1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/mmu_notifier.h> 8 #include <linux/rmap.h> 9 #include <linux/swap.h> 10 #include <linux/mm_inline.h> 11 #include <linux/kthread.h> 12 #include <linux/khugepaged.h> 13 #include <linux/freezer.h> 14 #include <linux/mman.h> 15 #include <linux/hashtable.h> 16 #include <linux/userfaultfd_k.h> 17 #include <linux/page_idle.h> 18 #include <linux/page_table_check.h> 19 #include <linux/rcupdate_wait.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/dax.h> 23 #include <linux/ksm.h> 24 25 #include <asm/tlb.h> 26 #include <asm/pgalloc.h> 27 #include "internal.h" 28 #include "mm_slot.h" 29 30 enum scan_result { 31 SCAN_FAIL, 32 SCAN_SUCCEED, 33 SCAN_PMD_NULL, 34 SCAN_PMD_NONE, 35 SCAN_PMD_MAPPED, 36 SCAN_EXCEED_NONE_PTE, 37 SCAN_EXCEED_SWAP_PTE, 38 SCAN_EXCEED_SHARED_PTE, 39 SCAN_PTE_NON_PRESENT, 40 SCAN_PTE_UFFD_WP, 41 SCAN_PTE_MAPPED_HUGEPAGE, 42 SCAN_PAGE_RO, 43 SCAN_LACK_REFERENCED_PAGE, 44 SCAN_PAGE_NULL, 45 SCAN_SCAN_ABORT, 46 SCAN_PAGE_COUNT, 47 SCAN_PAGE_LRU, 48 SCAN_PAGE_LOCK, 49 SCAN_PAGE_ANON, 50 SCAN_PAGE_COMPOUND, 51 SCAN_ANY_PROCESS, 52 SCAN_VMA_NULL, 53 SCAN_VMA_CHECK, 54 SCAN_ADDRESS_RANGE, 55 SCAN_DEL_PAGE_LRU, 56 SCAN_ALLOC_HUGE_PAGE_FAIL, 57 SCAN_CGROUP_CHARGE_FAIL, 58 SCAN_TRUNCATED, 59 SCAN_PAGE_HAS_PRIVATE, 60 SCAN_STORE_FAILED, 61 SCAN_COPY_MC, 62 SCAN_PAGE_FILLED, 63 }; 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/huge_memory.h> 67 68 static struct task_struct *khugepaged_thread __read_mostly; 69 static DEFINE_MUTEX(khugepaged_mutex); 70 71 /* default scan 8*512 pte (or vmas) every 30 second */ 72 static unsigned int khugepaged_pages_to_scan __read_mostly; 73 static unsigned int khugepaged_pages_collapsed; 74 static unsigned int khugepaged_full_scans; 75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 76 /* during fragmentation poll the hugepage allocator once every minute */ 77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 78 static unsigned long khugepaged_sleep_expire; 79 static DEFINE_SPINLOCK(khugepaged_mm_lock); 80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 81 /* 82 * default collapse hugepages if there is at least one pte mapped like 83 * it would have happened if the vma was large enough during page 84 * fault. 85 * 86 * Note that these are only respected if collapse was initiated by khugepaged. 87 */ 88 unsigned int khugepaged_max_ptes_none __read_mostly; 89 static unsigned int khugepaged_max_ptes_swap __read_mostly; 90 static unsigned int khugepaged_max_ptes_shared __read_mostly; 91 92 #define MM_SLOTS_HASH_BITS 10 93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 94 95 static struct kmem_cache *mm_slot_cache __ro_after_init; 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 109 * @slot: hash lookup from mm to mm_slot 110 */ 111 struct khugepaged_mm_slot { 112 struct mm_slot slot; 113 }; 114 115 /** 116 * struct khugepaged_scan - cursor for scanning 117 * @mm_head: the head of the mm list to scan 118 * @mm_slot: the current mm_slot we are scanning 119 * @address: the next address inside that to be scanned 120 * 121 * There is only the one khugepaged_scan instance of this cursor structure. 122 */ 123 struct khugepaged_scan { 124 struct list_head mm_head; 125 struct khugepaged_mm_slot *mm_slot; 126 unsigned long address; 127 }; 128 129 static struct khugepaged_scan khugepaged_scan = { 130 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 131 }; 132 133 #ifdef CONFIG_SYSFS 134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 135 struct kobj_attribute *attr, 136 char *buf) 137 { 138 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 139 } 140 141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 142 struct kobj_attribute *attr, 143 const char *buf, size_t count) 144 { 145 unsigned int msecs; 146 int err; 147 148 err = kstrtouint(buf, 10, &msecs); 149 if (err) 150 return -EINVAL; 151 152 khugepaged_scan_sleep_millisecs = msecs; 153 khugepaged_sleep_expire = 0; 154 wake_up_interruptible(&khugepaged_wait); 155 156 return count; 157 } 158 static struct kobj_attribute scan_sleep_millisecs_attr = 159 __ATTR_RW(scan_sleep_millisecs); 160 161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 162 struct kobj_attribute *attr, 163 char *buf) 164 { 165 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 166 } 167 168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 169 struct kobj_attribute *attr, 170 const char *buf, size_t count) 171 { 172 unsigned int msecs; 173 int err; 174 175 err = kstrtouint(buf, 10, &msecs); 176 if (err) 177 return -EINVAL; 178 179 khugepaged_alloc_sleep_millisecs = msecs; 180 khugepaged_sleep_expire = 0; 181 wake_up_interruptible(&khugepaged_wait); 182 183 return count; 184 } 185 static struct kobj_attribute alloc_sleep_millisecs_attr = 186 __ATTR_RW(alloc_sleep_millisecs); 187 188 static ssize_t pages_to_scan_show(struct kobject *kobj, 189 struct kobj_attribute *attr, 190 char *buf) 191 { 192 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 193 } 194 static ssize_t pages_to_scan_store(struct kobject *kobj, 195 struct kobj_attribute *attr, 196 const char *buf, size_t count) 197 { 198 unsigned int pages; 199 int err; 200 201 err = kstrtouint(buf, 10, &pages); 202 if (err || !pages) 203 return -EINVAL; 204 205 khugepaged_pages_to_scan = pages; 206 207 return count; 208 } 209 static struct kobj_attribute pages_to_scan_attr = 210 __ATTR_RW(pages_to_scan); 211 212 static ssize_t pages_collapsed_show(struct kobject *kobj, 213 struct kobj_attribute *attr, 214 char *buf) 215 { 216 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 217 } 218 static struct kobj_attribute pages_collapsed_attr = 219 __ATTR_RO(pages_collapsed); 220 221 static ssize_t full_scans_show(struct kobject *kobj, 222 struct kobj_attribute *attr, 223 char *buf) 224 { 225 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 226 } 227 static struct kobj_attribute full_scans_attr = 228 __ATTR_RO(full_scans); 229 230 static ssize_t defrag_show(struct kobject *kobj, 231 struct kobj_attribute *attr, char *buf) 232 { 233 return single_hugepage_flag_show(kobj, attr, buf, 234 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 235 } 236 static ssize_t defrag_store(struct kobject *kobj, 237 struct kobj_attribute *attr, 238 const char *buf, size_t count) 239 { 240 return single_hugepage_flag_store(kobj, attr, buf, count, 241 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 242 } 243 static struct kobj_attribute khugepaged_defrag_attr = 244 __ATTR_RW(defrag); 245 246 /* 247 * max_ptes_none controls if khugepaged should collapse hugepages over 248 * any unmapped ptes in turn potentially increasing the memory 249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 250 * reduce the available free memory in the system as it 251 * runs. Increasing max_ptes_none will instead potentially reduce the 252 * free memory in the system during the khugepaged scan. 253 */ 254 static ssize_t max_ptes_none_show(struct kobject *kobj, 255 struct kobj_attribute *attr, 256 char *buf) 257 { 258 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 259 } 260 static ssize_t max_ptes_none_store(struct kobject *kobj, 261 struct kobj_attribute *attr, 262 const char *buf, size_t count) 263 { 264 int err; 265 unsigned long max_ptes_none; 266 267 err = kstrtoul(buf, 10, &max_ptes_none); 268 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 269 return -EINVAL; 270 271 khugepaged_max_ptes_none = max_ptes_none; 272 273 return count; 274 } 275 static struct kobj_attribute khugepaged_max_ptes_none_attr = 276 __ATTR_RW(max_ptes_none); 277 278 static ssize_t max_ptes_swap_show(struct kobject *kobj, 279 struct kobj_attribute *attr, 280 char *buf) 281 { 282 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 283 } 284 285 static ssize_t max_ptes_swap_store(struct kobject *kobj, 286 struct kobj_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int err; 290 unsigned long max_ptes_swap; 291 292 err = kstrtoul(buf, 10, &max_ptes_swap); 293 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 294 return -EINVAL; 295 296 khugepaged_max_ptes_swap = max_ptes_swap; 297 298 return count; 299 } 300 301 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 302 __ATTR_RW(max_ptes_swap); 303 304 static ssize_t max_ptes_shared_show(struct kobject *kobj, 305 struct kobj_attribute *attr, 306 char *buf) 307 { 308 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 309 } 310 311 static ssize_t max_ptes_shared_store(struct kobject *kobj, 312 struct kobj_attribute *attr, 313 const char *buf, size_t count) 314 { 315 int err; 316 unsigned long max_ptes_shared; 317 318 err = kstrtoul(buf, 10, &max_ptes_shared); 319 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 320 return -EINVAL; 321 322 khugepaged_max_ptes_shared = max_ptes_shared; 323 324 return count; 325 } 326 327 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 328 __ATTR_RW(max_ptes_shared); 329 330 static struct attribute *khugepaged_attr[] = { 331 &khugepaged_defrag_attr.attr, 332 &khugepaged_max_ptes_none_attr.attr, 333 &khugepaged_max_ptes_swap_attr.attr, 334 &khugepaged_max_ptes_shared_attr.attr, 335 &pages_to_scan_attr.attr, 336 &pages_collapsed_attr.attr, 337 &full_scans_attr.attr, 338 &scan_sleep_millisecs_attr.attr, 339 &alloc_sleep_millisecs_attr.attr, 340 NULL, 341 }; 342 343 struct attribute_group khugepaged_attr_group = { 344 .attrs = khugepaged_attr, 345 .name = "khugepaged", 346 }; 347 #endif /* CONFIG_SYSFS */ 348 349 int hugepage_madvise(struct vm_area_struct *vma, 350 unsigned long *vm_flags, int advice) 351 { 352 switch (advice) { 353 case MADV_HUGEPAGE: 354 #ifdef CONFIG_S390 355 /* 356 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 357 * can't handle this properly after s390_enable_sie, so we simply 358 * ignore the madvise to prevent qemu from causing a SIGSEGV. 359 */ 360 if (mm_has_pgste(vma->vm_mm)) 361 return 0; 362 #endif 363 *vm_flags &= ~VM_NOHUGEPAGE; 364 *vm_flags |= VM_HUGEPAGE; 365 /* 366 * If the vma become good for khugepaged to scan, 367 * register it here without waiting a page fault that 368 * may not happen any time soon. 369 */ 370 khugepaged_enter_vma(vma, *vm_flags); 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0); 389 if (!mm_slot_cache) 390 return -ENOMEM; 391 392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 396 397 return 0; 398 } 399 400 void __init khugepaged_destroy(void) 401 { 402 kmem_cache_destroy(mm_slot_cache); 403 } 404 405 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 406 { 407 return atomic_read(&mm->mm_users) == 0; 408 } 409 410 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 411 { 412 return hpage_collapse_test_exit(mm) || 413 test_bit(MMF_DISABLE_THP, &mm->flags); 414 } 415 416 static bool hugepage_pmd_enabled(void) 417 { 418 /* 419 * We cover the anon, shmem and the file-backed case here; file-backed 420 * hugepages, when configured in, are determined by the global control. 421 * Anon pmd-sized hugepages are determined by the pmd-size control. 422 * Shmem pmd-sized hugepages are also determined by its pmd-size control, 423 * except when the global shmem_huge is set to SHMEM_HUGE_DENY. 424 */ 425 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 426 hugepage_global_enabled()) 427 return true; 428 if (test_bit(PMD_ORDER, &huge_anon_orders_always)) 429 return true; 430 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) 431 return true; 432 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && 433 hugepage_global_enabled()) 434 return true; 435 if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled()) 436 return true; 437 return false; 438 } 439 440 void __khugepaged_enter(struct mm_struct *mm) 441 { 442 struct khugepaged_mm_slot *mm_slot; 443 struct mm_slot *slot; 444 int wakeup; 445 446 /* __khugepaged_exit() must not run from under us */ 447 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 448 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 449 return; 450 451 mm_slot = mm_slot_alloc(mm_slot_cache); 452 if (!mm_slot) 453 return; 454 455 slot = &mm_slot->slot; 456 457 spin_lock(&khugepaged_mm_lock); 458 mm_slot_insert(mm_slots_hash, mm, slot); 459 /* 460 * Insert just behind the scanning cursor, to let the area settle 461 * down a little. 462 */ 463 wakeup = list_empty(&khugepaged_scan.mm_head); 464 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 465 spin_unlock(&khugepaged_mm_lock); 466 467 mmgrab(mm); 468 if (wakeup) 469 wake_up_interruptible(&khugepaged_wait); 470 } 471 472 void khugepaged_enter_vma(struct vm_area_struct *vma, 473 unsigned long vm_flags) 474 { 475 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 476 hugepage_pmd_enabled()) { 477 if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS, 478 PMD_ORDER)) 479 __khugepaged_enter(vma->vm_mm); 480 } 481 } 482 483 void __khugepaged_exit(struct mm_struct *mm) 484 { 485 struct khugepaged_mm_slot *mm_slot; 486 struct mm_slot *slot; 487 int free = 0; 488 489 spin_lock(&khugepaged_mm_lock); 490 slot = mm_slot_lookup(mm_slots_hash, mm); 491 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 492 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 493 hash_del(&slot->hash); 494 list_del(&slot->mm_node); 495 free = 1; 496 } 497 spin_unlock(&khugepaged_mm_lock); 498 499 if (free) { 500 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 501 mm_slot_free(mm_slot_cache, mm_slot); 502 mmdrop(mm); 503 } else if (mm_slot) { 504 /* 505 * This is required to serialize against 506 * hpage_collapse_test_exit() (which is guaranteed to run 507 * under mmap sem read mode). Stop here (after we return all 508 * pagetables will be destroyed) until khugepaged has finished 509 * working on the pagetables under the mmap_lock. 510 */ 511 mmap_write_lock(mm); 512 mmap_write_unlock(mm); 513 } 514 } 515 516 static void release_pte_folio(struct folio *folio) 517 { 518 node_stat_mod_folio(folio, 519 NR_ISOLATED_ANON + folio_is_file_lru(folio), 520 -folio_nr_pages(folio)); 521 folio_unlock(folio); 522 folio_putback_lru(folio); 523 } 524 525 static void release_pte_pages(pte_t *pte, pte_t *_pte, 526 struct list_head *compound_pagelist) 527 { 528 struct folio *folio, *tmp; 529 530 while (--_pte >= pte) { 531 pte_t pteval = ptep_get(_pte); 532 unsigned long pfn; 533 534 if (pte_none(pteval)) 535 continue; 536 pfn = pte_pfn(pteval); 537 if (is_zero_pfn(pfn)) 538 continue; 539 folio = pfn_folio(pfn); 540 if (folio_test_large(folio)) 541 continue; 542 release_pte_folio(folio); 543 } 544 545 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 546 list_del(&folio->lru); 547 release_pte_folio(folio); 548 } 549 } 550 551 static bool is_refcount_suitable(struct folio *folio) 552 { 553 int expected_refcount = folio_mapcount(folio); 554 555 if (!folio_test_anon(folio) || folio_test_swapcache(folio)) 556 expected_refcount += folio_nr_pages(folio); 557 558 if (folio_test_private(folio)) 559 expected_refcount++; 560 561 return folio_ref_count(folio) == expected_refcount; 562 } 563 564 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 565 unsigned long address, 566 pte_t *pte, 567 struct collapse_control *cc, 568 struct list_head *compound_pagelist) 569 { 570 struct page *page = NULL; 571 struct folio *folio = NULL; 572 pte_t *_pte; 573 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 574 bool writable = false; 575 576 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 577 _pte++, address += PAGE_SIZE) { 578 pte_t pteval = ptep_get(_pte); 579 if (pte_none(pteval) || (pte_present(pteval) && 580 is_zero_pfn(pte_pfn(pteval)))) { 581 ++none_or_zero; 582 if (!userfaultfd_armed(vma) && 583 (!cc->is_khugepaged || 584 none_or_zero <= khugepaged_max_ptes_none)) { 585 continue; 586 } else { 587 result = SCAN_EXCEED_NONE_PTE; 588 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 589 goto out; 590 } 591 } 592 if (!pte_present(pteval)) { 593 result = SCAN_PTE_NON_PRESENT; 594 goto out; 595 } 596 if (pte_uffd_wp(pteval)) { 597 result = SCAN_PTE_UFFD_WP; 598 goto out; 599 } 600 page = vm_normal_page(vma, address, pteval); 601 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 602 result = SCAN_PAGE_NULL; 603 goto out; 604 } 605 606 folio = page_folio(page); 607 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 608 609 /* See hpage_collapse_scan_pmd(). */ 610 if (folio_likely_mapped_shared(folio)) { 611 ++shared; 612 if (cc->is_khugepaged && 613 shared > khugepaged_max_ptes_shared) { 614 result = SCAN_EXCEED_SHARED_PTE; 615 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 616 goto out; 617 } 618 } 619 620 if (folio_test_large(folio)) { 621 struct folio *f; 622 623 /* 624 * Check if we have dealt with the compound page 625 * already 626 */ 627 list_for_each_entry(f, compound_pagelist, lru) { 628 if (folio == f) 629 goto next; 630 } 631 } 632 633 /* 634 * We can do it before folio_isolate_lru because the 635 * folio can't be freed from under us. NOTE: PG_lock 636 * is needed to serialize against split_huge_page 637 * when invoked from the VM. 638 */ 639 if (!folio_trylock(folio)) { 640 result = SCAN_PAGE_LOCK; 641 goto out; 642 } 643 644 /* 645 * Check if the page has any GUP (or other external) pins. 646 * 647 * The page table that maps the page has been already unlinked 648 * from the page table tree and this process cannot get 649 * an additional pin on the page. 650 * 651 * New pins can come later if the page is shared across fork, 652 * but not from this process. The other process cannot write to 653 * the page, only trigger CoW. 654 */ 655 if (!is_refcount_suitable(folio)) { 656 folio_unlock(folio); 657 result = SCAN_PAGE_COUNT; 658 goto out; 659 } 660 661 /* 662 * Isolate the page to avoid collapsing an hugepage 663 * currently in use by the VM. 664 */ 665 if (!folio_isolate_lru(folio)) { 666 folio_unlock(folio); 667 result = SCAN_DEL_PAGE_LRU; 668 goto out; 669 } 670 node_stat_mod_folio(folio, 671 NR_ISOLATED_ANON + folio_is_file_lru(folio), 672 folio_nr_pages(folio)); 673 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 674 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 675 676 if (folio_test_large(folio)) 677 list_add_tail(&folio->lru, compound_pagelist); 678 next: 679 /* 680 * If collapse was initiated by khugepaged, check that there is 681 * enough young pte to justify collapsing the page 682 */ 683 if (cc->is_khugepaged && 684 (pte_young(pteval) || folio_test_young(folio) || 685 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 686 address))) 687 referenced++; 688 689 if (pte_write(pteval)) 690 writable = true; 691 } 692 693 if (unlikely(!writable)) { 694 result = SCAN_PAGE_RO; 695 } else if (unlikely(cc->is_khugepaged && !referenced)) { 696 result = SCAN_LACK_REFERENCED_PAGE; 697 } else { 698 result = SCAN_SUCCEED; 699 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 700 referenced, writable, result); 701 return result; 702 } 703 out: 704 release_pte_pages(pte, _pte, compound_pagelist); 705 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 706 referenced, writable, result); 707 return result; 708 } 709 710 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 711 struct vm_area_struct *vma, 712 unsigned long address, 713 spinlock_t *ptl, 714 struct list_head *compound_pagelist) 715 { 716 struct folio *src, *tmp; 717 pte_t *_pte; 718 pte_t pteval; 719 720 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 721 _pte++, address += PAGE_SIZE) { 722 pteval = ptep_get(_pte); 723 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 724 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 725 if (is_zero_pfn(pte_pfn(pteval))) { 726 /* 727 * ptl mostly unnecessary. 728 */ 729 spin_lock(ptl); 730 ptep_clear(vma->vm_mm, address, _pte); 731 spin_unlock(ptl); 732 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 733 } 734 } else { 735 struct page *src_page = pte_page(pteval); 736 737 src = page_folio(src_page); 738 if (!folio_test_large(src)) 739 release_pte_folio(src); 740 /* 741 * ptl mostly unnecessary, but preempt has to 742 * be disabled to update the per-cpu stats 743 * inside folio_remove_rmap_pte(). 744 */ 745 spin_lock(ptl); 746 ptep_clear(vma->vm_mm, address, _pte); 747 folio_remove_rmap_pte(src, src_page, vma); 748 spin_unlock(ptl); 749 free_page_and_swap_cache(src_page); 750 } 751 } 752 753 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 754 list_del(&src->lru); 755 node_stat_sub_folio(src, NR_ISOLATED_ANON + 756 folio_is_file_lru(src)); 757 folio_unlock(src); 758 free_swap_cache(src); 759 folio_putback_lru(src); 760 } 761 } 762 763 static void __collapse_huge_page_copy_failed(pte_t *pte, 764 pmd_t *pmd, 765 pmd_t orig_pmd, 766 struct vm_area_struct *vma, 767 struct list_head *compound_pagelist) 768 { 769 spinlock_t *pmd_ptl; 770 771 /* 772 * Re-establish the PMD to point to the original page table 773 * entry. Restoring PMD needs to be done prior to releasing 774 * pages. Since pages are still isolated and locked here, 775 * acquiring anon_vma_lock_write is unnecessary. 776 */ 777 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 778 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 779 spin_unlock(pmd_ptl); 780 /* 781 * Release both raw and compound pages isolated 782 * in __collapse_huge_page_isolate. 783 */ 784 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 785 } 786 787 /* 788 * __collapse_huge_page_copy - attempts to copy memory contents from raw 789 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 790 * otherwise restores the original page table and releases isolated raw pages. 791 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 792 * 793 * @pte: starting of the PTEs to copy from 794 * @folio: the new hugepage to copy contents to 795 * @pmd: pointer to the new hugepage's PMD 796 * @orig_pmd: the original raw pages' PMD 797 * @vma: the original raw pages' virtual memory area 798 * @address: starting address to copy 799 * @ptl: lock on raw pages' PTEs 800 * @compound_pagelist: list that stores compound pages 801 */ 802 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 803 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 804 unsigned long address, spinlock_t *ptl, 805 struct list_head *compound_pagelist) 806 { 807 unsigned int i; 808 int result = SCAN_SUCCEED; 809 810 /* 811 * Copying pages' contents is subject to memory poison at any iteration. 812 */ 813 for (i = 0; i < HPAGE_PMD_NR; i++) { 814 pte_t pteval = ptep_get(pte + i); 815 struct page *page = folio_page(folio, i); 816 unsigned long src_addr = address + i * PAGE_SIZE; 817 struct page *src_page; 818 819 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 820 clear_user_highpage(page, src_addr); 821 continue; 822 } 823 src_page = pte_page(pteval); 824 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 825 result = SCAN_COPY_MC; 826 break; 827 } 828 } 829 830 if (likely(result == SCAN_SUCCEED)) 831 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 832 compound_pagelist); 833 else 834 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 835 compound_pagelist); 836 837 return result; 838 } 839 840 static void khugepaged_alloc_sleep(void) 841 { 842 DEFINE_WAIT(wait); 843 844 add_wait_queue(&khugepaged_wait, &wait); 845 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 846 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 847 remove_wait_queue(&khugepaged_wait, &wait); 848 } 849 850 struct collapse_control khugepaged_collapse_control = { 851 .is_khugepaged = true, 852 }; 853 854 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 855 { 856 int i; 857 858 /* 859 * If node_reclaim_mode is disabled, then no extra effort is made to 860 * allocate memory locally. 861 */ 862 if (!node_reclaim_enabled()) 863 return false; 864 865 /* If there is a count for this node already, it must be acceptable */ 866 if (cc->node_load[nid]) 867 return false; 868 869 for (i = 0; i < MAX_NUMNODES; i++) { 870 if (!cc->node_load[i]) 871 continue; 872 if (node_distance(nid, i) > node_reclaim_distance) 873 return true; 874 } 875 return false; 876 } 877 878 #define khugepaged_defrag() \ 879 (transparent_hugepage_flags & \ 880 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 881 882 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 883 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 884 { 885 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 886 } 887 888 #ifdef CONFIG_NUMA 889 static int hpage_collapse_find_target_node(struct collapse_control *cc) 890 { 891 int nid, target_node = 0, max_value = 0; 892 893 /* find first node with max normal pages hit */ 894 for (nid = 0; nid < MAX_NUMNODES; nid++) 895 if (cc->node_load[nid] > max_value) { 896 max_value = cc->node_load[nid]; 897 target_node = nid; 898 } 899 900 for_each_online_node(nid) { 901 if (max_value == cc->node_load[nid]) 902 node_set(nid, cc->alloc_nmask); 903 } 904 905 return target_node; 906 } 907 #else 908 static int hpage_collapse_find_target_node(struct collapse_control *cc) 909 { 910 return 0; 911 } 912 #endif 913 914 /* 915 * If mmap_lock temporarily dropped, revalidate vma 916 * before taking mmap_lock. 917 * Returns enum scan_result value. 918 */ 919 920 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 921 bool expect_anon, 922 struct vm_area_struct **vmap, 923 struct collapse_control *cc) 924 { 925 struct vm_area_struct *vma; 926 unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0; 927 928 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 929 return SCAN_ANY_PROCESS; 930 931 *vmap = vma = find_vma(mm, address); 932 if (!vma) 933 return SCAN_VMA_NULL; 934 935 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 936 return SCAN_ADDRESS_RANGE; 937 if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER)) 938 return SCAN_VMA_CHECK; 939 /* 940 * Anon VMA expected, the address may be unmapped then 941 * remapped to file after khugepaged reaquired the mmap_lock. 942 * 943 * thp_vma_allowable_order may return true for qualified file 944 * vmas. 945 */ 946 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 947 return SCAN_PAGE_ANON; 948 return SCAN_SUCCEED; 949 } 950 951 static inline int check_pmd_state(pmd_t *pmd) 952 { 953 pmd_t pmde = pmdp_get_lockless(pmd); 954 955 if (pmd_none(pmde)) 956 return SCAN_PMD_NONE; 957 if (!pmd_present(pmde)) 958 return SCAN_PMD_NULL; 959 if (pmd_trans_huge(pmde)) 960 return SCAN_PMD_MAPPED; 961 if (pmd_devmap(pmde)) 962 return SCAN_PMD_NULL; 963 if (pmd_bad(pmde)) 964 return SCAN_PMD_NULL; 965 return SCAN_SUCCEED; 966 } 967 968 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 969 unsigned long address, 970 pmd_t **pmd) 971 { 972 *pmd = mm_find_pmd(mm, address); 973 if (!*pmd) 974 return SCAN_PMD_NULL; 975 976 return check_pmd_state(*pmd); 977 } 978 979 static int check_pmd_still_valid(struct mm_struct *mm, 980 unsigned long address, 981 pmd_t *pmd) 982 { 983 pmd_t *new_pmd; 984 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 985 986 if (result != SCAN_SUCCEED) 987 return result; 988 if (new_pmd != pmd) 989 return SCAN_FAIL; 990 return SCAN_SUCCEED; 991 } 992 993 /* 994 * Bring missing pages in from swap, to complete THP collapse. 995 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 996 * 997 * Called and returns without pte mapped or spinlocks held. 998 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 999 */ 1000 static int __collapse_huge_page_swapin(struct mm_struct *mm, 1001 struct vm_area_struct *vma, 1002 unsigned long haddr, pmd_t *pmd, 1003 int referenced) 1004 { 1005 int swapped_in = 0; 1006 vm_fault_t ret = 0; 1007 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 1008 int result; 1009 pte_t *pte = NULL; 1010 spinlock_t *ptl; 1011 1012 for (address = haddr; address < end; address += PAGE_SIZE) { 1013 struct vm_fault vmf = { 1014 .vma = vma, 1015 .address = address, 1016 .pgoff = linear_page_index(vma, address), 1017 .flags = FAULT_FLAG_ALLOW_RETRY, 1018 .pmd = pmd, 1019 }; 1020 1021 if (!pte++) { 1022 /* 1023 * Here the ptl is only used to check pte_same() in 1024 * do_swap_page(), so readonly version is enough. 1025 */ 1026 pte = pte_offset_map_ro_nolock(mm, pmd, address, &ptl); 1027 if (!pte) { 1028 mmap_read_unlock(mm); 1029 result = SCAN_PMD_NULL; 1030 goto out; 1031 } 1032 } 1033 1034 vmf.orig_pte = ptep_get_lockless(pte); 1035 if (!is_swap_pte(vmf.orig_pte)) 1036 continue; 1037 1038 vmf.pte = pte; 1039 vmf.ptl = ptl; 1040 ret = do_swap_page(&vmf); 1041 /* Which unmaps pte (after perhaps re-checking the entry) */ 1042 pte = NULL; 1043 1044 /* 1045 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1046 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1047 * we do not retry here and swap entry will remain in pagetable 1048 * resulting in later failure. 1049 */ 1050 if (ret & VM_FAULT_RETRY) { 1051 /* Likely, but not guaranteed, that page lock failed */ 1052 result = SCAN_PAGE_LOCK; 1053 goto out; 1054 } 1055 if (ret & VM_FAULT_ERROR) { 1056 mmap_read_unlock(mm); 1057 result = SCAN_FAIL; 1058 goto out; 1059 } 1060 swapped_in++; 1061 } 1062 1063 if (pte) 1064 pte_unmap(pte); 1065 1066 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1067 if (swapped_in) 1068 lru_add_drain(); 1069 1070 result = SCAN_SUCCEED; 1071 out: 1072 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1073 return result; 1074 } 1075 1076 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1077 struct collapse_control *cc) 1078 { 1079 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1080 GFP_TRANSHUGE); 1081 int node = hpage_collapse_find_target_node(cc); 1082 struct folio *folio; 1083 1084 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1085 if (!folio) { 1086 *foliop = NULL; 1087 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1088 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1089 } 1090 1091 count_vm_event(THP_COLLAPSE_ALLOC); 1092 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1093 folio_put(folio); 1094 *foliop = NULL; 1095 return SCAN_CGROUP_CHARGE_FAIL; 1096 } 1097 1098 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1099 1100 *foliop = folio; 1101 return SCAN_SUCCEED; 1102 } 1103 1104 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1105 int referenced, int unmapped, 1106 struct collapse_control *cc) 1107 { 1108 LIST_HEAD(compound_pagelist); 1109 pmd_t *pmd, _pmd; 1110 pte_t *pte; 1111 pgtable_t pgtable; 1112 struct folio *folio; 1113 spinlock_t *pmd_ptl, *pte_ptl; 1114 int result = SCAN_FAIL; 1115 struct vm_area_struct *vma; 1116 struct mmu_notifier_range range; 1117 1118 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1119 1120 /* 1121 * Before allocating the hugepage, release the mmap_lock read lock. 1122 * The allocation can take potentially a long time if it involves 1123 * sync compaction, and we do not need to hold the mmap_lock during 1124 * that. We will recheck the vma after taking it again in write mode. 1125 */ 1126 mmap_read_unlock(mm); 1127 1128 result = alloc_charge_folio(&folio, mm, cc); 1129 if (result != SCAN_SUCCEED) 1130 goto out_nolock; 1131 1132 mmap_read_lock(mm); 1133 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1134 if (result != SCAN_SUCCEED) { 1135 mmap_read_unlock(mm); 1136 goto out_nolock; 1137 } 1138 1139 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1140 if (result != SCAN_SUCCEED) { 1141 mmap_read_unlock(mm); 1142 goto out_nolock; 1143 } 1144 1145 if (unmapped) { 1146 /* 1147 * __collapse_huge_page_swapin will return with mmap_lock 1148 * released when it fails. So we jump out_nolock directly in 1149 * that case. Continuing to collapse causes inconsistency. 1150 */ 1151 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1152 referenced); 1153 if (result != SCAN_SUCCEED) 1154 goto out_nolock; 1155 } 1156 1157 mmap_read_unlock(mm); 1158 /* 1159 * Prevent all access to pagetables with the exception of 1160 * gup_fast later handled by the ptep_clear_flush and the VM 1161 * handled by the anon_vma lock + PG_lock. 1162 * 1163 * UFFDIO_MOVE is prevented to race as well thanks to the 1164 * mmap_lock. 1165 */ 1166 mmap_write_lock(mm); 1167 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1168 if (result != SCAN_SUCCEED) 1169 goto out_up_write; 1170 /* check if the pmd is still valid */ 1171 result = check_pmd_still_valid(mm, address, pmd); 1172 if (result != SCAN_SUCCEED) 1173 goto out_up_write; 1174 1175 vma_start_write(vma); 1176 anon_vma_lock_write(vma->anon_vma); 1177 1178 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1179 address + HPAGE_PMD_SIZE); 1180 mmu_notifier_invalidate_range_start(&range); 1181 1182 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1183 /* 1184 * This removes any huge TLB entry from the CPU so we won't allow 1185 * huge and small TLB entries for the same virtual address to 1186 * avoid the risk of CPU bugs in that area. 1187 * 1188 * Parallel GUP-fast is fine since GUP-fast will back off when 1189 * it detects PMD is changed. 1190 */ 1191 _pmd = pmdp_collapse_flush(vma, address, pmd); 1192 spin_unlock(pmd_ptl); 1193 mmu_notifier_invalidate_range_end(&range); 1194 tlb_remove_table_sync_one(); 1195 1196 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1197 if (pte) { 1198 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1199 &compound_pagelist); 1200 spin_unlock(pte_ptl); 1201 } else { 1202 result = SCAN_PMD_NULL; 1203 } 1204 1205 if (unlikely(result != SCAN_SUCCEED)) { 1206 if (pte) 1207 pte_unmap(pte); 1208 spin_lock(pmd_ptl); 1209 BUG_ON(!pmd_none(*pmd)); 1210 /* 1211 * We can only use set_pmd_at when establishing 1212 * hugepmds and never for establishing regular pmds that 1213 * points to regular pagetables. Use pmd_populate for that 1214 */ 1215 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1216 spin_unlock(pmd_ptl); 1217 anon_vma_unlock_write(vma->anon_vma); 1218 goto out_up_write; 1219 } 1220 1221 /* 1222 * All pages are isolated and locked so anon_vma rmap 1223 * can't run anymore. 1224 */ 1225 anon_vma_unlock_write(vma->anon_vma); 1226 1227 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1228 vma, address, pte_ptl, 1229 &compound_pagelist); 1230 pte_unmap(pte); 1231 if (unlikely(result != SCAN_SUCCEED)) 1232 goto out_up_write; 1233 1234 /* 1235 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1236 * copy_huge_page writes become visible before the set_pmd_at() 1237 * write. 1238 */ 1239 __folio_mark_uptodate(folio); 1240 pgtable = pmd_pgtable(_pmd); 1241 1242 _pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot); 1243 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1244 1245 spin_lock(pmd_ptl); 1246 BUG_ON(!pmd_none(*pmd)); 1247 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 1248 folio_add_lru_vma(folio, vma); 1249 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1250 set_pmd_at(mm, address, pmd, _pmd); 1251 update_mmu_cache_pmd(vma, address, pmd); 1252 deferred_split_folio(folio, false); 1253 spin_unlock(pmd_ptl); 1254 1255 folio = NULL; 1256 1257 result = SCAN_SUCCEED; 1258 out_up_write: 1259 mmap_write_unlock(mm); 1260 out_nolock: 1261 if (folio) 1262 folio_put(folio); 1263 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1264 return result; 1265 } 1266 1267 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1268 struct vm_area_struct *vma, 1269 unsigned long address, bool *mmap_locked, 1270 struct collapse_control *cc) 1271 { 1272 pmd_t *pmd; 1273 pte_t *pte, *_pte; 1274 int result = SCAN_FAIL, referenced = 0; 1275 int none_or_zero = 0, shared = 0; 1276 struct page *page = NULL; 1277 struct folio *folio = NULL; 1278 unsigned long _address; 1279 spinlock_t *ptl; 1280 int node = NUMA_NO_NODE, unmapped = 0; 1281 bool writable = false; 1282 1283 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1284 1285 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1286 if (result != SCAN_SUCCEED) 1287 goto out; 1288 1289 memset(cc->node_load, 0, sizeof(cc->node_load)); 1290 nodes_clear(cc->alloc_nmask); 1291 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1292 if (!pte) { 1293 result = SCAN_PMD_NULL; 1294 goto out; 1295 } 1296 1297 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1298 _pte++, _address += PAGE_SIZE) { 1299 pte_t pteval = ptep_get(_pte); 1300 if (is_swap_pte(pteval)) { 1301 ++unmapped; 1302 if (!cc->is_khugepaged || 1303 unmapped <= khugepaged_max_ptes_swap) { 1304 /* 1305 * Always be strict with uffd-wp 1306 * enabled swap entries. Please see 1307 * comment below for pte_uffd_wp(). 1308 */ 1309 if (pte_swp_uffd_wp_any(pteval)) { 1310 result = SCAN_PTE_UFFD_WP; 1311 goto out_unmap; 1312 } 1313 continue; 1314 } else { 1315 result = SCAN_EXCEED_SWAP_PTE; 1316 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1317 goto out_unmap; 1318 } 1319 } 1320 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1321 ++none_or_zero; 1322 if (!userfaultfd_armed(vma) && 1323 (!cc->is_khugepaged || 1324 none_or_zero <= khugepaged_max_ptes_none)) { 1325 continue; 1326 } else { 1327 result = SCAN_EXCEED_NONE_PTE; 1328 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1329 goto out_unmap; 1330 } 1331 } 1332 if (pte_uffd_wp(pteval)) { 1333 /* 1334 * Don't collapse the page if any of the small 1335 * PTEs are armed with uffd write protection. 1336 * Here we can also mark the new huge pmd as 1337 * write protected if any of the small ones is 1338 * marked but that could bring unknown 1339 * userfault messages that falls outside of 1340 * the registered range. So, just be simple. 1341 */ 1342 result = SCAN_PTE_UFFD_WP; 1343 goto out_unmap; 1344 } 1345 if (pte_write(pteval)) 1346 writable = true; 1347 1348 page = vm_normal_page(vma, _address, pteval); 1349 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1350 result = SCAN_PAGE_NULL; 1351 goto out_unmap; 1352 } 1353 folio = page_folio(page); 1354 1355 if (!folio_test_anon(folio)) { 1356 result = SCAN_PAGE_ANON; 1357 goto out_unmap; 1358 } 1359 1360 /* 1361 * We treat a single page as shared if any part of the THP 1362 * is shared. "False negatives" from 1363 * folio_likely_mapped_shared() are not expected to matter 1364 * much in practice. 1365 */ 1366 if (folio_likely_mapped_shared(folio)) { 1367 ++shared; 1368 if (cc->is_khugepaged && 1369 shared > khugepaged_max_ptes_shared) { 1370 result = SCAN_EXCEED_SHARED_PTE; 1371 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1372 goto out_unmap; 1373 } 1374 } 1375 1376 /* 1377 * Record which node the original page is from and save this 1378 * information to cc->node_load[]. 1379 * Khugepaged will allocate hugepage from the node has the max 1380 * hit record. 1381 */ 1382 node = folio_nid(folio); 1383 if (hpage_collapse_scan_abort(node, cc)) { 1384 result = SCAN_SCAN_ABORT; 1385 goto out_unmap; 1386 } 1387 cc->node_load[node]++; 1388 if (!folio_test_lru(folio)) { 1389 result = SCAN_PAGE_LRU; 1390 goto out_unmap; 1391 } 1392 if (folio_test_locked(folio)) { 1393 result = SCAN_PAGE_LOCK; 1394 goto out_unmap; 1395 } 1396 1397 /* 1398 * Check if the page has any GUP (or other external) pins. 1399 * 1400 * Here the check may be racy: 1401 * it may see folio_mapcount() > folio_ref_count(). 1402 * But such case is ephemeral we could always retry collapse 1403 * later. However it may report false positive if the page 1404 * has excessive GUP pins (i.e. 512). Anyway the same check 1405 * will be done again later the risk seems low. 1406 */ 1407 if (!is_refcount_suitable(folio)) { 1408 result = SCAN_PAGE_COUNT; 1409 goto out_unmap; 1410 } 1411 1412 /* 1413 * If collapse was initiated by khugepaged, check that there is 1414 * enough young pte to justify collapsing the page 1415 */ 1416 if (cc->is_khugepaged && 1417 (pte_young(pteval) || folio_test_young(folio) || 1418 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 1419 address))) 1420 referenced++; 1421 } 1422 if (!writable) { 1423 result = SCAN_PAGE_RO; 1424 } else if (cc->is_khugepaged && 1425 (!referenced || 1426 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1427 result = SCAN_LACK_REFERENCED_PAGE; 1428 } else { 1429 result = SCAN_SUCCEED; 1430 } 1431 out_unmap: 1432 pte_unmap_unlock(pte, ptl); 1433 if (result == SCAN_SUCCEED) { 1434 result = collapse_huge_page(mm, address, referenced, 1435 unmapped, cc); 1436 /* collapse_huge_page will return with the mmap_lock released */ 1437 *mmap_locked = false; 1438 } 1439 out: 1440 trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced, 1441 none_or_zero, result, unmapped); 1442 return result; 1443 } 1444 1445 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1446 { 1447 struct mm_slot *slot = &mm_slot->slot; 1448 struct mm_struct *mm = slot->mm; 1449 1450 lockdep_assert_held(&khugepaged_mm_lock); 1451 1452 if (hpage_collapse_test_exit(mm)) { 1453 /* free mm_slot */ 1454 hash_del(&slot->hash); 1455 list_del(&slot->mm_node); 1456 1457 /* 1458 * Not strictly needed because the mm exited already. 1459 * 1460 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1461 */ 1462 1463 /* khugepaged_mm_lock actually not necessary for the below */ 1464 mm_slot_free(mm_slot_cache, mm_slot); 1465 mmdrop(mm); 1466 } 1467 } 1468 1469 #ifdef CONFIG_SHMEM 1470 /* hpage must be locked, and mmap_lock must be held */ 1471 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1472 pmd_t *pmdp, struct page *hpage) 1473 { 1474 struct vm_fault vmf = { 1475 .vma = vma, 1476 .address = addr, 1477 .flags = 0, 1478 .pmd = pmdp, 1479 }; 1480 1481 VM_BUG_ON(!PageTransHuge(hpage)); 1482 mmap_assert_locked(vma->vm_mm); 1483 1484 if (do_set_pmd(&vmf, hpage)) 1485 return SCAN_FAIL; 1486 1487 get_page(hpage); 1488 return SCAN_SUCCEED; 1489 } 1490 1491 /** 1492 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1493 * address haddr. 1494 * 1495 * @mm: process address space where collapse happens 1496 * @addr: THP collapse address 1497 * @install_pmd: If a huge PMD should be installed 1498 * 1499 * This function checks whether all the PTEs in the PMD are pointing to the 1500 * right THP. If so, retract the page table so the THP can refault in with 1501 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1502 */ 1503 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1504 bool install_pmd) 1505 { 1506 struct mmu_notifier_range range; 1507 bool notified = false; 1508 unsigned long haddr = addr & HPAGE_PMD_MASK; 1509 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1510 struct folio *folio; 1511 pte_t *start_pte, *pte; 1512 pmd_t *pmd, pgt_pmd; 1513 spinlock_t *pml = NULL, *ptl; 1514 int nr_ptes = 0, result = SCAN_FAIL; 1515 int i; 1516 1517 mmap_assert_locked(mm); 1518 1519 /* First check VMA found, in case page tables are being torn down */ 1520 if (!vma || !vma->vm_file || 1521 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1522 return SCAN_VMA_CHECK; 1523 1524 /* Fast check before locking page if already PMD-mapped */ 1525 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1526 if (result == SCAN_PMD_MAPPED) 1527 return result; 1528 1529 /* 1530 * If we are here, we've succeeded in replacing all the native pages 1531 * in the page cache with a single hugepage. If a mm were to fault-in 1532 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1533 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1534 * analogously elide sysfs THP settings here. 1535 */ 1536 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 1537 return SCAN_VMA_CHECK; 1538 1539 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1540 if (userfaultfd_wp(vma)) 1541 return SCAN_PTE_UFFD_WP; 1542 1543 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1544 linear_page_index(vma, haddr)); 1545 if (IS_ERR(folio)) 1546 return SCAN_PAGE_NULL; 1547 1548 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1549 result = SCAN_PAGE_COMPOUND; 1550 goto drop_folio; 1551 } 1552 1553 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1554 switch (result) { 1555 case SCAN_SUCCEED: 1556 break; 1557 case SCAN_PMD_NONE: 1558 /* 1559 * All pte entries have been removed and pmd cleared. 1560 * Skip all the pte checks and just update the pmd mapping. 1561 */ 1562 goto maybe_install_pmd; 1563 default: 1564 goto drop_folio; 1565 } 1566 1567 result = SCAN_FAIL; 1568 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1569 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1570 goto drop_folio; 1571 1572 /* step 1: check all mapped PTEs are to the right huge page */ 1573 for (i = 0, addr = haddr, pte = start_pte; 1574 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1575 struct page *page; 1576 pte_t ptent = ptep_get(pte); 1577 1578 /* empty pte, skip */ 1579 if (pte_none(ptent)) 1580 continue; 1581 1582 /* page swapped out, abort */ 1583 if (!pte_present(ptent)) { 1584 result = SCAN_PTE_NON_PRESENT; 1585 goto abort; 1586 } 1587 1588 page = vm_normal_page(vma, addr, ptent); 1589 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1590 page = NULL; 1591 /* 1592 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1593 * page table, but the new page will not be a subpage of hpage. 1594 */ 1595 if (folio_page(folio, i) != page) 1596 goto abort; 1597 } 1598 1599 pte_unmap_unlock(start_pte, ptl); 1600 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1601 haddr, haddr + HPAGE_PMD_SIZE); 1602 mmu_notifier_invalidate_range_start(&range); 1603 notified = true; 1604 1605 /* 1606 * pmd_lock covers a wider range than ptl, and (if split from mm's 1607 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1608 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1609 * inserts a valid as-if-COWed PTE without even looking up page cache. 1610 * So page lock of folio does not protect from it, so we must not drop 1611 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1612 */ 1613 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1614 pml = pmd_lock(mm, pmd); 1615 1616 start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl); 1617 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1618 goto abort; 1619 if (!pml) 1620 spin_lock(ptl); 1621 else if (ptl != pml) 1622 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1623 1624 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) 1625 goto abort; 1626 1627 /* step 2: clear page table and adjust rmap */ 1628 for (i = 0, addr = haddr, pte = start_pte; 1629 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1630 struct page *page; 1631 pte_t ptent = ptep_get(pte); 1632 1633 if (pte_none(ptent)) 1634 continue; 1635 /* 1636 * We dropped ptl after the first scan, to do the mmu_notifier: 1637 * page lock stops more PTEs of the folio being faulted in, but 1638 * does not stop write faults COWing anon copies from existing 1639 * PTEs; and does not stop those being swapped out or migrated. 1640 */ 1641 if (!pte_present(ptent)) { 1642 result = SCAN_PTE_NON_PRESENT; 1643 goto abort; 1644 } 1645 page = vm_normal_page(vma, addr, ptent); 1646 if (folio_page(folio, i) != page) 1647 goto abort; 1648 1649 /* 1650 * Must clear entry, or a racing truncate may re-remove it. 1651 * TLB flush can be left until pmdp_collapse_flush() does it. 1652 * PTE dirty? Shmem page is already dirty; file is read-only. 1653 */ 1654 ptep_clear(mm, addr, pte); 1655 folio_remove_rmap_pte(folio, page, vma); 1656 nr_ptes++; 1657 } 1658 1659 if (!pml) 1660 spin_unlock(ptl); 1661 1662 /* step 3: set proper refcount and mm_counters. */ 1663 if (nr_ptes) { 1664 folio_ref_sub(folio, nr_ptes); 1665 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1666 } 1667 1668 /* step 4: remove empty page table */ 1669 if (!pml) { 1670 pml = pmd_lock(mm, pmd); 1671 if (ptl != pml) { 1672 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1673 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) { 1674 flush_tlb_mm(mm); 1675 goto unlock; 1676 } 1677 } 1678 } 1679 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1680 pmdp_get_lockless_sync(); 1681 pte_unmap_unlock(start_pte, ptl); 1682 if (ptl != pml) 1683 spin_unlock(pml); 1684 1685 mmu_notifier_invalidate_range_end(&range); 1686 1687 mm_dec_nr_ptes(mm); 1688 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1689 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1690 1691 maybe_install_pmd: 1692 /* step 5: install pmd entry */ 1693 result = install_pmd 1694 ? set_huge_pmd(vma, haddr, pmd, &folio->page) 1695 : SCAN_SUCCEED; 1696 goto drop_folio; 1697 abort: 1698 if (nr_ptes) { 1699 flush_tlb_mm(mm); 1700 folio_ref_sub(folio, nr_ptes); 1701 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1702 } 1703 unlock: 1704 if (start_pte) 1705 pte_unmap_unlock(start_pte, ptl); 1706 if (pml && pml != ptl) 1707 spin_unlock(pml); 1708 if (notified) 1709 mmu_notifier_invalidate_range_end(&range); 1710 drop_folio: 1711 folio_unlock(folio); 1712 folio_put(folio); 1713 return result; 1714 } 1715 1716 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1717 { 1718 struct vm_area_struct *vma; 1719 1720 i_mmap_lock_read(mapping); 1721 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1722 struct mmu_notifier_range range; 1723 struct mm_struct *mm; 1724 unsigned long addr; 1725 pmd_t *pmd, pgt_pmd; 1726 spinlock_t *pml; 1727 spinlock_t *ptl; 1728 bool success = false; 1729 1730 /* 1731 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1732 * got written to. These VMAs are likely not worth removing 1733 * page tables from, as PMD-mapping is likely to be split later. 1734 */ 1735 if (READ_ONCE(vma->anon_vma)) 1736 continue; 1737 1738 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1739 if (addr & ~HPAGE_PMD_MASK || 1740 vma->vm_end < addr + HPAGE_PMD_SIZE) 1741 continue; 1742 1743 mm = vma->vm_mm; 1744 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1745 continue; 1746 1747 if (hpage_collapse_test_exit(mm)) 1748 continue; 1749 /* 1750 * When a vma is registered with uffd-wp, we cannot recycle 1751 * the page table because there may be pte markers installed. 1752 * Other vmas can still have the same file mapped hugely, but 1753 * skip this one: it will always be mapped in small page size 1754 * for uffd-wp registered ranges. 1755 */ 1756 if (userfaultfd_wp(vma)) 1757 continue; 1758 1759 /* PTEs were notified when unmapped; but now for the PMD? */ 1760 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1761 addr, addr + HPAGE_PMD_SIZE); 1762 mmu_notifier_invalidate_range_start(&range); 1763 1764 pml = pmd_lock(mm, pmd); 1765 /* 1766 * The lock of new_folio is still held, we will be blocked in 1767 * the page fault path, which prevents the pte entries from 1768 * being set again. So even though the old empty PTE page may be 1769 * concurrently freed and a new PTE page is filled into the pmd 1770 * entry, it is still empty and can be removed. 1771 * 1772 * So here we only need to recheck if the state of pmd entry 1773 * still meets our requirements, rather than checking pmd_same() 1774 * like elsewhere. 1775 */ 1776 if (check_pmd_state(pmd) != SCAN_SUCCEED) 1777 goto drop_pml; 1778 ptl = pte_lockptr(mm, pmd); 1779 if (ptl != pml) 1780 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1781 1782 /* 1783 * Huge page lock is still held, so normally the page table 1784 * must remain empty; and we have already skipped anon_vma 1785 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1786 * held, it is still possible for a racing userfaultfd_ioctl() 1787 * to have inserted ptes or markers. Now that we hold ptlock, 1788 * repeating the anon_vma check protects from one category, 1789 * and repeating the userfaultfd_wp() check from another. 1790 */ 1791 if (likely(!vma->anon_vma && !userfaultfd_wp(vma))) { 1792 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1793 pmdp_get_lockless_sync(); 1794 success = true; 1795 } 1796 1797 if (ptl != pml) 1798 spin_unlock(ptl); 1799 drop_pml: 1800 spin_unlock(pml); 1801 1802 mmu_notifier_invalidate_range_end(&range); 1803 1804 if (success) { 1805 mm_dec_nr_ptes(mm); 1806 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1807 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1808 } 1809 } 1810 i_mmap_unlock_read(mapping); 1811 } 1812 1813 /** 1814 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1815 * 1816 * @mm: process address space where collapse happens 1817 * @addr: virtual collapse start address 1818 * @file: file that collapse on 1819 * @start: collapse start address 1820 * @cc: collapse context and scratchpad 1821 * 1822 * Basic scheme is simple, details are more complex: 1823 * - allocate and lock a new huge page; 1824 * - scan page cache, locking old pages 1825 * + swap/gup in pages if necessary; 1826 * - copy data to new page 1827 * - handle shmem holes 1828 * + re-validate that holes weren't filled by someone else 1829 * + check for userfaultfd 1830 * - finalize updates to the page cache; 1831 * - if replacing succeeds: 1832 * + unlock huge page; 1833 * + free old pages; 1834 * - if replacing failed; 1835 * + unlock old pages 1836 * + unlock and free huge page; 1837 */ 1838 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1839 struct file *file, pgoff_t start, 1840 struct collapse_control *cc) 1841 { 1842 struct address_space *mapping = file->f_mapping; 1843 struct page *dst; 1844 struct folio *folio, *tmp, *new_folio; 1845 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1846 LIST_HEAD(pagelist); 1847 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1848 int nr_none = 0, result = SCAN_SUCCEED; 1849 bool is_shmem = shmem_file(file); 1850 1851 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1852 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1853 1854 result = alloc_charge_folio(&new_folio, mm, cc); 1855 if (result != SCAN_SUCCEED) 1856 goto out; 1857 1858 mapping_set_update(&xas, mapping); 1859 1860 __folio_set_locked(new_folio); 1861 if (is_shmem) 1862 __folio_set_swapbacked(new_folio); 1863 new_folio->index = start; 1864 new_folio->mapping = mapping; 1865 1866 /* 1867 * Ensure we have slots for all the pages in the range. This is 1868 * almost certainly a no-op because most of the pages must be present 1869 */ 1870 do { 1871 xas_lock_irq(&xas); 1872 xas_create_range(&xas); 1873 if (!xas_error(&xas)) 1874 break; 1875 xas_unlock_irq(&xas); 1876 if (!xas_nomem(&xas, GFP_KERNEL)) { 1877 result = SCAN_FAIL; 1878 goto rollback; 1879 } 1880 } while (1); 1881 1882 for (index = start; index < end;) { 1883 xas_set(&xas, index); 1884 folio = xas_load(&xas); 1885 1886 VM_BUG_ON(index != xas.xa_index); 1887 if (is_shmem) { 1888 if (!folio) { 1889 /* 1890 * Stop if extent has been truncated or 1891 * hole-punched, and is now completely 1892 * empty. 1893 */ 1894 if (index == start) { 1895 if (!xas_next_entry(&xas, end - 1)) { 1896 result = SCAN_TRUNCATED; 1897 goto xa_locked; 1898 } 1899 } 1900 nr_none++; 1901 index++; 1902 continue; 1903 } 1904 1905 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1906 xas_unlock_irq(&xas); 1907 /* swap in or instantiate fallocated page */ 1908 if (shmem_get_folio(mapping->host, index, 0, 1909 &folio, SGP_NOALLOC)) { 1910 result = SCAN_FAIL; 1911 goto xa_unlocked; 1912 } 1913 /* drain lru cache to help folio_isolate_lru() */ 1914 lru_add_drain(); 1915 } else if (folio_trylock(folio)) { 1916 folio_get(folio); 1917 xas_unlock_irq(&xas); 1918 } else { 1919 result = SCAN_PAGE_LOCK; 1920 goto xa_locked; 1921 } 1922 } else { /* !is_shmem */ 1923 if (!folio || xa_is_value(folio)) { 1924 xas_unlock_irq(&xas); 1925 page_cache_sync_readahead(mapping, &file->f_ra, 1926 file, index, 1927 end - index); 1928 /* drain lru cache to help folio_isolate_lru() */ 1929 lru_add_drain(); 1930 folio = filemap_lock_folio(mapping, index); 1931 if (IS_ERR(folio)) { 1932 result = SCAN_FAIL; 1933 goto xa_unlocked; 1934 } 1935 } else if (folio_test_dirty(folio)) { 1936 /* 1937 * khugepaged only works on read-only fd, 1938 * so this page is dirty because it hasn't 1939 * been flushed since first write. There 1940 * won't be new dirty pages. 1941 * 1942 * Trigger async flush here and hope the 1943 * writeback is done when khugepaged 1944 * revisits this page. 1945 * 1946 * This is a one-off situation. We are not 1947 * forcing writeback in loop. 1948 */ 1949 xas_unlock_irq(&xas); 1950 filemap_flush(mapping); 1951 result = SCAN_FAIL; 1952 goto xa_unlocked; 1953 } else if (folio_test_writeback(folio)) { 1954 xas_unlock_irq(&xas); 1955 result = SCAN_FAIL; 1956 goto xa_unlocked; 1957 } else if (folio_trylock(folio)) { 1958 folio_get(folio); 1959 xas_unlock_irq(&xas); 1960 } else { 1961 result = SCAN_PAGE_LOCK; 1962 goto xa_locked; 1963 } 1964 } 1965 1966 /* 1967 * The folio must be locked, so we can drop the i_pages lock 1968 * without racing with truncate. 1969 */ 1970 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1971 1972 /* make sure the folio is up to date */ 1973 if (unlikely(!folio_test_uptodate(folio))) { 1974 result = SCAN_FAIL; 1975 goto out_unlock; 1976 } 1977 1978 /* 1979 * If file was truncated then extended, or hole-punched, before 1980 * we locked the first folio, then a THP might be there already. 1981 * This will be discovered on the first iteration. 1982 */ 1983 if (folio_order(folio) == HPAGE_PMD_ORDER && 1984 folio->index == start) { 1985 /* Maybe PMD-mapped */ 1986 result = SCAN_PTE_MAPPED_HUGEPAGE; 1987 goto out_unlock; 1988 } 1989 1990 if (folio_mapping(folio) != mapping) { 1991 result = SCAN_TRUNCATED; 1992 goto out_unlock; 1993 } 1994 1995 if (!is_shmem && (folio_test_dirty(folio) || 1996 folio_test_writeback(folio))) { 1997 /* 1998 * khugepaged only works on read-only fd, so this 1999 * folio is dirty because it hasn't been flushed 2000 * since first write. 2001 */ 2002 result = SCAN_FAIL; 2003 goto out_unlock; 2004 } 2005 2006 if (!folio_isolate_lru(folio)) { 2007 result = SCAN_DEL_PAGE_LRU; 2008 goto out_unlock; 2009 } 2010 2011 if (!filemap_release_folio(folio, GFP_KERNEL)) { 2012 result = SCAN_PAGE_HAS_PRIVATE; 2013 folio_putback_lru(folio); 2014 goto out_unlock; 2015 } 2016 2017 if (folio_mapped(folio)) 2018 try_to_unmap(folio, 2019 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 2020 2021 xas_lock_irq(&xas); 2022 2023 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 2024 2025 /* 2026 * We control 2 + nr_pages references to the folio: 2027 * - we hold a pin on it; 2028 * - nr_pages reference from page cache; 2029 * - one from lru_isolate_folio; 2030 * If those are the only references, then any new usage 2031 * of the folio will have to fetch it from the page 2032 * cache. That requires locking the folio to handle 2033 * truncate, so any new usage will be blocked until we 2034 * unlock folio after collapse/during rollback. 2035 */ 2036 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) { 2037 result = SCAN_PAGE_COUNT; 2038 xas_unlock_irq(&xas); 2039 folio_putback_lru(folio); 2040 goto out_unlock; 2041 } 2042 2043 /* 2044 * Accumulate the folios that are being collapsed. 2045 */ 2046 list_add_tail(&folio->lru, &pagelist); 2047 index += folio_nr_pages(folio); 2048 continue; 2049 out_unlock: 2050 folio_unlock(folio); 2051 folio_put(folio); 2052 goto xa_unlocked; 2053 } 2054 2055 if (!is_shmem) { 2056 filemap_nr_thps_inc(mapping); 2057 /* 2058 * Paired with the fence in do_dentry_open() -> get_write_access() 2059 * to ensure i_writecount is up to date and the update to nr_thps 2060 * is visible. Ensures the page cache will be truncated if the 2061 * file is opened writable. 2062 */ 2063 smp_mb(); 2064 if (inode_is_open_for_write(mapping->host)) { 2065 result = SCAN_FAIL; 2066 filemap_nr_thps_dec(mapping); 2067 } 2068 } 2069 2070 xa_locked: 2071 xas_unlock_irq(&xas); 2072 xa_unlocked: 2073 2074 /* 2075 * If collapse is successful, flush must be done now before copying. 2076 * If collapse is unsuccessful, does flush actually need to be done? 2077 * Do it anyway, to clear the state. 2078 */ 2079 try_to_unmap_flush(); 2080 2081 if (result == SCAN_SUCCEED && nr_none && 2082 !shmem_charge(mapping->host, nr_none)) 2083 result = SCAN_FAIL; 2084 if (result != SCAN_SUCCEED) { 2085 nr_none = 0; 2086 goto rollback; 2087 } 2088 2089 /* 2090 * The old folios are locked, so they won't change anymore. 2091 */ 2092 index = start; 2093 dst = folio_page(new_folio, 0); 2094 list_for_each_entry(folio, &pagelist, lru) { 2095 int i, nr_pages = folio_nr_pages(folio); 2096 2097 while (index < folio->index) { 2098 clear_highpage(dst); 2099 index++; 2100 dst++; 2101 } 2102 2103 for (i = 0; i < nr_pages; i++) { 2104 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) { 2105 result = SCAN_COPY_MC; 2106 goto rollback; 2107 } 2108 index++; 2109 dst++; 2110 } 2111 } 2112 while (index < end) { 2113 clear_highpage(dst); 2114 index++; 2115 dst++; 2116 } 2117 2118 if (nr_none) { 2119 struct vm_area_struct *vma; 2120 int nr_none_check = 0; 2121 2122 i_mmap_lock_read(mapping); 2123 xas_lock_irq(&xas); 2124 2125 xas_set(&xas, start); 2126 for (index = start; index < end; index++) { 2127 if (!xas_next(&xas)) { 2128 xas_store(&xas, XA_RETRY_ENTRY); 2129 if (xas_error(&xas)) { 2130 result = SCAN_STORE_FAILED; 2131 goto immap_locked; 2132 } 2133 nr_none_check++; 2134 } 2135 } 2136 2137 if (nr_none != nr_none_check) { 2138 result = SCAN_PAGE_FILLED; 2139 goto immap_locked; 2140 } 2141 2142 /* 2143 * If userspace observed a missing page in a VMA with 2144 * a MODE_MISSING userfaultfd, then it might expect a 2145 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2146 * roll back to avoid suppressing such an event. Since 2147 * wp/minor userfaultfds don't give userspace any 2148 * guarantees that the kernel doesn't fill a missing 2149 * page with a zero page, so they don't matter here. 2150 * 2151 * Any userfaultfds registered after this point will 2152 * not be able to observe any missing pages due to the 2153 * previously inserted retry entries. 2154 */ 2155 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2156 if (userfaultfd_missing(vma)) { 2157 result = SCAN_EXCEED_NONE_PTE; 2158 goto immap_locked; 2159 } 2160 } 2161 2162 immap_locked: 2163 i_mmap_unlock_read(mapping); 2164 if (result != SCAN_SUCCEED) { 2165 xas_set(&xas, start); 2166 for (index = start; index < end; index++) { 2167 if (xas_next(&xas) == XA_RETRY_ENTRY) 2168 xas_store(&xas, NULL); 2169 } 2170 2171 xas_unlock_irq(&xas); 2172 goto rollback; 2173 } 2174 } else { 2175 xas_lock_irq(&xas); 2176 } 2177 2178 if (is_shmem) 2179 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2180 else 2181 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2182 2183 if (nr_none) { 2184 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none); 2185 /* nr_none is always 0 for non-shmem. */ 2186 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none); 2187 } 2188 2189 /* 2190 * Mark new_folio as uptodate before inserting it into the 2191 * page cache so that it isn't mistaken for an fallocated but 2192 * unwritten page. 2193 */ 2194 folio_mark_uptodate(new_folio); 2195 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2196 2197 if (is_shmem) 2198 folio_mark_dirty(new_folio); 2199 folio_add_lru(new_folio); 2200 2201 /* Join all the small entries into a single multi-index entry. */ 2202 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2203 xas_store(&xas, new_folio); 2204 WARN_ON_ONCE(xas_error(&xas)); 2205 xas_unlock_irq(&xas); 2206 2207 /* 2208 * Remove pte page tables, so we can re-fault the page as huge. 2209 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2210 */ 2211 retract_page_tables(mapping, start); 2212 if (cc && !cc->is_khugepaged) 2213 result = SCAN_PTE_MAPPED_HUGEPAGE; 2214 folio_unlock(new_folio); 2215 2216 /* 2217 * The collapse has succeeded, so free the old folios. 2218 */ 2219 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2220 list_del(&folio->lru); 2221 folio->mapping = NULL; 2222 folio_clear_active(folio); 2223 folio_clear_unevictable(folio); 2224 folio_unlock(folio); 2225 folio_put_refs(folio, 2 + folio_nr_pages(folio)); 2226 } 2227 2228 goto out; 2229 2230 rollback: 2231 /* Something went wrong: roll back page cache changes */ 2232 if (nr_none) { 2233 xas_lock_irq(&xas); 2234 mapping->nrpages -= nr_none; 2235 xas_unlock_irq(&xas); 2236 shmem_uncharge(mapping->host, nr_none); 2237 } 2238 2239 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2240 list_del(&folio->lru); 2241 folio_unlock(folio); 2242 folio_putback_lru(folio); 2243 folio_put(folio); 2244 } 2245 /* 2246 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2247 * file only. This undo is not needed unless failure is 2248 * due to SCAN_COPY_MC. 2249 */ 2250 if (!is_shmem && result == SCAN_COPY_MC) { 2251 filemap_nr_thps_dec(mapping); 2252 /* 2253 * Paired with the fence in do_dentry_open() -> get_write_access() 2254 * to ensure the update to nr_thps is visible. 2255 */ 2256 smp_mb(); 2257 } 2258 2259 new_folio->mapping = NULL; 2260 2261 folio_unlock(new_folio); 2262 folio_put(new_folio); 2263 out: 2264 VM_BUG_ON(!list_empty(&pagelist)); 2265 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result); 2266 return result; 2267 } 2268 2269 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2270 struct file *file, pgoff_t start, 2271 struct collapse_control *cc) 2272 { 2273 struct folio *folio = NULL; 2274 struct address_space *mapping = file->f_mapping; 2275 XA_STATE(xas, &mapping->i_pages, start); 2276 int present, swap; 2277 int node = NUMA_NO_NODE; 2278 int result = SCAN_SUCCEED; 2279 2280 present = 0; 2281 swap = 0; 2282 memset(cc->node_load, 0, sizeof(cc->node_load)); 2283 nodes_clear(cc->alloc_nmask); 2284 rcu_read_lock(); 2285 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2286 if (xas_retry(&xas, folio)) 2287 continue; 2288 2289 if (xa_is_value(folio)) { 2290 swap += 1 << xas_get_order(&xas); 2291 if (cc->is_khugepaged && 2292 swap > khugepaged_max_ptes_swap) { 2293 result = SCAN_EXCEED_SWAP_PTE; 2294 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2295 break; 2296 } 2297 continue; 2298 } 2299 2300 if (folio_order(folio) == HPAGE_PMD_ORDER && 2301 folio->index == start) { 2302 /* Maybe PMD-mapped */ 2303 result = SCAN_PTE_MAPPED_HUGEPAGE; 2304 /* 2305 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2306 * by the caller won't touch the page cache, and so 2307 * it's safe to skip LRU and refcount checks before 2308 * returning. 2309 */ 2310 break; 2311 } 2312 2313 node = folio_nid(folio); 2314 if (hpage_collapse_scan_abort(node, cc)) { 2315 result = SCAN_SCAN_ABORT; 2316 break; 2317 } 2318 cc->node_load[node]++; 2319 2320 if (!folio_test_lru(folio)) { 2321 result = SCAN_PAGE_LRU; 2322 break; 2323 } 2324 2325 if (!is_refcount_suitable(folio)) { 2326 result = SCAN_PAGE_COUNT; 2327 break; 2328 } 2329 2330 /* 2331 * We probably should check if the folio is referenced 2332 * here, but nobody would transfer pte_young() to 2333 * folio_test_referenced() for us. And rmap walk here 2334 * is just too costly... 2335 */ 2336 2337 present += folio_nr_pages(folio); 2338 2339 if (need_resched()) { 2340 xas_pause(&xas); 2341 cond_resched_rcu(); 2342 } 2343 } 2344 rcu_read_unlock(); 2345 2346 if (result == SCAN_SUCCEED) { 2347 if (cc->is_khugepaged && 2348 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2349 result = SCAN_EXCEED_NONE_PTE; 2350 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2351 } else { 2352 result = collapse_file(mm, addr, file, start, cc); 2353 } 2354 } 2355 2356 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2357 return result; 2358 } 2359 #else 2360 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2361 struct file *file, pgoff_t start, 2362 struct collapse_control *cc) 2363 { 2364 BUILD_BUG(); 2365 } 2366 #endif 2367 2368 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2369 struct collapse_control *cc) 2370 __releases(&khugepaged_mm_lock) 2371 __acquires(&khugepaged_mm_lock) 2372 { 2373 struct vma_iterator vmi; 2374 struct khugepaged_mm_slot *mm_slot; 2375 struct mm_slot *slot; 2376 struct mm_struct *mm; 2377 struct vm_area_struct *vma; 2378 int progress = 0; 2379 2380 VM_BUG_ON(!pages); 2381 lockdep_assert_held(&khugepaged_mm_lock); 2382 *result = SCAN_FAIL; 2383 2384 if (khugepaged_scan.mm_slot) { 2385 mm_slot = khugepaged_scan.mm_slot; 2386 slot = &mm_slot->slot; 2387 } else { 2388 slot = list_entry(khugepaged_scan.mm_head.next, 2389 struct mm_slot, mm_node); 2390 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2391 khugepaged_scan.address = 0; 2392 khugepaged_scan.mm_slot = mm_slot; 2393 } 2394 spin_unlock(&khugepaged_mm_lock); 2395 2396 mm = slot->mm; 2397 /* 2398 * Don't wait for semaphore (to avoid long wait times). Just move to 2399 * the next mm on the list. 2400 */ 2401 vma = NULL; 2402 if (unlikely(!mmap_read_trylock(mm))) 2403 goto breakouterloop_mmap_lock; 2404 2405 progress++; 2406 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2407 goto breakouterloop; 2408 2409 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2410 for_each_vma(vmi, vma) { 2411 unsigned long hstart, hend; 2412 2413 cond_resched(); 2414 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2415 progress++; 2416 break; 2417 } 2418 if (!thp_vma_allowable_order(vma, vma->vm_flags, 2419 TVA_ENFORCE_SYSFS, PMD_ORDER)) { 2420 skip: 2421 progress++; 2422 continue; 2423 } 2424 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2425 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2426 if (khugepaged_scan.address > hend) 2427 goto skip; 2428 if (khugepaged_scan.address < hstart) 2429 khugepaged_scan.address = hstart; 2430 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2431 2432 while (khugepaged_scan.address < hend) { 2433 bool mmap_locked = true; 2434 2435 cond_resched(); 2436 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2437 goto breakouterloop; 2438 2439 VM_BUG_ON(khugepaged_scan.address < hstart || 2440 khugepaged_scan.address + HPAGE_PMD_SIZE > 2441 hend); 2442 if (IS_ENABLED(CONFIG_SHMEM) && !vma_is_anonymous(vma)) { 2443 struct file *file = get_file(vma->vm_file); 2444 pgoff_t pgoff = linear_page_index(vma, 2445 khugepaged_scan.address); 2446 2447 mmap_read_unlock(mm); 2448 mmap_locked = false; 2449 *result = hpage_collapse_scan_file(mm, 2450 khugepaged_scan.address, file, pgoff, cc); 2451 fput(file); 2452 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2453 mmap_read_lock(mm); 2454 if (hpage_collapse_test_exit_or_disable(mm)) 2455 goto breakouterloop; 2456 *result = collapse_pte_mapped_thp(mm, 2457 khugepaged_scan.address, false); 2458 if (*result == SCAN_PMD_MAPPED) 2459 *result = SCAN_SUCCEED; 2460 mmap_read_unlock(mm); 2461 } 2462 } else { 2463 *result = hpage_collapse_scan_pmd(mm, vma, 2464 khugepaged_scan.address, &mmap_locked, cc); 2465 } 2466 2467 if (*result == SCAN_SUCCEED) 2468 ++khugepaged_pages_collapsed; 2469 2470 /* move to next address */ 2471 khugepaged_scan.address += HPAGE_PMD_SIZE; 2472 progress += HPAGE_PMD_NR; 2473 if (!mmap_locked) 2474 /* 2475 * We released mmap_lock so break loop. Note 2476 * that we drop mmap_lock before all hugepage 2477 * allocations, so if allocation fails, we are 2478 * guaranteed to break here and report the 2479 * correct result back to caller. 2480 */ 2481 goto breakouterloop_mmap_lock; 2482 if (progress >= pages) 2483 goto breakouterloop; 2484 } 2485 } 2486 breakouterloop: 2487 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2488 breakouterloop_mmap_lock: 2489 2490 spin_lock(&khugepaged_mm_lock); 2491 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2492 /* 2493 * Release the current mm_slot if this mm is about to die, or 2494 * if we scanned all vmas of this mm. 2495 */ 2496 if (hpage_collapse_test_exit(mm) || !vma) { 2497 /* 2498 * Make sure that if mm_users is reaching zero while 2499 * khugepaged runs here, khugepaged_exit will find 2500 * mm_slot not pointing to the exiting mm. 2501 */ 2502 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2503 slot = list_entry(slot->mm_node.next, 2504 struct mm_slot, mm_node); 2505 khugepaged_scan.mm_slot = 2506 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2507 khugepaged_scan.address = 0; 2508 } else { 2509 khugepaged_scan.mm_slot = NULL; 2510 khugepaged_full_scans++; 2511 } 2512 2513 collect_mm_slot(mm_slot); 2514 } 2515 2516 return progress; 2517 } 2518 2519 static int khugepaged_has_work(void) 2520 { 2521 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); 2522 } 2523 2524 static int khugepaged_wait_event(void) 2525 { 2526 return !list_empty(&khugepaged_scan.mm_head) || 2527 kthread_should_stop(); 2528 } 2529 2530 static void khugepaged_do_scan(struct collapse_control *cc) 2531 { 2532 unsigned int progress = 0, pass_through_head = 0; 2533 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2534 bool wait = true; 2535 int result = SCAN_SUCCEED; 2536 2537 lru_add_drain_all(); 2538 2539 while (true) { 2540 cond_resched(); 2541 2542 if (unlikely(kthread_should_stop())) 2543 break; 2544 2545 spin_lock(&khugepaged_mm_lock); 2546 if (!khugepaged_scan.mm_slot) 2547 pass_through_head++; 2548 if (khugepaged_has_work() && 2549 pass_through_head < 2) 2550 progress += khugepaged_scan_mm_slot(pages - progress, 2551 &result, cc); 2552 else 2553 progress = pages; 2554 spin_unlock(&khugepaged_mm_lock); 2555 2556 if (progress >= pages) 2557 break; 2558 2559 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2560 /* 2561 * If fail to allocate the first time, try to sleep for 2562 * a while. When hit again, cancel the scan. 2563 */ 2564 if (!wait) 2565 break; 2566 wait = false; 2567 khugepaged_alloc_sleep(); 2568 } 2569 } 2570 } 2571 2572 static bool khugepaged_should_wakeup(void) 2573 { 2574 return kthread_should_stop() || 2575 time_after_eq(jiffies, khugepaged_sleep_expire); 2576 } 2577 2578 static void khugepaged_wait_work(void) 2579 { 2580 if (khugepaged_has_work()) { 2581 const unsigned long scan_sleep_jiffies = 2582 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2583 2584 if (!scan_sleep_jiffies) 2585 return; 2586 2587 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2588 wait_event_freezable_timeout(khugepaged_wait, 2589 khugepaged_should_wakeup(), 2590 scan_sleep_jiffies); 2591 return; 2592 } 2593 2594 if (hugepage_pmd_enabled()) 2595 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2596 } 2597 2598 static int khugepaged(void *none) 2599 { 2600 struct khugepaged_mm_slot *mm_slot; 2601 2602 set_freezable(); 2603 set_user_nice(current, MAX_NICE); 2604 2605 while (!kthread_should_stop()) { 2606 khugepaged_do_scan(&khugepaged_collapse_control); 2607 khugepaged_wait_work(); 2608 } 2609 2610 spin_lock(&khugepaged_mm_lock); 2611 mm_slot = khugepaged_scan.mm_slot; 2612 khugepaged_scan.mm_slot = NULL; 2613 if (mm_slot) 2614 collect_mm_slot(mm_slot); 2615 spin_unlock(&khugepaged_mm_lock); 2616 return 0; 2617 } 2618 2619 static void set_recommended_min_free_kbytes(void) 2620 { 2621 struct zone *zone; 2622 int nr_zones = 0; 2623 unsigned long recommended_min; 2624 2625 if (!hugepage_pmd_enabled()) { 2626 calculate_min_free_kbytes(); 2627 goto update_wmarks; 2628 } 2629 2630 for_each_populated_zone(zone) { 2631 /* 2632 * We don't need to worry about fragmentation of 2633 * ZONE_MOVABLE since it only has movable pages. 2634 */ 2635 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2636 continue; 2637 2638 nr_zones++; 2639 } 2640 2641 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2642 recommended_min = pageblock_nr_pages * nr_zones * 2; 2643 2644 /* 2645 * Make sure that on average at least two pageblocks are almost free 2646 * of another type, one for a migratetype to fall back to and a 2647 * second to avoid subsequent fallbacks of other types There are 3 2648 * MIGRATE_TYPES we care about. 2649 */ 2650 recommended_min += pageblock_nr_pages * nr_zones * 2651 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2652 2653 /* don't ever allow to reserve more than 5% of the lowmem */ 2654 recommended_min = min(recommended_min, 2655 (unsigned long) nr_free_buffer_pages() / 20); 2656 recommended_min <<= (PAGE_SHIFT-10); 2657 2658 if (recommended_min > min_free_kbytes) { 2659 if (user_min_free_kbytes >= 0) 2660 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2661 min_free_kbytes, recommended_min); 2662 2663 min_free_kbytes = recommended_min; 2664 } 2665 2666 update_wmarks: 2667 setup_per_zone_wmarks(); 2668 } 2669 2670 int start_stop_khugepaged(void) 2671 { 2672 int err = 0; 2673 2674 mutex_lock(&khugepaged_mutex); 2675 if (hugepage_pmd_enabled()) { 2676 if (!khugepaged_thread) 2677 khugepaged_thread = kthread_run(khugepaged, NULL, 2678 "khugepaged"); 2679 if (IS_ERR(khugepaged_thread)) { 2680 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2681 err = PTR_ERR(khugepaged_thread); 2682 khugepaged_thread = NULL; 2683 goto fail; 2684 } 2685 2686 if (!list_empty(&khugepaged_scan.mm_head)) 2687 wake_up_interruptible(&khugepaged_wait); 2688 } else if (khugepaged_thread) { 2689 kthread_stop(khugepaged_thread); 2690 khugepaged_thread = NULL; 2691 } 2692 set_recommended_min_free_kbytes(); 2693 fail: 2694 mutex_unlock(&khugepaged_mutex); 2695 return err; 2696 } 2697 2698 void khugepaged_min_free_kbytes_update(void) 2699 { 2700 mutex_lock(&khugepaged_mutex); 2701 if (hugepage_pmd_enabled() && khugepaged_thread) 2702 set_recommended_min_free_kbytes(); 2703 mutex_unlock(&khugepaged_mutex); 2704 } 2705 2706 bool current_is_khugepaged(void) 2707 { 2708 return kthread_func(current) == khugepaged; 2709 } 2710 2711 static int madvise_collapse_errno(enum scan_result r) 2712 { 2713 /* 2714 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2715 * actionable feedback to caller, so they may take an appropriate 2716 * fallback measure depending on the nature of the failure. 2717 */ 2718 switch (r) { 2719 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2720 return -ENOMEM; 2721 case SCAN_CGROUP_CHARGE_FAIL: 2722 case SCAN_EXCEED_NONE_PTE: 2723 return -EBUSY; 2724 /* Resource temporary unavailable - trying again might succeed */ 2725 case SCAN_PAGE_COUNT: 2726 case SCAN_PAGE_LOCK: 2727 case SCAN_PAGE_LRU: 2728 case SCAN_DEL_PAGE_LRU: 2729 case SCAN_PAGE_FILLED: 2730 return -EAGAIN; 2731 /* 2732 * Other: Trying again likely not to succeed / error intrinsic to 2733 * specified memory range. khugepaged likely won't be able to collapse 2734 * either. 2735 */ 2736 default: 2737 return -EINVAL; 2738 } 2739 } 2740 2741 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2742 unsigned long start, unsigned long end) 2743 { 2744 struct collapse_control *cc; 2745 struct mm_struct *mm = vma->vm_mm; 2746 unsigned long hstart, hend, addr; 2747 int thps = 0, last_fail = SCAN_FAIL; 2748 bool mmap_locked = true; 2749 2750 BUG_ON(vma->vm_start > start); 2751 BUG_ON(vma->vm_end < end); 2752 2753 *prev = vma; 2754 2755 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 2756 return -EINVAL; 2757 2758 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2759 if (!cc) 2760 return -ENOMEM; 2761 cc->is_khugepaged = false; 2762 2763 mmgrab(mm); 2764 lru_add_drain_all(); 2765 2766 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2767 hend = end & HPAGE_PMD_MASK; 2768 2769 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2770 int result = SCAN_FAIL; 2771 2772 if (!mmap_locked) { 2773 cond_resched(); 2774 mmap_read_lock(mm); 2775 mmap_locked = true; 2776 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2777 cc); 2778 if (result != SCAN_SUCCEED) { 2779 last_fail = result; 2780 goto out_nolock; 2781 } 2782 2783 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2784 } 2785 mmap_assert_locked(mm); 2786 memset(cc->node_load, 0, sizeof(cc->node_load)); 2787 nodes_clear(cc->alloc_nmask); 2788 if (IS_ENABLED(CONFIG_SHMEM) && !vma_is_anonymous(vma)) { 2789 struct file *file = get_file(vma->vm_file); 2790 pgoff_t pgoff = linear_page_index(vma, addr); 2791 2792 mmap_read_unlock(mm); 2793 mmap_locked = false; 2794 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2795 cc); 2796 fput(file); 2797 } else { 2798 result = hpage_collapse_scan_pmd(mm, vma, addr, 2799 &mmap_locked, cc); 2800 } 2801 if (!mmap_locked) 2802 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2803 2804 handle_result: 2805 switch (result) { 2806 case SCAN_SUCCEED: 2807 case SCAN_PMD_MAPPED: 2808 ++thps; 2809 break; 2810 case SCAN_PTE_MAPPED_HUGEPAGE: 2811 BUG_ON(mmap_locked); 2812 BUG_ON(*prev); 2813 mmap_read_lock(mm); 2814 result = collapse_pte_mapped_thp(mm, addr, true); 2815 mmap_read_unlock(mm); 2816 goto handle_result; 2817 /* Whitelisted set of results where continuing OK */ 2818 case SCAN_PMD_NULL: 2819 case SCAN_PTE_NON_PRESENT: 2820 case SCAN_PTE_UFFD_WP: 2821 case SCAN_PAGE_RO: 2822 case SCAN_LACK_REFERENCED_PAGE: 2823 case SCAN_PAGE_NULL: 2824 case SCAN_PAGE_COUNT: 2825 case SCAN_PAGE_LOCK: 2826 case SCAN_PAGE_COMPOUND: 2827 case SCAN_PAGE_LRU: 2828 case SCAN_DEL_PAGE_LRU: 2829 last_fail = result; 2830 break; 2831 default: 2832 last_fail = result; 2833 /* Other error, exit */ 2834 goto out_maybelock; 2835 } 2836 } 2837 2838 out_maybelock: 2839 /* Caller expects us to hold mmap_lock on return */ 2840 if (!mmap_locked) 2841 mmap_read_lock(mm); 2842 out_nolock: 2843 mmap_assert_locked(mm); 2844 mmdrop(mm); 2845 kfree(cc); 2846 2847 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2848 : madvise_collapse_errno(last_fail); 2849 } 2850