xref: /linux/mm/kmemleak.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70 
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72 
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched.h>
77 #include <linux/jiffies.h>
78 #include <linux/delay.h>
79 #include <linux/export.h>
80 #include <linux/kthread.h>
81 #include <linux/rbtree.h>
82 #include <linux/fs.h>
83 #include <linux/debugfs.h>
84 #include <linux/seq_file.h>
85 #include <linux/cpumask.h>
86 #include <linux/spinlock.h>
87 #include <linux/mutex.h>
88 #include <linux/rcupdate.h>
89 #include <linux/stacktrace.h>
90 #include <linux/cache.h>
91 #include <linux/percpu.h>
92 #include <linux/hardirq.h>
93 #include <linux/mmzone.h>
94 #include <linux/slab.h>
95 #include <linux/thread_info.h>
96 #include <linux/err.h>
97 #include <linux/uaccess.h>
98 #include <linux/string.h>
99 #include <linux/nodemask.h>
100 #include <linux/mm.h>
101 #include <linux/workqueue.h>
102 #include <linux/crc32.h>
103 
104 #include <asm/sections.h>
105 #include <asm/processor.h>
106 #include <linux/atomic.h>
107 
108 #include <linux/kasan.h>
109 #include <linux/kmemcheck.h>
110 #include <linux/kmemleak.h>
111 #include <linux/memory_hotplug.h>
112 
113 /*
114  * Kmemleak configuration and common defines.
115  */
116 #define MAX_TRACE		16	/* stack trace length */
117 #define MSECS_MIN_AGE		5000	/* minimum object age for reporting */
118 #define SECS_FIRST_SCAN		60	/* delay before the first scan */
119 #define SECS_SCAN_WAIT		600	/* subsequent auto scanning delay */
120 #define MAX_SCAN_SIZE		4096	/* maximum size of a scanned block */
121 
122 #define BYTES_PER_POINTER	sizeof(void *)
123 
124 /* GFP bitmask for kmemleak internal allocations */
125 #define gfp_kmemleak_mask(gfp)	(((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
126 					   __GFP_NOACCOUNT)) | \
127 				 __GFP_NORETRY | __GFP_NOMEMALLOC | \
128 				 __GFP_NOWARN)
129 
130 /* scanning area inside a memory block */
131 struct kmemleak_scan_area {
132 	struct hlist_node node;
133 	unsigned long start;
134 	size_t size;
135 };
136 
137 #define KMEMLEAK_GREY	0
138 #define KMEMLEAK_BLACK	-1
139 
140 /*
141  * Structure holding the metadata for each allocated memory block.
142  * Modifications to such objects should be made while holding the
143  * object->lock. Insertions or deletions from object_list, gray_list or
144  * rb_node are already protected by the corresponding locks or mutex (see
145  * the notes on locking above). These objects are reference-counted
146  * (use_count) and freed using the RCU mechanism.
147  */
148 struct kmemleak_object {
149 	spinlock_t lock;
150 	unsigned long flags;		/* object status flags */
151 	struct list_head object_list;
152 	struct list_head gray_list;
153 	struct rb_node rb_node;
154 	struct rcu_head rcu;		/* object_list lockless traversal */
155 	/* object usage count; object freed when use_count == 0 */
156 	atomic_t use_count;
157 	unsigned long pointer;
158 	size_t size;
159 	/* minimum number of a pointers found before it is considered leak */
160 	int min_count;
161 	/* the total number of pointers found pointing to this object */
162 	int count;
163 	/* checksum for detecting modified objects */
164 	u32 checksum;
165 	/* memory ranges to be scanned inside an object (empty for all) */
166 	struct hlist_head area_list;
167 	unsigned long trace[MAX_TRACE];
168 	unsigned int trace_len;
169 	unsigned long jiffies;		/* creation timestamp */
170 	pid_t pid;			/* pid of the current task */
171 	char comm[TASK_COMM_LEN];	/* executable name */
172 };
173 
174 /* flag representing the memory block allocation status */
175 #define OBJECT_ALLOCATED	(1 << 0)
176 /* flag set after the first reporting of an unreference object */
177 #define OBJECT_REPORTED		(1 << 1)
178 /* flag set to not scan the object */
179 #define OBJECT_NO_SCAN		(1 << 2)
180 
181 /* number of bytes to print per line; must be 16 or 32 */
182 #define HEX_ROW_SIZE		16
183 /* number of bytes to print at a time (1, 2, 4, 8) */
184 #define HEX_GROUP_SIZE		1
185 /* include ASCII after the hex output */
186 #define HEX_ASCII		1
187 /* max number of lines to be printed */
188 #define HEX_MAX_LINES		2
189 
190 /* the list of all allocated objects */
191 static LIST_HEAD(object_list);
192 /* the list of gray-colored objects (see color_gray comment below) */
193 static LIST_HEAD(gray_list);
194 /* search tree for object boundaries */
195 static struct rb_root object_tree_root = RB_ROOT;
196 /* rw_lock protecting the access to object_list and object_tree_root */
197 static DEFINE_RWLOCK(kmemleak_lock);
198 
199 /* allocation caches for kmemleak internal data */
200 static struct kmem_cache *object_cache;
201 static struct kmem_cache *scan_area_cache;
202 
203 /* set if tracing memory operations is enabled */
204 static int kmemleak_enabled;
205 /* same as above but only for the kmemleak_free() callback */
206 static int kmemleak_free_enabled;
207 /* set in the late_initcall if there were no errors */
208 static int kmemleak_initialized;
209 /* enables or disables early logging of the memory operations */
210 static int kmemleak_early_log = 1;
211 /* set if a kmemleak warning was issued */
212 static int kmemleak_warning;
213 /* set if a fatal kmemleak error has occurred */
214 static int kmemleak_error;
215 
216 /* minimum and maximum address that may be valid pointers */
217 static unsigned long min_addr = ULONG_MAX;
218 static unsigned long max_addr;
219 
220 static struct task_struct *scan_thread;
221 /* used to avoid reporting of recently allocated objects */
222 static unsigned long jiffies_min_age;
223 static unsigned long jiffies_last_scan;
224 /* delay between automatic memory scannings */
225 static signed long jiffies_scan_wait;
226 /* enables or disables the task stacks scanning */
227 static int kmemleak_stack_scan = 1;
228 /* protects the memory scanning, parameters and debug/kmemleak file access */
229 static DEFINE_MUTEX(scan_mutex);
230 /* setting kmemleak=on, will set this var, skipping the disable */
231 static int kmemleak_skip_disable;
232 /* If there are leaks that can be reported */
233 static bool kmemleak_found_leaks;
234 
235 /*
236  * Early object allocation/freeing logging. Kmemleak is initialized after the
237  * kernel allocator. However, both the kernel allocator and kmemleak may
238  * allocate memory blocks which need to be tracked. Kmemleak defines an
239  * arbitrary buffer to hold the allocation/freeing information before it is
240  * fully initialized.
241  */
242 
243 /* kmemleak operation type for early logging */
244 enum {
245 	KMEMLEAK_ALLOC,
246 	KMEMLEAK_ALLOC_PERCPU,
247 	KMEMLEAK_FREE,
248 	KMEMLEAK_FREE_PART,
249 	KMEMLEAK_FREE_PERCPU,
250 	KMEMLEAK_NOT_LEAK,
251 	KMEMLEAK_IGNORE,
252 	KMEMLEAK_SCAN_AREA,
253 	KMEMLEAK_NO_SCAN
254 };
255 
256 /*
257  * Structure holding the information passed to kmemleak callbacks during the
258  * early logging.
259  */
260 struct early_log {
261 	int op_type;			/* kmemleak operation type */
262 	const void *ptr;		/* allocated/freed memory block */
263 	size_t size;			/* memory block size */
264 	int min_count;			/* minimum reference count */
265 	unsigned long trace[MAX_TRACE];	/* stack trace */
266 	unsigned int trace_len;		/* stack trace length */
267 };
268 
269 /* early logging buffer and current position */
270 static struct early_log
271 	early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
272 static int crt_early_log __initdata;
273 
274 static void kmemleak_disable(void);
275 
276 /*
277  * Print a warning and dump the stack trace.
278  */
279 #define kmemleak_warn(x...)	do {		\
280 	pr_warning(x);				\
281 	dump_stack();				\
282 	kmemleak_warning = 1;			\
283 } while (0)
284 
285 /*
286  * Macro invoked when a serious kmemleak condition occurred and cannot be
287  * recovered from. Kmemleak will be disabled and further allocation/freeing
288  * tracing no longer available.
289  */
290 #define kmemleak_stop(x...)	do {	\
291 	kmemleak_warn(x);		\
292 	kmemleak_disable();		\
293 } while (0)
294 
295 /*
296  * Printing of the objects hex dump to the seq file. The number of lines to be
297  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
298  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
299  * with the object->lock held.
300  */
301 static void hex_dump_object(struct seq_file *seq,
302 			    struct kmemleak_object *object)
303 {
304 	const u8 *ptr = (const u8 *)object->pointer;
305 	int i, len, remaining;
306 	unsigned char linebuf[HEX_ROW_SIZE * 5];
307 
308 	/* limit the number of lines to HEX_MAX_LINES */
309 	remaining = len =
310 		min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
311 
312 	seq_printf(seq, "  hex dump (first %d bytes):\n", len);
313 	for (i = 0; i < len; i += HEX_ROW_SIZE) {
314 		int linelen = min(remaining, HEX_ROW_SIZE);
315 
316 		remaining -= HEX_ROW_SIZE;
317 		hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
318 				   HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
319 				   HEX_ASCII);
320 		seq_printf(seq, "    %s\n", linebuf);
321 	}
322 }
323 
324 /*
325  * Object colors, encoded with count and min_count:
326  * - white - orphan object, not enough references to it (count < min_count)
327  * - gray  - not orphan, not marked as false positive (min_count == 0) or
328  *		sufficient references to it (count >= min_count)
329  * - black - ignore, it doesn't contain references (e.g. text section)
330  *		(min_count == -1). No function defined for this color.
331  * Newly created objects don't have any color assigned (object->count == -1)
332  * before the next memory scan when they become white.
333  */
334 static bool color_white(const struct kmemleak_object *object)
335 {
336 	return object->count != KMEMLEAK_BLACK &&
337 		object->count < object->min_count;
338 }
339 
340 static bool color_gray(const struct kmemleak_object *object)
341 {
342 	return object->min_count != KMEMLEAK_BLACK &&
343 		object->count >= object->min_count;
344 }
345 
346 /*
347  * Objects are considered unreferenced only if their color is white, they have
348  * not be deleted and have a minimum age to avoid false positives caused by
349  * pointers temporarily stored in CPU registers.
350  */
351 static bool unreferenced_object(struct kmemleak_object *object)
352 {
353 	return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
354 		time_before_eq(object->jiffies + jiffies_min_age,
355 			       jiffies_last_scan);
356 }
357 
358 /*
359  * Printing of the unreferenced objects information to the seq file. The
360  * print_unreferenced function must be called with the object->lock held.
361  */
362 static void print_unreferenced(struct seq_file *seq,
363 			       struct kmemleak_object *object)
364 {
365 	int i;
366 	unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
367 
368 	seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
369 		   object->pointer, object->size);
370 	seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
371 		   object->comm, object->pid, object->jiffies,
372 		   msecs_age / 1000, msecs_age % 1000);
373 	hex_dump_object(seq, object);
374 	seq_printf(seq, "  backtrace:\n");
375 
376 	for (i = 0; i < object->trace_len; i++) {
377 		void *ptr = (void *)object->trace[i];
378 		seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
379 	}
380 }
381 
382 /*
383  * Print the kmemleak_object information. This function is used mainly for
384  * debugging special cases when kmemleak operations. It must be called with
385  * the object->lock held.
386  */
387 static void dump_object_info(struct kmemleak_object *object)
388 {
389 	struct stack_trace trace;
390 
391 	trace.nr_entries = object->trace_len;
392 	trace.entries = object->trace;
393 
394 	pr_notice("Object 0x%08lx (size %zu):\n",
395 		  object->pointer, object->size);
396 	pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
397 		  object->comm, object->pid, object->jiffies);
398 	pr_notice("  min_count = %d\n", object->min_count);
399 	pr_notice("  count = %d\n", object->count);
400 	pr_notice("  flags = 0x%lx\n", object->flags);
401 	pr_notice("  checksum = %u\n", object->checksum);
402 	pr_notice("  backtrace:\n");
403 	print_stack_trace(&trace, 4);
404 }
405 
406 /*
407  * Look-up a memory block metadata (kmemleak_object) in the object search
408  * tree based on a pointer value. If alias is 0, only values pointing to the
409  * beginning of the memory block are allowed. The kmemleak_lock must be held
410  * when calling this function.
411  */
412 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
413 {
414 	struct rb_node *rb = object_tree_root.rb_node;
415 
416 	while (rb) {
417 		struct kmemleak_object *object =
418 			rb_entry(rb, struct kmemleak_object, rb_node);
419 		if (ptr < object->pointer)
420 			rb = object->rb_node.rb_left;
421 		else if (object->pointer + object->size <= ptr)
422 			rb = object->rb_node.rb_right;
423 		else if (object->pointer == ptr || alias)
424 			return object;
425 		else {
426 			kmemleak_warn("Found object by alias at 0x%08lx\n",
427 				      ptr);
428 			dump_object_info(object);
429 			break;
430 		}
431 	}
432 	return NULL;
433 }
434 
435 /*
436  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
437  * that once an object's use_count reached 0, the RCU freeing was already
438  * registered and the object should no longer be used. This function must be
439  * called under the protection of rcu_read_lock().
440  */
441 static int get_object(struct kmemleak_object *object)
442 {
443 	return atomic_inc_not_zero(&object->use_count);
444 }
445 
446 /*
447  * RCU callback to free a kmemleak_object.
448  */
449 static void free_object_rcu(struct rcu_head *rcu)
450 {
451 	struct hlist_node *tmp;
452 	struct kmemleak_scan_area *area;
453 	struct kmemleak_object *object =
454 		container_of(rcu, struct kmemleak_object, rcu);
455 
456 	/*
457 	 * Once use_count is 0 (guaranteed by put_object), there is no other
458 	 * code accessing this object, hence no need for locking.
459 	 */
460 	hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
461 		hlist_del(&area->node);
462 		kmem_cache_free(scan_area_cache, area);
463 	}
464 	kmem_cache_free(object_cache, object);
465 }
466 
467 /*
468  * Decrement the object use_count. Once the count is 0, free the object using
469  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
470  * delete_object() path, the delayed RCU freeing ensures that there is no
471  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
472  * is also possible.
473  */
474 static void put_object(struct kmemleak_object *object)
475 {
476 	if (!atomic_dec_and_test(&object->use_count))
477 		return;
478 
479 	/* should only get here after delete_object was called */
480 	WARN_ON(object->flags & OBJECT_ALLOCATED);
481 
482 	call_rcu(&object->rcu, free_object_rcu);
483 }
484 
485 /*
486  * Look up an object in the object search tree and increase its use_count.
487  */
488 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
489 {
490 	unsigned long flags;
491 	struct kmemleak_object *object = NULL;
492 
493 	rcu_read_lock();
494 	read_lock_irqsave(&kmemleak_lock, flags);
495 	object = lookup_object(ptr, alias);
496 	read_unlock_irqrestore(&kmemleak_lock, flags);
497 
498 	/* check whether the object is still available */
499 	if (object && !get_object(object))
500 		object = NULL;
501 	rcu_read_unlock();
502 
503 	return object;
504 }
505 
506 /*
507  * Look up an object in the object search tree and remove it from both
508  * object_tree_root and object_list. The returned object's use_count should be
509  * at least 1, as initially set by create_object().
510  */
511 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
512 {
513 	unsigned long flags;
514 	struct kmemleak_object *object;
515 
516 	write_lock_irqsave(&kmemleak_lock, flags);
517 	object = lookup_object(ptr, alias);
518 	if (object) {
519 		rb_erase(&object->rb_node, &object_tree_root);
520 		list_del_rcu(&object->object_list);
521 	}
522 	write_unlock_irqrestore(&kmemleak_lock, flags);
523 
524 	return object;
525 }
526 
527 /*
528  * Save stack trace to the given array of MAX_TRACE size.
529  */
530 static int __save_stack_trace(unsigned long *trace)
531 {
532 	struct stack_trace stack_trace;
533 
534 	stack_trace.max_entries = MAX_TRACE;
535 	stack_trace.nr_entries = 0;
536 	stack_trace.entries = trace;
537 	stack_trace.skip = 2;
538 	save_stack_trace(&stack_trace);
539 
540 	return stack_trace.nr_entries;
541 }
542 
543 /*
544  * Create the metadata (struct kmemleak_object) corresponding to an allocated
545  * memory block and add it to the object_list and object_tree_root.
546  */
547 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
548 					     int min_count, gfp_t gfp)
549 {
550 	unsigned long flags;
551 	struct kmemleak_object *object, *parent;
552 	struct rb_node **link, *rb_parent;
553 
554 	object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
555 	if (!object) {
556 		pr_warning("Cannot allocate a kmemleak_object structure\n");
557 		kmemleak_disable();
558 		return NULL;
559 	}
560 
561 	INIT_LIST_HEAD(&object->object_list);
562 	INIT_LIST_HEAD(&object->gray_list);
563 	INIT_HLIST_HEAD(&object->area_list);
564 	spin_lock_init(&object->lock);
565 	atomic_set(&object->use_count, 1);
566 	object->flags = OBJECT_ALLOCATED;
567 	object->pointer = ptr;
568 	object->size = size;
569 	object->min_count = min_count;
570 	object->count = 0;			/* white color initially */
571 	object->jiffies = jiffies;
572 	object->checksum = 0;
573 
574 	/* task information */
575 	if (in_irq()) {
576 		object->pid = 0;
577 		strncpy(object->comm, "hardirq", sizeof(object->comm));
578 	} else if (in_softirq()) {
579 		object->pid = 0;
580 		strncpy(object->comm, "softirq", sizeof(object->comm));
581 	} else {
582 		object->pid = current->pid;
583 		/*
584 		 * There is a small chance of a race with set_task_comm(),
585 		 * however using get_task_comm() here may cause locking
586 		 * dependency issues with current->alloc_lock. In the worst
587 		 * case, the command line is not correct.
588 		 */
589 		strncpy(object->comm, current->comm, sizeof(object->comm));
590 	}
591 
592 	/* kernel backtrace */
593 	object->trace_len = __save_stack_trace(object->trace);
594 
595 	write_lock_irqsave(&kmemleak_lock, flags);
596 
597 	min_addr = min(min_addr, ptr);
598 	max_addr = max(max_addr, ptr + size);
599 	link = &object_tree_root.rb_node;
600 	rb_parent = NULL;
601 	while (*link) {
602 		rb_parent = *link;
603 		parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
604 		if (ptr + size <= parent->pointer)
605 			link = &parent->rb_node.rb_left;
606 		else if (parent->pointer + parent->size <= ptr)
607 			link = &parent->rb_node.rb_right;
608 		else {
609 			kmemleak_stop("Cannot insert 0x%lx into the object "
610 				      "search tree (overlaps existing)\n",
611 				      ptr);
612 			/*
613 			 * No need for parent->lock here since "parent" cannot
614 			 * be freed while the kmemleak_lock is held.
615 			 */
616 			dump_object_info(parent);
617 			kmem_cache_free(object_cache, object);
618 			object = NULL;
619 			goto out;
620 		}
621 	}
622 	rb_link_node(&object->rb_node, rb_parent, link);
623 	rb_insert_color(&object->rb_node, &object_tree_root);
624 
625 	list_add_tail_rcu(&object->object_list, &object_list);
626 out:
627 	write_unlock_irqrestore(&kmemleak_lock, flags);
628 	return object;
629 }
630 
631 /*
632  * Mark the object as not allocated and schedule RCU freeing via put_object().
633  */
634 static void __delete_object(struct kmemleak_object *object)
635 {
636 	unsigned long flags;
637 
638 	WARN_ON(!(object->flags & OBJECT_ALLOCATED));
639 	WARN_ON(atomic_read(&object->use_count) < 1);
640 
641 	/*
642 	 * Locking here also ensures that the corresponding memory block
643 	 * cannot be freed when it is being scanned.
644 	 */
645 	spin_lock_irqsave(&object->lock, flags);
646 	object->flags &= ~OBJECT_ALLOCATED;
647 	spin_unlock_irqrestore(&object->lock, flags);
648 	put_object(object);
649 }
650 
651 /*
652  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
653  * delete it.
654  */
655 static void delete_object_full(unsigned long ptr)
656 {
657 	struct kmemleak_object *object;
658 
659 	object = find_and_remove_object(ptr, 0);
660 	if (!object) {
661 #ifdef DEBUG
662 		kmemleak_warn("Freeing unknown object at 0x%08lx\n",
663 			      ptr);
664 #endif
665 		return;
666 	}
667 	__delete_object(object);
668 }
669 
670 /*
671  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
672  * delete it. If the memory block is partially freed, the function may create
673  * additional metadata for the remaining parts of the block.
674  */
675 static void delete_object_part(unsigned long ptr, size_t size)
676 {
677 	struct kmemleak_object *object;
678 	unsigned long start, end;
679 
680 	object = find_and_remove_object(ptr, 1);
681 	if (!object) {
682 #ifdef DEBUG
683 		kmemleak_warn("Partially freeing unknown object at 0x%08lx "
684 			      "(size %zu)\n", ptr, size);
685 #endif
686 		return;
687 	}
688 
689 	/*
690 	 * Create one or two objects that may result from the memory block
691 	 * split. Note that partial freeing is only done by free_bootmem() and
692 	 * this happens before kmemleak_init() is called. The path below is
693 	 * only executed during early log recording in kmemleak_init(), so
694 	 * GFP_KERNEL is enough.
695 	 */
696 	start = object->pointer;
697 	end = object->pointer + object->size;
698 	if (ptr > start)
699 		create_object(start, ptr - start, object->min_count,
700 			      GFP_KERNEL);
701 	if (ptr + size < end)
702 		create_object(ptr + size, end - ptr - size, object->min_count,
703 			      GFP_KERNEL);
704 
705 	__delete_object(object);
706 }
707 
708 static void __paint_it(struct kmemleak_object *object, int color)
709 {
710 	object->min_count = color;
711 	if (color == KMEMLEAK_BLACK)
712 		object->flags |= OBJECT_NO_SCAN;
713 }
714 
715 static void paint_it(struct kmemleak_object *object, int color)
716 {
717 	unsigned long flags;
718 
719 	spin_lock_irqsave(&object->lock, flags);
720 	__paint_it(object, color);
721 	spin_unlock_irqrestore(&object->lock, flags);
722 }
723 
724 static void paint_ptr(unsigned long ptr, int color)
725 {
726 	struct kmemleak_object *object;
727 
728 	object = find_and_get_object(ptr, 0);
729 	if (!object) {
730 		kmemleak_warn("Trying to color unknown object "
731 			      "at 0x%08lx as %s\n", ptr,
732 			      (color == KMEMLEAK_GREY) ? "Grey" :
733 			      (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
734 		return;
735 	}
736 	paint_it(object, color);
737 	put_object(object);
738 }
739 
740 /*
741  * Mark an object permanently as gray-colored so that it can no longer be
742  * reported as a leak. This is used in general to mark a false positive.
743  */
744 static void make_gray_object(unsigned long ptr)
745 {
746 	paint_ptr(ptr, KMEMLEAK_GREY);
747 }
748 
749 /*
750  * Mark the object as black-colored so that it is ignored from scans and
751  * reporting.
752  */
753 static void make_black_object(unsigned long ptr)
754 {
755 	paint_ptr(ptr, KMEMLEAK_BLACK);
756 }
757 
758 /*
759  * Add a scanning area to the object. If at least one such area is added,
760  * kmemleak will only scan these ranges rather than the whole memory block.
761  */
762 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
763 {
764 	unsigned long flags;
765 	struct kmemleak_object *object;
766 	struct kmemleak_scan_area *area;
767 
768 	object = find_and_get_object(ptr, 1);
769 	if (!object) {
770 		kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
771 			      ptr);
772 		return;
773 	}
774 
775 	area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
776 	if (!area) {
777 		pr_warning("Cannot allocate a scan area\n");
778 		goto out;
779 	}
780 
781 	spin_lock_irqsave(&object->lock, flags);
782 	if (size == SIZE_MAX) {
783 		size = object->pointer + object->size - ptr;
784 	} else if (ptr + size > object->pointer + object->size) {
785 		kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
786 		dump_object_info(object);
787 		kmem_cache_free(scan_area_cache, area);
788 		goto out_unlock;
789 	}
790 
791 	INIT_HLIST_NODE(&area->node);
792 	area->start = ptr;
793 	area->size = size;
794 
795 	hlist_add_head(&area->node, &object->area_list);
796 out_unlock:
797 	spin_unlock_irqrestore(&object->lock, flags);
798 out:
799 	put_object(object);
800 }
801 
802 /*
803  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
804  * pointer. Such object will not be scanned by kmemleak but references to it
805  * are searched.
806  */
807 static void object_no_scan(unsigned long ptr)
808 {
809 	unsigned long flags;
810 	struct kmemleak_object *object;
811 
812 	object = find_and_get_object(ptr, 0);
813 	if (!object) {
814 		kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
815 		return;
816 	}
817 
818 	spin_lock_irqsave(&object->lock, flags);
819 	object->flags |= OBJECT_NO_SCAN;
820 	spin_unlock_irqrestore(&object->lock, flags);
821 	put_object(object);
822 }
823 
824 /*
825  * Log an early kmemleak_* call to the early_log buffer. These calls will be
826  * processed later once kmemleak is fully initialized.
827  */
828 static void __init log_early(int op_type, const void *ptr, size_t size,
829 			     int min_count)
830 {
831 	unsigned long flags;
832 	struct early_log *log;
833 
834 	if (kmemleak_error) {
835 		/* kmemleak stopped recording, just count the requests */
836 		crt_early_log++;
837 		return;
838 	}
839 
840 	if (crt_early_log >= ARRAY_SIZE(early_log)) {
841 		kmemleak_disable();
842 		return;
843 	}
844 
845 	/*
846 	 * There is no need for locking since the kernel is still in UP mode
847 	 * at this stage. Disabling the IRQs is enough.
848 	 */
849 	local_irq_save(flags);
850 	log = &early_log[crt_early_log];
851 	log->op_type = op_type;
852 	log->ptr = ptr;
853 	log->size = size;
854 	log->min_count = min_count;
855 	log->trace_len = __save_stack_trace(log->trace);
856 	crt_early_log++;
857 	local_irq_restore(flags);
858 }
859 
860 /*
861  * Log an early allocated block and populate the stack trace.
862  */
863 static void early_alloc(struct early_log *log)
864 {
865 	struct kmemleak_object *object;
866 	unsigned long flags;
867 	int i;
868 
869 	if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
870 		return;
871 
872 	/*
873 	 * RCU locking needed to ensure object is not freed via put_object().
874 	 */
875 	rcu_read_lock();
876 	object = create_object((unsigned long)log->ptr, log->size,
877 			       log->min_count, GFP_ATOMIC);
878 	if (!object)
879 		goto out;
880 	spin_lock_irqsave(&object->lock, flags);
881 	for (i = 0; i < log->trace_len; i++)
882 		object->trace[i] = log->trace[i];
883 	object->trace_len = log->trace_len;
884 	spin_unlock_irqrestore(&object->lock, flags);
885 out:
886 	rcu_read_unlock();
887 }
888 
889 /*
890  * Log an early allocated block and populate the stack trace.
891  */
892 static void early_alloc_percpu(struct early_log *log)
893 {
894 	unsigned int cpu;
895 	const void __percpu *ptr = log->ptr;
896 
897 	for_each_possible_cpu(cpu) {
898 		log->ptr = per_cpu_ptr(ptr, cpu);
899 		early_alloc(log);
900 	}
901 }
902 
903 /**
904  * kmemleak_alloc - register a newly allocated object
905  * @ptr:	pointer to beginning of the object
906  * @size:	size of the object
907  * @min_count:	minimum number of references to this object. If during memory
908  *		scanning a number of references less than @min_count is found,
909  *		the object is reported as a memory leak. If @min_count is 0,
910  *		the object is never reported as a leak. If @min_count is -1,
911  *		the object is ignored (not scanned and not reported as a leak)
912  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
913  *
914  * This function is called from the kernel allocators when a new object
915  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
916  */
917 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
918 			  gfp_t gfp)
919 {
920 	pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
921 
922 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
923 		create_object((unsigned long)ptr, size, min_count, gfp);
924 	else if (kmemleak_early_log)
925 		log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
926 }
927 EXPORT_SYMBOL_GPL(kmemleak_alloc);
928 
929 /**
930  * kmemleak_alloc_percpu - register a newly allocated __percpu object
931  * @ptr:	__percpu pointer to beginning of the object
932  * @size:	size of the object
933  * @gfp:	flags used for kmemleak internal memory allocations
934  *
935  * This function is called from the kernel percpu allocator when a new object
936  * (memory block) is allocated (alloc_percpu).
937  */
938 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
939 				 gfp_t gfp)
940 {
941 	unsigned int cpu;
942 
943 	pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
944 
945 	/*
946 	 * Percpu allocations are only scanned and not reported as leaks
947 	 * (min_count is set to 0).
948 	 */
949 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
950 		for_each_possible_cpu(cpu)
951 			create_object((unsigned long)per_cpu_ptr(ptr, cpu),
952 				      size, 0, gfp);
953 	else if (kmemleak_early_log)
954 		log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
955 }
956 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
957 
958 /**
959  * kmemleak_free - unregister a previously registered object
960  * @ptr:	pointer to beginning of the object
961  *
962  * This function is called from the kernel allocators when an object (memory
963  * block) is freed (kmem_cache_free, kfree, vfree etc.).
964  */
965 void __ref kmemleak_free(const void *ptr)
966 {
967 	pr_debug("%s(0x%p)\n", __func__, ptr);
968 
969 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
970 		delete_object_full((unsigned long)ptr);
971 	else if (kmemleak_early_log)
972 		log_early(KMEMLEAK_FREE, ptr, 0, 0);
973 }
974 EXPORT_SYMBOL_GPL(kmemleak_free);
975 
976 /**
977  * kmemleak_free_part - partially unregister a previously registered object
978  * @ptr:	pointer to the beginning or inside the object. This also
979  *		represents the start of the range to be freed
980  * @size:	size to be unregistered
981  *
982  * This function is called when only a part of a memory block is freed
983  * (usually from the bootmem allocator).
984  */
985 void __ref kmemleak_free_part(const void *ptr, size_t size)
986 {
987 	pr_debug("%s(0x%p)\n", __func__, ptr);
988 
989 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
990 		delete_object_part((unsigned long)ptr, size);
991 	else if (kmemleak_early_log)
992 		log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
993 }
994 EXPORT_SYMBOL_GPL(kmemleak_free_part);
995 
996 /**
997  * kmemleak_free_percpu - unregister a previously registered __percpu object
998  * @ptr:	__percpu pointer to beginning of the object
999  *
1000  * This function is called from the kernel percpu allocator when an object
1001  * (memory block) is freed (free_percpu).
1002  */
1003 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1004 {
1005 	unsigned int cpu;
1006 
1007 	pr_debug("%s(0x%p)\n", __func__, ptr);
1008 
1009 	if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1010 		for_each_possible_cpu(cpu)
1011 			delete_object_full((unsigned long)per_cpu_ptr(ptr,
1012 								      cpu));
1013 	else if (kmemleak_early_log)
1014 		log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1015 }
1016 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1017 
1018 /**
1019  * kmemleak_update_trace - update object allocation stack trace
1020  * @ptr:	pointer to beginning of the object
1021  *
1022  * Override the object allocation stack trace for cases where the actual
1023  * allocation place is not always useful.
1024  */
1025 void __ref kmemleak_update_trace(const void *ptr)
1026 {
1027 	struct kmemleak_object *object;
1028 	unsigned long flags;
1029 
1030 	pr_debug("%s(0x%p)\n", __func__, ptr);
1031 
1032 	if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1033 		return;
1034 
1035 	object = find_and_get_object((unsigned long)ptr, 1);
1036 	if (!object) {
1037 #ifdef DEBUG
1038 		kmemleak_warn("Updating stack trace for unknown object at %p\n",
1039 			      ptr);
1040 #endif
1041 		return;
1042 	}
1043 
1044 	spin_lock_irqsave(&object->lock, flags);
1045 	object->trace_len = __save_stack_trace(object->trace);
1046 	spin_unlock_irqrestore(&object->lock, flags);
1047 
1048 	put_object(object);
1049 }
1050 EXPORT_SYMBOL(kmemleak_update_trace);
1051 
1052 /**
1053  * kmemleak_not_leak - mark an allocated object as false positive
1054  * @ptr:	pointer to beginning of the object
1055  *
1056  * Calling this function on an object will cause the memory block to no longer
1057  * be reported as leak and always be scanned.
1058  */
1059 void __ref kmemleak_not_leak(const void *ptr)
1060 {
1061 	pr_debug("%s(0x%p)\n", __func__, ptr);
1062 
1063 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1064 		make_gray_object((unsigned long)ptr);
1065 	else if (kmemleak_early_log)
1066 		log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1067 }
1068 EXPORT_SYMBOL(kmemleak_not_leak);
1069 
1070 /**
1071  * kmemleak_ignore - ignore an allocated object
1072  * @ptr:	pointer to beginning of the object
1073  *
1074  * Calling this function on an object will cause the memory block to be
1075  * ignored (not scanned and not reported as a leak). This is usually done when
1076  * it is known that the corresponding block is not a leak and does not contain
1077  * any references to other allocated memory blocks.
1078  */
1079 void __ref kmemleak_ignore(const void *ptr)
1080 {
1081 	pr_debug("%s(0x%p)\n", __func__, ptr);
1082 
1083 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1084 		make_black_object((unsigned long)ptr);
1085 	else if (kmemleak_early_log)
1086 		log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1087 }
1088 EXPORT_SYMBOL(kmemleak_ignore);
1089 
1090 /**
1091  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1092  * @ptr:	pointer to beginning or inside the object. This also
1093  *		represents the start of the scan area
1094  * @size:	size of the scan area
1095  * @gfp:	kmalloc() flags used for kmemleak internal memory allocations
1096  *
1097  * This function is used when it is known that only certain parts of an object
1098  * contain references to other objects. Kmemleak will only scan these areas
1099  * reducing the number false negatives.
1100  */
1101 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1102 {
1103 	pr_debug("%s(0x%p)\n", __func__, ptr);
1104 
1105 	if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1106 		add_scan_area((unsigned long)ptr, size, gfp);
1107 	else if (kmemleak_early_log)
1108 		log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1109 }
1110 EXPORT_SYMBOL(kmemleak_scan_area);
1111 
1112 /**
1113  * kmemleak_no_scan - do not scan an allocated object
1114  * @ptr:	pointer to beginning of the object
1115  *
1116  * This function notifies kmemleak not to scan the given memory block. Useful
1117  * in situations where it is known that the given object does not contain any
1118  * references to other objects. Kmemleak will not scan such objects reducing
1119  * the number of false negatives.
1120  */
1121 void __ref kmemleak_no_scan(const void *ptr)
1122 {
1123 	pr_debug("%s(0x%p)\n", __func__, ptr);
1124 
1125 	if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1126 		object_no_scan((unsigned long)ptr);
1127 	else if (kmemleak_early_log)
1128 		log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1129 }
1130 EXPORT_SYMBOL(kmemleak_no_scan);
1131 
1132 /*
1133  * Update an object's checksum and return true if it was modified.
1134  */
1135 static bool update_checksum(struct kmemleak_object *object)
1136 {
1137 	u32 old_csum = object->checksum;
1138 
1139 	if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1140 		return false;
1141 
1142 	kasan_disable_current();
1143 	object->checksum = crc32(0, (void *)object->pointer, object->size);
1144 	kasan_enable_current();
1145 
1146 	return object->checksum != old_csum;
1147 }
1148 
1149 /*
1150  * Memory scanning is a long process and it needs to be interruptable. This
1151  * function checks whether such interrupt condition occurred.
1152  */
1153 static int scan_should_stop(void)
1154 {
1155 	if (!kmemleak_enabled)
1156 		return 1;
1157 
1158 	/*
1159 	 * This function may be called from either process or kthread context,
1160 	 * hence the need to check for both stop conditions.
1161 	 */
1162 	if (current->mm)
1163 		return signal_pending(current);
1164 	else
1165 		return kthread_should_stop();
1166 
1167 	return 0;
1168 }
1169 
1170 /*
1171  * Scan a memory block (exclusive range) for valid pointers and add those
1172  * found to the gray list.
1173  */
1174 static void scan_block(void *_start, void *_end,
1175 		       struct kmemleak_object *scanned)
1176 {
1177 	unsigned long *ptr;
1178 	unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1179 	unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1180 	unsigned long flags;
1181 
1182 	read_lock_irqsave(&kmemleak_lock, flags);
1183 	for (ptr = start; ptr < end; ptr++) {
1184 		struct kmemleak_object *object;
1185 		unsigned long pointer;
1186 
1187 		if (scan_should_stop())
1188 			break;
1189 
1190 		/* don't scan uninitialized memory */
1191 		if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1192 						  BYTES_PER_POINTER))
1193 			continue;
1194 
1195 		kasan_disable_current();
1196 		pointer = *ptr;
1197 		kasan_enable_current();
1198 
1199 		if (pointer < min_addr || pointer >= max_addr)
1200 			continue;
1201 
1202 		/*
1203 		 * No need for get_object() here since we hold kmemleak_lock.
1204 		 * object->use_count cannot be dropped to 0 while the object
1205 		 * is still present in object_tree_root and object_list
1206 		 * (with updates protected by kmemleak_lock).
1207 		 */
1208 		object = lookup_object(pointer, 1);
1209 		if (!object)
1210 			continue;
1211 		if (object == scanned)
1212 			/* self referenced, ignore */
1213 			continue;
1214 
1215 		/*
1216 		 * Avoid the lockdep recursive warning on object->lock being
1217 		 * previously acquired in scan_object(). These locks are
1218 		 * enclosed by scan_mutex.
1219 		 */
1220 		spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1221 		if (!color_white(object)) {
1222 			/* non-orphan, ignored or new */
1223 			spin_unlock(&object->lock);
1224 			continue;
1225 		}
1226 
1227 		/*
1228 		 * Increase the object's reference count (number of pointers
1229 		 * to the memory block). If this count reaches the required
1230 		 * minimum, the object's color will become gray and it will be
1231 		 * added to the gray_list.
1232 		 */
1233 		object->count++;
1234 		if (color_gray(object)) {
1235 			/* put_object() called when removing from gray_list */
1236 			WARN_ON(!get_object(object));
1237 			list_add_tail(&object->gray_list, &gray_list);
1238 		}
1239 		spin_unlock(&object->lock);
1240 	}
1241 	read_unlock_irqrestore(&kmemleak_lock, flags);
1242 }
1243 
1244 /*
1245  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1246  */
1247 static void scan_large_block(void *start, void *end)
1248 {
1249 	void *next;
1250 
1251 	while (start < end) {
1252 		next = min(start + MAX_SCAN_SIZE, end);
1253 		scan_block(start, next, NULL);
1254 		start = next;
1255 		cond_resched();
1256 	}
1257 }
1258 
1259 /*
1260  * Scan a memory block corresponding to a kmemleak_object. A condition is
1261  * that object->use_count >= 1.
1262  */
1263 static void scan_object(struct kmemleak_object *object)
1264 {
1265 	struct kmemleak_scan_area *area;
1266 	unsigned long flags;
1267 
1268 	/*
1269 	 * Once the object->lock is acquired, the corresponding memory block
1270 	 * cannot be freed (the same lock is acquired in delete_object).
1271 	 */
1272 	spin_lock_irqsave(&object->lock, flags);
1273 	if (object->flags & OBJECT_NO_SCAN)
1274 		goto out;
1275 	if (!(object->flags & OBJECT_ALLOCATED))
1276 		/* already freed object */
1277 		goto out;
1278 	if (hlist_empty(&object->area_list)) {
1279 		void *start = (void *)object->pointer;
1280 		void *end = (void *)(object->pointer + object->size);
1281 		void *next;
1282 
1283 		do {
1284 			next = min(start + MAX_SCAN_SIZE, end);
1285 			scan_block(start, next, object);
1286 
1287 			start = next;
1288 			if (start >= end)
1289 				break;
1290 
1291 			spin_unlock_irqrestore(&object->lock, flags);
1292 			cond_resched();
1293 			spin_lock_irqsave(&object->lock, flags);
1294 		} while (object->flags & OBJECT_ALLOCATED);
1295 	} else
1296 		hlist_for_each_entry(area, &object->area_list, node)
1297 			scan_block((void *)area->start,
1298 				   (void *)(area->start + area->size),
1299 				   object);
1300 out:
1301 	spin_unlock_irqrestore(&object->lock, flags);
1302 }
1303 
1304 /*
1305  * Scan the objects already referenced (gray objects). More objects will be
1306  * referenced and, if there are no memory leaks, all the objects are scanned.
1307  */
1308 static void scan_gray_list(void)
1309 {
1310 	struct kmemleak_object *object, *tmp;
1311 
1312 	/*
1313 	 * The list traversal is safe for both tail additions and removals
1314 	 * from inside the loop. The kmemleak objects cannot be freed from
1315 	 * outside the loop because their use_count was incremented.
1316 	 */
1317 	object = list_entry(gray_list.next, typeof(*object), gray_list);
1318 	while (&object->gray_list != &gray_list) {
1319 		cond_resched();
1320 
1321 		/* may add new objects to the list */
1322 		if (!scan_should_stop())
1323 			scan_object(object);
1324 
1325 		tmp = list_entry(object->gray_list.next, typeof(*object),
1326 				 gray_list);
1327 
1328 		/* remove the object from the list and release it */
1329 		list_del(&object->gray_list);
1330 		put_object(object);
1331 
1332 		object = tmp;
1333 	}
1334 	WARN_ON(!list_empty(&gray_list));
1335 }
1336 
1337 /*
1338  * Scan data sections and all the referenced memory blocks allocated via the
1339  * kernel's standard allocators. This function must be called with the
1340  * scan_mutex held.
1341  */
1342 static void kmemleak_scan(void)
1343 {
1344 	unsigned long flags;
1345 	struct kmemleak_object *object;
1346 	int i;
1347 	int new_leaks = 0;
1348 
1349 	jiffies_last_scan = jiffies;
1350 
1351 	/* prepare the kmemleak_object's */
1352 	rcu_read_lock();
1353 	list_for_each_entry_rcu(object, &object_list, object_list) {
1354 		spin_lock_irqsave(&object->lock, flags);
1355 #ifdef DEBUG
1356 		/*
1357 		 * With a few exceptions there should be a maximum of
1358 		 * 1 reference to any object at this point.
1359 		 */
1360 		if (atomic_read(&object->use_count) > 1) {
1361 			pr_debug("object->use_count = %d\n",
1362 				 atomic_read(&object->use_count));
1363 			dump_object_info(object);
1364 		}
1365 #endif
1366 		/* reset the reference count (whiten the object) */
1367 		object->count = 0;
1368 		if (color_gray(object) && get_object(object))
1369 			list_add_tail(&object->gray_list, &gray_list);
1370 
1371 		spin_unlock_irqrestore(&object->lock, flags);
1372 	}
1373 	rcu_read_unlock();
1374 
1375 	/* data/bss scanning */
1376 	scan_large_block(_sdata, _edata);
1377 	scan_large_block(__bss_start, __bss_stop);
1378 
1379 #ifdef CONFIG_SMP
1380 	/* per-cpu sections scanning */
1381 	for_each_possible_cpu(i)
1382 		scan_large_block(__per_cpu_start + per_cpu_offset(i),
1383 				 __per_cpu_end + per_cpu_offset(i));
1384 #endif
1385 
1386 	/*
1387 	 * Struct page scanning for each node.
1388 	 */
1389 	get_online_mems();
1390 	for_each_online_node(i) {
1391 		unsigned long start_pfn = node_start_pfn(i);
1392 		unsigned long end_pfn = node_end_pfn(i);
1393 		unsigned long pfn;
1394 
1395 		for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1396 			struct page *page;
1397 
1398 			if (!pfn_valid(pfn))
1399 				continue;
1400 			page = pfn_to_page(pfn);
1401 			/* only scan if page is in use */
1402 			if (page_count(page) == 0)
1403 				continue;
1404 			scan_block(page, page + 1, NULL);
1405 		}
1406 	}
1407 	put_online_mems();
1408 
1409 	/*
1410 	 * Scanning the task stacks (may introduce false negatives).
1411 	 */
1412 	if (kmemleak_stack_scan) {
1413 		struct task_struct *p, *g;
1414 
1415 		read_lock(&tasklist_lock);
1416 		do_each_thread(g, p) {
1417 			scan_block(task_stack_page(p), task_stack_page(p) +
1418 				   THREAD_SIZE, NULL);
1419 		} while_each_thread(g, p);
1420 		read_unlock(&tasklist_lock);
1421 	}
1422 
1423 	/*
1424 	 * Scan the objects already referenced from the sections scanned
1425 	 * above.
1426 	 */
1427 	scan_gray_list();
1428 
1429 	/*
1430 	 * Check for new or unreferenced objects modified since the previous
1431 	 * scan and color them gray until the next scan.
1432 	 */
1433 	rcu_read_lock();
1434 	list_for_each_entry_rcu(object, &object_list, object_list) {
1435 		spin_lock_irqsave(&object->lock, flags);
1436 		if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1437 		    && update_checksum(object) && get_object(object)) {
1438 			/* color it gray temporarily */
1439 			object->count = object->min_count;
1440 			list_add_tail(&object->gray_list, &gray_list);
1441 		}
1442 		spin_unlock_irqrestore(&object->lock, flags);
1443 	}
1444 	rcu_read_unlock();
1445 
1446 	/*
1447 	 * Re-scan the gray list for modified unreferenced objects.
1448 	 */
1449 	scan_gray_list();
1450 
1451 	/*
1452 	 * If scanning was stopped do not report any new unreferenced objects.
1453 	 */
1454 	if (scan_should_stop())
1455 		return;
1456 
1457 	/*
1458 	 * Scanning result reporting.
1459 	 */
1460 	rcu_read_lock();
1461 	list_for_each_entry_rcu(object, &object_list, object_list) {
1462 		spin_lock_irqsave(&object->lock, flags);
1463 		if (unreferenced_object(object) &&
1464 		    !(object->flags & OBJECT_REPORTED)) {
1465 			object->flags |= OBJECT_REPORTED;
1466 			new_leaks++;
1467 		}
1468 		spin_unlock_irqrestore(&object->lock, flags);
1469 	}
1470 	rcu_read_unlock();
1471 
1472 	if (new_leaks) {
1473 		kmemleak_found_leaks = true;
1474 
1475 		pr_info("%d new suspected memory leaks (see "
1476 			"/sys/kernel/debug/kmemleak)\n", new_leaks);
1477 	}
1478 
1479 }
1480 
1481 /*
1482  * Thread function performing automatic memory scanning. Unreferenced objects
1483  * at the end of a memory scan are reported but only the first time.
1484  */
1485 static int kmemleak_scan_thread(void *arg)
1486 {
1487 	static int first_run = 1;
1488 
1489 	pr_info("Automatic memory scanning thread started\n");
1490 	set_user_nice(current, 10);
1491 
1492 	/*
1493 	 * Wait before the first scan to allow the system to fully initialize.
1494 	 */
1495 	if (first_run) {
1496 		first_run = 0;
1497 		ssleep(SECS_FIRST_SCAN);
1498 	}
1499 
1500 	while (!kthread_should_stop()) {
1501 		signed long timeout = jiffies_scan_wait;
1502 
1503 		mutex_lock(&scan_mutex);
1504 		kmemleak_scan();
1505 		mutex_unlock(&scan_mutex);
1506 
1507 		/* wait before the next scan */
1508 		while (timeout && !kthread_should_stop())
1509 			timeout = schedule_timeout_interruptible(timeout);
1510 	}
1511 
1512 	pr_info("Automatic memory scanning thread ended\n");
1513 
1514 	return 0;
1515 }
1516 
1517 /*
1518  * Start the automatic memory scanning thread. This function must be called
1519  * with the scan_mutex held.
1520  */
1521 static void start_scan_thread(void)
1522 {
1523 	if (scan_thread)
1524 		return;
1525 	scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1526 	if (IS_ERR(scan_thread)) {
1527 		pr_warning("Failed to create the scan thread\n");
1528 		scan_thread = NULL;
1529 	}
1530 }
1531 
1532 /*
1533  * Stop the automatic memory scanning thread. This function must be called
1534  * with the scan_mutex held.
1535  */
1536 static void stop_scan_thread(void)
1537 {
1538 	if (scan_thread) {
1539 		kthread_stop(scan_thread);
1540 		scan_thread = NULL;
1541 	}
1542 }
1543 
1544 /*
1545  * Iterate over the object_list and return the first valid object at or after
1546  * the required position with its use_count incremented. The function triggers
1547  * a memory scanning when the pos argument points to the first position.
1548  */
1549 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1550 {
1551 	struct kmemleak_object *object;
1552 	loff_t n = *pos;
1553 	int err;
1554 
1555 	err = mutex_lock_interruptible(&scan_mutex);
1556 	if (err < 0)
1557 		return ERR_PTR(err);
1558 
1559 	rcu_read_lock();
1560 	list_for_each_entry_rcu(object, &object_list, object_list) {
1561 		if (n-- > 0)
1562 			continue;
1563 		if (get_object(object))
1564 			goto out;
1565 	}
1566 	object = NULL;
1567 out:
1568 	return object;
1569 }
1570 
1571 /*
1572  * Return the next object in the object_list. The function decrements the
1573  * use_count of the previous object and increases that of the next one.
1574  */
1575 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1576 {
1577 	struct kmemleak_object *prev_obj = v;
1578 	struct kmemleak_object *next_obj = NULL;
1579 	struct kmemleak_object *obj = prev_obj;
1580 
1581 	++(*pos);
1582 
1583 	list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1584 		if (get_object(obj)) {
1585 			next_obj = obj;
1586 			break;
1587 		}
1588 	}
1589 
1590 	put_object(prev_obj);
1591 	return next_obj;
1592 }
1593 
1594 /*
1595  * Decrement the use_count of the last object required, if any.
1596  */
1597 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1598 {
1599 	if (!IS_ERR(v)) {
1600 		/*
1601 		 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1602 		 * waiting was interrupted, so only release it if !IS_ERR.
1603 		 */
1604 		rcu_read_unlock();
1605 		mutex_unlock(&scan_mutex);
1606 		if (v)
1607 			put_object(v);
1608 	}
1609 }
1610 
1611 /*
1612  * Print the information for an unreferenced object to the seq file.
1613  */
1614 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1615 {
1616 	struct kmemleak_object *object = v;
1617 	unsigned long flags;
1618 
1619 	spin_lock_irqsave(&object->lock, flags);
1620 	if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1621 		print_unreferenced(seq, object);
1622 	spin_unlock_irqrestore(&object->lock, flags);
1623 	return 0;
1624 }
1625 
1626 static const struct seq_operations kmemleak_seq_ops = {
1627 	.start = kmemleak_seq_start,
1628 	.next  = kmemleak_seq_next,
1629 	.stop  = kmemleak_seq_stop,
1630 	.show  = kmemleak_seq_show,
1631 };
1632 
1633 static int kmemleak_open(struct inode *inode, struct file *file)
1634 {
1635 	return seq_open(file, &kmemleak_seq_ops);
1636 }
1637 
1638 static int dump_str_object_info(const char *str)
1639 {
1640 	unsigned long flags;
1641 	struct kmemleak_object *object;
1642 	unsigned long addr;
1643 
1644 	if (kstrtoul(str, 0, &addr))
1645 		return -EINVAL;
1646 	object = find_and_get_object(addr, 0);
1647 	if (!object) {
1648 		pr_info("Unknown object at 0x%08lx\n", addr);
1649 		return -EINVAL;
1650 	}
1651 
1652 	spin_lock_irqsave(&object->lock, flags);
1653 	dump_object_info(object);
1654 	spin_unlock_irqrestore(&object->lock, flags);
1655 
1656 	put_object(object);
1657 	return 0;
1658 }
1659 
1660 /*
1661  * We use grey instead of black to ensure we can do future scans on the same
1662  * objects. If we did not do future scans these black objects could
1663  * potentially contain references to newly allocated objects in the future and
1664  * we'd end up with false positives.
1665  */
1666 static void kmemleak_clear(void)
1667 {
1668 	struct kmemleak_object *object;
1669 	unsigned long flags;
1670 
1671 	rcu_read_lock();
1672 	list_for_each_entry_rcu(object, &object_list, object_list) {
1673 		spin_lock_irqsave(&object->lock, flags);
1674 		if ((object->flags & OBJECT_REPORTED) &&
1675 		    unreferenced_object(object))
1676 			__paint_it(object, KMEMLEAK_GREY);
1677 		spin_unlock_irqrestore(&object->lock, flags);
1678 	}
1679 	rcu_read_unlock();
1680 
1681 	kmemleak_found_leaks = false;
1682 }
1683 
1684 static void __kmemleak_do_cleanup(void);
1685 
1686 /*
1687  * File write operation to configure kmemleak at run-time. The following
1688  * commands can be written to the /sys/kernel/debug/kmemleak file:
1689  *   off	- disable kmemleak (irreversible)
1690  *   stack=on	- enable the task stacks scanning
1691  *   stack=off	- disable the tasks stacks scanning
1692  *   scan=on	- start the automatic memory scanning thread
1693  *   scan=off	- stop the automatic memory scanning thread
1694  *   scan=...	- set the automatic memory scanning period in seconds (0 to
1695  *		  disable it)
1696  *   scan	- trigger a memory scan
1697  *   clear	- mark all current reported unreferenced kmemleak objects as
1698  *		  grey to ignore printing them, or free all kmemleak objects
1699  *		  if kmemleak has been disabled.
1700  *   dump=...	- dump information about the object found at the given address
1701  */
1702 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1703 			      size_t size, loff_t *ppos)
1704 {
1705 	char buf[64];
1706 	int buf_size;
1707 	int ret;
1708 
1709 	buf_size = min(size, (sizeof(buf) - 1));
1710 	if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1711 		return -EFAULT;
1712 	buf[buf_size] = 0;
1713 
1714 	ret = mutex_lock_interruptible(&scan_mutex);
1715 	if (ret < 0)
1716 		return ret;
1717 
1718 	if (strncmp(buf, "clear", 5) == 0) {
1719 		if (kmemleak_enabled)
1720 			kmemleak_clear();
1721 		else
1722 			__kmemleak_do_cleanup();
1723 		goto out;
1724 	}
1725 
1726 	if (!kmemleak_enabled) {
1727 		ret = -EBUSY;
1728 		goto out;
1729 	}
1730 
1731 	if (strncmp(buf, "off", 3) == 0)
1732 		kmemleak_disable();
1733 	else if (strncmp(buf, "stack=on", 8) == 0)
1734 		kmemleak_stack_scan = 1;
1735 	else if (strncmp(buf, "stack=off", 9) == 0)
1736 		kmemleak_stack_scan = 0;
1737 	else if (strncmp(buf, "scan=on", 7) == 0)
1738 		start_scan_thread();
1739 	else if (strncmp(buf, "scan=off", 8) == 0)
1740 		stop_scan_thread();
1741 	else if (strncmp(buf, "scan=", 5) == 0) {
1742 		unsigned long secs;
1743 
1744 		ret = kstrtoul(buf + 5, 0, &secs);
1745 		if (ret < 0)
1746 			goto out;
1747 		stop_scan_thread();
1748 		if (secs) {
1749 			jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1750 			start_scan_thread();
1751 		}
1752 	} else if (strncmp(buf, "scan", 4) == 0)
1753 		kmemleak_scan();
1754 	else if (strncmp(buf, "dump=", 5) == 0)
1755 		ret = dump_str_object_info(buf + 5);
1756 	else
1757 		ret = -EINVAL;
1758 
1759 out:
1760 	mutex_unlock(&scan_mutex);
1761 	if (ret < 0)
1762 		return ret;
1763 
1764 	/* ignore the rest of the buffer, only one command at a time */
1765 	*ppos += size;
1766 	return size;
1767 }
1768 
1769 static const struct file_operations kmemleak_fops = {
1770 	.owner		= THIS_MODULE,
1771 	.open		= kmemleak_open,
1772 	.read		= seq_read,
1773 	.write		= kmemleak_write,
1774 	.llseek		= seq_lseek,
1775 	.release	= seq_release,
1776 };
1777 
1778 static void __kmemleak_do_cleanup(void)
1779 {
1780 	struct kmemleak_object *object;
1781 
1782 	rcu_read_lock();
1783 	list_for_each_entry_rcu(object, &object_list, object_list)
1784 		delete_object_full(object->pointer);
1785 	rcu_read_unlock();
1786 }
1787 
1788 /*
1789  * Stop the memory scanning thread and free the kmemleak internal objects if
1790  * no previous scan thread (otherwise, kmemleak may still have some useful
1791  * information on memory leaks).
1792  */
1793 static void kmemleak_do_cleanup(struct work_struct *work)
1794 {
1795 	stop_scan_thread();
1796 
1797 	/*
1798 	 * Once the scan thread has stopped, it is safe to no longer track
1799 	 * object freeing. Ordering of the scan thread stopping and the memory
1800 	 * accesses below is guaranteed by the kthread_stop() function.
1801 	 */
1802 	kmemleak_free_enabled = 0;
1803 
1804 	if (!kmemleak_found_leaks)
1805 		__kmemleak_do_cleanup();
1806 	else
1807 		pr_info("Kmemleak disabled without freeing internal data. "
1808 			"Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1809 }
1810 
1811 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1812 
1813 /*
1814  * Disable kmemleak. No memory allocation/freeing will be traced once this
1815  * function is called. Disabling kmemleak is an irreversible operation.
1816  */
1817 static void kmemleak_disable(void)
1818 {
1819 	/* atomically check whether it was already invoked */
1820 	if (cmpxchg(&kmemleak_error, 0, 1))
1821 		return;
1822 
1823 	/* stop any memory operation tracing */
1824 	kmemleak_enabled = 0;
1825 
1826 	/* check whether it is too early for a kernel thread */
1827 	if (kmemleak_initialized)
1828 		schedule_work(&cleanup_work);
1829 	else
1830 		kmemleak_free_enabled = 0;
1831 
1832 	pr_info("Kernel memory leak detector disabled\n");
1833 }
1834 
1835 /*
1836  * Allow boot-time kmemleak disabling (enabled by default).
1837  */
1838 static int kmemleak_boot_config(char *str)
1839 {
1840 	if (!str)
1841 		return -EINVAL;
1842 	if (strcmp(str, "off") == 0)
1843 		kmemleak_disable();
1844 	else if (strcmp(str, "on") == 0)
1845 		kmemleak_skip_disable = 1;
1846 	else
1847 		return -EINVAL;
1848 	return 0;
1849 }
1850 early_param("kmemleak", kmemleak_boot_config);
1851 
1852 static void __init print_log_trace(struct early_log *log)
1853 {
1854 	struct stack_trace trace;
1855 
1856 	trace.nr_entries = log->trace_len;
1857 	trace.entries = log->trace;
1858 
1859 	pr_notice("Early log backtrace:\n");
1860 	print_stack_trace(&trace, 2);
1861 }
1862 
1863 /*
1864  * Kmemleak initialization.
1865  */
1866 void __init kmemleak_init(void)
1867 {
1868 	int i;
1869 	unsigned long flags;
1870 
1871 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1872 	if (!kmemleak_skip_disable) {
1873 		kmemleak_early_log = 0;
1874 		kmemleak_disable();
1875 		return;
1876 	}
1877 #endif
1878 
1879 	jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1880 	jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1881 
1882 	object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1883 	scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1884 
1885 	if (crt_early_log >= ARRAY_SIZE(early_log))
1886 		pr_warning("Early log buffer exceeded (%d), please increase "
1887 			   "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1888 
1889 	/* the kernel is still in UP mode, so disabling the IRQs is enough */
1890 	local_irq_save(flags);
1891 	kmemleak_early_log = 0;
1892 	if (kmemleak_error) {
1893 		local_irq_restore(flags);
1894 		return;
1895 	} else {
1896 		kmemleak_enabled = 1;
1897 		kmemleak_free_enabled = 1;
1898 	}
1899 	local_irq_restore(flags);
1900 
1901 	/*
1902 	 * This is the point where tracking allocations is safe. Automatic
1903 	 * scanning is started during the late initcall. Add the early logged
1904 	 * callbacks to the kmemleak infrastructure.
1905 	 */
1906 	for (i = 0; i < crt_early_log; i++) {
1907 		struct early_log *log = &early_log[i];
1908 
1909 		switch (log->op_type) {
1910 		case KMEMLEAK_ALLOC:
1911 			early_alloc(log);
1912 			break;
1913 		case KMEMLEAK_ALLOC_PERCPU:
1914 			early_alloc_percpu(log);
1915 			break;
1916 		case KMEMLEAK_FREE:
1917 			kmemleak_free(log->ptr);
1918 			break;
1919 		case KMEMLEAK_FREE_PART:
1920 			kmemleak_free_part(log->ptr, log->size);
1921 			break;
1922 		case KMEMLEAK_FREE_PERCPU:
1923 			kmemleak_free_percpu(log->ptr);
1924 			break;
1925 		case KMEMLEAK_NOT_LEAK:
1926 			kmemleak_not_leak(log->ptr);
1927 			break;
1928 		case KMEMLEAK_IGNORE:
1929 			kmemleak_ignore(log->ptr);
1930 			break;
1931 		case KMEMLEAK_SCAN_AREA:
1932 			kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1933 			break;
1934 		case KMEMLEAK_NO_SCAN:
1935 			kmemleak_no_scan(log->ptr);
1936 			break;
1937 		default:
1938 			kmemleak_warn("Unknown early log operation: %d\n",
1939 				      log->op_type);
1940 		}
1941 
1942 		if (kmemleak_warning) {
1943 			print_log_trace(log);
1944 			kmemleak_warning = 0;
1945 		}
1946 	}
1947 }
1948 
1949 /*
1950  * Late initialization function.
1951  */
1952 static int __init kmemleak_late_init(void)
1953 {
1954 	struct dentry *dentry;
1955 
1956 	kmemleak_initialized = 1;
1957 
1958 	if (kmemleak_error) {
1959 		/*
1960 		 * Some error occurred and kmemleak was disabled. There is a
1961 		 * small chance that kmemleak_disable() was called immediately
1962 		 * after setting kmemleak_initialized and we may end up with
1963 		 * two clean-up threads but serialized by scan_mutex.
1964 		 */
1965 		schedule_work(&cleanup_work);
1966 		return -ENOMEM;
1967 	}
1968 
1969 	dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1970 				     &kmemleak_fops);
1971 	if (!dentry)
1972 		pr_warning("Failed to create the debugfs kmemleak file\n");
1973 	mutex_lock(&scan_mutex);
1974 	start_scan_thread();
1975 	mutex_unlock(&scan_mutex);
1976 
1977 	pr_info("Kernel memory leak detector initialized\n");
1978 
1979 	return 0;
1980 }
1981 late_initcall(kmemleak_late_init);
1982