xref: /linux/mm/khugepaged.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/rcupdate_wait.h>
21 #include <linux/swapops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/ksm.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 #include "mm_slot.h"
29 
30 enum scan_result {
31 	SCAN_FAIL,
32 	SCAN_SUCCEED,
33 	SCAN_PMD_NULL,
34 	SCAN_PMD_NONE,
35 	SCAN_PMD_MAPPED,
36 	SCAN_EXCEED_NONE_PTE,
37 	SCAN_EXCEED_SWAP_PTE,
38 	SCAN_EXCEED_SHARED_PTE,
39 	SCAN_PTE_NON_PRESENT,
40 	SCAN_PTE_UFFD_WP,
41 	SCAN_PTE_MAPPED_HUGEPAGE,
42 	SCAN_PAGE_RO,
43 	SCAN_LACK_REFERENCED_PAGE,
44 	SCAN_PAGE_NULL,
45 	SCAN_SCAN_ABORT,
46 	SCAN_PAGE_COUNT,
47 	SCAN_PAGE_LRU,
48 	SCAN_PAGE_LOCK,
49 	SCAN_PAGE_ANON,
50 	SCAN_PAGE_COMPOUND,
51 	SCAN_ANY_PROCESS,
52 	SCAN_VMA_NULL,
53 	SCAN_VMA_CHECK,
54 	SCAN_ADDRESS_RANGE,
55 	SCAN_DEL_PAGE_LRU,
56 	SCAN_ALLOC_HUGE_PAGE_FAIL,
57 	SCAN_CGROUP_CHARGE_FAIL,
58 	SCAN_TRUNCATED,
59 	SCAN_PAGE_HAS_PRIVATE,
60 	SCAN_STORE_FAILED,
61 	SCAN_COPY_MC,
62 	SCAN_PAGE_FILLED,
63 };
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/huge_memory.h>
67 
68 static struct task_struct *khugepaged_thread __read_mostly;
69 static DEFINE_MUTEX(khugepaged_mutex);
70 
71 /* default scan 8*512 pte (or vmas) every 30 second */
72 static unsigned int khugepaged_pages_to_scan __read_mostly;
73 static unsigned int khugepaged_pages_collapsed;
74 static unsigned int khugepaged_full_scans;
75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
76 /* during fragmentation poll the hugepage allocator once every minute */
77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
78 static unsigned long khugepaged_sleep_expire;
79 static DEFINE_SPINLOCK(khugepaged_mm_lock);
80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
81 /*
82  * default collapse hugepages if there is at least one pte mapped like
83  * it would have happened if the vma was large enough during page
84  * fault.
85  *
86  * Note that these are only respected if collapse was initiated by khugepaged.
87  */
88 static unsigned int khugepaged_max_ptes_none __read_mostly;
89 static unsigned int khugepaged_max_ptes_swap __read_mostly;
90 static unsigned int khugepaged_max_ptes_shared __read_mostly;
91 
92 #define MM_SLOTS_HASH_BITS 10
93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
94 
95 static struct kmem_cache *mm_slot_cache __ro_after_init;
96 
97 struct collapse_control {
98 	bool is_khugepaged;
99 
100 	/* Num pages scanned per node */
101 	u32 node_load[MAX_NUMNODES];
102 
103 	/* nodemask for allocation fallback */
104 	nodemask_t alloc_nmask;
105 };
106 
107 /**
108  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
109  * @slot: hash lookup from mm to mm_slot
110  */
111 struct khugepaged_mm_slot {
112 	struct mm_slot slot;
113 };
114 
115 /**
116  * struct khugepaged_scan - cursor for scanning
117  * @mm_head: the head of the mm list to scan
118  * @mm_slot: the current mm_slot we are scanning
119  * @address: the next address inside that to be scanned
120  *
121  * There is only the one khugepaged_scan instance of this cursor structure.
122  */
123 struct khugepaged_scan {
124 	struct list_head mm_head;
125 	struct khugepaged_mm_slot *mm_slot;
126 	unsigned long address;
127 };
128 
129 static struct khugepaged_scan khugepaged_scan = {
130 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
131 };
132 
133 #ifdef CONFIG_SYSFS
134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
135 					 struct kobj_attribute *attr,
136 					 char *buf)
137 {
138 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
139 }
140 
141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
142 					  struct kobj_attribute *attr,
143 					  const char *buf, size_t count)
144 {
145 	unsigned int msecs;
146 	int err;
147 
148 	err = kstrtouint(buf, 10, &msecs);
149 	if (err)
150 		return -EINVAL;
151 
152 	khugepaged_scan_sleep_millisecs = msecs;
153 	khugepaged_sleep_expire = 0;
154 	wake_up_interruptible(&khugepaged_wait);
155 
156 	return count;
157 }
158 static struct kobj_attribute scan_sleep_millisecs_attr =
159 	__ATTR_RW(scan_sleep_millisecs);
160 
161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
162 					  struct kobj_attribute *attr,
163 					  char *buf)
164 {
165 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
166 }
167 
168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
169 					   struct kobj_attribute *attr,
170 					   const char *buf, size_t count)
171 {
172 	unsigned int msecs;
173 	int err;
174 
175 	err = kstrtouint(buf, 10, &msecs);
176 	if (err)
177 		return -EINVAL;
178 
179 	khugepaged_alloc_sleep_millisecs = msecs;
180 	khugepaged_sleep_expire = 0;
181 	wake_up_interruptible(&khugepaged_wait);
182 
183 	return count;
184 }
185 static struct kobj_attribute alloc_sleep_millisecs_attr =
186 	__ATTR_RW(alloc_sleep_millisecs);
187 
188 static ssize_t pages_to_scan_show(struct kobject *kobj,
189 				  struct kobj_attribute *attr,
190 				  char *buf)
191 {
192 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
193 }
194 static ssize_t pages_to_scan_store(struct kobject *kobj,
195 				   struct kobj_attribute *attr,
196 				   const char *buf, size_t count)
197 {
198 	unsigned int pages;
199 	int err;
200 
201 	err = kstrtouint(buf, 10, &pages);
202 	if (err || !pages)
203 		return -EINVAL;
204 
205 	khugepaged_pages_to_scan = pages;
206 
207 	return count;
208 }
209 static struct kobj_attribute pages_to_scan_attr =
210 	__ATTR_RW(pages_to_scan);
211 
212 static ssize_t pages_collapsed_show(struct kobject *kobj,
213 				    struct kobj_attribute *attr,
214 				    char *buf)
215 {
216 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
217 }
218 static struct kobj_attribute pages_collapsed_attr =
219 	__ATTR_RO(pages_collapsed);
220 
221 static ssize_t full_scans_show(struct kobject *kobj,
222 			       struct kobj_attribute *attr,
223 			       char *buf)
224 {
225 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
226 }
227 static struct kobj_attribute full_scans_attr =
228 	__ATTR_RO(full_scans);
229 
230 static ssize_t defrag_show(struct kobject *kobj,
231 			   struct kobj_attribute *attr, char *buf)
232 {
233 	return single_hugepage_flag_show(kobj, attr, buf,
234 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
235 }
236 static ssize_t defrag_store(struct kobject *kobj,
237 			    struct kobj_attribute *attr,
238 			    const char *buf, size_t count)
239 {
240 	return single_hugepage_flag_store(kobj, attr, buf, count,
241 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
242 }
243 static struct kobj_attribute khugepaged_defrag_attr =
244 	__ATTR_RW(defrag);
245 
246 /*
247  * max_ptes_none controls if khugepaged should collapse hugepages over
248  * any unmapped ptes in turn potentially increasing the memory
249  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
250  * reduce the available free memory in the system as it
251  * runs. Increasing max_ptes_none will instead potentially reduce the
252  * free memory in the system during the khugepaged scan.
253  */
254 static ssize_t max_ptes_none_show(struct kobject *kobj,
255 				  struct kobj_attribute *attr,
256 				  char *buf)
257 {
258 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
259 }
260 static ssize_t max_ptes_none_store(struct kobject *kobj,
261 				   struct kobj_attribute *attr,
262 				   const char *buf, size_t count)
263 {
264 	int err;
265 	unsigned long max_ptes_none;
266 
267 	err = kstrtoul(buf, 10, &max_ptes_none);
268 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
269 		return -EINVAL;
270 
271 	khugepaged_max_ptes_none = max_ptes_none;
272 
273 	return count;
274 }
275 static struct kobj_attribute khugepaged_max_ptes_none_attr =
276 	__ATTR_RW(max_ptes_none);
277 
278 static ssize_t max_ptes_swap_show(struct kobject *kobj,
279 				  struct kobj_attribute *attr,
280 				  char *buf)
281 {
282 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
283 }
284 
285 static ssize_t max_ptes_swap_store(struct kobject *kobj,
286 				   struct kobj_attribute *attr,
287 				   const char *buf, size_t count)
288 {
289 	int err;
290 	unsigned long max_ptes_swap;
291 
292 	err  = kstrtoul(buf, 10, &max_ptes_swap);
293 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
294 		return -EINVAL;
295 
296 	khugepaged_max_ptes_swap = max_ptes_swap;
297 
298 	return count;
299 }
300 
301 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
302 	__ATTR_RW(max_ptes_swap);
303 
304 static ssize_t max_ptes_shared_show(struct kobject *kobj,
305 				    struct kobj_attribute *attr,
306 				    char *buf)
307 {
308 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
309 }
310 
311 static ssize_t max_ptes_shared_store(struct kobject *kobj,
312 				     struct kobj_attribute *attr,
313 				     const char *buf, size_t count)
314 {
315 	int err;
316 	unsigned long max_ptes_shared;
317 
318 	err  = kstrtoul(buf, 10, &max_ptes_shared);
319 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
320 		return -EINVAL;
321 
322 	khugepaged_max_ptes_shared = max_ptes_shared;
323 
324 	return count;
325 }
326 
327 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
328 	__ATTR_RW(max_ptes_shared);
329 
330 static struct attribute *khugepaged_attr[] = {
331 	&khugepaged_defrag_attr.attr,
332 	&khugepaged_max_ptes_none_attr.attr,
333 	&khugepaged_max_ptes_swap_attr.attr,
334 	&khugepaged_max_ptes_shared_attr.attr,
335 	&pages_to_scan_attr.attr,
336 	&pages_collapsed_attr.attr,
337 	&full_scans_attr.attr,
338 	&scan_sleep_millisecs_attr.attr,
339 	&alloc_sleep_millisecs_attr.attr,
340 	NULL,
341 };
342 
343 struct attribute_group khugepaged_attr_group = {
344 	.attrs = khugepaged_attr,
345 	.name = "khugepaged",
346 };
347 #endif /* CONFIG_SYSFS */
348 
349 int hugepage_madvise(struct vm_area_struct *vma,
350 		     unsigned long *vm_flags, int advice)
351 {
352 	switch (advice) {
353 	case MADV_HUGEPAGE:
354 #ifdef CONFIG_S390
355 		/*
356 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
357 		 * can't handle this properly after s390_enable_sie, so we simply
358 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
359 		 */
360 		if (mm_has_pgste(vma->vm_mm))
361 			return 0;
362 #endif
363 		*vm_flags &= ~VM_NOHUGEPAGE;
364 		*vm_flags |= VM_HUGEPAGE;
365 		/*
366 		 * If the vma become good for khugepaged to scan,
367 		 * register it here without waiting a page fault that
368 		 * may not happen any time soon.
369 		 */
370 		khugepaged_enter_vma(vma, *vm_flags);
371 		break;
372 	case MADV_NOHUGEPAGE:
373 		*vm_flags &= ~VM_HUGEPAGE;
374 		*vm_flags |= VM_NOHUGEPAGE;
375 		/*
376 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 		 * this vma even if we leave the mm registered in khugepaged if
378 		 * it got registered before VM_NOHUGEPAGE was set.
379 		 */
380 		break;
381 	}
382 
383 	return 0;
384 }
385 
386 int __init khugepaged_init(void)
387 {
388 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389 					  sizeof(struct khugepaged_mm_slot),
390 					  __alignof__(struct khugepaged_mm_slot),
391 					  0, NULL);
392 	if (!mm_slot_cache)
393 		return -ENOMEM;
394 
395 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
396 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
397 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
398 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
399 
400 	return 0;
401 }
402 
403 void __init khugepaged_destroy(void)
404 {
405 	kmem_cache_destroy(mm_slot_cache);
406 }
407 
408 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
409 {
410 	return atomic_read(&mm->mm_users) == 0;
411 }
412 
413 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
414 {
415 	return hpage_collapse_test_exit(mm) ||
416 	       test_bit(MMF_DISABLE_THP, &mm->flags);
417 }
418 
419 void __khugepaged_enter(struct mm_struct *mm)
420 {
421 	struct khugepaged_mm_slot *mm_slot;
422 	struct mm_slot *slot;
423 	int wakeup;
424 
425 	/* __khugepaged_exit() must not run from under us */
426 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
427 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
428 		return;
429 
430 	mm_slot = mm_slot_alloc(mm_slot_cache);
431 	if (!mm_slot)
432 		return;
433 
434 	slot = &mm_slot->slot;
435 
436 	spin_lock(&khugepaged_mm_lock);
437 	mm_slot_insert(mm_slots_hash, mm, slot);
438 	/*
439 	 * Insert just behind the scanning cursor, to let the area settle
440 	 * down a little.
441 	 */
442 	wakeup = list_empty(&khugepaged_scan.mm_head);
443 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
444 	spin_unlock(&khugepaged_mm_lock);
445 
446 	mmgrab(mm);
447 	if (wakeup)
448 		wake_up_interruptible(&khugepaged_wait);
449 }
450 
451 void khugepaged_enter_vma(struct vm_area_struct *vma,
452 			  unsigned long vm_flags)
453 {
454 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
455 	    hugepage_flags_enabled()) {
456 		if (thp_vma_allowable_order(vma, vm_flags, false, false, true,
457 					    PMD_ORDER))
458 			__khugepaged_enter(vma->vm_mm);
459 	}
460 }
461 
462 void __khugepaged_exit(struct mm_struct *mm)
463 {
464 	struct khugepaged_mm_slot *mm_slot;
465 	struct mm_slot *slot;
466 	int free = 0;
467 
468 	spin_lock(&khugepaged_mm_lock);
469 	slot = mm_slot_lookup(mm_slots_hash, mm);
470 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
471 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
472 		hash_del(&slot->hash);
473 		list_del(&slot->mm_node);
474 		free = 1;
475 	}
476 	spin_unlock(&khugepaged_mm_lock);
477 
478 	if (free) {
479 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
480 		mm_slot_free(mm_slot_cache, mm_slot);
481 		mmdrop(mm);
482 	} else if (mm_slot) {
483 		/*
484 		 * This is required to serialize against
485 		 * hpage_collapse_test_exit() (which is guaranteed to run
486 		 * under mmap sem read mode). Stop here (after we return all
487 		 * pagetables will be destroyed) until khugepaged has finished
488 		 * working on the pagetables under the mmap_lock.
489 		 */
490 		mmap_write_lock(mm);
491 		mmap_write_unlock(mm);
492 	}
493 }
494 
495 static void release_pte_folio(struct folio *folio)
496 {
497 	node_stat_mod_folio(folio,
498 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
499 			-folio_nr_pages(folio));
500 	folio_unlock(folio);
501 	folio_putback_lru(folio);
502 }
503 
504 static void release_pte_pages(pte_t *pte, pte_t *_pte,
505 		struct list_head *compound_pagelist)
506 {
507 	struct folio *folio, *tmp;
508 
509 	while (--_pte >= pte) {
510 		pte_t pteval = ptep_get(_pte);
511 		unsigned long pfn;
512 
513 		if (pte_none(pteval))
514 			continue;
515 		pfn = pte_pfn(pteval);
516 		if (is_zero_pfn(pfn))
517 			continue;
518 		folio = pfn_folio(pfn);
519 		if (folio_test_large(folio))
520 			continue;
521 		release_pte_folio(folio);
522 	}
523 
524 	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
525 		list_del(&folio->lru);
526 		release_pte_folio(folio);
527 	}
528 }
529 
530 static bool is_refcount_suitable(struct folio *folio)
531 {
532 	int expected_refcount;
533 
534 	expected_refcount = folio_mapcount(folio);
535 	if (folio_test_swapcache(folio))
536 		expected_refcount += folio_nr_pages(folio);
537 
538 	return folio_ref_count(folio) == expected_refcount;
539 }
540 
541 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
542 					unsigned long address,
543 					pte_t *pte,
544 					struct collapse_control *cc,
545 					struct list_head *compound_pagelist)
546 {
547 	struct page *page = NULL;
548 	struct folio *folio = NULL;
549 	pte_t *_pte;
550 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
551 	bool writable = false;
552 
553 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
554 	     _pte++, address += PAGE_SIZE) {
555 		pte_t pteval = ptep_get(_pte);
556 		if (pte_none(pteval) || (pte_present(pteval) &&
557 				is_zero_pfn(pte_pfn(pteval)))) {
558 			++none_or_zero;
559 			if (!userfaultfd_armed(vma) &&
560 			    (!cc->is_khugepaged ||
561 			     none_or_zero <= khugepaged_max_ptes_none)) {
562 				continue;
563 			} else {
564 				result = SCAN_EXCEED_NONE_PTE;
565 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
566 				goto out;
567 			}
568 		}
569 		if (!pte_present(pteval)) {
570 			result = SCAN_PTE_NON_PRESENT;
571 			goto out;
572 		}
573 		if (pte_uffd_wp(pteval)) {
574 			result = SCAN_PTE_UFFD_WP;
575 			goto out;
576 		}
577 		page = vm_normal_page(vma, address, pteval);
578 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
579 			result = SCAN_PAGE_NULL;
580 			goto out;
581 		}
582 
583 		folio = page_folio(page);
584 		VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
585 
586 		if (page_mapcount(page) > 1) {
587 			++shared;
588 			if (cc->is_khugepaged &&
589 			    shared > khugepaged_max_ptes_shared) {
590 				result = SCAN_EXCEED_SHARED_PTE;
591 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
592 				goto out;
593 			}
594 		}
595 
596 		if (folio_test_large(folio)) {
597 			struct folio *f;
598 
599 			/*
600 			 * Check if we have dealt with the compound page
601 			 * already
602 			 */
603 			list_for_each_entry(f, compound_pagelist, lru) {
604 				if (folio == f)
605 					goto next;
606 			}
607 		}
608 
609 		/*
610 		 * We can do it before isolate_lru_page because the
611 		 * page can't be freed from under us. NOTE: PG_lock
612 		 * is needed to serialize against split_huge_page
613 		 * when invoked from the VM.
614 		 */
615 		if (!folio_trylock(folio)) {
616 			result = SCAN_PAGE_LOCK;
617 			goto out;
618 		}
619 
620 		/*
621 		 * Check if the page has any GUP (or other external) pins.
622 		 *
623 		 * The page table that maps the page has been already unlinked
624 		 * from the page table tree and this process cannot get
625 		 * an additional pin on the page.
626 		 *
627 		 * New pins can come later if the page is shared across fork,
628 		 * but not from this process. The other process cannot write to
629 		 * the page, only trigger CoW.
630 		 */
631 		if (!is_refcount_suitable(folio)) {
632 			folio_unlock(folio);
633 			result = SCAN_PAGE_COUNT;
634 			goto out;
635 		}
636 
637 		/*
638 		 * Isolate the page to avoid collapsing an hugepage
639 		 * currently in use by the VM.
640 		 */
641 		if (!folio_isolate_lru(folio)) {
642 			folio_unlock(folio);
643 			result = SCAN_DEL_PAGE_LRU;
644 			goto out;
645 		}
646 		node_stat_mod_folio(folio,
647 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
648 				folio_nr_pages(folio));
649 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
650 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
651 
652 		if (folio_test_large(folio))
653 			list_add_tail(&folio->lru, compound_pagelist);
654 next:
655 		/*
656 		 * If collapse was initiated by khugepaged, check that there is
657 		 * enough young pte to justify collapsing the page
658 		 */
659 		if (cc->is_khugepaged &&
660 		    (pte_young(pteval) || folio_test_young(folio) ||
661 		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
662 								     address)))
663 			referenced++;
664 
665 		if (pte_write(pteval))
666 			writable = true;
667 	}
668 
669 	if (unlikely(!writable)) {
670 		result = SCAN_PAGE_RO;
671 	} else if (unlikely(cc->is_khugepaged && !referenced)) {
672 		result = SCAN_LACK_REFERENCED_PAGE;
673 	} else {
674 		result = SCAN_SUCCEED;
675 		trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
676 						    referenced, writable, result);
677 		return result;
678 	}
679 out:
680 	release_pte_pages(pte, _pte, compound_pagelist);
681 	trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
682 					    referenced, writable, result);
683 	return result;
684 }
685 
686 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
687 						struct vm_area_struct *vma,
688 						unsigned long address,
689 						spinlock_t *ptl,
690 						struct list_head *compound_pagelist)
691 {
692 	struct folio *src, *tmp;
693 	pte_t *_pte;
694 	pte_t pteval;
695 
696 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
697 	     _pte++, address += PAGE_SIZE) {
698 		pteval = ptep_get(_pte);
699 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
700 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
701 			if (is_zero_pfn(pte_pfn(pteval))) {
702 				/*
703 				 * ptl mostly unnecessary.
704 				 */
705 				spin_lock(ptl);
706 				ptep_clear(vma->vm_mm, address, _pte);
707 				spin_unlock(ptl);
708 				ksm_might_unmap_zero_page(vma->vm_mm, pteval);
709 			}
710 		} else {
711 			struct page *src_page = pte_page(pteval);
712 
713 			src = page_folio(src_page);
714 			if (!folio_test_large(src))
715 				release_pte_folio(src);
716 			/*
717 			 * ptl mostly unnecessary, but preempt has to
718 			 * be disabled to update the per-cpu stats
719 			 * inside folio_remove_rmap_pte().
720 			 */
721 			spin_lock(ptl);
722 			ptep_clear(vma->vm_mm, address, _pte);
723 			folio_remove_rmap_pte(src, src_page, vma);
724 			spin_unlock(ptl);
725 			free_page_and_swap_cache(src_page);
726 		}
727 	}
728 
729 	list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
730 		list_del(&src->lru);
731 		node_stat_sub_folio(src, NR_ISOLATED_ANON +
732 				folio_is_file_lru(src));
733 		folio_unlock(src);
734 		free_swap_cache(src);
735 		folio_putback_lru(src);
736 	}
737 }
738 
739 static void __collapse_huge_page_copy_failed(pte_t *pte,
740 					     pmd_t *pmd,
741 					     pmd_t orig_pmd,
742 					     struct vm_area_struct *vma,
743 					     struct list_head *compound_pagelist)
744 {
745 	spinlock_t *pmd_ptl;
746 
747 	/*
748 	 * Re-establish the PMD to point to the original page table
749 	 * entry. Restoring PMD needs to be done prior to releasing
750 	 * pages. Since pages are still isolated and locked here,
751 	 * acquiring anon_vma_lock_write is unnecessary.
752 	 */
753 	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
754 	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
755 	spin_unlock(pmd_ptl);
756 	/*
757 	 * Release both raw and compound pages isolated
758 	 * in __collapse_huge_page_isolate.
759 	 */
760 	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
761 }
762 
763 /*
764  * __collapse_huge_page_copy - attempts to copy memory contents from raw
765  * pages to a hugepage. Cleans up the raw pages if copying succeeds;
766  * otherwise restores the original page table and releases isolated raw pages.
767  * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
768  *
769  * @pte: starting of the PTEs to copy from
770  * @page: the new hugepage to copy contents to
771  * @pmd: pointer to the new hugepage's PMD
772  * @orig_pmd: the original raw pages' PMD
773  * @vma: the original raw pages' virtual memory area
774  * @address: starting address to copy
775  * @ptl: lock on raw pages' PTEs
776  * @compound_pagelist: list that stores compound pages
777  */
778 static int __collapse_huge_page_copy(pte_t *pte,
779 				     struct page *page,
780 				     pmd_t *pmd,
781 				     pmd_t orig_pmd,
782 				     struct vm_area_struct *vma,
783 				     unsigned long address,
784 				     spinlock_t *ptl,
785 				     struct list_head *compound_pagelist)
786 {
787 	struct page *src_page;
788 	pte_t *_pte;
789 	pte_t pteval;
790 	unsigned long _address;
791 	int result = SCAN_SUCCEED;
792 
793 	/*
794 	 * Copying pages' contents is subject to memory poison at any iteration.
795 	 */
796 	for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR;
797 	     _pte++, page++, _address += PAGE_SIZE) {
798 		pteval = ptep_get(_pte);
799 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
800 			clear_user_highpage(page, _address);
801 			continue;
802 		}
803 		src_page = pte_page(pteval);
804 		if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) {
805 			result = SCAN_COPY_MC;
806 			break;
807 		}
808 	}
809 
810 	if (likely(result == SCAN_SUCCEED))
811 		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
812 						    compound_pagelist);
813 	else
814 		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
815 						 compound_pagelist);
816 
817 	return result;
818 }
819 
820 static void khugepaged_alloc_sleep(void)
821 {
822 	DEFINE_WAIT(wait);
823 
824 	add_wait_queue(&khugepaged_wait, &wait);
825 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
826 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
827 	remove_wait_queue(&khugepaged_wait, &wait);
828 }
829 
830 struct collapse_control khugepaged_collapse_control = {
831 	.is_khugepaged = true,
832 };
833 
834 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
835 {
836 	int i;
837 
838 	/*
839 	 * If node_reclaim_mode is disabled, then no extra effort is made to
840 	 * allocate memory locally.
841 	 */
842 	if (!node_reclaim_enabled())
843 		return false;
844 
845 	/* If there is a count for this node already, it must be acceptable */
846 	if (cc->node_load[nid])
847 		return false;
848 
849 	for (i = 0; i < MAX_NUMNODES; i++) {
850 		if (!cc->node_load[i])
851 			continue;
852 		if (node_distance(nid, i) > node_reclaim_distance)
853 			return true;
854 	}
855 	return false;
856 }
857 
858 #define khugepaged_defrag()					\
859 	(transparent_hugepage_flags &				\
860 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
861 
862 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
863 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
864 {
865 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
866 }
867 
868 #ifdef CONFIG_NUMA
869 static int hpage_collapse_find_target_node(struct collapse_control *cc)
870 {
871 	int nid, target_node = 0, max_value = 0;
872 
873 	/* find first node with max normal pages hit */
874 	for (nid = 0; nid < MAX_NUMNODES; nid++)
875 		if (cc->node_load[nid] > max_value) {
876 			max_value = cc->node_load[nid];
877 			target_node = nid;
878 		}
879 
880 	for_each_online_node(nid) {
881 		if (max_value == cc->node_load[nid])
882 			node_set(nid, cc->alloc_nmask);
883 	}
884 
885 	return target_node;
886 }
887 #else
888 static int hpage_collapse_find_target_node(struct collapse_control *cc)
889 {
890 	return 0;
891 }
892 #endif
893 
894 static bool hpage_collapse_alloc_folio(struct folio **folio, gfp_t gfp, int node,
895 				      nodemask_t *nmask)
896 {
897 	*folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, nmask);
898 
899 	if (unlikely(!*folio)) {
900 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
901 		return false;
902 	}
903 
904 	count_vm_event(THP_COLLAPSE_ALLOC);
905 	return true;
906 }
907 
908 /*
909  * If mmap_lock temporarily dropped, revalidate vma
910  * before taking mmap_lock.
911  * Returns enum scan_result value.
912  */
913 
914 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
915 				   bool expect_anon,
916 				   struct vm_area_struct **vmap,
917 				   struct collapse_control *cc)
918 {
919 	struct vm_area_struct *vma;
920 
921 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
922 		return SCAN_ANY_PROCESS;
923 
924 	*vmap = vma = find_vma(mm, address);
925 	if (!vma)
926 		return SCAN_VMA_NULL;
927 
928 	if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
929 		return SCAN_ADDRESS_RANGE;
930 	if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false,
931 				     cc->is_khugepaged, PMD_ORDER))
932 		return SCAN_VMA_CHECK;
933 	/*
934 	 * Anon VMA expected, the address may be unmapped then
935 	 * remapped to file after khugepaged reaquired the mmap_lock.
936 	 *
937 	 * thp_vma_allowable_order may return true for qualified file
938 	 * vmas.
939 	 */
940 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
941 		return SCAN_PAGE_ANON;
942 	return SCAN_SUCCEED;
943 }
944 
945 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
946 				   unsigned long address,
947 				   pmd_t **pmd)
948 {
949 	pmd_t pmde;
950 
951 	*pmd = mm_find_pmd(mm, address);
952 	if (!*pmd)
953 		return SCAN_PMD_NULL;
954 
955 	pmde = pmdp_get_lockless(*pmd);
956 	if (pmd_none(pmde))
957 		return SCAN_PMD_NONE;
958 	if (!pmd_present(pmde))
959 		return SCAN_PMD_NULL;
960 	if (pmd_trans_huge(pmde))
961 		return SCAN_PMD_MAPPED;
962 	if (pmd_devmap(pmde))
963 		return SCAN_PMD_NULL;
964 	if (pmd_bad(pmde))
965 		return SCAN_PMD_NULL;
966 	return SCAN_SUCCEED;
967 }
968 
969 static int check_pmd_still_valid(struct mm_struct *mm,
970 				 unsigned long address,
971 				 pmd_t *pmd)
972 {
973 	pmd_t *new_pmd;
974 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
975 
976 	if (result != SCAN_SUCCEED)
977 		return result;
978 	if (new_pmd != pmd)
979 		return SCAN_FAIL;
980 	return SCAN_SUCCEED;
981 }
982 
983 /*
984  * Bring missing pages in from swap, to complete THP collapse.
985  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
986  *
987  * Called and returns without pte mapped or spinlocks held.
988  * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
989  */
990 static int __collapse_huge_page_swapin(struct mm_struct *mm,
991 				       struct vm_area_struct *vma,
992 				       unsigned long haddr, pmd_t *pmd,
993 				       int referenced)
994 {
995 	int swapped_in = 0;
996 	vm_fault_t ret = 0;
997 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
998 	int result;
999 	pte_t *pte = NULL;
1000 	spinlock_t *ptl;
1001 
1002 	for (address = haddr; address < end; address += PAGE_SIZE) {
1003 		struct vm_fault vmf = {
1004 			.vma = vma,
1005 			.address = address,
1006 			.pgoff = linear_page_index(vma, address),
1007 			.flags = FAULT_FLAG_ALLOW_RETRY,
1008 			.pmd = pmd,
1009 		};
1010 
1011 		if (!pte++) {
1012 			pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
1013 			if (!pte) {
1014 				mmap_read_unlock(mm);
1015 				result = SCAN_PMD_NULL;
1016 				goto out;
1017 			}
1018 		}
1019 
1020 		vmf.orig_pte = ptep_get_lockless(pte);
1021 		if (!is_swap_pte(vmf.orig_pte))
1022 			continue;
1023 
1024 		vmf.pte = pte;
1025 		vmf.ptl = ptl;
1026 		ret = do_swap_page(&vmf);
1027 		/* Which unmaps pte (after perhaps re-checking the entry) */
1028 		pte = NULL;
1029 
1030 		/*
1031 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1032 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1033 		 * we do not retry here and swap entry will remain in pagetable
1034 		 * resulting in later failure.
1035 		 */
1036 		if (ret & VM_FAULT_RETRY) {
1037 			/* Likely, but not guaranteed, that page lock failed */
1038 			result = SCAN_PAGE_LOCK;
1039 			goto out;
1040 		}
1041 		if (ret & VM_FAULT_ERROR) {
1042 			mmap_read_unlock(mm);
1043 			result = SCAN_FAIL;
1044 			goto out;
1045 		}
1046 		swapped_in++;
1047 	}
1048 
1049 	if (pte)
1050 		pte_unmap(pte);
1051 
1052 	/* Drain LRU cache to remove extra pin on the swapped in pages */
1053 	if (swapped_in)
1054 		lru_add_drain();
1055 
1056 	result = SCAN_SUCCEED;
1057 out:
1058 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1059 	return result;
1060 }
1061 
1062 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
1063 			      struct collapse_control *cc)
1064 {
1065 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1066 		     GFP_TRANSHUGE);
1067 	int node = hpage_collapse_find_target_node(cc);
1068 	struct folio *folio;
1069 
1070 	if (!hpage_collapse_alloc_folio(&folio, gfp, node, &cc->alloc_nmask)) {
1071 		*hpage = NULL;
1072 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
1073 	}
1074 
1075 	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1076 		folio_put(folio);
1077 		*hpage = NULL;
1078 		return SCAN_CGROUP_CHARGE_FAIL;
1079 	}
1080 
1081 	count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1082 
1083 	*hpage = folio_page(folio, 0);
1084 	return SCAN_SUCCEED;
1085 }
1086 
1087 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1088 			      int referenced, int unmapped,
1089 			      struct collapse_control *cc)
1090 {
1091 	LIST_HEAD(compound_pagelist);
1092 	pmd_t *pmd, _pmd;
1093 	pte_t *pte;
1094 	pgtable_t pgtable;
1095 	struct folio *folio;
1096 	struct page *hpage;
1097 	spinlock_t *pmd_ptl, *pte_ptl;
1098 	int result = SCAN_FAIL;
1099 	struct vm_area_struct *vma;
1100 	struct mmu_notifier_range range;
1101 
1102 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1103 
1104 	/*
1105 	 * Before allocating the hugepage, release the mmap_lock read lock.
1106 	 * The allocation can take potentially a long time if it involves
1107 	 * sync compaction, and we do not need to hold the mmap_lock during
1108 	 * that. We will recheck the vma after taking it again in write mode.
1109 	 */
1110 	mmap_read_unlock(mm);
1111 
1112 	result = alloc_charge_hpage(&hpage, mm, cc);
1113 	if (result != SCAN_SUCCEED)
1114 		goto out_nolock;
1115 
1116 	mmap_read_lock(mm);
1117 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1118 	if (result != SCAN_SUCCEED) {
1119 		mmap_read_unlock(mm);
1120 		goto out_nolock;
1121 	}
1122 
1123 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1124 	if (result != SCAN_SUCCEED) {
1125 		mmap_read_unlock(mm);
1126 		goto out_nolock;
1127 	}
1128 
1129 	if (unmapped) {
1130 		/*
1131 		 * __collapse_huge_page_swapin will return with mmap_lock
1132 		 * released when it fails. So we jump out_nolock directly in
1133 		 * that case.  Continuing to collapse causes inconsistency.
1134 		 */
1135 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1136 						     referenced);
1137 		if (result != SCAN_SUCCEED)
1138 			goto out_nolock;
1139 	}
1140 
1141 	mmap_read_unlock(mm);
1142 	/*
1143 	 * Prevent all access to pagetables with the exception of
1144 	 * gup_fast later handled by the ptep_clear_flush and the VM
1145 	 * handled by the anon_vma lock + PG_lock.
1146 	 *
1147 	 * UFFDIO_MOVE is prevented to race as well thanks to the
1148 	 * mmap_lock.
1149 	 */
1150 	mmap_write_lock(mm);
1151 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1152 	if (result != SCAN_SUCCEED)
1153 		goto out_up_write;
1154 	/* check if the pmd is still valid */
1155 	result = check_pmd_still_valid(mm, address, pmd);
1156 	if (result != SCAN_SUCCEED)
1157 		goto out_up_write;
1158 
1159 	vma_start_write(vma);
1160 	anon_vma_lock_write(vma->anon_vma);
1161 
1162 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1163 				address + HPAGE_PMD_SIZE);
1164 	mmu_notifier_invalidate_range_start(&range);
1165 
1166 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1167 	/*
1168 	 * This removes any huge TLB entry from the CPU so we won't allow
1169 	 * huge and small TLB entries for the same virtual address to
1170 	 * avoid the risk of CPU bugs in that area.
1171 	 *
1172 	 * Parallel fast GUP is fine since fast GUP will back off when
1173 	 * it detects PMD is changed.
1174 	 */
1175 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1176 	spin_unlock(pmd_ptl);
1177 	mmu_notifier_invalidate_range_end(&range);
1178 	tlb_remove_table_sync_one();
1179 
1180 	pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1181 	if (pte) {
1182 		result = __collapse_huge_page_isolate(vma, address, pte, cc,
1183 						      &compound_pagelist);
1184 		spin_unlock(pte_ptl);
1185 	} else {
1186 		result = SCAN_PMD_NULL;
1187 	}
1188 
1189 	if (unlikely(result != SCAN_SUCCEED)) {
1190 		if (pte)
1191 			pte_unmap(pte);
1192 		spin_lock(pmd_ptl);
1193 		BUG_ON(!pmd_none(*pmd));
1194 		/*
1195 		 * We can only use set_pmd_at when establishing
1196 		 * hugepmds and never for establishing regular pmds that
1197 		 * points to regular pagetables. Use pmd_populate for that
1198 		 */
1199 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1200 		spin_unlock(pmd_ptl);
1201 		anon_vma_unlock_write(vma->anon_vma);
1202 		goto out_up_write;
1203 	}
1204 
1205 	/*
1206 	 * All pages are isolated and locked so anon_vma rmap
1207 	 * can't run anymore.
1208 	 */
1209 	anon_vma_unlock_write(vma->anon_vma);
1210 
1211 	result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd,
1212 					   vma, address, pte_ptl,
1213 					   &compound_pagelist);
1214 	pte_unmap(pte);
1215 	if (unlikely(result != SCAN_SUCCEED))
1216 		goto out_up_write;
1217 
1218 	folio = page_folio(hpage);
1219 	/*
1220 	 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1221 	 * copy_huge_page writes become visible before the set_pmd_at()
1222 	 * write.
1223 	 */
1224 	__folio_mark_uptodate(folio);
1225 	pgtable = pmd_pgtable(_pmd);
1226 
1227 	_pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1228 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1229 
1230 	spin_lock(pmd_ptl);
1231 	BUG_ON(!pmd_none(*pmd));
1232 	folio_add_new_anon_rmap(folio, vma, address);
1233 	folio_add_lru_vma(folio, vma);
1234 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1235 	set_pmd_at(mm, address, pmd, _pmd);
1236 	update_mmu_cache_pmd(vma, address, pmd);
1237 	spin_unlock(pmd_ptl);
1238 
1239 	hpage = NULL;
1240 
1241 	result = SCAN_SUCCEED;
1242 out_up_write:
1243 	mmap_write_unlock(mm);
1244 out_nolock:
1245 	if (hpage)
1246 		put_page(hpage);
1247 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1248 	return result;
1249 }
1250 
1251 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1252 				   struct vm_area_struct *vma,
1253 				   unsigned long address, bool *mmap_locked,
1254 				   struct collapse_control *cc)
1255 {
1256 	pmd_t *pmd;
1257 	pte_t *pte, *_pte;
1258 	int result = SCAN_FAIL, referenced = 0;
1259 	int none_or_zero = 0, shared = 0;
1260 	struct page *page = NULL;
1261 	struct folio *folio = NULL;
1262 	unsigned long _address;
1263 	spinlock_t *ptl;
1264 	int node = NUMA_NO_NODE, unmapped = 0;
1265 	bool writable = false;
1266 
1267 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1268 
1269 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1270 	if (result != SCAN_SUCCEED)
1271 		goto out;
1272 
1273 	memset(cc->node_load, 0, sizeof(cc->node_load));
1274 	nodes_clear(cc->alloc_nmask);
1275 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1276 	if (!pte) {
1277 		result = SCAN_PMD_NULL;
1278 		goto out;
1279 	}
1280 
1281 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1282 	     _pte++, _address += PAGE_SIZE) {
1283 		pte_t pteval = ptep_get(_pte);
1284 		if (is_swap_pte(pteval)) {
1285 			++unmapped;
1286 			if (!cc->is_khugepaged ||
1287 			    unmapped <= khugepaged_max_ptes_swap) {
1288 				/*
1289 				 * Always be strict with uffd-wp
1290 				 * enabled swap entries.  Please see
1291 				 * comment below for pte_uffd_wp().
1292 				 */
1293 				if (pte_swp_uffd_wp_any(pteval)) {
1294 					result = SCAN_PTE_UFFD_WP;
1295 					goto out_unmap;
1296 				}
1297 				continue;
1298 			} else {
1299 				result = SCAN_EXCEED_SWAP_PTE;
1300 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1301 				goto out_unmap;
1302 			}
1303 		}
1304 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1305 			++none_or_zero;
1306 			if (!userfaultfd_armed(vma) &&
1307 			    (!cc->is_khugepaged ||
1308 			     none_or_zero <= khugepaged_max_ptes_none)) {
1309 				continue;
1310 			} else {
1311 				result = SCAN_EXCEED_NONE_PTE;
1312 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1313 				goto out_unmap;
1314 			}
1315 		}
1316 		if (pte_uffd_wp(pteval)) {
1317 			/*
1318 			 * Don't collapse the page if any of the small
1319 			 * PTEs are armed with uffd write protection.
1320 			 * Here we can also mark the new huge pmd as
1321 			 * write protected if any of the small ones is
1322 			 * marked but that could bring unknown
1323 			 * userfault messages that falls outside of
1324 			 * the registered range.  So, just be simple.
1325 			 */
1326 			result = SCAN_PTE_UFFD_WP;
1327 			goto out_unmap;
1328 		}
1329 		if (pte_write(pteval))
1330 			writable = true;
1331 
1332 		page = vm_normal_page(vma, _address, pteval);
1333 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1334 			result = SCAN_PAGE_NULL;
1335 			goto out_unmap;
1336 		}
1337 
1338 		if (page_mapcount(page) > 1) {
1339 			++shared;
1340 			if (cc->is_khugepaged &&
1341 			    shared > khugepaged_max_ptes_shared) {
1342 				result = SCAN_EXCEED_SHARED_PTE;
1343 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1344 				goto out_unmap;
1345 			}
1346 		}
1347 
1348 		folio = page_folio(page);
1349 		/*
1350 		 * Record which node the original page is from and save this
1351 		 * information to cc->node_load[].
1352 		 * Khugepaged will allocate hugepage from the node has the max
1353 		 * hit record.
1354 		 */
1355 		node = folio_nid(folio);
1356 		if (hpage_collapse_scan_abort(node, cc)) {
1357 			result = SCAN_SCAN_ABORT;
1358 			goto out_unmap;
1359 		}
1360 		cc->node_load[node]++;
1361 		if (!folio_test_lru(folio)) {
1362 			result = SCAN_PAGE_LRU;
1363 			goto out_unmap;
1364 		}
1365 		if (folio_test_locked(folio)) {
1366 			result = SCAN_PAGE_LOCK;
1367 			goto out_unmap;
1368 		}
1369 		if (!folio_test_anon(folio)) {
1370 			result = SCAN_PAGE_ANON;
1371 			goto out_unmap;
1372 		}
1373 
1374 		/*
1375 		 * Check if the page has any GUP (or other external) pins.
1376 		 *
1377 		 * Here the check may be racy:
1378 		 * it may see total_mapcount > refcount in some cases?
1379 		 * But such case is ephemeral we could always retry collapse
1380 		 * later.  However it may report false positive if the page
1381 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1382 		 * will be done again later the risk seems low.
1383 		 */
1384 		if (!is_refcount_suitable(folio)) {
1385 			result = SCAN_PAGE_COUNT;
1386 			goto out_unmap;
1387 		}
1388 
1389 		/*
1390 		 * If collapse was initiated by khugepaged, check that there is
1391 		 * enough young pte to justify collapsing the page
1392 		 */
1393 		if (cc->is_khugepaged &&
1394 		    (pte_young(pteval) || folio_test_young(folio) ||
1395 		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
1396 								     address)))
1397 			referenced++;
1398 	}
1399 	if (!writable) {
1400 		result = SCAN_PAGE_RO;
1401 	} else if (cc->is_khugepaged &&
1402 		   (!referenced ||
1403 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1404 		result = SCAN_LACK_REFERENCED_PAGE;
1405 	} else {
1406 		result = SCAN_SUCCEED;
1407 	}
1408 out_unmap:
1409 	pte_unmap_unlock(pte, ptl);
1410 	if (result == SCAN_SUCCEED) {
1411 		result = collapse_huge_page(mm, address, referenced,
1412 					    unmapped, cc);
1413 		/* collapse_huge_page will return with the mmap_lock released */
1414 		*mmap_locked = false;
1415 	}
1416 out:
1417 	trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced,
1418 				     none_or_zero, result, unmapped);
1419 	return result;
1420 }
1421 
1422 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1423 {
1424 	struct mm_slot *slot = &mm_slot->slot;
1425 	struct mm_struct *mm = slot->mm;
1426 
1427 	lockdep_assert_held(&khugepaged_mm_lock);
1428 
1429 	if (hpage_collapse_test_exit(mm)) {
1430 		/* free mm_slot */
1431 		hash_del(&slot->hash);
1432 		list_del(&slot->mm_node);
1433 
1434 		/*
1435 		 * Not strictly needed because the mm exited already.
1436 		 *
1437 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1438 		 */
1439 
1440 		/* khugepaged_mm_lock actually not necessary for the below */
1441 		mm_slot_free(mm_slot_cache, mm_slot);
1442 		mmdrop(mm);
1443 	}
1444 }
1445 
1446 #ifdef CONFIG_SHMEM
1447 /* hpage must be locked, and mmap_lock must be held */
1448 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1449 			pmd_t *pmdp, struct page *hpage)
1450 {
1451 	struct vm_fault vmf = {
1452 		.vma = vma,
1453 		.address = addr,
1454 		.flags = 0,
1455 		.pmd = pmdp,
1456 	};
1457 
1458 	VM_BUG_ON(!PageTransHuge(hpage));
1459 	mmap_assert_locked(vma->vm_mm);
1460 
1461 	if (do_set_pmd(&vmf, hpage))
1462 		return SCAN_FAIL;
1463 
1464 	get_page(hpage);
1465 	return SCAN_SUCCEED;
1466 }
1467 
1468 /**
1469  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1470  * address haddr.
1471  *
1472  * @mm: process address space where collapse happens
1473  * @addr: THP collapse address
1474  * @install_pmd: If a huge PMD should be installed
1475  *
1476  * This function checks whether all the PTEs in the PMD are pointing to the
1477  * right THP. If so, retract the page table so the THP can refault in with
1478  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1479  */
1480 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1481 			    bool install_pmd)
1482 {
1483 	struct mmu_notifier_range range;
1484 	bool notified = false;
1485 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1486 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1487 	struct folio *folio;
1488 	pte_t *start_pte, *pte;
1489 	pmd_t *pmd, pgt_pmd;
1490 	spinlock_t *pml = NULL, *ptl;
1491 	int nr_ptes = 0, result = SCAN_FAIL;
1492 	int i;
1493 
1494 	mmap_assert_locked(mm);
1495 
1496 	/* First check VMA found, in case page tables are being torn down */
1497 	if (!vma || !vma->vm_file ||
1498 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1499 		return SCAN_VMA_CHECK;
1500 
1501 	/* Fast check before locking page if already PMD-mapped */
1502 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1503 	if (result == SCAN_PMD_MAPPED)
1504 		return result;
1505 
1506 	/*
1507 	 * If we are here, we've succeeded in replacing all the native pages
1508 	 * in the page cache with a single hugepage. If a mm were to fault-in
1509 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1510 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1511 	 * analogously elide sysfs THP settings here.
1512 	 */
1513 	if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, false,
1514 				     PMD_ORDER))
1515 		return SCAN_VMA_CHECK;
1516 
1517 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1518 	if (userfaultfd_wp(vma))
1519 		return SCAN_PTE_UFFD_WP;
1520 
1521 	folio = filemap_lock_folio(vma->vm_file->f_mapping,
1522 			       linear_page_index(vma, haddr));
1523 	if (IS_ERR(folio))
1524 		return SCAN_PAGE_NULL;
1525 
1526 	if (folio_order(folio) != HPAGE_PMD_ORDER) {
1527 		result = SCAN_PAGE_COMPOUND;
1528 		goto drop_folio;
1529 	}
1530 
1531 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1532 	switch (result) {
1533 	case SCAN_SUCCEED:
1534 		break;
1535 	case SCAN_PMD_NONE:
1536 		/*
1537 		 * All pte entries have been removed and pmd cleared.
1538 		 * Skip all the pte checks and just update the pmd mapping.
1539 		 */
1540 		goto maybe_install_pmd;
1541 	default:
1542 		goto drop_folio;
1543 	}
1544 
1545 	result = SCAN_FAIL;
1546 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1547 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1548 		goto drop_folio;
1549 
1550 	/* step 1: check all mapped PTEs are to the right huge page */
1551 	for (i = 0, addr = haddr, pte = start_pte;
1552 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1553 		struct page *page;
1554 		pte_t ptent = ptep_get(pte);
1555 
1556 		/* empty pte, skip */
1557 		if (pte_none(ptent))
1558 			continue;
1559 
1560 		/* page swapped out, abort */
1561 		if (!pte_present(ptent)) {
1562 			result = SCAN_PTE_NON_PRESENT;
1563 			goto abort;
1564 		}
1565 
1566 		page = vm_normal_page(vma, addr, ptent);
1567 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1568 			page = NULL;
1569 		/*
1570 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1571 		 * page table, but the new page will not be a subpage of hpage.
1572 		 */
1573 		if (folio_page(folio, i) != page)
1574 			goto abort;
1575 	}
1576 
1577 	pte_unmap_unlock(start_pte, ptl);
1578 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1579 				haddr, haddr + HPAGE_PMD_SIZE);
1580 	mmu_notifier_invalidate_range_start(&range);
1581 	notified = true;
1582 
1583 	/*
1584 	 * pmd_lock covers a wider range than ptl, and (if split from mm's
1585 	 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1586 	 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1587 	 * inserts a valid as-if-COWed PTE without even looking up page cache.
1588 	 * So page lock of folio does not protect from it, so we must not drop
1589 	 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1590 	 */
1591 	if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1592 		pml = pmd_lock(mm, pmd);
1593 
1594 	start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl);
1595 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1596 		goto abort;
1597 	if (!pml)
1598 		spin_lock(ptl);
1599 	else if (ptl != pml)
1600 		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1601 
1602 	/* step 2: clear page table and adjust rmap */
1603 	for (i = 0, addr = haddr, pte = start_pte;
1604 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1605 		struct page *page;
1606 		pte_t ptent = ptep_get(pte);
1607 
1608 		if (pte_none(ptent))
1609 			continue;
1610 		/*
1611 		 * We dropped ptl after the first scan, to do the mmu_notifier:
1612 		 * page lock stops more PTEs of the folio being faulted in, but
1613 		 * does not stop write faults COWing anon copies from existing
1614 		 * PTEs; and does not stop those being swapped out or migrated.
1615 		 */
1616 		if (!pte_present(ptent)) {
1617 			result = SCAN_PTE_NON_PRESENT;
1618 			goto abort;
1619 		}
1620 		page = vm_normal_page(vma, addr, ptent);
1621 		if (folio_page(folio, i) != page)
1622 			goto abort;
1623 
1624 		/*
1625 		 * Must clear entry, or a racing truncate may re-remove it.
1626 		 * TLB flush can be left until pmdp_collapse_flush() does it.
1627 		 * PTE dirty? Shmem page is already dirty; file is read-only.
1628 		 */
1629 		ptep_clear(mm, addr, pte);
1630 		folio_remove_rmap_pte(folio, page, vma);
1631 		nr_ptes++;
1632 	}
1633 
1634 	pte_unmap(start_pte);
1635 	if (!pml)
1636 		spin_unlock(ptl);
1637 
1638 	/* step 3: set proper refcount and mm_counters. */
1639 	if (nr_ptes) {
1640 		folio_ref_sub(folio, nr_ptes);
1641 		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1642 	}
1643 
1644 	/* step 4: remove empty page table */
1645 	if (!pml) {
1646 		pml = pmd_lock(mm, pmd);
1647 		if (ptl != pml)
1648 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1649 	}
1650 	pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1651 	pmdp_get_lockless_sync();
1652 	if (ptl != pml)
1653 		spin_unlock(ptl);
1654 	spin_unlock(pml);
1655 
1656 	mmu_notifier_invalidate_range_end(&range);
1657 
1658 	mm_dec_nr_ptes(mm);
1659 	page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1660 	pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1661 
1662 maybe_install_pmd:
1663 	/* step 5: install pmd entry */
1664 	result = install_pmd
1665 			? set_huge_pmd(vma, haddr, pmd, &folio->page)
1666 			: SCAN_SUCCEED;
1667 	goto drop_folio;
1668 abort:
1669 	if (nr_ptes) {
1670 		flush_tlb_mm(mm);
1671 		folio_ref_sub(folio, nr_ptes);
1672 		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1673 	}
1674 	if (start_pte)
1675 		pte_unmap_unlock(start_pte, ptl);
1676 	if (pml && pml != ptl)
1677 		spin_unlock(pml);
1678 	if (notified)
1679 		mmu_notifier_invalidate_range_end(&range);
1680 drop_folio:
1681 	folio_unlock(folio);
1682 	folio_put(folio);
1683 	return result;
1684 }
1685 
1686 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1687 {
1688 	struct vm_area_struct *vma;
1689 
1690 	i_mmap_lock_read(mapping);
1691 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1692 		struct mmu_notifier_range range;
1693 		struct mm_struct *mm;
1694 		unsigned long addr;
1695 		pmd_t *pmd, pgt_pmd;
1696 		spinlock_t *pml;
1697 		spinlock_t *ptl;
1698 		bool skipped_uffd = false;
1699 
1700 		/*
1701 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1702 		 * got written to. These VMAs are likely not worth removing
1703 		 * page tables from, as PMD-mapping is likely to be split later.
1704 		 */
1705 		if (READ_ONCE(vma->anon_vma))
1706 			continue;
1707 
1708 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1709 		if (addr & ~HPAGE_PMD_MASK ||
1710 		    vma->vm_end < addr + HPAGE_PMD_SIZE)
1711 			continue;
1712 
1713 		mm = vma->vm_mm;
1714 		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1715 			continue;
1716 
1717 		if (hpage_collapse_test_exit(mm))
1718 			continue;
1719 		/*
1720 		 * When a vma is registered with uffd-wp, we cannot recycle
1721 		 * the page table because there may be pte markers installed.
1722 		 * Other vmas can still have the same file mapped hugely, but
1723 		 * skip this one: it will always be mapped in small page size
1724 		 * for uffd-wp registered ranges.
1725 		 */
1726 		if (userfaultfd_wp(vma))
1727 			continue;
1728 
1729 		/* PTEs were notified when unmapped; but now for the PMD? */
1730 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1731 					addr, addr + HPAGE_PMD_SIZE);
1732 		mmu_notifier_invalidate_range_start(&range);
1733 
1734 		pml = pmd_lock(mm, pmd);
1735 		ptl = pte_lockptr(mm, pmd);
1736 		if (ptl != pml)
1737 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1738 
1739 		/*
1740 		 * Huge page lock is still held, so normally the page table
1741 		 * must remain empty; and we have already skipped anon_vma
1742 		 * and userfaultfd_wp() vmas.  But since the mmap_lock is not
1743 		 * held, it is still possible for a racing userfaultfd_ioctl()
1744 		 * to have inserted ptes or markers.  Now that we hold ptlock,
1745 		 * repeating the anon_vma check protects from one category,
1746 		 * and repeating the userfaultfd_wp() check from another.
1747 		 */
1748 		if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
1749 			skipped_uffd = true;
1750 		} else {
1751 			pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1752 			pmdp_get_lockless_sync();
1753 		}
1754 
1755 		if (ptl != pml)
1756 			spin_unlock(ptl);
1757 		spin_unlock(pml);
1758 
1759 		mmu_notifier_invalidate_range_end(&range);
1760 
1761 		if (!skipped_uffd) {
1762 			mm_dec_nr_ptes(mm);
1763 			page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1764 			pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1765 		}
1766 	}
1767 	i_mmap_unlock_read(mapping);
1768 }
1769 
1770 /**
1771  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1772  *
1773  * @mm: process address space where collapse happens
1774  * @addr: virtual collapse start address
1775  * @file: file that collapse on
1776  * @start: collapse start address
1777  * @cc: collapse context and scratchpad
1778  *
1779  * Basic scheme is simple, details are more complex:
1780  *  - allocate and lock a new huge page;
1781  *  - scan page cache, locking old pages
1782  *    + swap/gup in pages if necessary;
1783  *  - copy data to new page
1784  *  - handle shmem holes
1785  *    + re-validate that holes weren't filled by someone else
1786  *    + check for userfaultfd
1787  *  - finalize updates to the page cache;
1788  *  - if replacing succeeds:
1789  *    + unlock huge page;
1790  *    + free old pages;
1791  *  - if replacing failed;
1792  *    + unlock old pages
1793  *    + unlock and free huge page;
1794  */
1795 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1796 			 struct file *file, pgoff_t start,
1797 			 struct collapse_control *cc)
1798 {
1799 	struct address_space *mapping = file->f_mapping;
1800 	struct page *hpage;
1801 	struct page *page;
1802 	struct page *tmp;
1803 	struct folio *folio;
1804 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1805 	LIST_HEAD(pagelist);
1806 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1807 	int nr_none = 0, result = SCAN_SUCCEED;
1808 	bool is_shmem = shmem_file(file);
1809 	int nr = 0;
1810 
1811 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1812 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1813 
1814 	result = alloc_charge_hpage(&hpage, mm, cc);
1815 	if (result != SCAN_SUCCEED)
1816 		goto out;
1817 
1818 	__SetPageLocked(hpage);
1819 	if (is_shmem)
1820 		__SetPageSwapBacked(hpage);
1821 	hpage->index = start;
1822 	hpage->mapping = mapping;
1823 
1824 	/*
1825 	 * Ensure we have slots for all the pages in the range.  This is
1826 	 * almost certainly a no-op because most of the pages must be present
1827 	 */
1828 	do {
1829 		xas_lock_irq(&xas);
1830 		xas_create_range(&xas);
1831 		if (!xas_error(&xas))
1832 			break;
1833 		xas_unlock_irq(&xas);
1834 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1835 			result = SCAN_FAIL;
1836 			goto rollback;
1837 		}
1838 	} while (1);
1839 
1840 	for (index = start; index < end; index++) {
1841 		xas_set(&xas, index);
1842 		page = xas_load(&xas);
1843 
1844 		VM_BUG_ON(index != xas.xa_index);
1845 		if (is_shmem) {
1846 			if (!page) {
1847 				/*
1848 				 * Stop if extent has been truncated or
1849 				 * hole-punched, and is now completely
1850 				 * empty.
1851 				 */
1852 				if (index == start) {
1853 					if (!xas_next_entry(&xas, end - 1)) {
1854 						result = SCAN_TRUNCATED;
1855 						goto xa_locked;
1856 					}
1857 				}
1858 				nr_none++;
1859 				continue;
1860 			}
1861 
1862 			if (xa_is_value(page) || !PageUptodate(page)) {
1863 				xas_unlock_irq(&xas);
1864 				/* swap in or instantiate fallocated page */
1865 				if (shmem_get_folio(mapping->host, index,
1866 						&folio, SGP_NOALLOC)) {
1867 					result = SCAN_FAIL;
1868 					goto xa_unlocked;
1869 				}
1870 				/* drain lru cache to help isolate_lru_page() */
1871 				lru_add_drain();
1872 				page = folio_file_page(folio, index);
1873 			} else if (trylock_page(page)) {
1874 				get_page(page);
1875 				xas_unlock_irq(&xas);
1876 			} else {
1877 				result = SCAN_PAGE_LOCK;
1878 				goto xa_locked;
1879 			}
1880 		} else {	/* !is_shmem */
1881 			if (!page || xa_is_value(page)) {
1882 				xas_unlock_irq(&xas);
1883 				page_cache_sync_readahead(mapping, &file->f_ra,
1884 							  file, index,
1885 							  end - index);
1886 				/* drain lru cache to help isolate_lru_page() */
1887 				lru_add_drain();
1888 				page = find_lock_page(mapping, index);
1889 				if (unlikely(page == NULL)) {
1890 					result = SCAN_FAIL;
1891 					goto xa_unlocked;
1892 				}
1893 			} else if (PageDirty(page)) {
1894 				/*
1895 				 * khugepaged only works on read-only fd,
1896 				 * so this page is dirty because it hasn't
1897 				 * been flushed since first write. There
1898 				 * won't be new dirty pages.
1899 				 *
1900 				 * Trigger async flush here and hope the
1901 				 * writeback is done when khugepaged
1902 				 * revisits this page.
1903 				 *
1904 				 * This is a one-off situation. We are not
1905 				 * forcing writeback in loop.
1906 				 */
1907 				xas_unlock_irq(&xas);
1908 				filemap_flush(mapping);
1909 				result = SCAN_FAIL;
1910 				goto xa_unlocked;
1911 			} else if (PageWriteback(page)) {
1912 				xas_unlock_irq(&xas);
1913 				result = SCAN_FAIL;
1914 				goto xa_unlocked;
1915 			} else if (trylock_page(page)) {
1916 				get_page(page);
1917 				xas_unlock_irq(&xas);
1918 			} else {
1919 				result = SCAN_PAGE_LOCK;
1920 				goto xa_locked;
1921 			}
1922 		}
1923 
1924 		/*
1925 		 * The page must be locked, so we can drop the i_pages lock
1926 		 * without racing with truncate.
1927 		 */
1928 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1929 
1930 		/* make sure the page is up to date */
1931 		if (unlikely(!PageUptodate(page))) {
1932 			result = SCAN_FAIL;
1933 			goto out_unlock;
1934 		}
1935 
1936 		/*
1937 		 * If file was truncated then extended, or hole-punched, before
1938 		 * we locked the first page, then a THP might be there already.
1939 		 * This will be discovered on the first iteration.
1940 		 */
1941 		if (PageTransCompound(page)) {
1942 			struct page *head = compound_head(page);
1943 
1944 			result = compound_order(head) == HPAGE_PMD_ORDER &&
1945 					head->index == start
1946 					/* Maybe PMD-mapped */
1947 					? SCAN_PTE_MAPPED_HUGEPAGE
1948 					: SCAN_PAGE_COMPOUND;
1949 			goto out_unlock;
1950 		}
1951 
1952 		folio = page_folio(page);
1953 
1954 		if (folio_mapping(folio) != mapping) {
1955 			result = SCAN_TRUNCATED;
1956 			goto out_unlock;
1957 		}
1958 
1959 		if (!is_shmem && (folio_test_dirty(folio) ||
1960 				  folio_test_writeback(folio))) {
1961 			/*
1962 			 * khugepaged only works on read-only fd, so this
1963 			 * page is dirty because it hasn't been flushed
1964 			 * since first write.
1965 			 */
1966 			result = SCAN_FAIL;
1967 			goto out_unlock;
1968 		}
1969 
1970 		if (!folio_isolate_lru(folio)) {
1971 			result = SCAN_DEL_PAGE_LRU;
1972 			goto out_unlock;
1973 		}
1974 
1975 		if (!filemap_release_folio(folio, GFP_KERNEL)) {
1976 			result = SCAN_PAGE_HAS_PRIVATE;
1977 			folio_putback_lru(folio);
1978 			goto out_unlock;
1979 		}
1980 
1981 		if (folio_mapped(folio))
1982 			try_to_unmap(folio,
1983 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1984 
1985 		xas_lock_irq(&xas);
1986 
1987 		VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page);
1988 
1989 		/*
1990 		 * We control three references to the page:
1991 		 *  - we hold a pin on it;
1992 		 *  - one reference from page cache;
1993 		 *  - one from isolate_lru_page;
1994 		 * If those are the only references, then any new usage of the
1995 		 * page will have to fetch it from the page cache. That requires
1996 		 * locking the page to handle truncate, so any new usage will be
1997 		 * blocked until we unlock page after collapse/during rollback.
1998 		 */
1999 		if (page_count(page) != 3) {
2000 			result = SCAN_PAGE_COUNT;
2001 			xas_unlock_irq(&xas);
2002 			putback_lru_page(page);
2003 			goto out_unlock;
2004 		}
2005 
2006 		/*
2007 		 * Accumulate the pages that are being collapsed.
2008 		 */
2009 		list_add_tail(&page->lru, &pagelist);
2010 		continue;
2011 out_unlock:
2012 		unlock_page(page);
2013 		put_page(page);
2014 		goto xa_unlocked;
2015 	}
2016 
2017 	if (!is_shmem) {
2018 		filemap_nr_thps_inc(mapping);
2019 		/*
2020 		 * Paired with smp_mb() in do_dentry_open() to ensure
2021 		 * i_writecount is up to date and the update to nr_thps is
2022 		 * visible. Ensures the page cache will be truncated if the
2023 		 * file is opened writable.
2024 		 */
2025 		smp_mb();
2026 		if (inode_is_open_for_write(mapping->host)) {
2027 			result = SCAN_FAIL;
2028 			filemap_nr_thps_dec(mapping);
2029 		}
2030 	}
2031 
2032 xa_locked:
2033 	xas_unlock_irq(&xas);
2034 xa_unlocked:
2035 
2036 	/*
2037 	 * If collapse is successful, flush must be done now before copying.
2038 	 * If collapse is unsuccessful, does flush actually need to be done?
2039 	 * Do it anyway, to clear the state.
2040 	 */
2041 	try_to_unmap_flush();
2042 
2043 	if (result == SCAN_SUCCEED && nr_none &&
2044 	    !shmem_charge(mapping->host, nr_none))
2045 		result = SCAN_FAIL;
2046 	if (result != SCAN_SUCCEED) {
2047 		nr_none = 0;
2048 		goto rollback;
2049 	}
2050 
2051 	/*
2052 	 * The old pages are locked, so they won't change anymore.
2053 	 */
2054 	index = start;
2055 	list_for_each_entry(page, &pagelist, lru) {
2056 		while (index < page->index) {
2057 			clear_highpage(hpage + (index % HPAGE_PMD_NR));
2058 			index++;
2059 		}
2060 		if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) {
2061 			result = SCAN_COPY_MC;
2062 			goto rollback;
2063 		}
2064 		index++;
2065 	}
2066 	while (index < end) {
2067 		clear_highpage(hpage + (index % HPAGE_PMD_NR));
2068 		index++;
2069 	}
2070 
2071 	if (nr_none) {
2072 		struct vm_area_struct *vma;
2073 		int nr_none_check = 0;
2074 
2075 		i_mmap_lock_read(mapping);
2076 		xas_lock_irq(&xas);
2077 
2078 		xas_set(&xas, start);
2079 		for (index = start; index < end; index++) {
2080 			if (!xas_next(&xas)) {
2081 				xas_store(&xas, XA_RETRY_ENTRY);
2082 				if (xas_error(&xas)) {
2083 					result = SCAN_STORE_FAILED;
2084 					goto immap_locked;
2085 				}
2086 				nr_none_check++;
2087 			}
2088 		}
2089 
2090 		if (nr_none != nr_none_check) {
2091 			result = SCAN_PAGE_FILLED;
2092 			goto immap_locked;
2093 		}
2094 
2095 		/*
2096 		 * If userspace observed a missing page in a VMA with a MODE_MISSING
2097 		 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that
2098 		 * page. If so, we need to roll back to avoid suppressing such an
2099 		 * event. Since wp/minor userfaultfds don't give userspace any
2100 		 * guarantees that the kernel doesn't fill a missing page with a zero
2101 		 * page, so they don't matter here.
2102 		 *
2103 		 * Any userfaultfds registered after this point will not be able to
2104 		 * observe any missing pages due to the previously inserted retry
2105 		 * entries.
2106 		 */
2107 		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2108 			if (userfaultfd_missing(vma)) {
2109 				result = SCAN_EXCEED_NONE_PTE;
2110 				goto immap_locked;
2111 			}
2112 		}
2113 
2114 immap_locked:
2115 		i_mmap_unlock_read(mapping);
2116 		if (result != SCAN_SUCCEED) {
2117 			xas_set(&xas, start);
2118 			for (index = start; index < end; index++) {
2119 				if (xas_next(&xas) == XA_RETRY_ENTRY)
2120 					xas_store(&xas, NULL);
2121 			}
2122 
2123 			xas_unlock_irq(&xas);
2124 			goto rollback;
2125 		}
2126 	} else {
2127 		xas_lock_irq(&xas);
2128 	}
2129 
2130 	folio = page_folio(hpage);
2131 	nr = folio_nr_pages(folio);
2132 	if (is_shmem)
2133 		__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
2134 	else
2135 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, nr);
2136 
2137 	if (nr_none) {
2138 		__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_none);
2139 		/* nr_none is always 0 for non-shmem. */
2140 		__lruvec_stat_mod_folio(folio, NR_SHMEM, nr_none);
2141 	}
2142 
2143 	/*
2144 	 * Mark hpage as uptodate before inserting it into the page cache so
2145 	 * that it isn't mistaken for an fallocated but unwritten page.
2146 	 */
2147 	folio_mark_uptodate(folio);
2148 	folio_ref_add(folio, HPAGE_PMD_NR - 1);
2149 
2150 	if (is_shmem)
2151 		folio_mark_dirty(folio);
2152 	folio_add_lru(folio);
2153 
2154 	/* Join all the small entries into a single multi-index entry. */
2155 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2156 	xas_store(&xas, folio);
2157 	WARN_ON_ONCE(xas_error(&xas));
2158 	xas_unlock_irq(&xas);
2159 
2160 	/*
2161 	 * Remove pte page tables, so we can re-fault the page as huge.
2162 	 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2163 	 */
2164 	retract_page_tables(mapping, start);
2165 	if (cc && !cc->is_khugepaged)
2166 		result = SCAN_PTE_MAPPED_HUGEPAGE;
2167 	folio_unlock(folio);
2168 
2169 	/*
2170 	 * The collapse has succeeded, so free the old pages.
2171 	 */
2172 	list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2173 		list_del(&page->lru);
2174 		page->mapping = NULL;
2175 		ClearPageActive(page);
2176 		ClearPageUnevictable(page);
2177 		unlock_page(page);
2178 		folio_put_refs(page_folio(page), 3);
2179 	}
2180 
2181 	goto out;
2182 
2183 rollback:
2184 	/* Something went wrong: roll back page cache changes */
2185 	if (nr_none) {
2186 		xas_lock_irq(&xas);
2187 		mapping->nrpages -= nr_none;
2188 		xas_unlock_irq(&xas);
2189 		shmem_uncharge(mapping->host, nr_none);
2190 	}
2191 
2192 	list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2193 		list_del(&page->lru);
2194 		unlock_page(page);
2195 		putback_lru_page(page);
2196 		put_page(page);
2197 	}
2198 	/*
2199 	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2200 	 * file only. This undo is not needed unless failure is
2201 	 * due to SCAN_COPY_MC.
2202 	 */
2203 	if (!is_shmem && result == SCAN_COPY_MC) {
2204 		filemap_nr_thps_dec(mapping);
2205 		/*
2206 		 * Paired with smp_mb() in do_dentry_open() to
2207 		 * ensure the update to nr_thps is visible.
2208 		 */
2209 		smp_mb();
2210 	}
2211 
2212 	hpage->mapping = NULL;
2213 
2214 	unlock_page(hpage);
2215 	put_page(hpage);
2216 out:
2217 	VM_BUG_ON(!list_empty(&pagelist));
2218 	trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result);
2219 	return result;
2220 }
2221 
2222 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2223 				    struct file *file, pgoff_t start,
2224 				    struct collapse_control *cc)
2225 {
2226 	struct page *page = NULL;
2227 	struct address_space *mapping = file->f_mapping;
2228 	XA_STATE(xas, &mapping->i_pages, start);
2229 	int present, swap;
2230 	int node = NUMA_NO_NODE;
2231 	int result = SCAN_SUCCEED;
2232 
2233 	present = 0;
2234 	swap = 0;
2235 	memset(cc->node_load, 0, sizeof(cc->node_load));
2236 	nodes_clear(cc->alloc_nmask);
2237 	rcu_read_lock();
2238 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2239 		if (xas_retry(&xas, page))
2240 			continue;
2241 
2242 		if (xa_is_value(page)) {
2243 			++swap;
2244 			if (cc->is_khugepaged &&
2245 			    swap > khugepaged_max_ptes_swap) {
2246 				result = SCAN_EXCEED_SWAP_PTE;
2247 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2248 				break;
2249 			}
2250 			continue;
2251 		}
2252 
2253 		/*
2254 		 * TODO: khugepaged should compact smaller compound pages
2255 		 * into a PMD sized page
2256 		 */
2257 		if (PageTransCompound(page)) {
2258 			struct page *head = compound_head(page);
2259 
2260 			result = compound_order(head) == HPAGE_PMD_ORDER &&
2261 					head->index == start
2262 					/* Maybe PMD-mapped */
2263 					? SCAN_PTE_MAPPED_HUGEPAGE
2264 					: SCAN_PAGE_COMPOUND;
2265 			/*
2266 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2267 			 * by the caller won't touch the page cache, and so
2268 			 * it's safe to skip LRU and refcount checks before
2269 			 * returning.
2270 			 */
2271 			break;
2272 		}
2273 
2274 		node = page_to_nid(page);
2275 		if (hpage_collapse_scan_abort(node, cc)) {
2276 			result = SCAN_SCAN_ABORT;
2277 			break;
2278 		}
2279 		cc->node_load[node]++;
2280 
2281 		if (!PageLRU(page)) {
2282 			result = SCAN_PAGE_LRU;
2283 			break;
2284 		}
2285 
2286 		if (page_count(page) !=
2287 		    1 + page_mapcount(page) + page_has_private(page)) {
2288 			result = SCAN_PAGE_COUNT;
2289 			break;
2290 		}
2291 
2292 		/*
2293 		 * We probably should check if the page is referenced here, but
2294 		 * nobody would transfer pte_young() to PageReferenced() for us.
2295 		 * And rmap walk here is just too costly...
2296 		 */
2297 
2298 		present++;
2299 
2300 		if (need_resched()) {
2301 			xas_pause(&xas);
2302 			cond_resched_rcu();
2303 		}
2304 	}
2305 	rcu_read_unlock();
2306 
2307 	if (result == SCAN_SUCCEED) {
2308 		if (cc->is_khugepaged &&
2309 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2310 			result = SCAN_EXCEED_NONE_PTE;
2311 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2312 		} else {
2313 			result = collapse_file(mm, addr, file, start, cc);
2314 		}
2315 	}
2316 
2317 	trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
2318 	return result;
2319 }
2320 #else
2321 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2322 				    struct file *file, pgoff_t start,
2323 				    struct collapse_control *cc)
2324 {
2325 	BUILD_BUG();
2326 }
2327 #endif
2328 
2329 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2330 					    struct collapse_control *cc)
2331 	__releases(&khugepaged_mm_lock)
2332 	__acquires(&khugepaged_mm_lock)
2333 {
2334 	struct vma_iterator vmi;
2335 	struct khugepaged_mm_slot *mm_slot;
2336 	struct mm_slot *slot;
2337 	struct mm_struct *mm;
2338 	struct vm_area_struct *vma;
2339 	int progress = 0;
2340 
2341 	VM_BUG_ON(!pages);
2342 	lockdep_assert_held(&khugepaged_mm_lock);
2343 	*result = SCAN_FAIL;
2344 
2345 	if (khugepaged_scan.mm_slot) {
2346 		mm_slot = khugepaged_scan.mm_slot;
2347 		slot = &mm_slot->slot;
2348 	} else {
2349 		slot = list_entry(khugepaged_scan.mm_head.next,
2350 				     struct mm_slot, mm_node);
2351 		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2352 		khugepaged_scan.address = 0;
2353 		khugepaged_scan.mm_slot = mm_slot;
2354 	}
2355 	spin_unlock(&khugepaged_mm_lock);
2356 
2357 	mm = slot->mm;
2358 	/*
2359 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2360 	 * the next mm on the list.
2361 	 */
2362 	vma = NULL;
2363 	if (unlikely(!mmap_read_trylock(mm)))
2364 		goto breakouterloop_mmap_lock;
2365 
2366 	progress++;
2367 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2368 		goto breakouterloop;
2369 
2370 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2371 	for_each_vma(vmi, vma) {
2372 		unsigned long hstart, hend;
2373 
2374 		cond_resched();
2375 		if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2376 			progress++;
2377 			break;
2378 		}
2379 		if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false,
2380 					     true, PMD_ORDER)) {
2381 skip:
2382 			progress++;
2383 			continue;
2384 		}
2385 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2386 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2387 		if (khugepaged_scan.address > hend)
2388 			goto skip;
2389 		if (khugepaged_scan.address < hstart)
2390 			khugepaged_scan.address = hstart;
2391 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2392 
2393 		while (khugepaged_scan.address < hend) {
2394 			bool mmap_locked = true;
2395 
2396 			cond_resched();
2397 			if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2398 				goto breakouterloop;
2399 
2400 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2401 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2402 				  hend);
2403 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2404 				struct file *file = get_file(vma->vm_file);
2405 				pgoff_t pgoff = linear_page_index(vma,
2406 						khugepaged_scan.address);
2407 
2408 				mmap_read_unlock(mm);
2409 				mmap_locked = false;
2410 				*result = hpage_collapse_scan_file(mm,
2411 					khugepaged_scan.address, file, pgoff, cc);
2412 				fput(file);
2413 				if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2414 					mmap_read_lock(mm);
2415 					if (hpage_collapse_test_exit_or_disable(mm))
2416 						goto breakouterloop;
2417 					*result = collapse_pte_mapped_thp(mm,
2418 						khugepaged_scan.address, false);
2419 					if (*result == SCAN_PMD_MAPPED)
2420 						*result = SCAN_SUCCEED;
2421 					mmap_read_unlock(mm);
2422 				}
2423 			} else {
2424 				*result = hpage_collapse_scan_pmd(mm, vma,
2425 					khugepaged_scan.address, &mmap_locked, cc);
2426 			}
2427 
2428 			if (*result == SCAN_SUCCEED)
2429 				++khugepaged_pages_collapsed;
2430 
2431 			/* move to next address */
2432 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2433 			progress += HPAGE_PMD_NR;
2434 			if (!mmap_locked)
2435 				/*
2436 				 * We released mmap_lock so break loop.  Note
2437 				 * that we drop mmap_lock before all hugepage
2438 				 * allocations, so if allocation fails, we are
2439 				 * guaranteed to break here and report the
2440 				 * correct result back to caller.
2441 				 */
2442 				goto breakouterloop_mmap_lock;
2443 			if (progress >= pages)
2444 				goto breakouterloop;
2445 		}
2446 	}
2447 breakouterloop:
2448 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2449 breakouterloop_mmap_lock:
2450 
2451 	spin_lock(&khugepaged_mm_lock);
2452 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2453 	/*
2454 	 * Release the current mm_slot if this mm is about to die, or
2455 	 * if we scanned all vmas of this mm.
2456 	 */
2457 	if (hpage_collapse_test_exit(mm) || !vma) {
2458 		/*
2459 		 * Make sure that if mm_users is reaching zero while
2460 		 * khugepaged runs here, khugepaged_exit will find
2461 		 * mm_slot not pointing to the exiting mm.
2462 		 */
2463 		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2464 			slot = list_entry(slot->mm_node.next,
2465 					  struct mm_slot, mm_node);
2466 			khugepaged_scan.mm_slot =
2467 				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2468 			khugepaged_scan.address = 0;
2469 		} else {
2470 			khugepaged_scan.mm_slot = NULL;
2471 			khugepaged_full_scans++;
2472 		}
2473 
2474 		collect_mm_slot(mm_slot);
2475 	}
2476 
2477 	return progress;
2478 }
2479 
2480 static int khugepaged_has_work(void)
2481 {
2482 	return !list_empty(&khugepaged_scan.mm_head) &&
2483 		hugepage_flags_enabled();
2484 }
2485 
2486 static int khugepaged_wait_event(void)
2487 {
2488 	return !list_empty(&khugepaged_scan.mm_head) ||
2489 		kthread_should_stop();
2490 }
2491 
2492 static void khugepaged_do_scan(struct collapse_control *cc)
2493 {
2494 	unsigned int progress = 0, pass_through_head = 0;
2495 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2496 	bool wait = true;
2497 	int result = SCAN_SUCCEED;
2498 
2499 	lru_add_drain_all();
2500 
2501 	while (true) {
2502 		cond_resched();
2503 
2504 		if (unlikely(kthread_should_stop()))
2505 			break;
2506 
2507 		spin_lock(&khugepaged_mm_lock);
2508 		if (!khugepaged_scan.mm_slot)
2509 			pass_through_head++;
2510 		if (khugepaged_has_work() &&
2511 		    pass_through_head < 2)
2512 			progress += khugepaged_scan_mm_slot(pages - progress,
2513 							    &result, cc);
2514 		else
2515 			progress = pages;
2516 		spin_unlock(&khugepaged_mm_lock);
2517 
2518 		if (progress >= pages)
2519 			break;
2520 
2521 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2522 			/*
2523 			 * If fail to allocate the first time, try to sleep for
2524 			 * a while.  When hit again, cancel the scan.
2525 			 */
2526 			if (!wait)
2527 				break;
2528 			wait = false;
2529 			khugepaged_alloc_sleep();
2530 		}
2531 	}
2532 }
2533 
2534 static bool khugepaged_should_wakeup(void)
2535 {
2536 	return kthread_should_stop() ||
2537 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2538 }
2539 
2540 static void khugepaged_wait_work(void)
2541 {
2542 	if (khugepaged_has_work()) {
2543 		const unsigned long scan_sleep_jiffies =
2544 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2545 
2546 		if (!scan_sleep_jiffies)
2547 			return;
2548 
2549 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2550 		wait_event_freezable_timeout(khugepaged_wait,
2551 					     khugepaged_should_wakeup(),
2552 					     scan_sleep_jiffies);
2553 		return;
2554 	}
2555 
2556 	if (hugepage_flags_enabled())
2557 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2558 }
2559 
2560 static int khugepaged(void *none)
2561 {
2562 	struct khugepaged_mm_slot *mm_slot;
2563 
2564 	set_freezable();
2565 	set_user_nice(current, MAX_NICE);
2566 
2567 	while (!kthread_should_stop()) {
2568 		khugepaged_do_scan(&khugepaged_collapse_control);
2569 		khugepaged_wait_work();
2570 	}
2571 
2572 	spin_lock(&khugepaged_mm_lock);
2573 	mm_slot = khugepaged_scan.mm_slot;
2574 	khugepaged_scan.mm_slot = NULL;
2575 	if (mm_slot)
2576 		collect_mm_slot(mm_slot);
2577 	spin_unlock(&khugepaged_mm_lock);
2578 	return 0;
2579 }
2580 
2581 static void set_recommended_min_free_kbytes(void)
2582 {
2583 	struct zone *zone;
2584 	int nr_zones = 0;
2585 	unsigned long recommended_min;
2586 
2587 	if (!hugepage_flags_enabled()) {
2588 		calculate_min_free_kbytes();
2589 		goto update_wmarks;
2590 	}
2591 
2592 	for_each_populated_zone(zone) {
2593 		/*
2594 		 * We don't need to worry about fragmentation of
2595 		 * ZONE_MOVABLE since it only has movable pages.
2596 		 */
2597 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2598 			continue;
2599 
2600 		nr_zones++;
2601 	}
2602 
2603 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2604 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2605 
2606 	/*
2607 	 * Make sure that on average at least two pageblocks are almost free
2608 	 * of another type, one for a migratetype to fall back to and a
2609 	 * second to avoid subsequent fallbacks of other types There are 3
2610 	 * MIGRATE_TYPES we care about.
2611 	 */
2612 	recommended_min += pageblock_nr_pages * nr_zones *
2613 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2614 
2615 	/* don't ever allow to reserve more than 5% of the lowmem */
2616 	recommended_min = min(recommended_min,
2617 			      (unsigned long) nr_free_buffer_pages() / 20);
2618 	recommended_min <<= (PAGE_SHIFT-10);
2619 
2620 	if (recommended_min > min_free_kbytes) {
2621 		if (user_min_free_kbytes >= 0)
2622 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2623 				min_free_kbytes, recommended_min);
2624 
2625 		min_free_kbytes = recommended_min;
2626 	}
2627 
2628 update_wmarks:
2629 	setup_per_zone_wmarks();
2630 }
2631 
2632 int start_stop_khugepaged(void)
2633 {
2634 	int err = 0;
2635 
2636 	mutex_lock(&khugepaged_mutex);
2637 	if (hugepage_flags_enabled()) {
2638 		if (!khugepaged_thread)
2639 			khugepaged_thread = kthread_run(khugepaged, NULL,
2640 							"khugepaged");
2641 		if (IS_ERR(khugepaged_thread)) {
2642 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2643 			err = PTR_ERR(khugepaged_thread);
2644 			khugepaged_thread = NULL;
2645 			goto fail;
2646 		}
2647 
2648 		if (!list_empty(&khugepaged_scan.mm_head))
2649 			wake_up_interruptible(&khugepaged_wait);
2650 	} else if (khugepaged_thread) {
2651 		kthread_stop(khugepaged_thread);
2652 		khugepaged_thread = NULL;
2653 	}
2654 	set_recommended_min_free_kbytes();
2655 fail:
2656 	mutex_unlock(&khugepaged_mutex);
2657 	return err;
2658 }
2659 
2660 void khugepaged_min_free_kbytes_update(void)
2661 {
2662 	mutex_lock(&khugepaged_mutex);
2663 	if (hugepage_flags_enabled() && khugepaged_thread)
2664 		set_recommended_min_free_kbytes();
2665 	mutex_unlock(&khugepaged_mutex);
2666 }
2667 
2668 bool current_is_khugepaged(void)
2669 {
2670 	return kthread_func(current) == khugepaged;
2671 }
2672 
2673 static int madvise_collapse_errno(enum scan_result r)
2674 {
2675 	/*
2676 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2677 	 * actionable feedback to caller, so they may take an appropriate
2678 	 * fallback measure depending on the nature of the failure.
2679 	 */
2680 	switch (r) {
2681 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2682 		return -ENOMEM;
2683 	case SCAN_CGROUP_CHARGE_FAIL:
2684 	case SCAN_EXCEED_NONE_PTE:
2685 		return -EBUSY;
2686 	/* Resource temporary unavailable - trying again might succeed */
2687 	case SCAN_PAGE_COUNT:
2688 	case SCAN_PAGE_LOCK:
2689 	case SCAN_PAGE_LRU:
2690 	case SCAN_DEL_PAGE_LRU:
2691 	case SCAN_PAGE_FILLED:
2692 		return -EAGAIN;
2693 	/*
2694 	 * Other: Trying again likely not to succeed / error intrinsic to
2695 	 * specified memory range. khugepaged likely won't be able to collapse
2696 	 * either.
2697 	 */
2698 	default:
2699 		return -EINVAL;
2700 	}
2701 }
2702 
2703 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2704 		     unsigned long start, unsigned long end)
2705 {
2706 	struct collapse_control *cc;
2707 	struct mm_struct *mm = vma->vm_mm;
2708 	unsigned long hstart, hend, addr;
2709 	int thps = 0, last_fail = SCAN_FAIL;
2710 	bool mmap_locked = true;
2711 
2712 	BUG_ON(vma->vm_start > start);
2713 	BUG_ON(vma->vm_end < end);
2714 
2715 	*prev = vma;
2716 
2717 	if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, false,
2718 				     PMD_ORDER))
2719 		return -EINVAL;
2720 
2721 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2722 	if (!cc)
2723 		return -ENOMEM;
2724 	cc->is_khugepaged = false;
2725 
2726 	mmgrab(mm);
2727 	lru_add_drain_all();
2728 
2729 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2730 	hend = end & HPAGE_PMD_MASK;
2731 
2732 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2733 		int result = SCAN_FAIL;
2734 
2735 		if (!mmap_locked) {
2736 			cond_resched();
2737 			mmap_read_lock(mm);
2738 			mmap_locked = true;
2739 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2740 							 cc);
2741 			if (result  != SCAN_SUCCEED) {
2742 				last_fail = result;
2743 				goto out_nolock;
2744 			}
2745 
2746 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2747 		}
2748 		mmap_assert_locked(mm);
2749 		memset(cc->node_load, 0, sizeof(cc->node_load));
2750 		nodes_clear(cc->alloc_nmask);
2751 		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2752 			struct file *file = get_file(vma->vm_file);
2753 			pgoff_t pgoff = linear_page_index(vma, addr);
2754 
2755 			mmap_read_unlock(mm);
2756 			mmap_locked = false;
2757 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2758 							  cc);
2759 			fput(file);
2760 		} else {
2761 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2762 							 &mmap_locked, cc);
2763 		}
2764 		if (!mmap_locked)
2765 			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2766 
2767 handle_result:
2768 		switch (result) {
2769 		case SCAN_SUCCEED:
2770 		case SCAN_PMD_MAPPED:
2771 			++thps;
2772 			break;
2773 		case SCAN_PTE_MAPPED_HUGEPAGE:
2774 			BUG_ON(mmap_locked);
2775 			BUG_ON(*prev);
2776 			mmap_read_lock(mm);
2777 			result = collapse_pte_mapped_thp(mm, addr, true);
2778 			mmap_read_unlock(mm);
2779 			goto handle_result;
2780 		/* Whitelisted set of results where continuing OK */
2781 		case SCAN_PMD_NULL:
2782 		case SCAN_PTE_NON_PRESENT:
2783 		case SCAN_PTE_UFFD_WP:
2784 		case SCAN_PAGE_RO:
2785 		case SCAN_LACK_REFERENCED_PAGE:
2786 		case SCAN_PAGE_NULL:
2787 		case SCAN_PAGE_COUNT:
2788 		case SCAN_PAGE_LOCK:
2789 		case SCAN_PAGE_COMPOUND:
2790 		case SCAN_PAGE_LRU:
2791 		case SCAN_DEL_PAGE_LRU:
2792 			last_fail = result;
2793 			break;
2794 		default:
2795 			last_fail = result;
2796 			/* Other error, exit */
2797 			goto out_maybelock;
2798 		}
2799 	}
2800 
2801 out_maybelock:
2802 	/* Caller expects us to hold mmap_lock on return */
2803 	if (!mmap_locked)
2804 		mmap_read_lock(mm);
2805 out_nolock:
2806 	mmap_assert_locked(mm);
2807 	mmdrop(mm);
2808 	kfree(cc);
2809 
2810 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2811 			: madvise_collapse_errno(last_fail);
2812 }
2813