xref: /linux/mm/khugepaged.c (revision e7c22eeaff8565d9a8374f320238c251ca31480b)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21 
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25 
26 enum scan_result {
27 	SCAN_FAIL,
28 	SCAN_SUCCEED,
29 	SCAN_PMD_NULL,
30 	SCAN_EXCEED_NONE_PTE,
31 	SCAN_EXCEED_SWAP_PTE,
32 	SCAN_EXCEED_SHARED_PTE,
33 	SCAN_PTE_NON_PRESENT,
34 	SCAN_PTE_UFFD_WP,
35 	SCAN_PAGE_RO,
36 	SCAN_LACK_REFERENCED_PAGE,
37 	SCAN_PAGE_NULL,
38 	SCAN_SCAN_ABORT,
39 	SCAN_PAGE_COUNT,
40 	SCAN_PAGE_LRU,
41 	SCAN_PAGE_LOCK,
42 	SCAN_PAGE_ANON,
43 	SCAN_PAGE_COMPOUND,
44 	SCAN_ANY_PROCESS,
45 	SCAN_VMA_NULL,
46 	SCAN_VMA_CHECK,
47 	SCAN_ADDRESS_RANGE,
48 	SCAN_SWAP_CACHE_PAGE,
49 	SCAN_DEL_PAGE_LRU,
50 	SCAN_ALLOC_HUGE_PAGE_FAIL,
51 	SCAN_CGROUP_CHARGE_FAIL,
52 	SCAN_TRUNCATED,
53 	SCAN_PAGE_HAS_PRIVATE,
54 };
55 
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58 
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61 
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73  * default collapse hugepages if there is at least one pte mapped like
74  * it would have happened if the vma was large enough during page
75  * fault.
76  */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80 
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83 
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85 
86 #define MAX_PTE_MAPPED_THP 8
87 
88 /**
89  * struct mm_slot - hash lookup from mm to mm_slot
90  * @hash: hash collision list
91  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92  * @mm: the mm that this information is valid for
93  * @nr_pte_mapped_thp: number of pte mapped THP
94  * @pte_mapped_thp: address array corresponding pte mapped THP
95  */
96 struct mm_slot {
97 	struct hlist_node hash;
98 	struct list_head mm_node;
99 	struct mm_struct *mm;
100 
101 	/* pte-mapped THP in this mm */
102 	int nr_pte_mapped_thp;
103 	unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
104 };
105 
106 /**
107  * struct khugepaged_scan - cursor for scanning
108  * @mm_head: the head of the mm list to scan
109  * @mm_slot: the current mm_slot we are scanning
110  * @address: the next address inside that to be scanned
111  *
112  * There is only the one khugepaged_scan instance of this cursor structure.
113  */
114 struct khugepaged_scan {
115 	struct list_head mm_head;
116 	struct mm_slot *mm_slot;
117 	unsigned long address;
118 };
119 
120 static struct khugepaged_scan khugepaged_scan = {
121 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123 
124 #ifdef CONFIG_SYSFS
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126 					 struct kobj_attribute *attr,
127 					 char *buf)
128 {
129 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131 
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133 					  struct kobj_attribute *attr,
134 					  const char *buf, size_t count)
135 {
136 	unsigned int msecs;
137 	int err;
138 
139 	err = kstrtouint(buf, 10, &msecs);
140 	if (err)
141 		return -EINVAL;
142 
143 	khugepaged_scan_sleep_millisecs = msecs;
144 	khugepaged_sleep_expire = 0;
145 	wake_up_interruptible(&khugepaged_wait);
146 
147 	return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150 	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151 	       scan_sleep_millisecs_store);
152 
153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154 					  struct kobj_attribute *attr,
155 					  char *buf)
156 {
157 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
158 }
159 
160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161 					   struct kobj_attribute *attr,
162 					   const char *buf, size_t count)
163 {
164 	unsigned int msecs;
165 	int err;
166 
167 	err = kstrtouint(buf, 10, &msecs);
168 	if (err)
169 		return -EINVAL;
170 
171 	khugepaged_alloc_sleep_millisecs = msecs;
172 	khugepaged_sleep_expire = 0;
173 	wake_up_interruptible(&khugepaged_wait);
174 
175 	return count;
176 }
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178 	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179 	       alloc_sleep_millisecs_store);
180 
181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182 				  struct kobj_attribute *attr,
183 				  char *buf)
184 {
185 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
186 }
187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188 				   struct kobj_attribute *attr,
189 				   const char *buf, size_t count)
190 {
191 	unsigned int pages;
192 	int err;
193 
194 	err = kstrtouint(buf, 10, &pages);
195 	if (err || !pages)
196 		return -EINVAL;
197 
198 	khugepaged_pages_to_scan = pages;
199 
200 	return count;
201 }
202 static struct kobj_attribute pages_to_scan_attr =
203 	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
204 	       pages_to_scan_store);
205 
206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207 				    struct kobj_attribute *attr,
208 				    char *buf)
209 {
210 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
211 }
212 static struct kobj_attribute pages_collapsed_attr =
213 	__ATTR_RO(pages_collapsed);
214 
215 static ssize_t full_scans_show(struct kobject *kobj,
216 			       struct kobj_attribute *attr,
217 			       char *buf)
218 {
219 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
220 }
221 static struct kobj_attribute full_scans_attr =
222 	__ATTR_RO(full_scans);
223 
224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225 				      struct kobj_attribute *attr, char *buf)
226 {
227 	return single_hugepage_flag_show(kobj, attr, buf,
228 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 }
230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231 				       struct kobj_attribute *attr,
232 				       const char *buf, size_t count)
233 {
234 	return single_hugepage_flag_store(kobj, attr, buf, count,
235 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
236 }
237 static struct kobj_attribute khugepaged_defrag_attr =
238 	__ATTR(defrag, 0644, khugepaged_defrag_show,
239 	       khugepaged_defrag_store);
240 
241 /*
242  * max_ptes_none controls if khugepaged should collapse hugepages over
243  * any unmapped ptes in turn potentially increasing the memory
244  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245  * reduce the available free memory in the system as it
246  * runs. Increasing max_ptes_none will instead potentially reduce the
247  * free memory in the system during the khugepaged scan.
248  */
249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250 					     struct kobj_attribute *attr,
251 					     char *buf)
252 {
253 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
254 }
255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256 					      struct kobj_attribute *attr,
257 					      const char *buf, size_t count)
258 {
259 	int err;
260 	unsigned long max_ptes_none;
261 
262 	err = kstrtoul(buf, 10, &max_ptes_none);
263 	if (err || max_ptes_none > HPAGE_PMD_NR-1)
264 		return -EINVAL;
265 
266 	khugepaged_max_ptes_none = max_ptes_none;
267 
268 	return count;
269 }
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271 	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272 	       khugepaged_max_ptes_none_store);
273 
274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275 					     struct kobj_attribute *attr,
276 					     char *buf)
277 {
278 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
279 }
280 
281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282 					      struct kobj_attribute *attr,
283 					      const char *buf, size_t count)
284 {
285 	int err;
286 	unsigned long max_ptes_swap;
287 
288 	err  = kstrtoul(buf, 10, &max_ptes_swap);
289 	if (err || max_ptes_swap > HPAGE_PMD_NR-1)
290 		return -EINVAL;
291 
292 	khugepaged_max_ptes_swap = max_ptes_swap;
293 
294 	return count;
295 }
296 
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298 	__ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299 	       khugepaged_max_ptes_swap_store);
300 
301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302 					       struct kobj_attribute *attr,
303 					       char *buf)
304 {
305 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
306 }
307 
308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309 					      struct kobj_attribute *attr,
310 					      const char *buf, size_t count)
311 {
312 	int err;
313 	unsigned long max_ptes_shared;
314 
315 	err  = kstrtoul(buf, 10, &max_ptes_shared);
316 	if (err || max_ptes_shared > HPAGE_PMD_NR-1)
317 		return -EINVAL;
318 
319 	khugepaged_max_ptes_shared = max_ptes_shared;
320 
321 	return count;
322 }
323 
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325 	__ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326 	       khugepaged_max_ptes_shared_store);
327 
328 static struct attribute *khugepaged_attr[] = {
329 	&khugepaged_defrag_attr.attr,
330 	&khugepaged_max_ptes_none_attr.attr,
331 	&khugepaged_max_ptes_swap_attr.attr,
332 	&khugepaged_max_ptes_shared_attr.attr,
333 	&pages_to_scan_attr.attr,
334 	&pages_collapsed_attr.attr,
335 	&full_scans_attr.attr,
336 	&scan_sleep_millisecs_attr.attr,
337 	&alloc_sleep_millisecs_attr.attr,
338 	NULL,
339 };
340 
341 struct attribute_group khugepaged_attr_group = {
342 	.attrs = khugepaged_attr,
343 	.name = "khugepaged",
344 };
345 #endif /* CONFIG_SYSFS */
346 
347 int hugepage_madvise(struct vm_area_struct *vma,
348 		     unsigned long *vm_flags, int advice)
349 {
350 	switch (advice) {
351 	case MADV_HUGEPAGE:
352 #ifdef CONFIG_S390
353 		/*
354 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355 		 * can't handle this properly after s390_enable_sie, so we simply
356 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
357 		 */
358 		if (mm_has_pgste(vma->vm_mm))
359 			return 0;
360 #endif
361 		*vm_flags &= ~VM_NOHUGEPAGE;
362 		*vm_flags |= VM_HUGEPAGE;
363 		/*
364 		 * If the vma become good for khugepaged to scan,
365 		 * register it here without waiting a page fault that
366 		 * may not happen any time soon.
367 		 */
368 		if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
369 				khugepaged_enter_vma_merge(vma, *vm_flags))
370 			return -ENOMEM;
371 		break;
372 	case MADV_NOHUGEPAGE:
373 		*vm_flags &= ~VM_HUGEPAGE;
374 		*vm_flags |= VM_NOHUGEPAGE;
375 		/*
376 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 		 * this vma even if we leave the mm registered in khugepaged if
378 		 * it got registered before VM_NOHUGEPAGE was set.
379 		 */
380 		break;
381 	}
382 
383 	return 0;
384 }
385 
386 int __init khugepaged_init(void)
387 {
388 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389 					  sizeof(struct mm_slot),
390 					  __alignof__(struct mm_slot), 0, NULL);
391 	if (!mm_slot_cache)
392 		return -ENOMEM;
393 
394 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
398 
399 	return 0;
400 }
401 
402 void __init khugepaged_destroy(void)
403 {
404 	kmem_cache_destroy(mm_slot_cache);
405 }
406 
407 static inline struct mm_slot *alloc_mm_slot(void)
408 {
409 	if (!mm_slot_cache)	/* initialization failed */
410 		return NULL;
411 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
412 }
413 
414 static inline void free_mm_slot(struct mm_slot *mm_slot)
415 {
416 	kmem_cache_free(mm_slot_cache, mm_slot);
417 }
418 
419 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
420 {
421 	struct mm_slot *mm_slot;
422 
423 	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
424 		if (mm == mm_slot->mm)
425 			return mm_slot;
426 
427 	return NULL;
428 }
429 
430 static void insert_to_mm_slots_hash(struct mm_struct *mm,
431 				    struct mm_slot *mm_slot)
432 {
433 	mm_slot->mm = mm;
434 	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
435 }
436 
437 static inline int khugepaged_test_exit(struct mm_struct *mm)
438 {
439 	return atomic_read(&mm->mm_users) == 0;
440 }
441 
442 static bool hugepage_vma_check(struct vm_area_struct *vma,
443 			       unsigned long vm_flags)
444 {
445 	if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
446 	    (vm_flags & VM_NOHUGEPAGE) ||
447 	    test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
448 		return false;
449 
450 	if (shmem_file(vma->vm_file) ||
451 	    (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
452 	     vma->vm_file &&
453 	     (vm_flags & VM_DENYWRITE))) {
454 		return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
455 				HPAGE_PMD_NR);
456 	}
457 	if (!vma->anon_vma || vma->vm_ops)
458 		return false;
459 	if (vma_is_temporary_stack(vma))
460 		return false;
461 	return !(vm_flags & VM_NO_KHUGEPAGED);
462 }
463 
464 int __khugepaged_enter(struct mm_struct *mm)
465 {
466 	struct mm_slot *mm_slot;
467 	int wakeup;
468 
469 	mm_slot = alloc_mm_slot();
470 	if (!mm_slot)
471 		return -ENOMEM;
472 
473 	/* __khugepaged_exit() must not run from under us */
474 	VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
475 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
476 		free_mm_slot(mm_slot);
477 		return 0;
478 	}
479 
480 	spin_lock(&khugepaged_mm_lock);
481 	insert_to_mm_slots_hash(mm, mm_slot);
482 	/*
483 	 * Insert just behind the scanning cursor, to let the area settle
484 	 * down a little.
485 	 */
486 	wakeup = list_empty(&khugepaged_scan.mm_head);
487 	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
488 	spin_unlock(&khugepaged_mm_lock);
489 
490 	mmgrab(mm);
491 	if (wakeup)
492 		wake_up_interruptible(&khugepaged_wait);
493 
494 	return 0;
495 }
496 
497 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
498 			       unsigned long vm_flags)
499 {
500 	unsigned long hstart, hend;
501 
502 	/*
503 	 * khugepaged only supports read-only files for non-shmem files.
504 	 * khugepaged does not yet work on special mappings. And
505 	 * file-private shmem THP is not supported.
506 	 */
507 	if (!hugepage_vma_check(vma, vm_flags))
508 		return 0;
509 
510 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
511 	hend = vma->vm_end & HPAGE_PMD_MASK;
512 	if (hstart < hend)
513 		return khugepaged_enter(vma, vm_flags);
514 	return 0;
515 }
516 
517 void __khugepaged_exit(struct mm_struct *mm)
518 {
519 	struct mm_slot *mm_slot;
520 	int free = 0;
521 
522 	spin_lock(&khugepaged_mm_lock);
523 	mm_slot = get_mm_slot(mm);
524 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
525 		hash_del(&mm_slot->hash);
526 		list_del(&mm_slot->mm_node);
527 		free = 1;
528 	}
529 	spin_unlock(&khugepaged_mm_lock);
530 
531 	if (free) {
532 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
533 		free_mm_slot(mm_slot);
534 		mmdrop(mm);
535 	} else if (mm_slot) {
536 		/*
537 		 * This is required to serialize against
538 		 * khugepaged_test_exit() (which is guaranteed to run
539 		 * under mmap sem read mode). Stop here (after we
540 		 * return all pagetables will be destroyed) until
541 		 * khugepaged has finished working on the pagetables
542 		 * under the mmap_lock.
543 		 */
544 		mmap_write_lock(mm);
545 		mmap_write_unlock(mm);
546 	}
547 }
548 
549 static void release_pte_page(struct page *page)
550 {
551 	mod_node_page_state(page_pgdat(page),
552 			NR_ISOLATED_ANON + page_is_file_lru(page),
553 			-compound_nr(page));
554 	unlock_page(page);
555 	putback_lru_page(page);
556 }
557 
558 static void release_pte_pages(pte_t *pte, pte_t *_pte,
559 		struct list_head *compound_pagelist)
560 {
561 	struct page *page, *tmp;
562 
563 	while (--_pte >= pte) {
564 		pte_t pteval = *_pte;
565 
566 		page = pte_page(pteval);
567 		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
568 				!PageCompound(page))
569 			release_pte_page(page);
570 	}
571 
572 	list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
573 		list_del(&page->lru);
574 		release_pte_page(page);
575 	}
576 }
577 
578 static bool is_refcount_suitable(struct page *page)
579 {
580 	int expected_refcount;
581 
582 	expected_refcount = total_mapcount(page);
583 	if (PageSwapCache(page))
584 		expected_refcount += compound_nr(page);
585 
586 	return page_count(page) == expected_refcount;
587 }
588 
589 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
590 					unsigned long address,
591 					pte_t *pte,
592 					struct list_head *compound_pagelist)
593 {
594 	struct page *page = NULL;
595 	pte_t *_pte;
596 	int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
597 	bool writable = false;
598 
599 	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
600 	     _pte++, address += PAGE_SIZE) {
601 		pte_t pteval = *_pte;
602 		if (pte_none(pteval) || (pte_present(pteval) &&
603 				is_zero_pfn(pte_pfn(pteval)))) {
604 			if (!userfaultfd_armed(vma) &&
605 			    ++none_or_zero <= khugepaged_max_ptes_none) {
606 				continue;
607 			} else {
608 				result = SCAN_EXCEED_NONE_PTE;
609 				goto out;
610 			}
611 		}
612 		if (!pte_present(pteval)) {
613 			result = SCAN_PTE_NON_PRESENT;
614 			goto out;
615 		}
616 		page = vm_normal_page(vma, address, pteval);
617 		if (unlikely(!page)) {
618 			result = SCAN_PAGE_NULL;
619 			goto out;
620 		}
621 
622 		VM_BUG_ON_PAGE(!PageAnon(page), page);
623 
624 		if (page_mapcount(page) > 1 &&
625 				++shared > khugepaged_max_ptes_shared) {
626 			result = SCAN_EXCEED_SHARED_PTE;
627 			goto out;
628 		}
629 
630 		if (PageCompound(page)) {
631 			struct page *p;
632 			page = compound_head(page);
633 
634 			/*
635 			 * Check if we have dealt with the compound page
636 			 * already
637 			 */
638 			list_for_each_entry(p, compound_pagelist, lru) {
639 				if (page == p)
640 					goto next;
641 			}
642 		}
643 
644 		/*
645 		 * We can do it before isolate_lru_page because the
646 		 * page can't be freed from under us. NOTE: PG_lock
647 		 * is needed to serialize against split_huge_page
648 		 * when invoked from the VM.
649 		 */
650 		if (!trylock_page(page)) {
651 			result = SCAN_PAGE_LOCK;
652 			goto out;
653 		}
654 
655 		/*
656 		 * Check if the page has any GUP (or other external) pins.
657 		 *
658 		 * The page table that maps the page has been already unlinked
659 		 * from the page table tree and this process cannot get
660 		 * an additinal pin on the page.
661 		 *
662 		 * New pins can come later if the page is shared across fork,
663 		 * but not from this process. The other process cannot write to
664 		 * the page, only trigger CoW.
665 		 */
666 		if (!is_refcount_suitable(page)) {
667 			unlock_page(page);
668 			result = SCAN_PAGE_COUNT;
669 			goto out;
670 		}
671 		if (!pte_write(pteval) && PageSwapCache(page) &&
672 				!reuse_swap_page(page, NULL)) {
673 			/*
674 			 * Page is in the swap cache and cannot be re-used.
675 			 * It cannot be collapsed into a THP.
676 			 */
677 			unlock_page(page);
678 			result = SCAN_SWAP_CACHE_PAGE;
679 			goto out;
680 		}
681 
682 		/*
683 		 * Isolate the page to avoid collapsing an hugepage
684 		 * currently in use by the VM.
685 		 */
686 		if (isolate_lru_page(page)) {
687 			unlock_page(page);
688 			result = SCAN_DEL_PAGE_LRU;
689 			goto out;
690 		}
691 		mod_node_page_state(page_pgdat(page),
692 				NR_ISOLATED_ANON + page_is_file_lru(page),
693 				compound_nr(page));
694 		VM_BUG_ON_PAGE(!PageLocked(page), page);
695 		VM_BUG_ON_PAGE(PageLRU(page), page);
696 
697 		if (PageCompound(page))
698 			list_add_tail(&page->lru, compound_pagelist);
699 next:
700 		/* There should be enough young pte to collapse the page */
701 		if (pte_young(pteval) ||
702 		    page_is_young(page) || PageReferenced(page) ||
703 		    mmu_notifier_test_young(vma->vm_mm, address))
704 			referenced++;
705 
706 		if (pte_write(pteval))
707 			writable = true;
708 	}
709 	if (likely(writable)) {
710 		if (likely(referenced)) {
711 			result = SCAN_SUCCEED;
712 			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
713 							    referenced, writable, result);
714 			return 1;
715 		}
716 	} else {
717 		result = SCAN_PAGE_RO;
718 	}
719 
720 out:
721 	release_pte_pages(pte, _pte, compound_pagelist);
722 	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
723 					    referenced, writable, result);
724 	return 0;
725 }
726 
727 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
728 				      struct vm_area_struct *vma,
729 				      unsigned long address,
730 				      spinlock_t *ptl,
731 				      struct list_head *compound_pagelist)
732 {
733 	struct page *src_page, *tmp;
734 	pte_t *_pte;
735 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
736 				_pte++, page++, address += PAGE_SIZE) {
737 		pte_t pteval = *_pte;
738 
739 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
740 			clear_user_highpage(page, address);
741 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
742 			if (is_zero_pfn(pte_pfn(pteval))) {
743 				/*
744 				 * ptl mostly unnecessary.
745 				 */
746 				spin_lock(ptl);
747 				/*
748 				 * paravirt calls inside pte_clear here are
749 				 * superfluous.
750 				 */
751 				pte_clear(vma->vm_mm, address, _pte);
752 				spin_unlock(ptl);
753 			}
754 		} else {
755 			src_page = pte_page(pteval);
756 			copy_user_highpage(page, src_page, address, vma);
757 			if (!PageCompound(src_page))
758 				release_pte_page(src_page);
759 			/*
760 			 * ptl mostly unnecessary, but preempt has to
761 			 * be disabled to update the per-cpu stats
762 			 * inside page_remove_rmap().
763 			 */
764 			spin_lock(ptl);
765 			/*
766 			 * paravirt calls inside pte_clear here are
767 			 * superfluous.
768 			 */
769 			pte_clear(vma->vm_mm, address, _pte);
770 			page_remove_rmap(src_page, false);
771 			spin_unlock(ptl);
772 			free_page_and_swap_cache(src_page);
773 		}
774 	}
775 
776 	list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
777 		list_del(&src_page->lru);
778 		release_pte_page(src_page);
779 	}
780 }
781 
782 static void khugepaged_alloc_sleep(void)
783 {
784 	DEFINE_WAIT(wait);
785 
786 	add_wait_queue(&khugepaged_wait, &wait);
787 	freezable_schedule_timeout_interruptible(
788 		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
789 	remove_wait_queue(&khugepaged_wait, &wait);
790 }
791 
792 static int khugepaged_node_load[MAX_NUMNODES];
793 
794 static bool khugepaged_scan_abort(int nid)
795 {
796 	int i;
797 
798 	/*
799 	 * If node_reclaim_mode is disabled, then no extra effort is made to
800 	 * allocate memory locally.
801 	 */
802 	if (!node_reclaim_mode)
803 		return false;
804 
805 	/* If there is a count for this node already, it must be acceptable */
806 	if (khugepaged_node_load[nid])
807 		return false;
808 
809 	for (i = 0; i < MAX_NUMNODES; i++) {
810 		if (!khugepaged_node_load[i])
811 			continue;
812 		if (node_distance(nid, i) > node_reclaim_distance)
813 			return true;
814 	}
815 	return false;
816 }
817 
818 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
819 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
820 {
821 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
822 }
823 
824 #ifdef CONFIG_NUMA
825 static int khugepaged_find_target_node(void)
826 {
827 	static int last_khugepaged_target_node = NUMA_NO_NODE;
828 	int nid, target_node = 0, max_value = 0;
829 
830 	/* find first node with max normal pages hit */
831 	for (nid = 0; nid < MAX_NUMNODES; nid++)
832 		if (khugepaged_node_load[nid] > max_value) {
833 			max_value = khugepaged_node_load[nid];
834 			target_node = nid;
835 		}
836 
837 	/* do some balance if several nodes have the same hit record */
838 	if (target_node <= last_khugepaged_target_node)
839 		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
840 				nid++)
841 			if (max_value == khugepaged_node_load[nid]) {
842 				target_node = nid;
843 				break;
844 			}
845 
846 	last_khugepaged_target_node = target_node;
847 	return target_node;
848 }
849 
850 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
851 {
852 	if (IS_ERR(*hpage)) {
853 		if (!*wait)
854 			return false;
855 
856 		*wait = false;
857 		*hpage = NULL;
858 		khugepaged_alloc_sleep();
859 	} else if (*hpage) {
860 		put_page(*hpage);
861 		*hpage = NULL;
862 	}
863 
864 	return true;
865 }
866 
867 static struct page *
868 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
869 {
870 	VM_BUG_ON_PAGE(*hpage, *hpage);
871 
872 	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
873 	if (unlikely(!*hpage)) {
874 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
875 		*hpage = ERR_PTR(-ENOMEM);
876 		return NULL;
877 	}
878 
879 	prep_transhuge_page(*hpage);
880 	count_vm_event(THP_COLLAPSE_ALLOC);
881 	return *hpage;
882 }
883 #else
884 static int khugepaged_find_target_node(void)
885 {
886 	return 0;
887 }
888 
889 static inline struct page *alloc_khugepaged_hugepage(void)
890 {
891 	struct page *page;
892 
893 	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
894 			   HPAGE_PMD_ORDER);
895 	if (page)
896 		prep_transhuge_page(page);
897 	return page;
898 }
899 
900 static struct page *khugepaged_alloc_hugepage(bool *wait)
901 {
902 	struct page *hpage;
903 
904 	do {
905 		hpage = alloc_khugepaged_hugepage();
906 		if (!hpage) {
907 			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
908 			if (!*wait)
909 				return NULL;
910 
911 			*wait = false;
912 			khugepaged_alloc_sleep();
913 		} else
914 			count_vm_event(THP_COLLAPSE_ALLOC);
915 	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
916 
917 	return hpage;
918 }
919 
920 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
921 {
922 	/*
923 	 * If the hpage allocated earlier was briefly exposed in page cache
924 	 * before collapse_file() failed, it is possible that racing lookups
925 	 * have not yet completed, and would then be unpleasantly surprised by
926 	 * finding the hpage reused for the same mapping at a different offset.
927 	 * Just release the previous allocation if there is any danger of that.
928 	 */
929 	if (*hpage && page_count(*hpage) > 1) {
930 		put_page(*hpage);
931 		*hpage = NULL;
932 	}
933 
934 	if (!*hpage)
935 		*hpage = khugepaged_alloc_hugepage(wait);
936 
937 	if (unlikely(!*hpage))
938 		return false;
939 
940 	return true;
941 }
942 
943 static struct page *
944 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
945 {
946 	VM_BUG_ON(!*hpage);
947 
948 	return  *hpage;
949 }
950 #endif
951 
952 /*
953  * If mmap_lock temporarily dropped, revalidate vma
954  * before taking mmap_lock.
955  * Return 0 if succeeds, otherwise return none-zero
956  * value (scan code).
957  */
958 
959 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
960 		struct vm_area_struct **vmap)
961 {
962 	struct vm_area_struct *vma;
963 	unsigned long hstart, hend;
964 
965 	if (unlikely(khugepaged_test_exit(mm)))
966 		return SCAN_ANY_PROCESS;
967 
968 	*vmap = vma = find_vma(mm, address);
969 	if (!vma)
970 		return SCAN_VMA_NULL;
971 
972 	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
973 	hend = vma->vm_end & HPAGE_PMD_MASK;
974 	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
975 		return SCAN_ADDRESS_RANGE;
976 	if (!hugepage_vma_check(vma, vma->vm_flags))
977 		return SCAN_VMA_CHECK;
978 	/* Anon VMA expected */
979 	if (!vma->anon_vma || vma->vm_ops)
980 		return SCAN_VMA_CHECK;
981 	return 0;
982 }
983 
984 /*
985  * Bring missing pages in from swap, to complete THP collapse.
986  * Only done if khugepaged_scan_pmd believes it is worthwhile.
987  *
988  * Called and returns without pte mapped or spinlocks held,
989  * but with mmap_lock held to protect against vma changes.
990  */
991 
992 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
993 					struct vm_area_struct *vma,
994 					unsigned long address, pmd_t *pmd,
995 					int referenced)
996 {
997 	int swapped_in = 0;
998 	vm_fault_t ret = 0;
999 	struct vm_fault vmf = {
1000 		.vma = vma,
1001 		.address = address,
1002 		.flags = FAULT_FLAG_ALLOW_RETRY,
1003 		.pmd = pmd,
1004 		.pgoff = linear_page_index(vma, address),
1005 	};
1006 
1007 	vmf.pte = pte_offset_map(pmd, address);
1008 	for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
1009 			vmf.pte++, vmf.address += PAGE_SIZE) {
1010 		vmf.orig_pte = *vmf.pte;
1011 		if (!is_swap_pte(vmf.orig_pte))
1012 			continue;
1013 		swapped_in++;
1014 		ret = do_swap_page(&vmf);
1015 
1016 		/* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1017 		if (ret & VM_FAULT_RETRY) {
1018 			mmap_read_lock(mm);
1019 			if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
1020 				/* vma is no longer available, don't continue to swapin */
1021 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1022 				return false;
1023 			}
1024 			/* check if the pmd is still valid */
1025 			if (mm_find_pmd(mm, address) != pmd) {
1026 				trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1027 				return false;
1028 			}
1029 		}
1030 		if (ret & VM_FAULT_ERROR) {
1031 			trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1032 			return false;
1033 		}
1034 		/* pte is unmapped now, we need to map it */
1035 		vmf.pte = pte_offset_map(pmd, vmf.address);
1036 	}
1037 	vmf.pte--;
1038 	pte_unmap(vmf.pte);
1039 
1040 	/* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1041 	if (swapped_in)
1042 		lru_add_drain();
1043 
1044 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1045 	return true;
1046 }
1047 
1048 static void collapse_huge_page(struct mm_struct *mm,
1049 				   unsigned long address,
1050 				   struct page **hpage,
1051 				   int node, int referenced, int unmapped)
1052 {
1053 	LIST_HEAD(compound_pagelist);
1054 	pmd_t *pmd, _pmd;
1055 	pte_t *pte;
1056 	pgtable_t pgtable;
1057 	struct page *new_page;
1058 	spinlock_t *pmd_ptl, *pte_ptl;
1059 	int isolated = 0, result = 0;
1060 	struct vm_area_struct *vma;
1061 	struct mmu_notifier_range range;
1062 	gfp_t gfp;
1063 
1064 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1065 
1066 	/* Only allocate from the target node */
1067 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1068 
1069 	/*
1070 	 * Before allocating the hugepage, release the mmap_lock read lock.
1071 	 * The allocation can take potentially a long time if it involves
1072 	 * sync compaction, and we do not need to hold the mmap_lock during
1073 	 * that. We will recheck the vma after taking it again in write mode.
1074 	 */
1075 	mmap_read_unlock(mm);
1076 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1077 	if (!new_page) {
1078 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1079 		goto out_nolock;
1080 	}
1081 
1082 	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1083 		result = SCAN_CGROUP_CHARGE_FAIL;
1084 		goto out_nolock;
1085 	}
1086 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1087 
1088 	mmap_read_lock(mm);
1089 	result = hugepage_vma_revalidate(mm, address, &vma);
1090 	if (result) {
1091 		mmap_read_unlock(mm);
1092 		goto out_nolock;
1093 	}
1094 
1095 	pmd = mm_find_pmd(mm, address);
1096 	if (!pmd) {
1097 		result = SCAN_PMD_NULL;
1098 		mmap_read_unlock(mm);
1099 		goto out_nolock;
1100 	}
1101 
1102 	/*
1103 	 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1104 	 * If it fails, we release mmap_lock and jump out_nolock.
1105 	 * Continuing to collapse causes inconsistency.
1106 	 */
1107 	if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1108 						     pmd, referenced)) {
1109 		mmap_read_unlock(mm);
1110 		goto out_nolock;
1111 	}
1112 
1113 	mmap_read_unlock(mm);
1114 	/*
1115 	 * Prevent all access to pagetables with the exception of
1116 	 * gup_fast later handled by the ptep_clear_flush and the VM
1117 	 * handled by the anon_vma lock + PG_lock.
1118 	 */
1119 	mmap_write_lock(mm);
1120 	result = hugepage_vma_revalidate(mm, address, &vma);
1121 	if (result)
1122 		goto out;
1123 	/* check if the pmd is still valid */
1124 	if (mm_find_pmd(mm, address) != pmd)
1125 		goto out;
1126 
1127 	anon_vma_lock_write(vma->anon_vma);
1128 
1129 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1130 				address, address + HPAGE_PMD_SIZE);
1131 	mmu_notifier_invalidate_range_start(&range);
1132 
1133 	pte = pte_offset_map(pmd, address);
1134 	pte_ptl = pte_lockptr(mm, pmd);
1135 
1136 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1137 	/*
1138 	 * After this gup_fast can't run anymore. This also removes
1139 	 * any huge TLB entry from the CPU so we won't allow
1140 	 * huge and small TLB entries for the same virtual address
1141 	 * to avoid the risk of CPU bugs in that area.
1142 	 */
1143 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1144 	spin_unlock(pmd_ptl);
1145 	mmu_notifier_invalidate_range_end(&range);
1146 
1147 	spin_lock(pte_ptl);
1148 	isolated = __collapse_huge_page_isolate(vma, address, pte,
1149 			&compound_pagelist);
1150 	spin_unlock(pte_ptl);
1151 
1152 	if (unlikely(!isolated)) {
1153 		pte_unmap(pte);
1154 		spin_lock(pmd_ptl);
1155 		BUG_ON(!pmd_none(*pmd));
1156 		/*
1157 		 * We can only use set_pmd_at when establishing
1158 		 * hugepmds and never for establishing regular pmds that
1159 		 * points to regular pagetables. Use pmd_populate for that
1160 		 */
1161 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1162 		spin_unlock(pmd_ptl);
1163 		anon_vma_unlock_write(vma->anon_vma);
1164 		result = SCAN_FAIL;
1165 		goto out;
1166 	}
1167 
1168 	/*
1169 	 * All pages are isolated and locked so anon_vma rmap
1170 	 * can't run anymore.
1171 	 */
1172 	anon_vma_unlock_write(vma->anon_vma);
1173 
1174 	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1175 			&compound_pagelist);
1176 	pte_unmap(pte);
1177 	__SetPageUptodate(new_page);
1178 	pgtable = pmd_pgtable(_pmd);
1179 
1180 	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1181 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1182 
1183 	/*
1184 	 * spin_lock() below is not the equivalent of smp_wmb(), so
1185 	 * this is needed to avoid the copy_huge_page writes to become
1186 	 * visible after the set_pmd_at() write.
1187 	 */
1188 	smp_wmb();
1189 
1190 	spin_lock(pmd_ptl);
1191 	BUG_ON(!pmd_none(*pmd));
1192 	page_add_new_anon_rmap(new_page, vma, address, true);
1193 	lru_cache_add_inactive_or_unevictable(new_page, vma);
1194 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1195 	set_pmd_at(mm, address, pmd, _pmd);
1196 	update_mmu_cache_pmd(vma, address, pmd);
1197 	spin_unlock(pmd_ptl);
1198 
1199 	*hpage = NULL;
1200 
1201 	khugepaged_pages_collapsed++;
1202 	result = SCAN_SUCCEED;
1203 out_up_write:
1204 	mmap_write_unlock(mm);
1205 out_nolock:
1206 	if (!IS_ERR_OR_NULL(*hpage))
1207 		mem_cgroup_uncharge(*hpage);
1208 	trace_mm_collapse_huge_page(mm, isolated, result);
1209 	return;
1210 out:
1211 	goto out_up_write;
1212 }
1213 
1214 static int khugepaged_scan_pmd(struct mm_struct *mm,
1215 			       struct vm_area_struct *vma,
1216 			       unsigned long address,
1217 			       struct page **hpage)
1218 {
1219 	pmd_t *pmd;
1220 	pte_t *pte, *_pte;
1221 	int ret = 0, result = 0, referenced = 0;
1222 	int none_or_zero = 0, shared = 0;
1223 	struct page *page = NULL;
1224 	unsigned long _address;
1225 	spinlock_t *ptl;
1226 	int node = NUMA_NO_NODE, unmapped = 0;
1227 	bool writable = false;
1228 
1229 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1230 
1231 	pmd = mm_find_pmd(mm, address);
1232 	if (!pmd) {
1233 		result = SCAN_PMD_NULL;
1234 		goto out;
1235 	}
1236 
1237 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1238 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1239 	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1240 	     _pte++, _address += PAGE_SIZE) {
1241 		pte_t pteval = *_pte;
1242 		if (is_swap_pte(pteval)) {
1243 			if (++unmapped <= khugepaged_max_ptes_swap) {
1244 				/*
1245 				 * Always be strict with uffd-wp
1246 				 * enabled swap entries.  Please see
1247 				 * comment below for pte_uffd_wp().
1248 				 */
1249 				if (pte_swp_uffd_wp(pteval)) {
1250 					result = SCAN_PTE_UFFD_WP;
1251 					goto out_unmap;
1252 				}
1253 				continue;
1254 			} else {
1255 				result = SCAN_EXCEED_SWAP_PTE;
1256 				goto out_unmap;
1257 			}
1258 		}
1259 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1260 			if (!userfaultfd_armed(vma) &&
1261 			    ++none_or_zero <= khugepaged_max_ptes_none) {
1262 				continue;
1263 			} else {
1264 				result = SCAN_EXCEED_NONE_PTE;
1265 				goto out_unmap;
1266 			}
1267 		}
1268 		if (!pte_present(pteval)) {
1269 			result = SCAN_PTE_NON_PRESENT;
1270 			goto out_unmap;
1271 		}
1272 		if (pte_uffd_wp(pteval)) {
1273 			/*
1274 			 * Don't collapse the page if any of the small
1275 			 * PTEs are armed with uffd write protection.
1276 			 * Here we can also mark the new huge pmd as
1277 			 * write protected if any of the small ones is
1278 			 * marked but that could bring unknown
1279 			 * userfault messages that falls outside of
1280 			 * the registered range.  So, just be simple.
1281 			 */
1282 			result = SCAN_PTE_UFFD_WP;
1283 			goto out_unmap;
1284 		}
1285 		if (pte_write(pteval))
1286 			writable = true;
1287 
1288 		page = vm_normal_page(vma, _address, pteval);
1289 		if (unlikely(!page)) {
1290 			result = SCAN_PAGE_NULL;
1291 			goto out_unmap;
1292 		}
1293 
1294 		if (page_mapcount(page) > 1 &&
1295 				++shared > khugepaged_max_ptes_shared) {
1296 			result = SCAN_EXCEED_SHARED_PTE;
1297 			goto out_unmap;
1298 		}
1299 
1300 		page = compound_head(page);
1301 
1302 		/*
1303 		 * Record which node the original page is from and save this
1304 		 * information to khugepaged_node_load[].
1305 		 * Khupaged will allocate hugepage from the node has the max
1306 		 * hit record.
1307 		 */
1308 		node = page_to_nid(page);
1309 		if (khugepaged_scan_abort(node)) {
1310 			result = SCAN_SCAN_ABORT;
1311 			goto out_unmap;
1312 		}
1313 		khugepaged_node_load[node]++;
1314 		if (!PageLRU(page)) {
1315 			result = SCAN_PAGE_LRU;
1316 			goto out_unmap;
1317 		}
1318 		if (PageLocked(page)) {
1319 			result = SCAN_PAGE_LOCK;
1320 			goto out_unmap;
1321 		}
1322 		if (!PageAnon(page)) {
1323 			result = SCAN_PAGE_ANON;
1324 			goto out_unmap;
1325 		}
1326 
1327 		/*
1328 		 * Check if the page has any GUP (or other external) pins.
1329 		 *
1330 		 * Here the check is racy it may see totmal_mapcount > refcount
1331 		 * in some cases.
1332 		 * For example, one process with one forked child process.
1333 		 * The parent has the PMD split due to MADV_DONTNEED, then
1334 		 * the child is trying unmap the whole PMD, but khugepaged
1335 		 * may be scanning the parent between the child has
1336 		 * PageDoubleMap flag cleared and dec the mapcount.  So
1337 		 * khugepaged may see total_mapcount > refcount.
1338 		 *
1339 		 * But such case is ephemeral we could always retry collapse
1340 		 * later.  However it may report false positive if the page
1341 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1342 		 * will be done again later the risk seems low.
1343 		 */
1344 		if (!is_refcount_suitable(page)) {
1345 			result = SCAN_PAGE_COUNT;
1346 			goto out_unmap;
1347 		}
1348 		if (pte_young(pteval) ||
1349 		    page_is_young(page) || PageReferenced(page) ||
1350 		    mmu_notifier_test_young(vma->vm_mm, address))
1351 			referenced++;
1352 	}
1353 	if (!writable) {
1354 		result = SCAN_PAGE_RO;
1355 	} else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1356 		result = SCAN_LACK_REFERENCED_PAGE;
1357 	} else {
1358 		result = SCAN_SUCCEED;
1359 		ret = 1;
1360 	}
1361 out_unmap:
1362 	pte_unmap_unlock(pte, ptl);
1363 	if (ret) {
1364 		node = khugepaged_find_target_node();
1365 		/* collapse_huge_page will return with the mmap_lock released */
1366 		collapse_huge_page(mm, address, hpage, node,
1367 				referenced, unmapped);
1368 	}
1369 out:
1370 	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1371 				     none_or_zero, result, unmapped);
1372 	return ret;
1373 }
1374 
1375 static void collect_mm_slot(struct mm_slot *mm_slot)
1376 {
1377 	struct mm_struct *mm = mm_slot->mm;
1378 
1379 	lockdep_assert_held(&khugepaged_mm_lock);
1380 
1381 	if (khugepaged_test_exit(mm)) {
1382 		/* free mm_slot */
1383 		hash_del(&mm_slot->hash);
1384 		list_del(&mm_slot->mm_node);
1385 
1386 		/*
1387 		 * Not strictly needed because the mm exited already.
1388 		 *
1389 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1390 		 */
1391 
1392 		/* khugepaged_mm_lock actually not necessary for the below */
1393 		free_mm_slot(mm_slot);
1394 		mmdrop(mm);
1395 	}
1396 }
1397 
1398 #ifdef CONFIG_SHMEM
1399 /*
1400  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1401  * khugepaged should try to collapse the page table.
1402  */
1403 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1404 					 unsigned long addr)
1405 {
1406 	struct mm_slot *mm_slot;
1407 
1408 	VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1409 
1410 	spin_lock(&khugepaged_mm_lock);
1411 	mm_slot = get_mm_slot(mm);
1412 	if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1413 		mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1414 	spin_unlock(&khugepaged_mm_lock);
1415 	return 0;
1416 }
1417 
1418 /**
1419  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1420  * address haddr.
1421  *
1422  * @mm: process address space where collapse happens
1423  * @addr: THP collapse address
1424  *
1425  * This function checks whether all the PTEs in the PMD are pointing to the
1426  * right THP. If so, retract the page table so the THP can refault in with
1427  * as pmd-mapped.
1428  */
1429 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1430 {
1431 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1432 	struct vm_area_struct *vma = find_vma(mm, haddr);
1433 	struct page *hpage;
1434 	pte_t *start_pte, *pte;
1435 	pmd_t *pmd, _pmd;
1436 	spinlock_t *ptl;
1437 	int count = 0;
1438 	int i;
1439 
1440 	if (!vma || !vma->vm_file ||
1441 	    vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1442 		return;
1443 
1444 	/*
1445 	 * This vm_flags may not have VM_HUGEPAGE if the page was not
1446 	 * collapsed by this mm. But we can still collapse if the page is
1447 	 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1448 	 * will not fail the vma for missing VM_HUGEPAGE
1449 	 */
1450 	if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1451 		return;
1452 
1453 	hpage = find_lock_page(vma->vm_file->f_mapping,
1454 			       linear_page_index(vma, haddr));
1455 	if (!hpage)
1456 		return;
1457 
1458 	if (!PageHead(hpage))
1459 		goto drop_hpage;
1460 
1461 	pmd = mm_find_pmd(mm, haddr);
1462 	if (!pmd)
1463 		goto drop_hpage;
1464 
1465 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1466 
1467 	/* step 1: check all mapped PTEs are to the right huge page */
1468 	for (i = 0, addr = haddr, pte = start_pte;
1469 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1470 		struct page *page;
1471 
1472 		/* empty pte, skip */
1473 		if (pte_none(*pte))
1474 			continue;
1475 
1476 		/* page swapped out, abort */
1477 		if (!pte_present(*pte))
1478 			goto abort;
1479 
1480 		page = vm_normal_page(vma, addr, *pte);
1481 
1482 		/*
1483 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1484 		 * page table, but the new page will not be a subpage of hpage.
1485 		 */
1486 		if (hpage + i != page)
1487 			goto abort;
1488 		count++;
1489 	}
1490 
1491 	/* step 2: adjust rmap */
1492 	for (i = 0, addr = haddr, pte = start_pte;
1493 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1494 		struct page *page;
1495 
1496 		if (pte_none(*pte))
1497 			continue;
1498 		page = vm_normal_page(vma, addr, *pte);
1499 		page_remove_rmap(page, false);
1500 	}
1501 
1502 	pte_unmap_unlock(start_pte, ptl);
1503 
1504 	/* step 3: set proper refcount and mm_counters. */
1505 	if (count) {
1506 		page_ref_sub(hpage, count);
1507 		add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1508 	}
1509 
1510 	/* step 4: collapse pmd */
1511 	ptl = pmd_lock(vma->vm_mm, pmd);
1512 	_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1513 	spin_unlock(ptl);
1514 	mm_dec_nr_ptes(mm);
1515 	pte_free(mm, pmd_pgtable(_pmd));
1516 
1517 drop_hpage:
1518 	unlock_page(hpage);
1519 	put_page(hpage);
1520 	return;
1521 
1522 abort:
1523 	pte_unmap_unlock(start_pte, ptl);
1524 	goto drop_hpage;
1525 }
1526 
1527 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1528 {
1529 	struct mm_struct *mm = mm_slot->mm;
1530 	int i;
1531 
1532 	if (likely(mm_slot->nr_pte_mapped_thp == 0))
1533 		return 0;
1534 
1535 	if (!mmap_write_trylock(mm))
1536 		return -EBUSY;
1537 
1538 	if (unlikely(khugepaged_test_exit(mm)))
1539 		goto out;
1540 
1541 	for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1542 		collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1543 
1544 out:
1545 	mm_slot->nr_pte_mapped_thp = 0;
1546 	mmap_write_unlock(mm);
1547 	return 0;
1548 }
1549 
1550 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1551 {
1552 	struct vm_area_struct *vma;
1553 	struct mm_struct *mm;
1554 	unsigned long addr;
1555 	pmd_t *pmd, _pmd;
1556 
1557 	i_mmap_lock_write(mapping);
1558 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1559 		/*
1560 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1561 		 * got written to. These VMAs are likely not worth investing
1562 		 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1563 		 * later.
1564 		 *
1565 		 * Not that vma->anon_vma check is racy: it can be set up after
1566 		 * the check but before we took mmap_lock by the fault path.
1567 		 * But page lock would prevent establishing any new ptes of the
1568 		 * page, so we are safe.
1569 		 *
1570 		 * An alternative would be drop the check, but check that page
1571 		 * table is clear before calling pmdp_collapse_flush() under
1572 		 * ptl. It has higher chance to recover THP for the VMA, but
1573 		 * has higher cost too.
1574 		 */
1575 		if (vma->anon_vma)
1576 			continue;
1577 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1578 		if (addr & ~HPAGE_PMD_MASK)
1579 			continue;
1580 		if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1581 			continue;
1582 		mm = vma->vm_mm;
1583 		pmd = mm_find_pmd(mm, addr);
1584 		if (!pmd)
1585 			continue;
1586 		/*
1587 		 * We need exclusive mmap_lock to retract page table.
1588 		 *
1589 		 * We use trylock due to lock inversion: we need to acquire
1590 		 * mmap_lock while holding page lock. Fault path does it in
1591 		 * reverse order. Trylock is a way to avoid deadlock.
1592 		 */
1593 		if (mmap_write_trylock(mm)) {
1594 			if (!khugepaged_test_exit(mm)) {
1595 				spinlock_t *ptl = pmd_lock(mm, pmd);
1596 				/* assume page table is clear */
1597 				_pmd = pmdp_collapse_flush(vma, addr, pmd);
1598 				spin_unlock(ptl);
1599 				mm_dec_nr_ptes(mm);
1600 				pte_free(mm, pmd_pgtable(_pmd));
1601 			}
1602 			mmap_write_unlock(mm);
1603 		} else {
1604 			/* Try again later */
1605 			khugepaged_add_pte_mapped_thp(mm, addr);
1606 		}
1607 	}
1608 	i_mmap_unlock_write(mapping);
1609 }
1610 
1611 /**
1612  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1613  *
1614  * @mm: process address space where collapse happens
1615  * @file: file that collapse on
1616  * @start: collapse start address
1617  * @hpage: new allocated huge page for collapse
1618  * @node: appointed node the new huge page allocate from
1619  *
1620  * Basic scheme is simple, details are more complex:
1621  *  - allocate and lock a new huge page;
1622  *  - scan page cache replacing old pages with the new one
1623  *    + swap/gup in pages if necessary;
1624  *    + fill in gaps;
1625  *    + keep old pages around in case rollback is required;
1626  *  - if replacing succeeds:
1627  *    + copy data over;
1628  *    + free old pages;
1629  *    + unlock huge page;
1630  *  - if replacing failed;
1631  *    + put all pages back and unfreeze them;
1632  *    + restore gaps in the page cache;
1633  *    + unlock and free huge page;
1634  */
1635 static void collapse_file(struct mm_struct *mm,
1636 		struct file *file, pgoff_t start,
1637 		struct page **hpage, int node)
1638 {
1639 	struct address_space *mapping = file->f_mapping;
1640 	gfp_t gfp;
1641 	struct page *new_page;
1642 	pgoff_t index, end = start + HPAGE_PMD_NR;
1643 	LIST_HEAD(pagelist);
1644 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1645 	int nr_none = 0, result = SCAN_SUCCEED;
1646 	bool is_shmem = shmem_file(file);
1647 
1648 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1649 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1650 
1651 	/* Only allocate from the target node */
1652 	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1653 
1654 	new_page = khugepaged_alloc_page(hpage, gfp, node);
1655 	if (!new_page) {
1656 		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1657 		goto out;
1658 	}
1659 
1660 	if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1661 		result = SCAN_CGROUP_CHARGE_FAIL;
1662 		goto out;
1663 	}
1664 	count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1665 
1666 	/* This will be less messy when we use multi-index entries */
1667 	do {
1668 		xas_lock_irq(&xas);
1669 		xas_create_range(&xas);
1670 		if (!xas_error(&xas))
1671 			break;
1672 		xas_unlock_irq(&xas);
1673 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1674 			result = SCAN_FAIL;
1675 			goto out;
1676 		}
1677 	} while (1);
1678 
1679 	__SetPageLocked(new_page);
1680 	if (is_shmem)
1681 		__SetPageSwapBacked(new_page);
1682 	new_page->index = start;
1683 	new_page->mapping = mapping;
1684 
1685 	/*
1686 	 * At this point the new_page is locked and not up-to-date.
1687 	 * It's safe to insert it into the page cache, because nobody would
1688 	 * be able to map it or use it in another way until we unlock it.
1689 	 */
1690 
1691 	xas_set(&xas, start);
1692 	for (index = start; index < end; index++) {
1693 		struct page *page = xas_next(&xas);
1694 
1695 		VM_BUG_ON(index != xas.xa_index);
1696 		if (is_shmem) {
1697 			if (!page) {
1698 				/*
1699 				 * Stop if extent has been truncated or
1700 				 * hole-punched, and is now completely
1701 				 * empty.
1702 				 */
1703 				if (index == start) {
1704 					if (!xas_next_entry(&xas, end - 1)) {
1705 						result = SCAN_TRUNCATED;
1706 						goto xa_locked;
1707 					}
1708 					xas_set(&xas, index);
1709 				}
1710 				if (!shmem_charge(mapping->host, 1)) {
1711 					result = SCAN_FAIL;
1712 					goto xa_locked;
1713 				}
1714 				xas_store(&xas, new_page);
1715 				nr_none++;
1716 				continue;
1717 			}
1718 
1719 			if (xa_is_value(page) || !PageUptodate(page)) {
1720 				xas_unlock_irq(&xas);
1721 				/* swap in or instantiate fallocated page */
1722 				if (shmem_getpage(mapping->host, index, &page,
1723 						  SGP_NOHUGE)) {
1724 					result = SCAN_FAIL;
1725 					goto xa_unlocked;
1726 				}
1727 			} else if (trylock_page(page)) {
1728 				get_page(page);
1729 				xas_unlock_irq(&xas);
1730 			} else {
1731 				result = SCAN_PAGE_LOCK;
1732 				goto xa_locked;
1733 			}
1734 		} else {	/* !is_shmem */
1735 			if (!page || xa_is_value(page)) {
1736 				xas_unlock_irq(&xas);
1737 				page_cache_sync_readahead(mapping, &file->f_ra,
1738 							  file, index,
1739 							  end - index);
1740 				/* drain pagevecs to help isolate_lru_page() */
1741 				lru_add_drain();
1742 				page = find_lock_page(mapping, index);
1743 				if (unlikely(page == NULL)) {
1744 					result = SCAN_FAIL;
1745 					goto xa_unlocked;
1746 				}
1747 			} else if (PageDirty(page)) {
1748 				/*
1749 				 * khugepaged only works on read-only fd,
1750 				 * so this page is dirty because it hasn't
1751 				 * been flushed since first write. There
1752 				 * won't be new dirty pages.
1753 				 *
1754 				 * Trigger async flush here and hope the
1755 				 * writeback is done when khugepaged
1756 				 * revisits this page.
1757 				 *
1758 				 * This is a one-off situation. We are not
1759 				 * forcing writeback in loop.
1760 				 */
1761 				xas_unlock_irq(&xas);
1762 				filemap_flush(mapping);
1763 				result = SCAN_FAIL;
1764 				goto xa_unlocked;
1765 			} else if (trylock_page(page)) {
1766 				get_page(page);
1767 				xas_unlock_irq(&xas);
1768 			} else {
1769 				result = SCAN_PAGE_LOCK;
1770 				goto xa_locked;
1771 			}
1772 		}
1773 
1774 		/*
1775 		 * The page must be locked, so we can drop the i_pages lock
1776 		 * without racing with truncate.
1777 		 */
1778 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1779 
1780 		/* make sure the page is up to date */
1781 		if (unlikely(!PageUptodate(page))) {
1782 			result = SCAN_FAIL;
1783 			goto out_unlock;
1784 		}
1785 
1786 		/*
1787 		 * If file was truncated then extended, or hole-punched, before
1788 		 * we locked the first page, then a THP might be there already.
1789 		 */
1790 		if (PageTransCompound(page)) {
1791 			result = SCAN_PAGE_COMPOUND;
1792 			goto out_unlock;
1793 		}
1794 
1795 		if (page_mapping(page) != mapping) {
1796 			result = SCAN_TRUNCATED;
1797 			goto out_unlock;
1798 		}
1799 
1800 		if (!is_shmem && PageDirty(page)) {
1801 			/*
1802 			 * khugepaged only works on read-only fd, so this
1803 			 * page is dirty because it hasn't been flushed
1804 			 * since first write.
1805 			 */
1806 			result = SCAN_FAIL;
1807 			goto out_unlock;
1808 		}
1809 
1810 		if (isolate_lru_page(page)) {
1811 			result = SCAN_DEL_PAGE_LRU;
1812 			goto out_unlock;
1813 		}
1814 
1815 		if (page_has_private(page) &&
1816 		    !try_to_release_page(page, GFP_KERNEL)) {
1817 			result = SCAN_PAGE_HAS_PRIVATE;
1818 			putback_lru_page(page);
1819 			goto out_unlock;
1820 		}
1821 
1822 		if (page_mapped(page))
1823 			unmap_mapping_pages(mapping, index, 1, false);
1824 
1825 		xas_lock_irq(&xas);
1826 		xas_set(&xas, index);
1827 
1828 		VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1829 		VM_BUG_ON_PAGE(page_mapped(page), page);
1830 
1831 		/*
1832 		 * The page is expected to have page_count() == 3:
1833 		 *  - we hold a pin on it;
1834 		 *  - one reference from page cache;
1835 		 *  - one from isolate_lru_page;
1836 		 */
1837 		if (!page_ref_freeze(page, 3)) {
1838 			result = SCAN_PAGE_COUNT;
1839 			xas_unlock_irq(&xas);
1840 			putback_lru_page(page);
1841 			goto out_unlock;
1842 		}
1843 
1844 		/*
1845 		 * Add the page to the list to be able to undo the collapse if
1846 		 * something go wrong.
1847 		 */
1848 		list_add_tail(&page->lru, &pagelist);
1849 
1850 		/* Finally, replace with the new page. */
1851 		xas_store(&xas, new_page);
1852 		continue;
1853 out_unlock:
1854 		unlock_page(page);
1855 		put_page(page);
1856 		goto xa_unlocked;
1857 	}
1858 
1859 	if (is_shmem)
1860 		__inc_lruvec_page_state(new_page, NR_SHMEM_THPS);
1861 	else {
1862 		__inc_lruvec_page_state(new_page, NR_FILE_THPS);
1863 		filemap_nr_thps_inc(mapping);
1864 	}
1865 
1866 	if (nr_none) {
1867 		__mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1868 		if (is_shmem)
1869 			__mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1870 	}
1871 
1872 xa_locked:
1873 	xas_unlock_irq(&xas);
1874 xa_unlocked:
1875 
1876 	if (result == SCAN_SUCCEED) {
1877 		struct page *page, *tmp;
1878 
1879 		/*
1880 		 * Replacing old pages with new one has succeeded, now we
1881 		 * need to copy the content and free the old pages.
1882 		 */
1883 		index = start;
1884 		list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1885 			while (index < page->index) {
1886 				clear_highpage(new_page + (index % HPAGE_PMD_NR));
1887 				index++;
1888 			}
1889 			copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1890 					page);
1891 			list_del(&page->lru);
1892 			page->mapping = NULL;
1893 			page_ref_unfreeze(page, 1);
1894 			ClearPageActive(page);
1895 			ClearPageUnevictable(page);
1896 			unlock_page(page);
1897 			put_page(page);
1898 			index++;
1899 		}
1900 		while (index < end) {
1901 			clear_highpage(new_page + (index % HPAGE_PMD_NR));
1902 			index++;
1903 		}
1904 
1905 		SetPageUptodate(new_page);
1906 		page_ref_add(new_page, HPAGE_PMD_NR - 1);
1907 		if (is_shmem)
1908 			set_page_dirty(new_page);
1909 		lru_cache_add(new_page);
1910 
1911 		/*
1912 		 * Remove pte page tables, so we can re-fault the page as huge.
1913 		 */
1914 		retract_page_tables(mapping, start);
1915 		*hpage = NULL;
1916 
1917 		khugepaged_pages_collapsed++;
1918 	} else {
1919 		struct page *page;
1920 
1921 		/* Something went wrong: roll back page cache changes */
1922 		xas_lock_irq(&xas);
1923 		mapping->nrpages -= nr_none;
1924 
1925 		if (is_shmem)
1926 			shmem_uncharge(mapping->host, nr_none);
1927 
1928 		xas_set(&xas, start);
1929 		xas_for_each(&xas, page, end - 1) {
1930 			page = list_first_entry_or_null(&pagelist,
1931 					struct page, lru);
1932 			if (!page || xas.xa_index < page->index) {
1933 				if (!nr_none)
1934 					break;
1935 				nr_none--;
1936 				/* Put holes back where they were */
1937 				xas_store(&xas, NULL);
1938 				continue;
1939 			}
1940 
1941 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1942 
1943 			/* Unfreeze the page. */
1944 			list_del(&page->lru);
1945 			page_ref_unfreeze(page, 2);
1946 			xas_store(&xas, page);
1947 			xas_pause(&xas);
1948 			xas_unlock_irq(&xas);
1949 			unlock_page(page);
1950 			putback_lru_page(page);
1951 			xas_lock_irq(&xas);
1952 		}
1953 		VM_BUG_ON(nr_none);
1954 		xas_unlock_irq(&xas);
1955 
1956 		new_page->mapping = NULL;
1957 	}
1958 
1959 	unlock_page(new_page);
1960 out:
1961 	VM_BUG_ON(!list_empty(&pagelist));
1962 	if (!IS_ERR_OR_NULL(*hpage))
1963 		mem_cgroup_uncharge(*hpage);
1964 	/* TODO: tracepoints */
1965 }
1966 
1967 static void khugepaged_scan_file(struct mm_struct *mm,
1968 		struct file *file, pgoff_t start, struct page **hpage)
1969 {
1970 	struct page *page = NULL;
1971 	struct address_space *mapping = file->f_mapping;
1972 	XA_STATE(xas, &mapping->i_pages, start);
1973 	int present, swap;
1974 	int node = NUMA_NO_NODE;
1975 	int result = SCAN_SUCCEED;
1976 
1977 	present = 0;
1978 	swap = 0;
1979 	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1980 	rcu_read_lock();
1981 	xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1982 		if (xas_retry(&xas, page))
1983 			continue;
1984 
1985 		if (xa_is_value(page)) {
1986 			if (++swap > khugepaged_max_ptes_swap) {
1987 				result = SCAN_EXCEED_SWAP_PTE;
1988 				break;
1989 			}
1990 			continue;
1991 		}
1992 
1993 		if (PageTransCompound(page)) {
1994 			result = SCAN_PAGE_COMPOUND;
1995 			break;
1996 		}
1997 
1998 		node = page_to_nid(page);
1999 		if (khugepaged_scan_abort(node)) {
2000 			result = SCAN_SCAN_ABORT;
2001 			break;
2002 		}
2003 		khugepaged_node_load[node]++;
2004 
2005 		if (!PageLRU(page)) {
2006 			result = SCAN_PAGE_LRU;
2007 			break;
2008 		}
2009 
2010 		if (page_count(page) !=
2011 		    1 + page_mapcount(page) + page_has_private(page)) {
2012 			result = SCAN_PAGE_COUNT;
2013 			break;
2014 		}
2015 
2016 		/*
2017 		 * We probably should check if the page is referenced here, but
2018 		 * nobody would transfer pte_young() to PageReferenced() for us.
2019 		 * And rmap walk here is just too costly...
2020 		 */
2021 
2022 		present++;
2023 
2024 		if (need_resched()) {
2025 			xas_pause(&xas);
2026 			cond_resched_rcu();
2027 		}
2028 	}
2029 	rcu_read_unlock();
2030 
2031 	if (result == SCAN_SUCCEED) {
2032 		if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2033 			result = SCAN_EXCEED_NONE_PTE;
2034 		} else {
2035 			node = khugepaged_find_target_node();
2036 			collapse_file(mm, file, start, hpage, node);
2037 		}
2038 	}
2039 
2040 	/* TODO: tracepoints */
2041 }
2042 #else
2043 static void khugepaged_scan_file(struct mm_struct *mm,
2044 		struct file *file, pgoff_t start, struct page **hpage)
2045 {
2046 	BUILD_BUG();
2047 }
2048 
2049 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2050 {
2051 	return 0;
2052 }
2053 #endif
2054 
2055 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2056 					    struct page **hpage)
2057 	__releases(&khugepaged_mm_lock)
2058 	__acquires(&khugepaged_mm_lock)
2059 {
2060 	struct mm_slot *mm_slot;
2061 	struct mm_struct *mm;
2062 	struct vm_area_struct *vma;
2063 	int progress = 0;
2064 
2065 	VM_BUG_ON(!pages);
2066 	lockdep_assert_held(&khugepaged_mm_lock);
2067 
2068 	if (khugepaged_scan.mm_slot)
2069 		mm_slot = khugepaged_scan.mm_slot;
2070 	else {
2071 		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2072 				     struct mm_slot, mm_node);
2073 		khugepaged_scan.address = 0;
2074 		khugepaged_scan.mm_slot = mm_slot;
2075 	}
2076 	spin_unlock(&khugepaged_mm_lock);
2077 	khugepaged_collapse_pte_mapped_thps(mm_slot);
2078 
2079 	mm = mm_slot->mm;
2080 	/*
2081 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2082 	 * the next mm on the list.
2083 	 */
2084 	vma = NULL;
2085 	if (unlikely(!mmap_read_trylock(mm)))
2086 		goto breakouterloop_mmap_lock;
2087 	if (likely(!khugepaged_test_exit(mm)))
2088 		vma = find_vma(mm, khugepaged_scan.address);
2089 
2090 	progress++;
2091 	for (; vma; vma = vma->vm_next) {
2092 		unsigned long hstart, hend;
2093 
2094 		cond_resched();
2095 		if (unlikely(khugepaged_test_exit(mm))) {
2096 			progress++;
2097 			break;
2098 		}
2099 		if (!hugepage_vma_check(vma, vma->vm_flags)) {
2100 skip:
2101 			progress++;
2102 			continue;
2103 		}
2104 		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2105 		hend = vma->vm_end & HPAGE_PMD_MASK;
2106 		if (hstart >= hend)
2107 			goto skip;
2108 		if (khugepaged_scan.address > hend)
2109 			goto skip;
2110 		if (khugepaged_scan.address < hstart)
2111 			khugepaged_scan.address = hstart;
2112 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2113 		if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2114 			goto skip;
2115 
2116 		while (khugepaged_scan.address < hend) {
2117 			int ret;
2118 			cond_resched();
2119 			if (unlikely(khugepaged_test_exit(mm)))
2120 				goto breakouterloop;
2121 
2122 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2123 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2124 				  hend);
2125 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2126 				struct file *file = get_file(vma->vm_file);
2127 				pgoff_t pgoff = linear_page_index(vma,
2128 						khugepaged_scan.address);
2129 
2130 				mmap_read_unlock(mm);
2131 				ret = 1;
2132 				khugepaged_scan_file(mm, file, pgoff, hpage);
2133 				fput(file);
2134 			} else {
2135 				ret = khugepaged_scan_pmd(mm, vma,
2136 						khugepaged_scan.address,
2137 						hpage);
2138 			}
2139 			/* move to next address */
2140 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2141 			progress += HPAGE_PMD_NR;
2142 			if (ret)
2143 				/* we released mmap_lock so break loop */
2144 				goto breakouterloop_mmap_lock;
2145 			if (progress >= pages)
2146 				goto breakouterloop;
2147 		}
2148 	}
2149 breakouterloop:
2150 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2151 breakouterloop_mmap_lock:
2152 
2153 	spin_lock(&khugepaged_mm_lock);
2154 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2155 	/*
2156 	 * Release the current mm_slot if this mm is about to die, or
2157 	 * if we scanned all vmas of this mm.
2158 	 */
2159 	if (khugepaged_test_exit(mm) || !vma) {
2160 		/*
2161 		 * Make sure that if mm_users is reaching zero while
2162 		 * khugepaged runs here, khugepaged_exit will find
2163 		 * mm_slot not pointing to the exiting mm.
2164 		 */
2165 		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2166 			khugepaged_scan.mm_slot = list_entry(
2167 				mm_slot->mm_node.next,
2168 				struct mm_slot, mm_node);
2169 			khugepaged_scan.address = 0;
2170 		} else {
2171 			khugepaged_scan.mm_slot = NULL;
2172 			khugepaged_full_scans++;
2173 		}
2174 
2175 		collect_mm_slot(mm_slot);
2176 	}
2177 
2178 	return progress;
2179 }
2180 
2181 static int khugepaged_has_work(void)
2182 {
2183 	return !list_empty(&khugepaged_scan.mm_head) &&
2184 		khugepaged_enabled();
2185 }
2186 
2187 static int khugepaged_wait_event(void)
2188 {
2189 	return !list_empty(&khugepaged_scan.mm_head) ||
2190 		kthread_should_stop();
2191 }
2192 
2193 static void khugepaged_do_scan(void)
2194 {
2195 	struct page *hpage = NULL;
2196 	unsigned int progress = 0, pass_through_head = 0;
2197 	unsigned int pages = khugepaged_pages_to_scan;
2198 	bool wait = true;
2199 
2200 	barrier(); /* write khugepaged_pages_to_scan to local stack */
2201 
2202 	lru_add_drain_all();
2203 
2204 	while (progress < pages) {
2205 		if (!khugepaged_prealloc_page(&hpage, &wait))
2206 			break;
2207 
2208 		cond_resched();
2209 
2210 		if (unlikely(kthread_should_stop() || try_to_freeze()))
2211 			break;
2212 
2213 		spin_lock(&khugepaged_mm_lock);
2214 		if (!khugepaged_scan.mm_slot)
2215 			pass_through_head++;
2216 		if (khugepaged_has_work() &&
2217 		    pass_through_head < 2)
2218 			progress += khugepaged_scan_mm_slot(pages - progress,
2219 							    &hpage);
2220 		else
2221 			progress = pages;
2222 		spin_unlock(&khugepaged_mm_lock);
2223 	}
2224 
2225 	if (!IS_ERR_OR_NULL(hpage))
2226 		put_page(hpage);
2227 }
2228 
2229 static bool khugepaged_should_wakeup(void)
2230 {
2231 	return kthread_should_stop() ||
2232 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2233 }
2234 
2235 static void khugepaged_wait_work(void)
2236 {
2237 	if (khugepaged_has_work()) {
2238 		const unsigned long scan_sleep_jiffies =
2239 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2240 
2241 		if (!scan_sleep_jiffies)
2242 			return;
2243 
2244 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2245 		wait_event_freezable_timeout(khugepaged_wait,
2246 					     khugepaged_should_wakeup(),
2247 					     scan_sleep_jiffies);
2248 		return;
2249 	}
2250 
2251 	if (khugepaged_enabled())
2252 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2253 }
2254 
2255 static int khugepaged(void *none)
2256 {
2257 	struct mm_slot *mm_slot;
2258 
2259 	set_freezable();
2260 	set_user_nice(current, MAX_NICE);
2261 
2262 	while (!kthread_should_stop()) {
2263 		khugepaged_do_scan();
2264 		khugepaged_wait_work();
2265 	}
2266 
2267 	spin_lock(&khugepaged_mm_lock);
2268 	mm_slot = khugepaged_scan.mm_slot;
2269 	khugepaged_scan.mm_slot = NULL;
2270 	if (mm_slot)
2271 		collect_mm_slot(mm_slot);
2272 	spin_unlock(&khugepaged_mm_lock);
2273 	return 0;
2274 }
2275 
2276 static void set_recommended_min_free_kbytes(void)
2277 {
2278 	struct zone *zone;
2279 	int nr_zones = 0;
2280 	unsigned long recommended_min;
2281 
2282 	for_each_populated_zone(zone) {
2283 		/*
2284 		 * We don't need to worry about fragmentation of
2285 		 * ZONE_MOVABLE since it only has movable pages.
2286 		 */
2287 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2288 			continue;
2289 
2290 		nr_zones++;
2291 	}
2292 
2293 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2294 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2295 
2296 	/*
2297 	 * Make sure that on average at least two pageblocks are almost free
2298 	 * of another type, one for a migratetype to fall back to and a
2299 	 * second to avoid subsequent fallbacks of other types There are 3
2300 	 * MIGRATE_TYPES we care about.
2301 	 */
2302 	recommended_min += pageblock_nr_pages * nr_zones *
2303 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2304 
2305 	/* don't ever allow to reserve more than 5% of the lowmem */
2306 	recommended_min = min(recommended_min,
2307 			      (unsigned long) nr_free_buffer_pages() / 20);
2308 	recommended_min <<= (PAGE_SHIFT-10);
2309 
2310 	if (recommended_min > min_free_kbytes) {
2311 		if (user_min_free_kbytes >= 0)
2312 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2313 				min_free_kbytes, recommended_min);
2314 
2315 		min_free_kbytes = recommended_min;
2316 	}
2317 	setup_per_zone_wmarks();
2318 }
2319 
2320 int start_stop_khugepaged(void)
2321 {
2322 	int err = 0;
2323 
2324 	mutex_lock(&khugepaged_mutex);
2325 	if (khugepaged_enabled()) {
2326 		if (!khugepaged_thread)
2327 			khugepaged_thread = kthread_run(khugepaged, NULL,
2328 							"khugepaged");
2329 		if (IS_ERR(khugepaged_thread)) {
2330 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2331 			err = PTR_ERR(khugepaged_thread);
2332 			khugepaged_thread = NULL;
2333 			goto fail;
2334 		}
2335 
2336 		if (!list_empty(&khugepaged_scan.mm_head))
2337 			wake_up_interruptible(&khugepaged_wait);
2338 
2339 		set_recommended_min_free_kbytes();
2340 	} else if (khugepaged_thread) {
2341 		kthread_stop(khugepaged_thread);
2342 		khugepaged_thread = NULL;
2343 	}
2344 fail:
2345 	mutex_unlock(&khugepaged_mutex);
2346 	return err;
2347 }
2348 
2349 void khugepaged_min_free_kbytes_update(void)
2350 {
2351 	mutex_lock(&khugepaged_mutex);
2352 	if (khugepaged_enabled() && khugepaged_thread)
2353 		set_recommended_min_free_kbytes();
2354 	mutex_unlock(&khugepaged_mutex);
2355 }
2356