 return; 871 872 /* 873 * RCU locking needed to ensure object is not freed via put_object(). 874 */ 875 rcu_read_lock(); 876 object = create_object((unsigned long)log->ptr, log->size, 877 log->min_count, GFP_ATOMIC); 878 if (!object) 879 goto out; 880 spin_lock_irqsave(&object->lock, flags); 881 for (i = 0; i < log->trace_len; i++) 882 object->trace[i] = log->trace[i]; 883 object->trace_len = log->trace_len; 884 spin_unlock_irqrestore(&object->lock, flags); 885 out: 886 rcu_read_unlock(); 887 } 888 889 /* 890 * Log an early allocated block and populate the stack trace. 891 */ 892 static void early_alloc_percpu(struct early_log *log) 893 { 894 unsigned int cpu; 895 const void __percpu *ptr = log->ptr; 896 897 for_each_possible_cpu(cpu) { 898 log->ptr = per_cpu_ptr(ptr, cpu); 899 early_alloc(log); 900 } 901 } 902 903 /** 904 * kmemleak_alloc - register a newly allocated object 905 * @ptr: pointer to beginning of the object 906 * @size: size of the object 907 * @min_count: minimum number of references to this object. If during memory 908 * scanning a number of references less than @min_count is found, 909 * the object is reported as a memory leak. If @min_count is 0, 910 * the object is never reported as a leak. If @min_count is -1, 911 * the object is ignored (not scanned and not reported as a leak) 912 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 913 * 914 * This function is called from the kernel allocators when a new object 915 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.). 916 */ 917 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count, 918 gfp_t gfp) 919 { 920 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count); 921 922 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 923 create_object((unsigned long)ptr, size, min_count, gfp); 924 else if (kmemleak_early_log) 925 log_early(KMEMLEAK_ALLOC, ptr, size, min_count); 926 } 927 EXPORT_SYMBOL_GPL(kmemleak_alloc); 928 929 /** 930 * kmemleak_alloc_percpu - register a newly allocated __percpu object 931 * @ptr: __percpu pointer to beginning of the object 932 * @size: size of the object 933 * @gfp: flags used for kmemleak internal memory allocations 934 * 935 * This function is called from the kernel percpu allocator when a new object 936 * (memory block) is allocated (alloc_percpu). 937 */ 938 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size, 939 gfp_t gfp) 940 { 941 unsigned int cpu; 942 943 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size); 944 945 /* 946 * Percpu allocations are only scanned and not reported as leaks 947 * (min_count is set to 0). 948 */ 949 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 950 for_each_possible_cpu(cpu) 951 create_object((unsigned long)per_cpu_ptr(ptr, cpu), 952 size, 0, gfp); 953 else if (kmemleak_early_log) 954 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0); 955 } 956 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu); 957 958 /** 959 * kmemleak_free - unregister a previously registered object 960 * @ptr: pointer to beginning of the object 961 * 962 * This function is called from the kernel allocators when an object (memory 963 * block) is freed (kmem_cache_free, kfree, vfree etc.). 964 */ 965 void __ref kmemleak_free(const void *ptr) 966 { 967 pr_debug("%s(0x%p)\n", __func__, ptr); 968 969 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 970 delete_object_full((unsigned long)ptr); 971 else if (kmemleak_early_log) 972 log_early(KMEMLEAK_FREE, ptr, 0, 0); 973 } 974 EXPORT_SYMBOL_GPL(kmemleak_free); 975 976 /** 977 * kmemleak_free_part - partially unregister a previously registered object 978 * @ptr: pointer to the beginning or inside the object. This also 979 * represents the start of the range to be freed 980 * @size: size to be unregistered 981 * 982 * This function is called when only a part of a memory block is freed 983 * (usually from the bootmem allocator). 984 */ 985 void __ref kmemleak_free_part(const void *ptr, size_t size) 986 { 987 pr_debug("%s(0x%p)\n", __func__, ptr); 988 989 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 990 delete_object_part((unsigned long)ptr, size); 991 else if (kmemleak_early_log) 992 log_early(KMEMLEAK_FREE_PART, ptr, size, 0); 993 } 994 EXPORT_SYMBOL_GPL(kmemleak_free_part); 995 996 /** 997 * kmemleak_free_percpu - unregister a previously registered __percpu object 998 * @ptr: __percpu pointer to beginning of the object 999 * 1000 * This function is called from the kernel percpu allocator when an object 1001 * (memory block) is freed (free_percpu). 1002 */ 1003 void __ref kmemleak_free_percpu(const void __percpu *ptr) 1004 { 1005 unsigned int cpu; 1006 1007 pr_debug("%s(0x%p)\n", __func__, ptr); 1008 1009 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr)) 1010 for_each_possible_cpu(cpu) 1011 delete_object_full((unsigned long)per_cpu_ptr(ptr, 1012 cpu)); 1013 else if (kmemleak_early_log) 1014 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0); 1015 } 1016 EXPORT_SYMBOL_GPL(kmemleak_free_percpu); 1017 1018 /** 1019 * kmemleak_update_trace - update object allocation stack trace 1020 * @ptr: pointer to beginning of the object 1021 * 1022 * Override the object allocation stack trace for cases where the actual 1023 * allocation place is not always useful. 1024 */ 1025 void __ref kmemleak_update_trace(const void *ptr) 1026 { 1027 struct kmemleak_object *object; 1028 unsigned long flags; 1029 1030 pr_debug("%s(0x%p)\n", __func__, ptr); 1031 1032 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr)) 1033 return; 1034 1035 object = find_and_get_object((unsigned long)ptr, 1); 1036 if (!object) { 1037 #ifdef DEBUG 1038 kmemleak_warn("Updating stack trace for unknown object at %p\n", 1039 ptr); 1040 #endif 1041 return; 1042 } 1043 1044 spin_lock_irqsave(&object->lock, flags); 1045 object->trace_len = __save_stack_trace(object->trace); 1046 spin_unlock_irqrestore(&object->lock, flags); 1047 1048 put_object(object); 1049 } 1050 EXPORT_SYMBOL(kmemleak_update_trace); 1051 1052 /** 1053 * kmemleak_not_leak - mark an allocated object as false positive 1054 * @ptr: pointer to beginning of the object 1055 * 1056 * Calling this function on an object will cause the memory block to no longer 1057 * be reported as leak and always be scanned. 1058 */ 1059 void __ref kmemleak_not_leak(const void *ptr) 1060 { 1061 pr_debug("%s(0x%p)\n", __func__, ptr); 1062 1063 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1064 make_gray_object((unsigned long)ptr); 1065 else if (kmemleak_early_log) 1066 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0); 1067 } 1068 EXPORT_SYMBOL(kmemleak_not_leak); 1069 1070 /** 1071 * kmemleak_ignore - ignore an allocated object 1072 * @ptr: pointer to beginning of the object 1073 * 1074 * Calling this function on an object will cause the memory block to be 1075 * ignored (not scanned and not reported as a leak). This is usually done when 1076 * it is known that the corresponding block is not a leak and does not contain 1077 * any references to other allocated memory blocks. 1078 */ 1079 void __ref kmemleak_ignore(const void *ptr) 1080 { 1081 pr_debug("%s(0x%p)\n", __func__, ptr); 1082 1083 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1084 make_black_object((unsigned long)ptr); 1085 else if (kmemleak_early_log) 1086 log_early(KMEMLEAK_IGNORE, ptr, 0, 0); 1087 } 1088 EXPORT_SYMBOL(kmemleak_ignore); 1089 1090 /** 1091 * kmemleak_scan_area - limit the range to be scanned in an allocated object 1092 * @ptr: pointer to beginning or inside the object. This also 1093 * represents the start of the scan area 1094 * @size: size of the scan area 1095 * @gfp: kmalloc() flags used for kmemleak internal memory allocations 1096 * 1097 * This function is used when it is known that only certain parts of an object 1098 * contain references to other objects. Kmemleak will only scan these areas 1099 * reducing the number false negatives. 1100 */ 1101 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp) 1102 { 1103 pr_debug("%s(0x%p)\n", __func__, ptr); 1104 1105 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr)) 1106 add_scan_area((unsigned long)ptr, size, gfp); 1107 else if (kmemleak_early_log) 1108 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0); 1109 } 1110 EXPORT_SYMBOL(kmemleak_scan_area); 1111 1112 /** 1113 * kmemleak_no_scan - do not scan an allocated object 1114 * @ptr: pointer to beginning of the object 1115 * 1116 * This function notifies kmemleak not to scan the given memory block. Useful 1117 * in situations where it is known that the given object does not contain any 1118 * references to other objects. Kmemleak will not scan such objects reducing 1119 * the number of false negatives. 1120 */ 1121 void __ref kmemleak_no_scan(const void *ptr) 1122 { 1123 pr_debug("%s(0x%p)\n", __func__, ptr); 1124 1125 if (kmemleak_enabled && ptr && !IS_ERR(ptr)) 1126 object_no_scan((unsigned long)ptr); 1127 else if (kmemleak_early_log) 1128 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0); 1129 } 1130 EXPORT_SYMBOL(kmemleak_no_scan); 1131 1132 /* 1133 * Update an object's checksum and return true if it was modified. 1134 */ 1135 static bool update_checksum(struct kmemleak_object *object) 1136 { 1137 u32 old_csum = object->checksum; 1138 1139 if (!kmemcheck_is_obj_initialized(object->pointer, object->size)) 1140 return false; 1141 1142 kasan_disable_current(); 1143 object->checksum = crc32(0, (void *)object->pointer, object->size); 1144 kasan_enable_current(); 1145 1146 return object->checksum != old_csum; 1147 } 1148 1149 /* 1150 * Memory scanning is a long process and it needs to be interruptable. This 1151 * function checks whether such interrupt condition occurred. 1152 */ 1153 static int scan_should_stop(void) 1154 { 1155 if (!kmemleak_enabled) 1156 return 1; 1157 1158 /* 1159 * This function may be called from either process or kthread context, 1160 * hence the need to check for both stop conditions. 1161 */ 1162 if (current->mm) 1163 return signal_pending(current); 1164 else 1165 return kthread_should_stop(); 1166 1167 return 0; 1168 } 1169 1170 /* 1171 * Scan a memory block (exclusive range) for valid pointers and add those 1172 * found to the gray list. 1173 */ 1174 static void scan_block(void *_start, void *_end, 1175 struct kmemleak_object *scanned) 1176 { 1177 unsigned long *ptr; 1178 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER); 1179 unsigned long *end = _end - (BYTES_PER_POINTER - 1); 1180 unsigned long flags; 1181 1182 read_lock_irqsave(&kmemleak_lock, flags); 1183 for (ptr = start; ptr < end; ptr++) { 1184 struct kmemleak_object *object; 1185 unsigned long pointer; 1186 1187 if (scan_should_stop()) 1188 break; 1189 1190 /* don't scan uninitialized memory */ 1191 if (!kmemcheck_is_obj_initialized((unsigned long)ptr, 1192 BYTES_PER_POINTER)) 1193 continue; 1194 1195 kasan_disable_current(); 1196 pointer = *ptr; 1197 kasan_enable_current(); 1198 1199 if (pointer < min_addr || pointer >= max_addr) 1200 continue; 1201 1202 /* 1203 * No need for get_object() here since we hold kmemleak_lock. 1204 * object->use_count cannot be dropped to 0 while the object 1205 * is still present in object_tree_root and object_list 1206 * (with updates protected by kmemleak_lock). 1207 */ 1208 object = lookup_object(pointer, 1); 1209 if (!object) 1210 continue; 1211 if (object == scanned) 1212 /* self referenced, ignore */ 1213 continue; 1214 1215 /* 1216 * Avoid the lockdep recursive warning on object->lock being 1217 * previously acquired in scan_object(). These locks are 1218 * enclosed by scan_mutex. 1219 */ 1220 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING); 1221 if (!color_white(object)) { 1222 /* non-orphan, ignored or new */ 1223 spin_unlock(&object->lock); 1224 continue; 1225 } 1226 1227 /* 1228 * Increase the object's reference count (number of pointers 1229 * to the memory block). If this count reaches the required 1230 * minimum, the object's color will become gray and it will be 1231 * added to the gray_list. 1232 */ 1233 object->count++; 1234 if (color_gray(object)) { 1235 /* put_object() called when removing from gray_list */ 1236 WARN_ON(!get_object(object)); 1237 list_add_tail(&object->gray_list, &gray_list); 1238 } 1239 spin_unlock(&object->lock); 1240 } 1241 read_unlock_irqrestore(&kmemleak_lock, flags); 1242 } 1243 1244 /* 1245 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency. 1246 */ 1247 static void scan_large_block(void *start, void *end) 1248 { 1249 void *next; 1250 1251 while (start < end) { 1252 next = min(start + MAX_SCAN_SIZE, end); 1253 scan_block(start, next, NULL); 1254 start = next; 1255 cond_resched(); 1256 } 1257 } 1258 1259 /* 1260 * Scan a memory block corresponding to a kmemleak_object. A condition is 1261 * that object->use_count >= 1. 1262 */ 1263 static void scan_object(struct kmemleak_object *object) 1264 { 1265 struct kmemleak_scan_area *area; 1266 unsigned long flags; 1267 1268 /* 1269 * Once the object->lock is acquired, the corresponding memory block 1270 * cannot be freed (the same lock is acquired in delete_object). 1271 */ 1272 spin_lock_irqsave(&object->lock, flags); 1273 if (object->flags & OBJECT_NO_SCAN) 1274 goto out; 1275 if (!(object->flags & OBJECT_ALLOCATED)) 1276 /* already freed object */ 1277 goto out; 1278 if (hlist_empty(&object->area_list)) { 1279 void *start = (void *)object->pointer; 1280 void *end = (void *)(object->pointer + object->size); 1281 void *next; 1282 1283 do { 1284 next = min(start + MAX_SCAN_SIZE, end); 1285 scan_block(start, next, object); 1286 1287 start = next; 1288 if (start >= end) 1289 break; 1290 1291 spin_unlock_irqrestore(&object->lock, flags); 1292 cond_resched(); 1293 spin_lock_irqsave(&object->lock, flags); 1294 } while (object->flags & OBJECT_ALLOCATED); 1295 } else 1296 hlist_for_each_entry(area, &object->area_list, node) 1297 scan_block((void *)area->start, 1298 (void *)(area->start + area->size), 1299 object); 1300 out: 1301 spin_unlock_irqrestore(&object->lock, flags); 1302 } 1303 1304 /* 1305 * Scan the objects already referenced (gray objects). More objects will be 1306 * referenced and, if there are no memory leaks, all the objects are scanned. 1307 */ 1308 static void scan_gray_list(void) 1309 { 1310 struct kmemleak_object *object, *tmp; 1311 1312 /* 1313 * The list traversal is safe for both tail additions and removals 1314 * from inside the loop. The kmemleak objects cannot be freed from 1315 * outside the loop because their use_count was incremented. 1316 */ 1317 object = list_entry(gray_list.next, typeof(*object), gray_list); 1318 while (&object->gray_list != &gray_list) { 1319 cond_resched(); 1320 1321 /* may add new objects to the list */ 1322 if (!scan_should_stop()) 1323 scan_object(object); 1324 1325 tmp = list_entry(object->gray_list.next, typeof(*object), 1326 gray_list); 1327 1328 /* remove the object from the list and release it */ 1329 list_del(&object->gray_list); 1330 put_object(object); 1331 1332 object = tmp; 1333 } 1334 WARN_ON(!list_empty(&gray_list)); 1335 } 1336 1337 /* 1338 * Scan data sections and all the referenced memory blocks allocated via the 1339 * kernel's standard allocators. This function must be called with the 1340 * scan_mutex held. 1341 */ 1342 static void kmemleak_scan(void) 1343 { 1344 unsigned long flags; 1345 struct kmemleak_object *object; 1346 int i; 1347 int new_leaks = 0; 1348 1349 jiffies_last_scan = jiffies; 1350 1351 /* prepare the kmemleak_object's */ 1352 rcu_read_lock(); 1353 list_for_each_entry_rcu(object, &object_list, object_list) { 1354 spin_lock_irqsave(&object->lock, flags); 1355 #ifdef DEBUG 1356 /* 1357 * With a few exceptions there should be a maximum of 1358 * 1 reference to any object at this point. 1359 */ 1360 if (atomic_read(&object->use_count) > 1) { 1361 pr_debug("object->use_count = %d\n", 1362 atomic_read(&object->use_count)); 1363 dump_object_info(object); 1364 } 1365 #endif 1366 /* reset the reference count (whiten the object) */ 1367 object->count = 0; 1368 if (color_gray(object) && get_object(object)) 1369 list_add_tail(&object->gray_list, &gray_list); 1370 1371 spin_unlock_irqrestore(&object->lock, flags); 1372 } 1373 rcu_read_unlock(); 1374 1375 /* data/bss scanning */ 1376 scan_large_block(_sdata, _edata); 1377 scan_large_block(__bss_start, __bss_stop); 1378 1379 #ifdef CONFIG_SMP 1380 /* per-cpu sections scanning */ 1381 for_each_possible_cpu(i) 1382 scan_large_block(__per_cpu_start + per_cpu_offset(i), 1383 __per_cpu_end + per_cpu_offset(i)); 1384 #endif 1385 1386 /* 1387 * Struct page scanning for each node. 1388 */ 1389 get_online_mems(); 1390 for_each_online_node(i) { 1391 unsigned long start_pfn = node_start_pfn(i); 1392 unsigned long end_pfn = node_end_pfn(i); 1393 unsigned long pfn; 1394 1395 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 1396 struct page *page; 1397 1398 if (!pfn_valid(pfn)) 1399 continue; 1400 page = pfn_to_page(pfn); 1401 /* only scan if page is in use */ 1402 if (page_count(page) == 0) 1403 continue; 1404 scan_block(page, page + 1, NULL); 1405 } 1406 } 1407 put_online_mems(); 1408 1409 /* 1410 * Scanning the task stacks (may introduce false negatives). 1411 */ 1412 if (kmemleak_stack_scan) { 1413 struct task_struct *p, *g; 1414 1415 read_lock(&tasklist_lock); 1416 do_each_thread(g, p) { 1417 scan_block(task_stack_page(p), task_stack_page(p) + 1418 THREAD_SIZE, NULL); 1419 } while_each_thread(g, p); 1420 read_unlock(&tasklist_lock); 1421 } 1422 1423 /* 1424 * Scan the objects already referenced from the sections scanned 1425 * above. 1426 */ 1427 scan_gray_list(); 1428 1429 /* 1430 * Check for new or unreferenced objects modified since the previous 1431 * scan and color them gray until the next scan. 1432 */ 1433 rcu_read_lock(); 1434 list_for_each_entry_rcu(object, &object_list, object_list) { 1435 spin_lock_irqsave(&object->lock, flags); 1436 if (color_white(object) && (object->flags & OBJECT_ALLOCATED) 1437 && update_checksum(object) && get_object(object)) { 1438 /* color it gray temporarily */ 1439 object->count = object->min_count; 1440 list_add_tail(&object->gray_list, &gray_list); 1441 } 1442 spin_unlock_irqrestore(&object->lock, flags); 1443 } 1444 rcu_read_unlock(); 1445 1446 /* 1447 * Re-scan the gray list for modified unreferenced objects. 1448 */ 1449 scan_gray_list(); 1450 1451 /* 1452 * If scanning was stopped do not report any new unreferenced objects. 1453 */ 1454 if (scan_should_stop()) 1455 return; 1456 1457 /* 1458 * Scanning result reporting. 1459 */ 1460 rcu_read_lock(); 1461 list_for_each_entry_rcu(object, &object_list, object_list) { 1462 spin_lock_irqsave(&object->lock, flags); 1463 if (unreferenced_object(object) && 1464 !(object->flags & OBJECT_REPORTED)) { 1465 object->flags |= OBJECT_REPORTED; 1466 new_leaks++; 1467 } 1468 spin_unlock_irqrestore(&object->lock, flags); 1469 } 1470 rcu_read_unlock(); 1471 1472 if (new_leaks) { 1473 kmemleak_found_leaks = true; 1474 1475 pr_info("%d new suspected memory leaks (see " 1476 "/sys/kernel/debug/kmemleak)\n", new_leaks); 1477 } 1478 1479 } 1480 1481 /* 1482 * Thread function performing automatic memory scanning. Unreferenced objects 1483 * at the end of a memory scan are reported but only the first time. 1484 */ 1485 static int kmemleak_scan_thread(void *arg) 1486 { 1487 static int first_run = 1; 1488 1489 pr_info("Automatic memory scanning thread started\n"); 1490 set_user_nice(current, 10); 1491 1492 /* 1493 * Wait before the first scan to allow the system to fully initialize. 1494 */ 1495 if (first_run) { 1496 first_run = 0; 1497 ssleep(SECS_FIRST_SCAN); 1498 } 1499 1500 while (!kthread_should_stop()) { 1501 signed long timeout = jiffies_scan_wait; 1502 1503 mutex_lock(&scan_mutex); 1504 kmemleak_scan(); 1505 mutex_unlock(&scan_mutex); 1506 1507 /* wait before the next scan */ 1508 while (timeout && !kthread_should_stop()) 1509 timeout = schedule_timeout_interruptible(timeout); 1510 } 1511 1512 pr_info("Automatic memory scanning thread ended\n"); 1513 1514 return 0; 1515 } 1516 1517 /* 1518 * Start the automatic memory scanning thread. This function must be called 1519 * with the scan_mutex held. 1520 */ 1521 static void start_scan_thread(void) 1522 { 1523 if (scan_thread) 1524 return; 1525 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak"); 1526 if (IS_ERR(scan_thread)) { 1527 pr_warning("Failed to create the scan thread\n"); 1528 scan_thread = NULL; 1529 } 1530 } 1531 1532 /* 1533 * Stop the automatic memory scanning thread. This function must be called 1534 * with the scan_mutex held. 1535 */ 1536 static void stop_scan_thread(void) 1537 { 1538 if (scan_thread) { 1539 kthread_stop(scan_thread); 1540 scan_thread = NULL; 1541 } 1542 } 1543 1544 /* 1545 * Iterate over the object_list and return the first valid object at or after 1546 * the required position with its use_count incremented. The function triggers 1547 * a memory scanning when the pos argument points to the first position. 1548 */ 1549 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos) 1550 { 1551 struct kmemleak_object *object; 1552 loff_t n = *pos; 1553 int err; 1554 1555 err = mutex_lock_interruptible(&scan_mutex); 1556 if (err < 0) 1557 return ERR_PTR(err); 1558 1559 rcu_read_lock(); 1560 list_for_each_entry_rcu(object, &object_list, object_list) { 1561 if (n-- > 0) 1562 continue; 1563 if (get_object(object)) 1564 goto out; 1565 } 1566 object = NULL; 1567 out: 1568 return object; 1569 } 1570 1571 /* 1572 * Return the next object in the object_list. The function decrements the 1573 * use_count of the previous object and increases that of the next one. 1574 */ 1575 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos) 1576 { 1577 struct kmemleak_object *prev_obj = v; 1578 struct kmemleak_object *next_obj = NULL; 1579 struct kmemleak_object *obj = prev_obj; 1580 1581 ++(*pos); 1582 1583 list_for_each_entry_continue_rcu(obj, &object_list, object_list) { 1584 if (get_object(obj)) { 1585 next_obj = obj; 1586 break; 1587 } 1588 } 1589 1590 put_object(prev_obj); 1591 return next_obj; 1592 } 1593 1594 /* 1595 * Decrement the use_count of the last object required, if any. 1596 */ 1597 static void kmemleak_seq_stop(struct seq_file *seq, void *v) 1598 { 1599 if (!IS_ERR(v)) { 1600 /* 1601 * kmemleak_seq_start may return ERR_PTR if the scan_mutex 1602 * waiting was interrupted, so only release it if !IS_ERR. 1603 */ 1604 rcu_read_unlock(); 1605 mutex_unlock(&scan_mutex); 1606 if (v) 1607 put_object(v); 1608 } 1609 } 1610 1611 /* 1612 * Print the information for an unreferenced object to the seq file. 1613 */ 1614 static int kmemleak_seq_show(struct seq_file *seq, void *v) 1615 { 1616 struct kmemleak_object *object = v; 1617 unsigned long flags; 1618 1619 spin_lock_irqsave(&object->lock, flags); 1620 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object)) 1621 print_unreferenced(seq, object); 1622 spin_unlock_irqrestore(&object->lock, flags); 1623 return 0; 1624 } 1625 1626 static const struct seq_operations kmemleak_seq_ops = { 1627 .start = kmemleak_seq_start, 1628 .next = kmemleak_seq_next, 1629 .stop = kmemleak_seq_stop, 1630 .show = kmemleak_seq_show, 1631 }; 1632 1633 static int kmemleak_open(struct inode *inode, struct file *file) 1634 { 1635 return seq_open(file, &kmemleak_seq_ops); 1636 } 1637 1638 static int dump_str_object_info(const char *str) 1639 { 1640 unsigned long flags; 1641 struct kmemleak_object *object; 1642 unsigned long addr; 1643 1644 if (kstrtoul(str, 0, &addr)) 1645 return -EINVAL; 1646 object = find_and_get_object(addr, 0); 1647 if (!object) { 1648 pr_info("Unknown object at 0x%08lx\n", addr); 1649 return -EINVAL; 1650 } 1651 1652 spin_lock_irqsave(&object->lock, flags); 1653 dump_object_info(object); 1654 spin_unlock_irqrestore(&object->lock, flags); 1655 1656 put_object(object); 1657 return 0; 1658 } 1659 1660 /* 1661 * We use grey instead of black to ensure we can do future scans on the same 1662 * objects. If we did not do future scans these black objects could 1663 * potentially contain references to newly allocated objects in the future and 1664 * we'd end up with false positives. 1665 */ 1666 static void kmemleak_clear(void) 1667 { 1668 struct kmemleak_object *object; 1669 unsigned long flags; 1670 1671 rcu_read_lock(); 1672 list_for_each_entry_rcu(object, &object_list, object_list) { 1673 spin_lock_irqsave(&object->lock, flags); 1674 if ((object->flags & OBJECT_REPORTED) && 1675 unreferenced_object(object)) 1676 __paint_it(object, KMEMLEAK_GREY); 1677 spin_unlock_irqrestore(&object->lock, flags); 1678 } 1679 rcu_read_unlock(); 1680 1681 kmemleak_found_leaks = false; 1682 } 1683 1684 static void __kmemleak_do_cleanup(void); 1685 1686 /* 1687 * File write operation to configure kmemleak at run-time. The following 1688 * commands can be written to the /sys/kernel/debug/kmemleak file: 1689 * off - disable kmemleak (irreversible) 1690 * stack=on - enable the task stacks scanning 1691 * stack=off - disable the tasks stacks scanning 1692 * scan=on - start the automatic memory scanning thread 1693 * scan=off - stop the automatic memory scanning thread 1694 * scan=... - set the automatic memory scanning period in seconds (0 to 1695 * disable it) 1696 * scan - trigger a memory scan 1697 * clear - mark all current reported unreferenced kmemleak objects as 1698 * grey to ignore printing them, or free all kmemleak objects 1699 * if kmemleak has been disabled. 1700 * dump=... - dump information about the object found at the given address 1701 */ 1702 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf, 1703 size_t size, loff_t *ppos) 1704 { 1705 char buf[64]; 1706 int buf_size; 1707 int ret; 1708 1709 buf_size = min(size, (sizeof(buf) - 1)); 1710 if (strncpy_from_user(buf, user_buf, buf_size) < 0) 1711 return -EFAULT; 1712 buf[buf_size] = 0; 1713 1714 ret = mutex_lock_interruptible(&scan_mutex); 1715 if (ret < 0) 1716 return ret; 1717 1718 if (strncmp(buf, "clear", 5) == 0) { 1719 if (kmemleak_enabled) 1720 kmemleak_clear(); 1721 else 1722 __kmemleak_do_cleanup(); 1723 goto out; 1724 } 1725 1726 if (!kmemleak_enabled) { 1727 ret = -EBUSY; 1728 goto out; 1729 } 1730 1731 if (strncmp(buf, "off", 3) == 0) 1732 kmemleak_disable(); 1733 else if (strncmp(buf, "stack=on", 8) == 0) 1734 kmemleak_stack_scan = 1; 1735 else if (strncmp(buf, "stack=off", 9) == 0) 1736 kmemleak_stack_scan = 0; 1737 else if (strncmp(buf, "scan=on", 7) == 0) 1738 start_scan_thread(); 1739 else if (strncmp(buf, "scan=off", 8) == 0) 1740 stop_scan_thread(); 1741 else if (strncmp(buf, "scan=", 5) == 0) { 1742 unsigned long secs; 1743 1744 ret = kstrtoul(buf + 5, 0, &secs); 1745 if (ret < 0) 1746 goto out; 1747 stop_scan_thread(); 1748 if (secs) { 1749 jiffies_scan_wait = msecs_to_jiffies(secs * 1000); 1750 start_scan_thread(); 1751 } 1752 } else if (strncmp(buf, "scan", 4) == 0) 1753 kmemleak_scan(); 1754 else if (strncmp(buf, "dump=", 5) == 0) 1755 ret = dump_str_object_info(buf + 5); 1756 else 1757 ret = -EINVAL; 1758 1759 out: 1760 mutex_unlock(&scan_mutex); 1761 if (ret < 0) 1762 return ret; 1763 1764 /* ignore the rest of the buffer, only one command at a time */ 1765 *ppos += size; 1766 return size; 1767 } 1768 1769 static const struct file_operations kmemleak_fops = { 1770 .owner = THIS_MODULE, 1771 .open = kmemleak_open, 1772 .read = seq_read, 1773 .write = kmemleak_write, 1774 .llseek = seq_lseek, 1775 .release = seq_release, 1776 }; 1777 1778 static void __kmemleak_do_cleanup(void) 1779 { 1780 struct kmemleak_object *object; 1781 1782 rcu_read_lock(); 1783 list_for_each_entry_rcu(object, &object_list, object_list) 1784 delete_object_full(object->pointer); 1785 rcu_read_unlock(); 1786 } 1787 1788 /* 1789 * Stop the memory scanning thread and free the kmemleak internal objects if 1790 * no previous scan thread (otherwise, kmemleak may still have some useful 1791 * information on memory leaks). 1792 */ 1793 static void kmemleak_do_cleanup(struct work_struct *work) 1794 { 1795 stop_scan_thread(); 1796 1797 /* 1798 * Once the scan thread has stopped, it is safe to no longer track 1799 * object freeing. Ordering of the scan thread stopping and the memory 1800 * accesses below is guaranteed by the kthread_stop() function. 1801 */ 1802 kmemleak_free_enabled = 0; 1803 1804 if (!kmemleak_found_leaks) 1805 __kmemleak_do_cleanup(); 1806 else 1807 pr_info("Kmemleak disabled without freeing internal data. " 1808 "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n"); 1809 } 1810 1811 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup); 1812 1813 /* 1814 * Disable kmemleak. No memory allocation/freeing will be traced once this 1815 * function is called. Disabling kmemleak is an irreversible operation. 1816 */ 1817 static void kmemleak_disable(void) 1818 { 1819 /* atomically check whether it was already invoked */ 1820 if (cmpxchg(&kmemleak_error, 0, 1)) 1821 return; 1822 1823 /* stop any memory operation tracing */ 1824 kmemleak_enabled = 0; 1825 1826 /* check whether it is too early for a kernel thread */ 1827 if (kmemleak_initialized) 1828 schedule_work(&cleanup_work); 1829 else 1830 kmemleak_free_enabled = 0; 1831 1832 pr_info("Kernel memory leak detector disabled\n"); 1833 } 1834 1835 /* 1836 * Allow boot-time kmemleak disabling (enabled by default). 1837 */ 1838 static int kmemleak_boot_config(char *str) 1839 { 1840 if (!str) 1841 return -EINVAL; 1842 if (strcmp(str, "off") == 0) 1843 kmemleak_disable(); 1844 else if (strcmp(str, "on") == 0) 1845 kmemleak_skip_disable = 1; 1846 else 1847 return -EINVAL; 1848 return 0; 1849 } 1850 early_param("kmemleak", kmemleak_boot_config); 1851 1852 static void __init print_log_trace(struct early_log *log) 1853 { 1854 struct stack_trace trace; 1855 1856 trace.nr_entries = log->trace_len; 1857 trace.entries = log->trace; 1858 1859 pr_notice("Early log backtrace:\n"); 1860 print_stack_trace(&trace, 2); 1861 } 1862 1863 /* 1864 * Kmemleak initialization. 1865 */ 1866 void __init kmemleak_init(void) 1867 { 1868 int i; 1869 unsigned long flags; 1870 1871 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF 1872 if (!kmemleak_skip_disable) { 1873 kmemleak_early_log = 0; 1874 kmemleak_disable(); 1875 return; 1876 } 1877 #endif 1878 1879 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE); 1880 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000); 1881 1882 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE); 1883 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE); 1884 1885 if (crt_early_log >= ARRAY_SIZE(early_log)) 1886 pr_warning("Early log buffer exceeded (%d), please increase " 1887 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log); 1888 1889 /* the kernel is still in UP mode, so disabling the IRQs is enough */ 1890 local_irq_save(flags); 1891 kmemleak_early_log = 0; 1892 if (kmemleak_error) { 1893 local_irq_restore(flags); 1894 return; 1895 } else { 1896 kmemleak_enabled = 1; 1897 kmemleak_free_enabled = 1; 1898 } 1899 local_irq_restore(flags); 1900 1901 /* 1902 * This is the point where tracking allocations is safe. Automatic 1903 * scanning is started during the late initcall. Add the early logged 1904 * callbacks to the kmemleak infrastructure. 1905 */ 1906 for (i = 0; i < crt_early_log; i++) { 1907 struct early_log *log = &early_log[i]; 1908 1909 switch (log->op_type) { 1910 case KMEMLEAK_ALLOC: 1911 early_alloc(log); 1912 break; 1913 case KMEMLEAK_ALLOC_PERCPU: 1914 early_alloc_percpu(log); 1915 break; 1916 case KMEMLEAK_FREE: 1917 kmemleak_free(log->ptr); 1918 break; 1919 case KMEMLEAK_FREE_PART: 1920 kmemleak_free_part(log->ptr, log->size); 1921 break; 1922 case KMEMLEAK_FREE_PERCPU: 1923 kmemleak_free_percpu(log->ptr); 1924 break; 1925 case KMEMLEAK_NOT_LEAK: 1926 kmemleak_not_leak(log->ptr); 1927 break; 1928 case KMEMLEAK_IGNORE: 1929 kmemleak_ignore(log->ptr); 1930 break; 1931 case KMEMLEAK_SCAN_AREA: 1932 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL); 1933 break; 1934 case KMEMLEAK_NO_SCAN: 1935 kmemleak_no_scan(log->ptr); 1936 break; 1937 default: 1938 kmemleak_warn("Unknown early log operation: %d\n", 1939 log->op_type); 1940 } 1941 1942 if (kmemleak_warning) { 1943 print_log_trace(log); 1944 kmemleak_warning = 0; 1945 } 1946 } 1947 } 1948 1949 /* 1950 * Late initialization function. 1951 */ 1952 static int __init kmemleak_late_init(void) 1953 { 1954 struct dentry *dentry; 1955 1956 kmemleak_initialized = 1; 1957 1958 if (kmemleak_error) { 1959 /* 1960 * Some error occurred and kmemleak was disabled. There is a 1961 * small chance that kmemleak_disable() was called immediately 1962 * after setting kmemleak_initialized and we may end up with 1963 * two clean-up threads but serialized by scan_mutex. 1964 */ 1965 schedule_work(&cleanup_work); 1966 return -ENOMEM; 1967 } 1968 1969 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL, 1970 &kmemleak_fops); 1971 if (!dentry) 1972 pr_warning("Failed to create the debugfs kmemleak file\n"); 1973 mutex_lock(&scan_mutex); 1974 start_scan_thread(); 1975 mutex_unlock(&scan_mutex); 1976 1977 pr_info("Kernel memory leak detector initialized\n"); 1978 1979 return 0; 1980 } 1981 late_initcall(kmemleak_late_init); 1982