xref: /linux/mm/khugepaged.c (revision d53b8e36925256097a08d7cb749198d85cbf9b2b)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/rcupdate_wait.h>
21 #include <linux/swapops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/ksm.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 #include "mm_slot.h"
29 
30 enum scan_result {
31 	SCAN_FAIL,
32 	SCAN_SUCCEED,
33 	SCAN_PMD_NULL,
34 	SCAN_PMD_NONE,
35 	SCAN_PMD_MAPPED,
36 	SCAN_EXCEED_NONE_PTE,
37 	SCAN_EXCEED_SWAP_PTE,
38 	SCAN_EXCEED_SHARED_PTE,
39 	SCAN_PTE_NON_PRESENT,
40 	SCAN_PTE_UFFD_WP,
41 	SCAN_PTE_MAPPED_HUGEPAGE,
42 	SCAN_PAGE_RO,
43 	SCAN_LACK_REFERENCED_PAGE,
44 	SCAN_PAGE_NULL,
45 	SCAN_SCAN_ABORT,
46 	SCAN_PAGE_COUNT,
47 	SCAN_PAGE_LRU,
48 	SCAN_PAGE_LOCK,
49 	SCAN_PAGE_ANON,
50 	SCAN_PAGE_COMPOUND,
51 	SCAN_ANY_PROCESS,
52 	SCAN_VMA_NULL,
53 	SCAN_VMA_CHECK,
54 	SCAN_ADDRESS_RANGE,
55 	SCAN_DEL_PAGE_LRU,
56 	SCAN_ALLOC_HUGE_PAGE_FAIL,
57 	SCAN_CGROUP_CHARGE_FAIL,
58 	SCAN_TRUNCATED,
59 	SCAN_PAGE_HAS_PRIVATE,
60 	SCAN_STORE_FAILED,
61 	SCAN_COPY_MC,
62 	SCAN_PAGE_FILLED,
63 };
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/huge_memory.h>
67 
68 static struct task_struct *khugepaged_thread __read_mostly;
69 static DEFINE_MUTEX(khugepaged_mutex);
70 
71 /* default scan 8*512 pte (or vmas) every 30 second */
72 static unsigned int khugepaged_pages_to_scan __read_mostly;
73 static unsigned int khugepaged_pages_collapsed;
74 static unsigned int khugepaged_full_scans;
75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
76 /* during fragmentation poll the hugepage allocator once every minute */
77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
78 static unsigned long khugepaged_sleep_expire;
79 static DEFINE_SPINLOCK(khugepaged_mm_lock);
80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
81 /*
82  * default collapse hugepages if there is at least one pte mapped like
83  * it would have happened if the vma was large enough during page
84  * fault.
85  *
86  * Note that these are only respected if collapse was initiated by khugepaged.
87  */
88 static unsigned int khugepaged_max_ptes_none __read_mostly;
89 static unsigned int khugepaged_max_ptes_swap __read_mostly;
90 static unsigned int khugepaged_max_ptes_shared __read_mostly;
91 
92 #define MM_SLOTS_HASH_BITS 10
93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
94 
95 static struct kmem_cache *mm_slot_cache __ro_after_init;
96 
97 struct collapse_control {
98 	bool is_khugepaged;
99 
100 	/* Num pages scanned per node */
101 	u32 node_load[MAX_NUMNODES];
102 
103 	/* nodemask for allocation fallback */
104 	nodemask_t alloc_nmask;
105 };
106 
107 /**
108  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
109  * @slot: hash lookup from mm to mm_slot
110  */
111 struct khugepaged_mm_slot {
112 	struct mm_slot slot;
113 };
114 
115 /**
116  * struct khugepaged_scan - cursor for scanning
117  * @mm_head: the head of the mm list to scan
118  * @mm_slot: the current mm_slot we are scanning
119  * @address: the next address inside that to be scanned
120  *
121  * There is only the one khugepaged_scan instance of this cursor structure.
122  */
123 struct khugepaged_scan {
124 	struct list_head mm_head;
125 	struct khugepaged_mm_slot *mm_slot;
126 	unsigned long address;
127 };
128 
129 static struct khugepaged_scan khugepaged_scan = {
130 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
131 };
132 
133 #ifdef CONFIG_SYSFS
134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
135 					 struct kobj_attribute *attr,
136 					 char *buf)
137 {
138 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
139 }
140 
141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
142 					  struct kobj_attribute *attr,
143 					  const char *buf, size_t count)
144 {
145 	unsigned int msecs;
146 	int err;
147 
148 	err = kstrtouint(buf, 10, &msecs);
149 	if (err)
150 		return -EINVAL;
151 
152 	khugepaged_scan_sleep_millisecs = msecs;
153 	khugepaged_sleep_expire = 0;
154 	wake_up_interruptible(&khugepaged_wait);
155 
156 	return count;
157 }
158 static struct kobj_attribute scan_sleep_millisecs_attr =
159 	__ATTR_RW(scan_sleep_millisecs);
160 
161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
162 					  struct kobj_attribute *attr,
163 					  char *buf)
164 {
165 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
166 }
167 
168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
169 					   struct kobj_attribute *attr,
170 					   const char *buf, size_t count)
171 {
172 	unsigned int msecs;
173 	int err;
174 
175 	err = kstrtouint(buf, 10, &msecs);
176 	if (err)
177 		return -EINVAL;
178 
179 	khugepaged_alloc_sleep_millisecs = msecs;
180 	khugepaged_sleep_expire = 0;
181 	wake_up_interruptible(&khugepaged_wait);
182 
183 	return count;
184 }
185 static struct kobj_attribute alloc_sleep_millisecs_attr =
186 	__ATTR_RW(alloc_sleep_millisecs);
187 
188 static ssize_t pages_to_scan_show(struct kobject *kobj,
189 				  struct kobj_attribute *attr,
190 				  char *buf)
191 {
192 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
193 }
194 static ssize_t pages_to_scan_store(struct kobject *kobj,
195 				   struct kobj_attribute *attr,
196 				   const char *buf, size_t count)
197 {
198 	unsigned int pages;
199 	int err;
200 
201 	err = kstrtouint(buf, 10, &pages);
202 	if (err || !pages)
203 		return -EINVAL;
204 
205 	khugepaged_pages_to_scan = pages;
206 
207 	return count;
208 }
209 static struct kobj_attribute pages_to_scan_attr =
210 	__ATTR_RW(pages_to_scan);
211 
212 static ssize_t pages_collapsed_show(struct kobject *kobj,
213 				    struct kobj_attribute *attr,
214 				    char *buf)
215 {
216 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
217 }
218 static struct kobj_attribute pages_collapsed_attr =
219 	__ATTR_RO(pages_collapsed);
220 
221 static ssize_t full_scans_show(struct kobject *kobj,
222 			       struct kobj_attribute *attr,
223 			       char *buf)
224 {
225 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
226 }
227 static struct kobj_attribute full_scans_attr =
228 	__ATTR_RO(full_scans);
229 
230 static ssize_t defrag_show(struct kobject *kobj,
231 			   struct kobj_attribute *attr, char *buf)
232 {
233 	return single_hugepage_flag_show(kobj, attr, buf,
234 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
235 }
236 static ssize_t defrag_store(struct kobject *kobj,
237 			    struct kobj_attribute *attr,
238 			    const char *buf, size_t count)
239 {
240 	return single_hugepage_flag_store(kobj, attr, buf, count,
241 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
242 }
243 static struct kobj_attribute khugepaged_defrag_attr =
244 	__ATTR_RW(defrag);
245 
246 /*
247  * max_ptes_none controls if khugepaged should collapse hugepages over
248  * any unmapped ptes in turn potentially increasing the memory
249  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
250  * reduce the available free memory in the system as it
251  * runs. Increasing max_ptes_none will instead potentially reduce the
252  * free memory in the system during the khugepaged scan.
253  */
254 static ssize_t max_ptes_none_show(struct kobject *kobj,
255 				  struct kobj_attribute *attr,
256 				  char *buf)
257 {
258 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
259 }
260 static ssize_t max_ptes_none_store(struct kobject *kobj,
261 				   struct kobj_attribute *attr,
262 				   const char *buf, size_t count)
263 {
264 	int err;
265 	unsigned long max_ptes_none;
266 
267 	err = kstrtoul(buf, 10, &max_ptes_none);
268 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
269 		return -EINVAL;
270 
271 	khugepaged_max_ptes_none = max_ptes_none;
272 
273 	return count;
274 }
275 static struct kobj_attribute khugepaged_max_ptes_none_attr =
276 	__ATTR_RW(max_ptes_none);
277 
278 static ssize_t max_ptes_swap_show(struct kobject *kobj,
279 				  struct kobj_attribute *attr,
280 				  char *buf)
281 {
282 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
283 }
284 
285 static ssize_t max_ptes_swap_store(struct kobject *kobj,
286 				   struct kobj_attribute *attr,
287 				   const char *buf, size_t count)
288 {
289 	int err;
290 	unsigned long max_ptes_swap;
291 
292 	err  = kstrtoul(buf, 10, &max_ptes_swap);
293 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
294 		return -EINVAL;
295 
296 	khugepaged_max_ptes_swap = max_ptes_swap;
297 
298 	return count;
299 }
300 
301 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
302 	__ATTR_RW(max_ptes_swap);
303 
304 static ssize_t max_ptes_shared_show(struct kobject *kobj,
305 				    struct kobj_attribute *attr,
306 				    char *buf)
307 {
308 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
309 }
310 
311 static ssize_t max_ptes_shared_store(struct kobject *kobj,
312 				     struct kobj_attribute *attr,
313 				     const char *buf, size_t count)
314 {
315 	int err;
316 	unsigned long max_ptes_shared;
317 
318 	err  = kstrtoul(buf, 10, &max_ptes_shared);
319 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
320 		return -EINVAL;
321 
322 	khugepaged_max_ptes_shared = max_ptes_shared;
323 
324 	return count;
325 }
326 
327 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
328 	__ATTR_RW(max_ptes_shared);
329 
330 static struct attribute *khugepaged_attr[] = {
331 	&khugepaged_defrag_attr.attr,
332 	&khugepaged_max_ptes_none_attr.attr,
333 	&khugepaged_max_ptes_swap_attr.attr,
334 	&khugepaged_max_ptes_shared_attr.attr,
335 	&pages_to_scan_attr.attr,
336 	&pages_collapsed_attr.attr,
337 	&full_scans_attr.attr,
338 	&scan_sleep_millisecs_attr.attr,
339 	&alloc_sleep_millisecs_attr.attr,
340 	NULL,
341 };
342 
343 struct attribute_group khugepaged_attr_group = {
344 	.attrs = khugepaged_attr,
345 	.name = "khugepaged",
346 };
347 #endif /* CONFIG_SYSFS */
348 
349 int hugepage_madvise(struct vm_area_struct *vma,
350 		     unsigned long *vm_flags, int advice)
351 {
352 	switch (advice) {
353 	case MADV_HUGEPAGE:
354 #ifdef CONFIG_S390
355 		/*
356 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
357 		 * can't handle this properly after s390_enable_sie, so we simply
358 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
359 		 */
360 		if (mm_has_pgste(vma->vm_mm))
361 			return 0;
362 #endif
363 		*vm_flags &= ~VM_NOHUGEPAGE;
364 		*vm_flags |= VM_HUGEPAGE;
365 		/*
366 		 * If the vma become good for khugepaged to scan,
367 		 * register it here without waiting a page fault that
368 		 * may not happen any time soon.
369 		 */
370 		khugepaged_enter_vma(vma, *vm_flags);
371 		break;
372 	case MADV_NOHUGEPAGE:
373 		*vm_flags &= ~VM_HUGEPAGE;
374 		*vm_flags |= VM_NOHUGEPAGE;
375 		/*
376 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 		 * this vma even if we leave the mm registered in khugepaged if
378 		 * it got registered before VM_NOHUGEPAGE was set.
379 		 */
380 		break;
381 	}
382 
383 	return 0;
384 }
385 
386 int __init khugepaged_init(void)
387 {
388 	mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0);
389 	if (!mm_slot_cache)
390 		return -ENOMEM;
391 
392 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
393 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
394 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
395 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
396 
397 	return 0;
398 }
399 
400 void __init khugepaged_destroy(void)
401 {
402 	kmem_cache_destroy(mm_slot_cache);
403 }
404 
405 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
406 {
407 	return atomic_read(&mm->mm_users) == 0;
408 }
409 
410 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
411 {
412 	return hpage_collapse_test_exit(mm) ||
413 	       test_bit(MMF_DISABLE_THP, &mm->flags);
414 }
415 
416 static bool hugepage_pmd_enabled(void)
417 {
418 	/*
419 	 * We cover both the anon and the file-backed case here; file-backed
420 	 * hugepages, when configured in, are determined by the global control.
421 	 * Anon pmd-sized hugepages are determined by the pmd-size control.
422 	 */
423 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
424 	    hugepage_global_enabled())
425 		return true;
426 	if (test_bit(PMD_ORDER, &huge_anon_orders_always))
427 		return true;
428 	if (test_bit(PMD_ORDER, &huge_anon_orders_madvise))
429 		return true;
430 	if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) &&
431 	    hugepage_global_enabled())
432 		return true;
433 	return false;
434 }
435 
436 void __khugepaged_enter(struct mm_struct *mm)
437 {
438 	struct khugepaged_mm_slot *mm_slot;
439 	struct mm_slot *slot;
440 	int wakeup;
441 
442 	/* __khugepaged_exit() must not run from under us */
443 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
444 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
445 		return;
446 
447 	mm_slot = mm_slot_alloc(mm_slot_cache);
448 	if (!mm_slot)
449 		return;
450 
451 	slot = &mm_slot->slot;
452 
453 	spin_lock(&khugepaged_mm_lock);
454 	mm_slot_insert(mm_slots_hash, mm, slot);
455 	/*
456 	 * Insert just behind the scanning cursor, to let the area settle
457 	 * down a little.
458 	 */
459 	wakeup = list_empty(&khugepaged_scan.mm_head);
460 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
461 	spin_unlock(&khugepaged_mm_lock);
462 
463 	mmgrab(mm);
464 	if (wakeup)
465 		wake_up_interruptible(&khugepaged_wait);
466 }
467 
468 void khugepaged_enter_vma(struct vm_area_struct *vma,
469 			  unsigned long vm_flags)
470 {
471 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
472 	    hugepage_pmd_enabled()) {
473 		if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS,
474 					    PMD_ORDER))
475 			__khugepaged_enter(vma->vm_mm);
476 	}
477 }
478 
479 void __khugepaged_exit(struct mm_struct *mm)
480 {
481 	struct khugepaged_mm_slot *mm_slot;
482 	struct mm_slot *slot;
483 	int free = 0;
484 
485 	spin_lock(&khugepaged_mm_lock);
486 	slot = mm_slot_lookup(mm_slots_hash, mm);
487 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
488 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
489 		hash_del(&slot->hash);
490 		list_del(&slot->mm_node);
491 		free = 1;
492 	}
493 	spin_unlock(&khugepaged_mm_lock);
494 
495 	if (free) {
496 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
497 		mm_slot_free(mm_slot_cache, mm_slot);
498 		mmdrop(mm);
499 	} else if (mm_slot) {
500 		/*
501 		 * This is required to serialize against
502 		 * hpage_collapse_test_exit() (which is guaranteed to run
503 		 * under mmap sem read mode). Stop here (after we return all
504 		 * pagetables will be destroyed) until khugepaged has finished
505 		 * working on the pagetables under the mmap_lock.
506 		 */
507 		mmap_write_lock(mm);
508 		mmap_write_unlock(mm);
509 	}
510 }
511 
512 static void release_pte_folio(struct folio *folio)
513 {
514 	node_stat_mod_folio(folio,
515 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
516 			-folio_nr_pages(folio));
517 	folio_unlock(folio);
518 	folio_putback_lru(folio);
519 }
520 
521 static void release_pte_pages(pte_t *pte, pte_t *_pte,
522 		struct list_head *compound_pagelist)
523 {
524 	struct folio *folio, *tmp;
525 
526 	while (--_pte >= pte) {
527 		pte_t pteval = ptep_get(_pte);
528 		unsigned long pfn;
529 
530 		if (pte_none(pteval))
531 			continue;
532 		pfn = pte_pfn(pteval);
533 		if (is_zero_pfn(pfn))
534 			continue;
535 		folio = pfn_folio(pfn);
536 		if (folio_test_large(folio))
537 			continue;
538 		release_pte_folio(folio);
539 	}
540 
541 	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
542 		list_del(&folio->lru);
543 		release_pte_folio(folio);
544 	}
545 }
546 
547 static bool is_refcount_suitable(struct folio *folio)
548 {
549 	int expected_refcount;
550 
551 	expected_refcount = folio_mapcount(folio);
552 	if (folio_test_swapcache(folio))
553 		expected_refcount += folio_nr_pages(folio);
554 
555 	return folio_ref_count(folio) == expected_refcount;
556 }
557 
558 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
559 					unsigned long address,
560 					pte_t *pte,
561 					struct collapse_control *cc,
562 					struct list_head *compound_pagelist)
563 {
564 	struct page *page = NULL;
565 	struct folio *folio = NULL;
566 	pte_t *_pte;
567 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
568 	bool writable = false;
569 
570 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
571 	     _pte++, address += PAGE_SIZE) {
572 		pte_t pteval = ptep_get(_pte);
573 		if (pte_none(pteval) || (pte_present(pteval) &&
574 				is_zero_pfn(pte_pfn(pteval)))) {
575 			++none_or_zero;
576 			if (!userfaultfd_armed(vma) &&
577 			    (!cc->is_khugepaged ||
578 			     none_or_zero <= khugepaged_max_ptes_none)) {
579 				continue;
580 			} else {
581 				result = SCAN_EXCEED_NONE_PTE;
582 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
583 				goto out;
584 			}
585 		}
586 		if (!pte_present(pteval)) {
587 			result = SCAN_PTE_NON_PRESENT;
588 			goto out;
589 		}
590 		if (pte_uffd_wp(pteval)) {
591 			result = SCAN_PTE_UFFD_WP;
592 			goto out;
593 		}
594 		page = vm_normal_page(vma, address, pteval);
595 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
596 			result = SCAN_PAGE_NULL;
597 			goto out;
598 		}
599 
600 		folio = page_folio(page);
601 		VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
602 
603 		/* See hpage_collapse_scan_pmd(). */
604 		if (folio_likely_mapped_shared(folio)) {
605 			++shared;
606 			if (cc->is_khugepaged &&
607 			    shared > khugepaged_max_ptes_shared) {
608 				result = SCAN_EXCEED_SHARED_PTE;
609 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
610 				goto out;
611 			}
612 		}
613 
614 		if (folio_test_large(folio)) {
615 			struct folio *f;
616 
617 			/*
618 			 * Check if we have dealt with the compound page
619 			 * already
620 			 */
621 			list_for_each_entry(f, compound_pagelist, lru) {
622 				if (folio == f)
623 					goto next;
624 			}
625 		}
626 
627 		/*
628 		 * We can do it before isolate_lru_page because the
629 		 * page can't be freed from under us. NOTE: PG_lock
630 		 * is needed to serialize against split_huge_page
631 		 * when invoked from the VM.
632 		 */
633 		if (!folio_trylock(folio)) {
634 			result = SCAN_PAGE_LOCK;
635 			goto out;
636 		}
637 
638 		/*
639 		 * Check if the page has any GUP (or other external) pins.
640 		 *
641 		 * The page table that maps the page has been already unlinked
642 		 * from the page table tree and this process cannot get
643 		 * an additional pin on the page.
644 		 *
645 		 * New pins can come later if the page is shared across fork,
646 		 * but not from this process. The other process cannot write to
647 		 * the page, only trigger CoW.
648 		 */
649 		if (!is_refcount_suitable(folio)) {
650 			folio_unlock(folio);
651 			result = SCAN_PAGE_COUNT;
652 			goto out;
653 		}
654 
655 		/*
656 		 * Isolate the page to avoid collapsing an hugepage
657 		 * currently in use by the VM.
658 		 */
659 		if (!folio_isolate_lru(folio)) {
660 			folio_unlock(folio);
661 			result = SCAN_DEL_PAGE_LRU;
662 			goto out;
663 		}
664 		node_stat_mod_folio(folio,
665 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
666 				folio_nr_pages(folio));
667 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
668 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
669 
670 		if (folio_test_large(folio))
671 			list_add_tail(&folio->lru, compound_pagelist);
672 next:
673 		/*
674 		 * If collapse was initiated by khugepaged, check that there is
675 		 * enough young pte to justify collapsing the page
676 		 */
677 		if (cc->is_khugepaged &&
678 		    (pte_young(pteval) || folio_test_young(folio) ||
679 		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
680 								     address)))
681 			referenced++;
682 
683 		if (pte_write(pteval))
684 			writable = true;
685 	}
686 
687 	if (unlikely(!writable)) {
688 		result = SCAN_PAGE_RO;
689 	} else if (unlikely(cc->is_khugepaged && !referenced)) {
690 		result = SCAN_LACK_REFERENCED_PAGE;
691 	} else {
692 		result = SCAN_SUCCEED;
693 		trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
694 						    referenced, writable, result);
695 		return result;
696 	}
697 out:
698 	release_pte_pages(pte, _pte, compound_pagelist);
699 	trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
700 					    referenced, writable, result);
701 	return result;
702 }
703 
704 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
705 						struct vm_area_struct *vma,
706 						unsigned long address,
707 						spinlock_t *ptl,
708 						struct list_head *compound_pagelist)
709 {
710 	struct folio *src, *tmp;
711 	pte_t *_pte;
712 	pte_t pteval;
713 
714 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
715 	     _pte++, address += PAGE_SIZE) {
716 		pteval = ptep_get(_pte);
717 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
718 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
719 			if (is_zero_pfn(pte_pfn(pteval))) {
720 				/*
721 				 * ptl mostly unnecessary.
722 				 */
723 				spin_lock(ptl);
724 				ptep_clear(vma->vm_mm, address, _pte);
725 				spin_unlock(ptl);
726 				ksm_might_unmap_zero_page(vma->vm_mm, pteval);
727 			}
728 		} else {
729 			struct page *src_page = pte_page(pteval);
730 
731 			src = page_folio(src_page);
732 			if (!folio_test_large(src))
733 				release_pte_folio(src);
734 			/*
735 			 * ptl mostly unnecessary, but preempt has to
736 			 * be disabled to update the per-cpu stats
737 			 * inside folio_remove_rmap_pte().
738 			 */
739 			spin_lock(ptl);
740 			ptep_clear(vma->vm_mm, address, _pte);
741 			folio_remove_rmap_pte(src, src_page, vma);
742 			spin_unlock(ptl);
743 			free_page_and_swap_cache(src_page);
744 		}
745 	}
746 
747 	list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
748 		list_del(&src->lru);
749 		node_stat_sub_folio(src, NR_ISOLATED_ANON +
750 				folio_is_file_lru(src));
751 		folio_unlock(src);
752 		free_swap_cache(src);
753 		folio_putback_lru(src);
754 	}
755 }
756 
757 static void __collapse_huge_page_copy_failed(pte_t *pte,
758 					     pmd_t *pmd,
759 					     pmd_t orig_pmd,
760 					     struct vm_area_struct *vma,
761 					     struct list_head *compound_pagelist)
762 {
763 	spinlock_t *pmd_ptl;
764 
765 	/*
766 	 * Re-establish the PMD to point to the original page table
767 	 * entry. Restoring PMD needs to be done prior to releasing
768 	 * pages. Since pages are still isolated and locked here,
769 	 * acquiring anon_vma_lock_write is unnecessary.
770 	 */
771 	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
772 	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
773 	spin_unlock(pmd_ptl);
774 	/*
775 	 * Release both raw and compound pages isolated
776 	 * in __collapse_huge_page_isolate.
777 	 */
778 	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
779 }
780 
781 /*
782  * __collapse_huge_page_copy - attempts to copy memory contents from raw
783  * pages to a hugepage. Cleans up the raw pages if copying succeeds;
784  * otherwise restores the original page table and releases isolated raw pages.
785  * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
786  *
787  * @pte: starting of the PTEs to copy from
788  * @folio: the new hugepage to copy contents to
789  * @pmd: pointer to the new hugepage's PMD
790  * @orig_pmd: the original raw pages' PMD
791  * @vma: the original raw pages' virtual memory area
792  * @address: starting address to copy
793  * @ptl: lock on raw pages' PTEs
794  * @compound_pagelist: list that stores compound pages
795  */
796 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
797 		pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
798 		unsigned long address, spinlock_t *ptl,
799 		struct list_head *compound_pagelist)
800 {
801 	unsigned int i;
802 	int result = SCAN_SUCCEED;
803 
804 	/*
805 	 * Copying pages' contents is subject to memory poison at any iteration.
806 	 */
807 	for (i = 0; i < HPAGE_PMD_NR; i++) {
808 		pte_t pteval = ptep_get(pte + i);
809 		struct page *page = folio_page(folio, i);
810 		unsigned long src_addr = address + i * PAGE_SIZE;
811 		struct page *src_page;
812 
813 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
814 			clear_user_highpage(page, src_addr);
815 			continue;
816 		}
817 		src_page = pte_page(pteval);
818 		if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
819 			result = SCAN_COPY_MC;
820 			break;
821 		}
822 	}
823 
824 	if (likely(result == SCAN_SUCCEED))
825 		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
826 						    compound_pagelist);
827 	else
828 		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
829 						 compound_pagelist);
830 
831 	return result;
832 }
833 
834 static void khugepaged_alloc_sleep(void)
835 {
836 	DEFINE_WAIT(wait);
837 
838 	add_wait_queue(&khugepaged_wait, &wait);
839 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
840 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
841 	remove_wait_queue(&khugepaged_wait, &wait);
842 }
843 
844 struct collapse_control khugepaged_collapse_control = {
845 	.is_khugepaged = true,
846 };
847 
848 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
849 {
850 	int i;
851 
852 	/*
853 	 * If node_reclaim_mode is disabled, then no extra effort is made to
854 	 * allocate memory locally.
855 	 */
856 	if (!node_reclaim_enabled())
857 		return false;
858 
859 	/* If there is a count for this node already, it must be acceptable */
860 	if (cc->node_load[nid])
861 		return false;
862 
863 	for (i = 0; i < MAX_NUMNODES; i++) {
864 		if (!cc->node_load[i])
865 			continue;
866 		if (node_distance(nid, i) > node_reclaim_distance)
867 			return true;
868 	}
869 	return false;
870 }
871 
872 #define khugepaged_defrag()					\
873 	(transparent_hugepage_flags &				\
874 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
875 
876 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
877 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
878 {
879 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
880 }
881 
882 #ifdef CONFIG_NUMA
883 static int hpage_collapse_find_target_node(struct collapse_control *cc)
884 {
885 	int nid, target_node = 0, max_value = 0;
886 
887 	/* find first node with max normal pages hit */
888 	for (nid = 0; nid < MAX_NUMNODES; nid++)
889 		if (cc->node_load[nid] > max_value) {
890 			max_value = cc->node_load[nid];
891 			target_node = nid;
892 		}
893 
894 	for_each_online_node(nid) {
895 		if (max_value == cc->node_load[nid])
896 			node_set(nid, cc->alloc_nmask);
897 	}
898 
899 	return target_node;
900 }
901 #else
902 static int hpage_collapse_find_target_node(struct collapse_control *cc)
903 {
904 	return 0;
905 }
906 #endif
907 
908 /*
909  * If mmap_lock temporarily dropped, revalidate vma
910  * before taking mmap_lock.
911  * Returns enum scan_result value.
912  */
913 
914 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
915 				   bool expect_anon,
916 				   struct vm_area_struct **vmap,
917 				   struct collapse_control *cc)
918 {
919 	struct vm_area_struct *vma;
920 	unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0;
921 
922 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
923 		return SCAN_ANY_PROCESS;
924 
925 	*vmap = vma = find_vma(mm, address);
926 	if (!vma)
927 		return SCAN_VMA_NULL;
928 
929 	if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
930 		return SCAN_ADDRESS_RANGE;
931 	if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER))
932 		return SCAN_VMA_CHECK;
933 	/*
934 	 * Anon VMA expected, the address may be unmapped then
935 	 * remapped to file after khugepaged reaquired the mmap_lock.
936 	 *
937 	 * thp_vma_allowable_order may return true for qualified file
938 	 * vmas.
939 	 */
940 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
941 		return SCAN_PAGE_ANON;
942 	return SCAN_SUCCEED;
943 }
944 
945 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
946 				   unsigned long address,
947 				   pmd_t **pmd)
948 {
949 	pmd_t pmde;
950 
951 	*pmd = mm_find_pmd(mm, address);
952 	if (!*pmd)
953 		return SCAN_PMD_NULL;
954 
955 	pmde = pmdp_get_lockless(*pmd);
956 	if (pmd_none(pmde))
957 		return SCAN_PMD_NONE;
958 	if (!pmd_present(pmde))
959 		return SCAN_PMD_NULL;
960 	if (pmd_trans_huge(pmde))
961 		return SCAN_PMD_MAPPED;
962 	if (pmd_devmap(pmde))
963 		return SCAN_PMD_NULL;
964 	if (pmd_bad(pmde))
965 		return SCAN_PMD_NULL;
966 	return SCAN_SUCCEED;
967 }
968 
969 static int check_pmd_still_valid(struct mm_struct *mm,
970 				 unsigned long address,
971 				 pmd_t *pmd)
972 {
973 	pmd_t *new_pmd;
974 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
975 
976 	if (result != SCAN_SUCCEED)
977 		return result;
978 	if (new_pmd != pmd)
979 		return SCAN_FAIL;
980 	return SCAN_SUCCEED;
981 }
982 
983 /*
984  * Bring missing pages in from swap, to complete THP collapse.
985  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
986  *
987  * Called and returns without pte mapped or spinlocks held.
988  * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
989  */
990 static int __collapse_huge_page_swapin(struct mm_struct *mm,
991 				       struct vm_area_struct *vma,
992 				       unsigned long haddr, pmd_t *pmd,
993 				       int referenced)
994 {
995 	int swapped_in = 0;
996 	vm_fault_t ret = 0;
997 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
998 	int result;
999 	pte_t *pte = NULL;
1000 	spinlock_t *ptl;
1001 
1002 	for (address = haddr; address < end; address += PAGE_SIZE) {
1003 		struct vm_fault vmf = {
1004 			.vma = vma,
1005 			.address = address,
1006 			.pgoff = linear_page_index(vma, address),
1007 			.flags = FAULT_FLAG_ALLOW_RETRY,
1008 			.pmd = pmd,
1009 		};
1010 
1011 		if (!pte++) {
1012 			pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
1013 			if (!pte) {
1014 				mmap_read_unlock(mm);
1015 				result = SCAN_PMD_NULL;
1016 				goto out;
1017 			}
1018 		}
1019 
1020 		vmf.orig_pte = ptep_get_lockless(pte);
1021 		if (!is_swap_pte(vmf.orig_pte))
1022 			continue;
1023 
1024 		vmf.pte = pte;
1025 		vmf.ptl = ptl;
1026 		ret = do_swap_page(&vmf);
1027 		/* Which unmaps pte (after perhaps re-checking the entry) */
1028 		pte = NULL;
1029 
1030 		/*
1031 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1032 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1033 		 * we do not retry here and swap entry will remain in pagetable
1034 		 * resulting in later failure.
1035 		 */
1036 		if (ret & VM_FAULT_RETRY) {
1037 			/* Likely, but not guaranteed, that page lock failed */
1038 			result = SCAN_PAGE_LOCK;
1039 			goto out;
1040 		}
1041 		if (ret & VM_FAULT_ERROR) {
1042 			mmap_read_unlock(mm);
1043 			result = SCAN_FAIL;
1044 			goto out;
1045 		}
1046 		swapped_in++;
1047 	}
1048 
1049 	if (pte)
1050 		pte_unmap(pte);
1051 
1052 	/* Drain LRU cache to remove extra pin on the swapped in pages */
1053 	if (swapped_in)
1054 		lru_add_drain();
1055 
1056 	result = SCAN_SUCCEED;
1057 out:
1058 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1059 	return result;
1060 }
1061 
1062 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1063 			      struct collapse_control *cc)
1064 {
1065 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1066 		     GFP_TRANSHUGE);
1067 	int node = hpage_collapse_find_target_node(cc);
1068 	struct folio *folio;
1069 
1070 	folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1071 	if (!folio) {
1072 		*foliop = NULL;
1073 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1074 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
1075 	}
1076 
1077 	count_vm_event(THP_COLLAPSE_ALLOC);
1078 	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1079 		folio_put(folio);
1080 		*foliop = NULL;
1081 		return SCAN_CGROUP_CHARGE_FAIL;
1082 	}
1083 
1084 	count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1085 
1086 	*foliop = folio;
1087 	return SCAN_SUCCEED;
1088 }
1089 
1090 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1091 			      int referenced, int unmapped,
1092 			      struct collapse_control *cc)
1093 {
1094 	LIST_HEAD(compound_pagelist);
1095 	pmd_t *pmd, _pmd;
1096 	pte_t *pte;
1097 	pgtable_t pgtable;
1098 	struct folio *folio;
1099 	spinlock_t *pmd_ptl, *pte_ptl;
1100 	int result = SCAN_FAIL;
1101 	struct vm_area_struct *vma;
1102 	struct mmu_notifier_range range;
1103 
1104 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1105 
1106 	/*
1107 	 * Before allocating the hugepage, release the mmap_lock read lock.
1108 	 * The allocation can take potentially a long time if it involves
1109 	 * sync compaction, and we do not need to hold the mmap_lock during
1110 	 * that. We will recheck the vma after taking it again in write mode.
1111 	 */
1112 	mmap_read_unlock(mm);
1113 
1114 	result = alloc_charge_folio(&folio, mm, cc);
1115 	if (result != SCAN_SUCCEED)
1116 		goto out_nolock;
1117 
1118 	mmap_read_lock(mm);
1119 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1120 	if (result != SCAN_SUCCEED) {
1121 		mmap_read_unlock(mm);
1122 		goto out_nolock;
1123 	}
1124 
1125 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1126 	if (result != SCAN_SUCCEED) {
1127 		mmap_read_unlock(mm);
1128 		goto out_nolock;
1129 	}
1130 
1131 	if (unmapped) {
1132 		/*
1133 		 * __collapse_huge_page_swapin will return with mmap_lock
1134 		 * released when it fails. So we jump out_nolock directly in
1135 		 * that case.  Continuing to collapse causes inconsistency.
1136 		 */
1137 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1138 						     referenced);
1139 		if (result != SCAN_SUCCEED)
1140 			goto out_nolock;
1141 	}
1142 
1143 	mmap_read_unlock(mm);
1144 	/*
1145 	 * Prevent all access to pagetables with the exception of
1146 	 * gup_fast later handled by the ptep_clear_flush and the VM
1147 	 * handled by the anon_vma lock + PG_lock.
1148 	 *
1149 	 * UFFDIO_MOVE is prevented to race as well thanks to the
1150 	 * mmap_lock.
1151 	 */
1152 	mmap_write_lock(mm);
1153 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1154 	if (result != SCAN_SUCCEED)
1155 		goto out_up_write;
1156 	/* check if the pmd is still valid */
1157 	result = check_pmd_still_valid(mm, address, pmd);
1158 	if (result != SCAN_SUCCEED)
1159 		goto out_up_write;
1160 
1161 	vma_start_write(vma);
1162 	anon_vma_lock_write(vma->anon_vma);
1163 
1164 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1165 				address + HPAGE_PMD_SIZE);
1166 	mmu_notifier_invalidate_range_start(&range);
1167 
1168 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1169 	/*
1170 	 * This removes any huge TLB entry from the CPU so we won't allow
1171 	 * huge and small TLB entries for the same virtual address to
1172 	 * avoid the risk of CPU bugs in that area.
1173 	 *
1174 	 * Parallel GUP-fast is fine since GUP-fast will back off when
1175 	 * it detects PMD is changed.
1176 	 */
1177 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1178 	spin_unlock(pmd_ptl);
1179 	mmu_notifier_invalidate_range_end(&range);
1180 	tlb_remove_table_sync_one();
1181 
1182 	pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1183 	if (pte) {
1184 		result = __collapse_huge_page_isolate(vma, address, pte, cc,
1185 						      &compound_pagelist);
1186 		spin_unlock(pte_ptl);
1187 	} else {
1188 		result = SCAN_PMD_NULL;
1189 	}
1190 
1191 	if (unlikely(result != SCAN_SUCCEED)) {
1192 		if (pte)
1193 			pte_unmap(pte);
1194 		spin_lock(pmd_ptl);
1195 		BUG_ON(!pmd_none(*pmd));
1196 		/*
1197 		 * We can only use set_pmd_at when establishing
1198 		 * hugepmds and never for establishing regular pmds that
1199 		 * points to regular pagetables. Use pmd_populate for that
1200 		 */
1201 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1202 		spin_unlock(pmd_ptl);
1203 		anon_vma_unlock_write(vma->anon_vma);
1204 		goto out_up_write;
1205 	}
1206 
1207 	/*
1208 	 * All pages are isolated and locked so anon_vma rmap
1209 	 * can't run anymore.
1210 	 */
1211 	anon_vma_unlock_write(vma->anon_vma);
1212 
1213 	result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1214 					   vma, address, pte_ptl,
1215 					   &compound_pagelist);
1216 	pte_unmap(pte);
1217 	if (unlikely(result != SCAN_SUCCEED))
1218 		goto out_up_write;
1219 
1220 	/*
1221 	 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1222 	 * copy_huge_page writes become visible before the set_pmd_at()
1223 	 * write.
1224 	 */
1225 	__folio_mark_uptodate(folio);
1226 	pgtable = pmd_pgtable(_pmd);
1227 
1228 	_pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot);
1229 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1230 
1231 	spin_lock(pmd_ptl);
1232 	BUG_ON(!pmd_none(*pmd));
1233 	folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
1234 	folio_add_lru_vma(folio, vma);
1235 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1236 	set_pmd_at(mm, address, pmd, _pmd);
1237 	update_mmu_cache_pmd(vma, address, pmd);
1238 	spin_unlock(pmd_ptl);
1239 
1240 	folio = NULL;
1241 
1242 	result = SCAN_SUCCEED;
1243 out_up_write:
1244 	mmap_write_unlock(mm);
1245 out_nolock:
1246 	if (folio)
1247 		folio_put(folio);
1248 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1249 	return result;
1250 }
1251 
1252 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1253 				   struct vm_area_struct *vma,
1254 				   unsigned long address, bool *mmap_locked,
1255 				   struct collapse_control *cc)
1256 {
1257 	pmd_t *pmd;
1258 	pte_t *pte, *_pte;
1259 	int result = SCAN_FAIL, referenced = 0;
1260 	int none_or_zero = 0, shared = 0;
1261 	struct page *page = NULL;
1262 	struct folio *folio = NULL;
1263 	unsigned long _address;
1264 	spinlock_t *ptl;
1265 	int node = NUMA_NO_NODE, unmapped = 0;
1266 	bool writable = false;
1267 
1268 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1269 
1270 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1271 	if (result != SCAN_SUCCEED)
1272 		goto out;
1273 
1274 	memset(cc->node_load, 0, sizeof(cc->node_load));
1275 	nodes_clear(cc->alloc_nmask);
1276 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1277 	if (!pte) {
1278 		result = SCAN_PMD_NULL;
1279 		goto out;
1280 	}
1281 
1282 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1283 	     _pte++, _address += PAGE_SIZE) {
1284 		pte_t pteval = ptep_get(_pte);
1285 		if (is_swap_pte(pteval)) {
1286 			++unmapped;
1287 			if (!cc->is_khugepaged ||
1288 			    unmapped <= khugepaged_max_ptes_swap) {
1289 				/*
1290 				 * Always be strict with uffd-wp
1291 				 * enabled swap entries.  Please see
1292 				 * comment below for pte_uffd_wp().
1293 				 */
1294 				if (pte_swp_uffd_wp_any(pteval)) {
1295 					result = SCAN_PTE_UFFD_WP;
1296 					goto out_unmap;
1297 				}
1298 				continue;
1299 			} else {
1300 				result = SCAN_EXCEED_SWAP_PTE;
1301 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1302 				goto out_unmap;
1303 			}
1304 		}
1305 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1306 			++none_or_zero;
1307 			if (!userfaultfd_armed(vma) &&
1308 			    (!cc->is_khugepaged ||
1309 			     none_or_zero <= khugepaged_max_ptes_none)) {
1310 				continue;
1311 			} else {
1312 				result = SCAN_EXCEED_NONE_PTE;
1313 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1314 				goto out_unmap;
1315 			}
1316 		}
1317 		if (pte_uffd_wp(pteval)) {
1318 			/*
1319 			 * Don't collapse the page if any of the small
1320 			 * PTEs are armed with uffd write protection.
1321 			 * Here we can also mark the new huge pmd as
1322 			 * write protected if any of the small ones is
1323 			 * marked but that could bring unknown
1324 			 * userfault messages that falls outside of
1325 			 * the registered range.  So, just be simple.
1326 			 */
1327 			result = SCAN_PTE_UFFD_WP;
1328 			goto out_unmap;
1329 		}
1330 		if (pte_write(pteval))
1331 			writable = true;
1332 
1333 		page = vm_normal_page(vma, _address, pteval);
1334 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1335 			result = SCAN_PAGE_NULL;
1336 			goto out_unmap;
1337 		}
1338 		folio = page_folio(page);
1339 
1340 		if (!folio_test_anon(folio)) {
1341 			result = SCAN_PAGE_ANON;
1342 			goto out_unmap;
1343 		}
1344 
1345 		/*
1346 		 * We treat a single page as shared if any part of the THP
1347 		 * is shared. "False negatives" from
1348 		 * folio_likely_mapped_shared() are not expected to matter
1349 		 * much in practice.
1350 		 */
1351 		if (folio_likely_mapped_shared(folio)) {
1352 			++shared;
1353 			if (cc->is_khugepaged &&
1354 			    shared > khugepaged_max_ptes_shared) {
1355 				result = SCAN_EXCEED_SHARED_PTE;
1356 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1357 				goto out_unmap;
1358 			}
1359 		}
1360 
1361 		/*
1362 		 * Record which node the original page is from and save this
1363 		 * information to cc->node_load[].
1364 		 * Khugepaged will allocate hugepage from the node has the max
1365 		 * hit record.
1366 		 */
1367 		node = folio_nid(folio);
1368 		if (hpage_collapse_scan_abort(node, cc)) {
1369 			result = SCAN_SCAN_ABORT;
1370 			goto out_unmap;
1371 		}
1372 		cc->node_load[node]++;
1373 		if (!folio_test_lru(folio)) {
1374 			result = SCAN_PAGE_LRU;
1375 			goto out_unmap;
1376 		}
1377 		if (folio_test_locked(folio)) {
1378 			result = SCAN_PAGE_LOCK;
1379 			goto out_unmap;
1380 		}
1381 
1382 		/*
1383 		 * Check if the page has any GUP (or other external) pins.
1384 		 *
1385 		 * Here the check may be racy:
1386 		 * it may see folio_mapcount() > folio_ref_count().
1387 		 * But such case is ephemeral we could always retry collapse
1388 		 * later.  However it may report false positive if the page
1389 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1390 		 * will be done again later the risk seems low.
1391 		 */
1392 		if (!is_refcount_suitable(folio)) {
1393 			result = SCAN_PAGE_COUNT;
1394 			goto out_unmap;
1395 		}
1396 
1397 		/*
1398 		 * If collapse was initiated by khugepaged, check that there is
1399 		 * enough young pte to justify collapsing the page
1400 		 */
1401 		if (cc->is_khugepaged &&
1402 		    (pte_young(pteval) || folio_test_young(folio) ||
1403 		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
1404 								     address)))
1405 			referenced++;
1406 	}
1407 	if (!writable) {
1408 		result = SCAN_PAGE_RO;
1409 	} else if (cc->is_khugepaged &&
1410 		   (!referenced ||
1411 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1412 		result = SCAN_LACK_REFERENCED_PAGE;
1413 	} else {
1414 		result = SCAN_SUCCEED;
1415 	}
1416 out_unmap:
1417 	pte_unmap_unlock(pte, ptl);
1418 	if (result == SCAN_SUCCEED) {
1419 		result = collapse_huge_page(mm, address, referenced,
1420 					    unmapped, cc);
1421 		/* collapse_huge_page will return with the mmap_lock released */
1422 		*mmap_locked = false;
1423 	}
1424 out:
1425 	trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced,
1426 				     none_or_zero, result, unmapped);
1427 	return result;
1428 }
1429 
1430 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1431 {
1432 	struct mm_slot *slot = &mm_slot->slot;
1433 	struct mm_struct *mm = slot->mm;
1434 
1435 	lockdep_assert_held(&khugepaged_mm_lock);
1436 
1437 	if (hpage_collapse_test_exit(mm)) {
1438 		/* free mm_slot */
1439 		hash_del(&slot->hash);
1440 		list_del(&slot->mm_node);
1441 
1442 		/*
1443 		 * Not strictly needed because the mm exited already.
1444 		 *
1445 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1446 		 */
1447 
1448 		/* khugepaged_mm_lock actually not necessary for the below */
1449 		mm_slot_free(mm_slot_cache, mm_slot);
1450 		mmdrop(mm);
1451 	}
1452 }
1453 
1454 #ifdef CONFIG_SHMEM
1455 /* hpage must be locked, and mmap_lock must be held */
1456 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1457 			pmd_t *pmdp, struct page *hpage)
1458 {
1459 	struct vm_fault vmf = {
1460 		.vma = vma,
1461 		.address = addr,
1462 		.flags = 0,
1463 		.pmd = pmdp,
1464 	};
1465 
1466 	VM_BUG_ON(!PageTransHuge(hpage));
1467 	mmap_assert_locked(vma->vm_mm);
1468 
1469 	if (do_set_pmd(&vmf, hpage))
1470 		return SCAN_FAIL;
1471 
1472 	get_page(hpage);
1473 	return SCAN_SUCCEED;
1474 }
1475 
1476 /**
1477  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1478  * address haddr.
1479  *
1480  * @mm: process address space where collapse happens
1481  * @addr: THP collapse address
1482  * @install_pmd: If a huge PMD should be installed
1483  *
1484  * This function checks whether all the PTEs in the PMD are pointing to the
1485  * right THP. If so, retract the page table so the THP can refault in with
1486  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1487  */
1488 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1489 			    bool install_pmd)
1490 {
1491 	struct mmu_notifier_range range;
1492 	bool notified = false;
1493 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1494 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1495 	struct folio *folio;
1496 	pte_t *start_pte, *pte;
1497 	pmd_t *pmd, pgt_pmd;
1498 	spinlock_t *pml = NULL, *ptl;
1499 	int nr_ptes = 0, result = SCAN_FAIL;
1500 	int i;
1501 
1502 	mmap_assert_locked(mm);
1503 
1504 	/* First check VMA found, in case page tables are being torn down */
1505 	if (!vma || !vma->vm_file ||
1506 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1507 		return SCAN_VMA_CHECK;
1508 
1509 	/* Fast check before locking page if already PMD-mapped */
1510 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1511 	if (result == SCAN_PMD_MAPPED)
1512 		return result;
1513 
1514 	/*
1515 	 * If we are here, we've succeeded in replacing all the native pages
1516 	 * in the page cache with a single hugepage. If a mm were to fault-in
1517 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1518 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1519 	 * analogously elide sysfs THP settings here.
1520 	 */
1521 	if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
1522 		return SCAN_VMA_CHECK;
1523 
1524 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1525 	if (userfaultfd_wp(vma))
1526 		return SCAN_PTE_UFFD_WP;
1527 
1528 	folio = filemap_lock_folio(vma->vm_file->f_mapping,
1529 			       linear_page_index(vma, haddr));
1530 	if (IS_ERR(folio))
1531 		return SCAN_PAGE_NULL;
1532 
1533 	if (folio_order(folio) != HPAGE_PMD_ORDER) {
1534 		result = SCAN_PAGE_COMPOUND;
1535 		goto drop_folio;
1536 	}
1537 
1538 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1539 	switch (result) {
1540 	case SCAN_SUCCEED:
1541 		break;
1542 	case SCAN_PMD_NONE:
1543 		/*
1544 		 * All pte entries have been removed and pmd cleared.
1545 		 * Skip all the pte checks and just update the pmd mapping.
1546 		 */
1547 		goto maybe_install_pmd;
1548 	default:
1549 		goto drop_folio;
1550 	}
1551 
1552 	result = SCAN_FAIL;
1553 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1554 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1555 		goto drop_folio;
1556 
1557 	/* step 1: check all mapped PTEs are to the right huge page */
1558 	for (i = 0, addr = haddr, pte = start_pte;
1559 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1560 		struct page *page;
1561 		pte_t ptent = ptep_get(pte);
1562 
1563 		/* empty pte, skip */
1564 		if (pte_none(ptent))
1565 			continue;
1566 
1567 		/* page swapped out, abort */
1568 		if (!pte_present(ptent)) {
1569 			result = SCAN_PTE_NON_PRESENT;
1570 			goto abort;
1571 		}
1572 
1573 		page = vm_normal_page(vma, addr, ptent);
1574 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1575 			page = NULL;
1576 		/*
1577 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1578 		 * page table, but the new page will not be a subpage of hpage.
1579 		 */
1580 		if (folio_page(folio, i) != page)
1581 			goto abort;
1582 	}
1583 
1584 	pte_unmap_unlock(start_pte, ptl);
1585 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1586 				haddr, haddr + HPAGE_PMD_SIZE);
1587 	mmu_notifier_invalidate_range_start(&range);
1588 	notified = true;
1589 
1590 	/*
1591 	 * pmd_lock covers a wider range than ptl, and (if split from mm's
1592 	 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1593 	 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1594 	 * inserts a valid as-if-COWed PTE without even looking up page cache.
1595 	 * So page lock of folio does not protect from it, so we must not drop
1596 	 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1597 	 */
1598 	if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1599 		pml = pmd_lock(mm, pmd);
1600 
1601 	start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl);
1602 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1603 		goto abort;
1604 	if (!pml)
1605 		spin_lock(ptl);
1606 	else if (ptl != pml)
1607 		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1608 
1609 	/* step 2: clear page table and adjust rmap */
1610 	for (i = 0, addr = haddr, pte = start_pte;
1611 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1612 		struct page *page;
1613 		pte_t ptent = ptep_get(pte);
1614 
1615 		if (pte_none(ptent))
1616 			continue;
1617 		/*
1618 		 * We dropped ptl after the first scan, to do the mmu_notifier:
1619 		 * page lock stops more PTEs of the folio being faulted in, but
1620 		 * does not stop write faults COWing anon copies from existing
1621 		 * PTEs; and does not stop those being swapped out or migrated.
1622 		 */
1623 		if (!pte_present(ptent)) {
1624 			result = SCAN_PTE_NON_PRESENT;
1625 			goto abort;
1626 		}
1627 		page = vm_normal_page(vma, addr, ptent);
1628 		if (folio_page(folio, i) != page)
1629 			goto abort;
1630 
1631 		/*
1632 		 * Must clear entry, or a racing truncate may re-remove it.
1633 		 * TLB flush can be left until pmdp_collapse_flush() does it.
1634 		 * PTE dirty? Shmem page is already dirty; file is read-only.
1635 		 */
1636 		ptep_clear(mm, addr, pte);
1637 		folio_remove_rmap_pte(folio, page, vma);
1638 		nr_ptes++;
1639 	}
1640 
1641 	pte_unmap(start_pte);
1642 	if (!pml)
1643 		spin_unlock(ptl);
1644 
1645 	/* step 3: set proper refcount and mm_counters. */
1646 	if (nr_ptes) {
1647 		folio_ref_sub(folio, nr_ptes);
1648 		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1649 	}
1650 
1651 	/* step 4: remove empty page table */
1652 	if (!pml) {
1653 		pml = pmd_lock(mm, pmd);
1654 		if (ptl != pml)
1655 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1656 	}
1657 	pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1658 	pmdp_get_lockless_sync();
1659 	if (ptl != pml)
1660 		spin_unlock(ptl);
1661 	spin_unlock(pml);
1662 
1663 	mmu_notifier_invalidate_range_end(&range);
1664 
1665 	mm_dec_nr_ptes(mm);
1666 	page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1667 	pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1668 
1669 maybe_install_pmd:
1670 	/* step 5: install pmd entry */
1671 	result = install_pmd
1672 			? set_huge_pmd(vma, haddr, pmd, &folio->page)
1673 			: SCAN_SUCCEED;
1674 	goto drop_folio;
1675 abort:
1676 	if (nr_ptes) {
1677 		flush_tlb_mm(mm);
1678 		folio_ref_sub(folio, nr_ptes);
1679 		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1680 	}
1681 	if (start_pte)
1682 		pte_unmap_unlock(start_pte, ptl);
1683 	if (pml && pml != ptl)
1684 		spin_unlock(pml);
1685 	if (notified)
1686 		mmu_notifier_invalidate_range_end(&range);
1687 drop_folio:
1688 	folio_unlock(folio);
1689 	folio_put(folio);
1690 	return result;
1691 }
1692 
1693 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1694 {
1695 	struct vm_area_struct *vma;
1696 
1697 	i_mmap_lock_read(mapping);
1698 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1699 		struct mmu_notifier_range range;
1700 		struct mm_struct *mm;
1701 		unsigned long addr;
1702 		pmd_t *pmd, pgt_pmd;
1703 		spinlock_t *pml;
1704 		spinlock_t *ptl;
1705 		bool skipped_uffd = false;
1706 
1707 		/*
1708 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1709 		 * got written to. These VMAs are likely not worth removing
1710 		 * page tables from, as PMD-mapping is likely to be split later.
1711 		 */
1712 		if (READ_ONCE(vma->anon_vma))
1713 			continue;
1714 
1715 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1716 		if (addr & ~HPAGE_PMD_MASK ||
1717 		    vma->vm_end < addr + HPAGE_PMD_SIZE)
1718 			continue;
1719 
1720 		mm = vma->vm_mm;
1721 		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1722 			continue;
1723 
1724 		if (hpage_collapse_test_exit(mm))
1725 			continue;
1726 		/*
1727 		 * When a vma is registered with uffd-wp, we cannot recycle
1728 		 * the page table because there may be pte markers installed.
1729 		 * Other vmas can still have the same file mapped hugely, but
1730 		 * skip this one: it will always be mapped in small page size
1731 		 * for uffd-wp registered ranges.
1732 		 */
1733 		if (userfaultfd_wp(vma))
1734 			continue;
1735 
1736 		/* PTEs were notified when unmapped; but now for the PMD? */
1737 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1738 					addr, addr + HPAGE_PMD_SIZE);
1739 		mmu_notifier_invalidate_range_start(&range);
1740 
1741 		pml = pmd_lock(mm, pmd);
1742 		ptl = pte_lockptr(mm, pmd);
1743 		if (ptl != pml)
1744 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1745 
1746 		/*
1747 		 * Huge page lock is still held, so normally the page table
1748 		 * must remain empty; and we have already skipped anon_vma
1749 		 * and userfaultfd_wp() vmas.  But since the mmap_lock is not
1750 		 * held, it is still possible for a racing userfaultfd_ioctl()
1751 		 * to have inserted ptes or markers.  Now that we hold ptlock,
1752 		 * repeating the anon_vma check protects from one category,
1753 		 * and repeating the userfaultfd_wp() check from another.
1754 		 */
1755 		if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
1756 			skipped_uffd = true;
1757 		} else {
1758 			pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1759 			pmdp_get_lockless_sync();
1760 		}
1761 
1762 		if (ptl != pml)
1763 			spin_unlock(ptl);
1764 		spin_unlock(pml);
1765 
1766 		mmu_notifier_invalidate_range_end(&range);
1767 
1768 		if (!skipped_uffd) {
1769 			mm_dec_nr_ptes(mm);
1770 			page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1771 			pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1772 		}
1773 	}
1774 	i_mmap_unlock_read(mapping);
1775 }
1776 
1777 /**
1778  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1779  *
1780  * @mm: process address space where collapse happens
1781  * @addr: virtual collapse start address
1782  * @file: file that collapse on
1783  * @start: collapse start address
1784  * @cc: collapse context and scratchpad
1785  *
1786  * Basic scheme is simple, details are more complex:
1787  *  - allocate and lock a new huge page;
1788  *  - scan page cache, locking old pages
1789  *    + swap/gup in pages if necessary;
1790  *  - copy data to new page
1791  *  - handle shmem holes
1792  *    + re-validate that holes weren't filled by someone else
1793  *    + check for userfaultfd
1794  *  - finalize updates to the page cache;
1795  *  - if replacing succeeds:
1796  *    + unlock huge page;
1797  *    + free old pages;
1798  *  - if replacing failed;
1799  *    + unlock old pages
1800  *    + unlock and free huge page;
1801  */
1802 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1803 			 struct file *file, pgoff_t start,
1804 			 struct collapse_control *cc)
1805 {
1806 	struct address_space *mapping = file->f_mapping;
1807 	struct page *dst;
1808 	struct folio *folio, *tmp, *new_folio;
1809 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1810 	LIST_HEAD(pagelist);
1811 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1812 	int nr_none = 0, result = SCAN_SUCCEED;
1813 	bool is_shmem = shmem_file(file);
1814 
1815 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1816 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1817 
1818 	result = alloc_charge_folio(&new_folio, mm, cc);
1819 	if (result != SCAN_SUCCEED)
1820 		goto out;
1821 
1822 	__folio_set_locked(new_folio);
1823 	if (is_shmem)
1824 		__folio_set_swapbacked(new_folio);
1825 	new_folio->index = start;
1826 	new_folio->mapping = mapping;
1827 
1828 	/*
1829 	 * Ensure we have slots for all the pages in the range.  This is
1830 	 * almost certainly a no-op because most of the pages must be present
1831 	 */
1832 	do {
1833 		xas_lock_irq(&xas);
1834 		xas_create_range(&xas);
1835 		if (!xas_error(&xas))
1836 			break;
1837 		xas_unlock_irq(&xas);
1838 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1839 			result = SCAN_FAIL;
1840 			goto rollback;
1841 		}
1842 	} while (1);
1843 
1844 	for (index = start; index < end; index++) {
1845 		xas_set(&xas, index);
1846 		folio = xas_load(&xas);
1847 
1848 		VM_BUG_ON(index != xas.xa_index);
1849 		if (is_shmem) {
1850 			if (!folio) {
1851 				/*
1852 				 * Stop if extent has been truncated or
1853 				 * hole-punched, and is now completely
1854 				 * empty.
1855 				 */
1856 				if (index == start) {
1857 					if (!xas_next_entry(&xas, end - 1)) {
1858 						result = SCAN_TRUNCATED;
1859 						goto xa_locked;
1860 					}
1861 				}
1862 				nr_none++;
1863 				continue;
1864 			}
1865 
1866 			if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1867 				xas_unlock_irq(&xas);
1868 				/* swap in or instantiate fallocated page */
1869 				if (shmem_get_folio(mapping->host, index,
1870 						&folio, SGP_NOALLOC)) {
1871 					result = SCAN_FAIL;
1872 					goto xa_unlocked;
1873 				}
1874 				/* drain lru cache to help isolate_lru_page() */
1875 				lru_add_drain();
1876 			} else if (folio_trylock(folio)) {
1877 				folio_get(folio);
1878 				xas_unlock_irq(&xas);
1879 			} else {
1880 				result = SCAN_PAGE_LOCK;
1881 				goto xa_locked;
1882 			}
1883 		} else {	/* !is_shmem */
1884 			if (!folio || xa_is_value(folio)) {
1885 				xas_unlock_irq(&xas);
1886 				page_cache_sync_readahead(mapping, &file->f_ra,
1887 							  file, index,
1888 							  end - index);
1889 				/* drain lru cache to help isolate_lru_page() */
1890 				lru_add_drain();
1891 				folio = filemap_lock_folio(mapping, index);
1892 				if (IS_ERR(folio)) {
1893 					result = SCAN_FAIL;
1894 					goto xa_unlocked;
1895 				}
1896 			} else if (folio_test_dirty(folio)) {
1897 				/*
1898 				 * khugepaged only works on read-only fd,
1899 				 * so this page is dirty because it hasn't
1900 				 * been flushed since first write. There
1901 				 * won't be new dirty pages.
1902 				 *
1903 				 * Trigger async flush here and hope the
1904 				 * writeback is done when khugepaged
1905 				 * revisits this page.
1906 				 *
1907 				 * This is a one-off situation. We are not
1908 				 * forcing writeback in loop.
1909 				 */
1910 				xas_unlock_irq(&xas);
1911 				filemap_flush(mapping);
1912 				result = SCAN_FAIL;
1913 				goto xa_unlocked;
1914 			} else if (folio_test_writeback(folio)) {
1915 				xas_unlock_irq(&xas);
1916 				result = SCAN_FAIL;
1917 				goto xa_unlocked;
1918 			} else if (folio_trylock(folio)) {
1919 				folio_get(folio);
1920 				xas_unlock_irq(&xas);
1921 			} else {
1922 				result = SCAN_PAGE_LOCK;
1923 				goto xa_locked;
1924 			}
1925 		}
1926 
1927 		/*
1928 		 * The folio must be locked, so we can drop the i_pages lock
1929 		 * without racing with truncate.
1930 		 */
1931 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1932 
1933 		/* make sure the folio is up to date */
1934 		if (unlikely(!folio_test_uptodate(folio))) {
1935 			result = SCAN_FAIL;
1936 			goto out_unlock;
1937 		}
1938 
1939 		/*
1940 		 * If file was truncated then extended, or hole-punched, before
1941 		 * we locked the first folio, then a THP might be there already.
1942 		 * This will be discovered on the first iteration.
1943 		 */
1944 		if (folio_test_large(folio)) {
1945 			result = folio_order(folio) == HPAGE_PMD_ORDER &&
1946 					folio->index == start
1947 					/* Maybe PMD-mapped */
1948 					? SCAN_PTE_MAPPED_HUGEPAGE
1949 					: SCAN_PAGE_COMPOUND;
1950 			goto out_unlock;
1951 		}
1952 
1953 		if (folio_mapping(folio) != mapping) {
1954 			result = SCAN_TRUNCATED;
1955 			goto out_unlock;
1956 		}
1957 
1958 		if (!is_shmem && (folio_test_dirty(folio) ||
1959 				  folio_test_writeback(folio))) {
1960 			/*
1961 			 * khugepaged only works on read-only fd, so this
1962 			 * folio is dirty because it hasn't been flushed
1963 			 * since first write.
1964 			 */
1965 			result = SCAN_FAIL;
1966 			goto out_unlock;
1967 		}
1968 
1969 		if (!folio_isolate_lru(folio)) {
1970 			result = SCAN_DEL_PAGE_LRU;
1971 			goto out_unlock;
1972 		}
1973 
1974 		if (!filemap_release_folio(folio, GFP_KERNEL)) {
1975 			result = SCAN_PAGE_HAS_PRIVATE;
1976 			folio_putback_lru(folio);
1977 			goto out_unlock;
1978 		}
1979 
1980 		if (folio_mapped(folio))
1981 			try_to_unmap(folio,
1982 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1983 
1984 		xas_lock_irq(&xas);
1985 
1986 		VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
1987 
1988 		/*
1989 		 * We control three references to the folio:
1990 		 *  - we hold a pin on it;
1991 		 *  - one reference from page cache;
1992 		 *  - one from lru_isolate_folio;
1993 		 * If those are the only references, then any new usage
1994 		 * of the folio will have to fetch it from the page
1995 		 * cache. That requires locking the folio to handle
1996 		 * truncate, so any new usage will be blocked until we
1997 		 * unlock folio after collapse/during rollback.
1998 		 */
1999 		if (folio_ref_count(folio) != 3) {
2000 			result = SCAN_PAGE_COUNT;
2001 			xas_unlock_irq(&xas);
2002 			folio_putback_lru(folio);
2003 			goto out_unlock;
2004 		}
2005 
2006 		/*
2007 		 * Accumulate the folios that are being collapsed.
2008 		 */
2009 		list_add_tail(&folio->lru, &pagelist);
2010 		continue;
2011 out_unlock:
2012 		folio_unlock(folio);
2013 		folio_put(folio);
2014 		goto xa_unlocked;
2015 	}
2016 
2017 	if (!is_shmem) {
2018 		filemap_nr_thps_inc(mapping);
2019 		/*
2020 		 * Paired with the fence in do_dentry_open() -> get_write_access()
2021 		 * to ensure i_writecount is up to date and the update to nr_thps
2022 		 * is visible. Ensures the page cache will be truncated if the
2023 		 * file is opened writable.
2024 		 */
2025 		smp_mb();
2026 		if (inode_is_open_for_write(mapping->host)) {
2027 			result = SCAN_FAIL;
2028 			filemap_nr_thps_dec(mapping);
2029 		}
2030 	}
2031 
2032 xa_locked:
2033 	xas_unlock_irq(&xas);
2034 xa_unlocked:
2035 
2036 	/*
2037 	 * If collapse is successful, flush must be done now before copying.
2038 	 * If collapse is unsuccessful, does flush actually need to be done?
2039 	 * Do it anyway, to clear the state.
2040 	 */
2041 	try_to_unmap_flush();
2042 
2043 	if (result == SCAN_SUCCEED && nr_none &&
2044 	    !shmem_charge(mapping->host, nr_none))
2045 		result = SCAN_FAIL;
2046 	if (result != SCAN_SUCCEED) {
2047 		nr_none = 0;
2048 		goto rollback;
2049 	}
2050 
2051 	/*
2052 	 * The old folios are locked, so they won't change anymore.
2053 	 */
2054 	index = start;
2055 	dst = folio_page(new_folio, 0);
2056 	list_for_each_entry(folio, &pagelist, lru) {
2057 		while (index < folio->index) {
2058 			clear_highpage(dst);
2059 			index++;
2060 			dst++;
2061 		}
2062 		if (copy_mc_highpage(dst, folio_page(folio, 0)) > 0) {
2063 			result = SCAN_COPY_MC;
2064 			goto rollback;
2065 		}
2066 		index++;
2067 		dst++;
2068 	}
2069 	while (index < end) {
2070 		clear_highpage(dst);
2071 		index++;
2072 		dst++;
2073 	}
2074 
2075 	if (nr_none) {
2076 		struct vm_area_struct *vma;
2077 		int nr_none_check = 0;
2078 
2079 		i_mmap_lock_read(mapping);
2080 		xas_lock_irq(&xas);
2081 
2082 		xas_set(&xas, start);
2083 		for (index = start; index < end; index++) {
2084 			if (!xas_next(&xas)) {
2085 				xas_store(&xas, XA_RETRY_ENTRY);
2086 				if (xas_error(&xas)) {
2087 					result = SCAN_STORE_FAILED;
2088 					goto immap_locked;
2089 				}
2090 				nr_none_check++;
2091 			}
2092 		}
2093 
2094 		if (nr_none != nr_none_check) {
2095 			result = SCAN_PAGE_FILLED;
2096 			goto immap_locked;
2097 		}
2098 
2099 		/*
2100 		 * If userspace observed a missing page in a VMA with
2101 		 * a MODE_MISSING userfaultfd, then it might expect a
2102 		 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2103 		 * roll back to avoid suppressing such an event. Since
2104 		 * wp/minor userfaultfds don't give userspace any
2105 		 * guarantees that the kernel doesn't fill a missing
2106 		 * page with a zero page, so they don't matter here.
2107 		 *
2108 		 * Any userfaultfds registered after this point will
2109 		 * not be able to observe any missing pages due to the
2110 		 * previously inserted retry entries.
2111 		 */
2112 		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2113 			if (userfaultfd_missing(vma)) {
2114 				result = SCAN_EXCEED_NONE_PTE;
2115 				goto immap_locked;
2116 			}
2117 		}
2118 
2119 immap_locked:
2120 		i_mmap_unlock_read(mapping);
2121 		if (result != SCAN_SUCCEED) {
2122 			xas_set(&xas, start);
2123 			for (index = start; index < end; index++) {
2124 				if (xas_next(&xas) == XA_RETRY_ENTRY)
2125 					xas_store(&xas, NULL);
2126 			}
2127 
2128 			xas_unlock_irq(&xas);
2129 			goto rollback;
2130 		}
2131 	} else {
2132 		xas_lock_irq(&xas);
2133 	}
2134 
2135 	if (is_shmem)
2136 		__lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2137 	else
2138 		__lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2139 
2140 	if (nr_none) {
2141 		__lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2142 		/* nr_none is always 0 for non-shmem. */
2143 		__lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2144 	}
2145 
2146 	/*
2147 	 * Mark new_folio as uptodate before inserting it into the
2148 	 * page cache so that it isn't mistaken for an fallocated but
2149 	 * unwritten page.
2150 	 */
2151 	folio_mark_uptodate(new_folio);
2152 	folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2153 
2154 	if (is_shmem)
2155 		folio_mark_dirty(new_folio);
2156 	folio_add_lru(new_folio);
2157 
2158 	/* Join all the small entries into a single multi-index entry. */
2159 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2160 	xas_store(&xas, new_folio);
2161 	WARN_ON_ONCE(xas_error(&xas));
2162 	xas_unlock_irq(&xas);
2163 
2164 	/*
2165 	 * Remove pte page tables, so we can re-fault the page as huge.
2166 	 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2167 	 */
2168 	retract_page_tables(mapping, start);
2169 	if (cc && !cc->is_khugepaged)
2170 		result = SCAN_PTE_MAPPED_HUGEPAGE;
2171 	folio_unlock(new_folio);
2172 
2173 	/*
2174 	 * The collapse has succeeded, so free the old folios.
2175 	 */
2176 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2177 		list_del(&folio->lru);
2178 		folio->mapping = NULL;
2179 		folio_clear_active(folio);
2180 		folio_clear_unevictable(folio);
2181 		folio_unlock(folio);
2182 		folio_put_refs(folio, 3);
2183 	}
2184 
2185 	goto out;
2186 
2187 rollback:
2188 	/* Something went wrong: roll back page cache changes */
2189 	if (nr_none) {
2190 		xas_lock_irq(&xas);
2191 		mapping->nrpages -= nr_none;
2192 		xas_unlock_irq(&xas);
2193 		shmem_uncharge(mapping->host, nr_none);
2194 	}
2195 
2196 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2197 		list_del(&folio->lru);
2198 		folio_unlock(folio);
2199 		folio_putback_lru(folio);
2200 		folio_put(folio);
2201 	}
2202 	/*
2203 	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2204 	 * file only. This undo is not needed unless failure is
2205 	 * due to SCAN_COPY_MC.
2206 	 */
2207 	if (!is_shmem && result == SCAN_COPY_MC) {
2208 		filemap_nr_thps_dec(mapping);
2209 		/*
2210 		 * Paired with the fence in do_dentry_open() -> get_write_access()
2211 		 * to ensure the update to nr_thps is visible.
2212 		 */
2213 		smp_mb();
2214 	}
2215 
2216 	new_folio->mapping = NULL;
2217 
2218 	folio_unlock(new_folio);
2219 	folio_put(new_folio);
2220 out:
2221 	VM_BUG_ON(!list_empty(&pagelist));
2222 	trace_mm_khugepaged_collapse_file(mm, new_folio, index, is_shmem, addr, file, HPAGE_PMD_NR, result);
2223 	return result;
2224 }
2225 
2226 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2227 				    struct file *file, pgoff_t start,
2228 				    struct collapse_control *cc)
2229 {
2230 	struct folio *folio = NULL;
2231 	struct address_space *mapping = file->f_mapping;
2232 	XA_STATE(xas, &mapping->i_pages, start);
2233 	int present, swap;
2234 	int node = NUMA_NO_NODE;
2235 	int result = SCAN_SUCCEED;
2236 
2237 	present = 0;
2238 	swap = 0;
2239 	memset(cc->node_load, 0, sizeof(cc->node_load));
2240 	nodes_clear(cc->alloc_nmask);
2241 	rcu_read_lock();
2242 	xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2243 		if (xas_retry(&xas, folio))
2244 			continue;
2245 
2246 		if (xa_is_value(folio)) {
2247 			++swap;
2248 			if (cc->is_khugepaged &&
2249 			    swap > khugepaged_max_ptes_swap) {
2250 				result = SCAN_EXCEED_SWAP_PTE;
2251 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2252 				break;
2253 			}
2254 			continue;
2255 		}
2256 
2257 		/*
2258 		 * TODO: khugepaged should compact smaller compound pages
2259 		 * into a PMD sized page
2260 		 */
2261 		if (folio_test_large(folio)) {
2262 			result = folio_order(folio) == HPAGE_PMD_ORDER &&
2263 					folio->index == start
2264 					/* Maybe PMD-mapped */
2265 					? SCAN_PTE_MAPPED_HUGEPAGE
2266 					: SCAN_PAGE_COMPOUND;
2267 			/*
2268 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2269 			 * by the caller won't touch the page cache, and so
2270 			 * it's safe to skip LRU and refcount checks before
2271 			 * returning.
2272 			 */
2273 			break;
2274 		}
2275 
2276 		node = folio_nid(folio);
2277 		if (hpage_collapse_scan_abort(node, cc)) {
2278 			result = SCAN_SCAN_ABORT;
2279 			break;
2280 		}
2281 		cc->node_load[node]++;
2282 
2283 		if (!folio_test_lru(folio)) {
2284 			result = SCAN_PAGE_LRU;
2285 			break;
2286 		}
2287 
2288 		if (folio_ref_count(folio) !=
2289 		    1 + folio_mapcount(folio) + folio_test_private(folio)) {
2290 			result = SCAN_PAGE_COUNT;
2291 			break;
2292 		}
2293 
2294 		/*
2295 		 * We probably should check if the folio is referenced
2296 		 * here, but nobody would transfer pte_young() to
2297 		 * folio_test_referenced() for us.  And rmap walk here
2298 		 * is just too costly...
2299 		 */
2300 
2301 		present++;
2302 
2303 		if (need_resched()) {
2304 			xas_pause(&xas);
2305 			cond_resched_rcu();
2306 		}
2307 	}
2308 	rcu_read_unlock();
2309 
2310 	if (result == SCAN_SUCCEED) {
2311 		if (cc->is_khugepaged &&
2312 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2313 			result = SCAN_EXCEED_NONE_PTE;
2314 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2315 		} else {
2316 			result = collapse_file(mm, addr, file, start, cc);
2317 		}
2318 	}
2319 
2320 	trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2321 	return result;
2322 }
2323 #else
2324 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2325 				    struct file *file, pgoff_t start,
2326 				    struct collapse_control *cc)
2327 {
2328 	BUILD_BUG();
2329 }
2330 #endif
2331 
2332 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2333 					    struct collapse_control *cc)
2334 	__releases(&khugepaged_mm_lock)
2335 	__acquires(&khugepaged_mm_lock)
2336 {
2337 	struct vma_iterator vmi;
2338 	struct khugepaged_mm_slot *mm_slot;
2339 	struct mm_slot *slot;
2340 	struct mm_struct *mm;
2341 	struct vm_area_struct *vma;
2342 	int progress = 0;
2343 
2344 	VM_BUG_ON(!pages);
2345 	lockdep_assert_held(&khugepaged_mm_lock);
2346 	*result = SCAN_FAIL;
2347 
2348 	if (khugepaged_scan.mm_slot) {
2349 		mm_slot = khugepaged_scan.mm_slot;
2350 		slot = &mm_slot->slot;
2351 	} else {
2352 		slot = list_entry(khugepaged_scan.mm_head.next,
2353 				     struct mm_slot, mm_node);
2354 		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2355 		khugepaged_scan.address = 0;
2356 		khugepaged_scan.mm_slot = mm_slot;
2357 	}
2358 	spin_unlock(&khugepaged_mm_lock);
2359 
2360 	mm = slot->mm;
2361 	/*
2362 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2363 	 * the next mm on the list.
2364 	 */
2365 	vma = NULL;
2366 	if (unlikely(!mmap_read_trylock(mm)))
2367 		goto breakouterloop_mmap_lock;
2368 
2369 	progress++;
2370 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2371 		goto breakouterloop;
2372 
2373 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2374 	for_each_vma(vmi, vma) {
2375 		unsigned long hstart, hend;
2376 
2377 		cond_resched();
2378 		if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2379 			progress++;
2380 			break;
2381 		}
2382 		if (!thp_vma_allowable_order(vma, vma->vm_flags,
2383 					TVA_ENFORCE_SYSFS, PMD_ORDER)) {
2384 skip:
2385 			progress++;
2386 			continue;
2387 		}
2388 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2389 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2390 		if (khugepaged_scan.address > hend)
2391 			goto skip;
2392 		if (khugepaged_scan.address < hstart)
2393 			khugepaged_scan.address = hstart;
2394 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2395 
2396 		while (khugepaged_scan.address < hend) {
2397 			bool mmap_locked = true;
2398 
2399 			cond_resched();
2400 			if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2401 				goto breakouterloop;
2402 
2403 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2404 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2405 				  hend);
2406 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2407 				struct file *file = get_file(vma->vm_file);
2408 				pgoff_t pgoff = linear_page_index(vma,
2409 						khugepaged_scan.address);
2410 
2411 				mmap_read_unlock(mm);
2412 				mmap_locked = false;
2413 				*result = hpage_collapse_scan_file(mm,
2414 					khugepaged_scan.address, file, pgoff, cc);
2415 				fput(file);
2416 				if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2417 					mmap_read_lock(mm);
2418 					if (hpage_collapse_test_exit_or_disable(mm))
2419 						goto breakouterloop;
2420 					*result = collapse_pte_mapped_thp(mm,
2421 						khugepaged_scan.address, false);
2422 					if (*result == SCAN_PMD_MAPPED)
2423 						*result = SCAN_SUCCEED;
2424 					mmap_read_unlock(mm);
2425 				}
2426 			} else {
2427 				*result = hpage_collapse_scan_pmd(mm, vma,
2428 					khugepaged_scan.address, &mmap_locked, cc);
2429 			}
2430 
2431 			if (*result == SCAN_SUCCEED)
2432 				++khugepaged_pages_collapsed;
2433 
2434 			/* move to next address */
2435 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2436 			progress += HPAGE_PMD_NR;
2437 			if (!mmap_locked)
2438 				/*
2439 				 * We released mmap_lock so break loop.  Note
2440 				 * that we drop mmap_lock before all hugepage
2441 				 * allocations, so if allocation fails, we are
2442 				 * guaranteed to break here and report the
2443 				 * correct result back to caller.
2444 				 */
2445 				goto breakouterloop_mmap_lock;
2446 			if (progress >= pages)
2447 				goto breakouterloop;
2448 		}
2449 	}
2450 breakouterloop:
2451 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2452 breakouterloop_mmap_lock:
2453 
2454 	spin_lock(&khugepaged_mm_lock);
2455 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2456 	/*
2457 	 * Release the current mm_slot if this mm is about to die, or
2458 	 * if we scanned all vmas of this mm.
2459 	 */
2460 	if (hpage_collapse_test_exit(mm) || !vma) {
2461 		/*
2462 		 * Make sure that if mm_users is reaching zero while
2463 		 * khugepaged runs here, khugepaged_exit will find
2464 		 * mm_slot not pointing to the exiting mm.
2465 		 */
2466 		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2467 			slot = list_entry(slot->mm_node.next,
2468 					  struct mm_slot, mm_node);
2469 			khugepaged_scan.mm_slot =
2470 				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2471 			khugepaged_scan.address = 0;
2472 		} else {
2473 			khugepaged_scan.mm_slot = NULL;
2474 			khugepaged_full_scans++;
2475 		}
2476 
2477 		collect_mm_slot(mm_slot);
2478 	}
2479 
2480 	return progress;
2481 }
2482 
2483 static int khugepaged_has_work(void)
2484 {
2485 	return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled();
2486 }
2487 
2488 static int khugepaged_wait_event(void)
2489 {
2490 	return !list_empty(&khugepaged_scan.mm_head) ||
2491 		kthread_should_stop();
2492 }
2493 
2494 static void khugepaged_do_scan(struct collapse_control *cc)
2495 {
2496 	unsigned int progress = 0, pass_through_head = 0;
2497 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2498 	bool wait = true;
2499 	int result = SCAN_SUCCEED;
2500 
2501 	lru_add_drain_all();
2502 
2503 	while (true) {
2504 		cond_resched();
2505 
2506 		if (unlikely(kthread_should_stop()))
2507 			break;
2508 
2509 		spin_lock(&khugepaged_mm_lock);
2510 		if (!khugepaged_scan.mm_slot)
2511 			pass_through_head++;
2512 		if (khugepaged_has_work() &&
2513 		    pass_through_head < 2)
2514 			progress += khugepaged_scan_mm_slot(pages - progress,
2515 							    &result, cc);
2516 		else
2517 			progress = pages;
2518 		spin_unlock(&khugepaged_mm_lock);
2519 
2520 		if (progress >= pages)
2521 			break;
2522 
2523 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2524 			/*
2525 			 * If fail to allocate the first time, try to sleep for
2526 			 * a while.  When hit again, cancel the scan.
2527 			 */
2528 			if (!wait)
2529 				break;
2530 			wait = false;
2531 			khugepaged_alloc_sleep();
2532 		}
2533 	}
2534 }
2535 
2536 static bool khugepaged_should_wakeup(void)
2537 {
2538 	return kthread_should_stop() ||
2539 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2540 }
2541 
2542 static void khugepaged_wait_work(void)
2543 {
2544 	if (khugepaged_has_work()) {
2545 		const unsigned long scan_sleep_jiffies =
2546 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2547 
2548 		if (!scan_sleep_jiffies)
2549 			return;
2550 
2551 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2552 		wait_event_freezable_timeout(khugepaged_wait,
2553 					     khugepaged_should_wakeup(),
2554 					     scan_sleep_jiffies);
2555 		return;
2556 	}
2557 
2558 	if (hugepage_pmd_enabled())
2559 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2560 }
2561 
2562 static int khugepaged(void *none)
2563 {
2564 	struct khugepaged_mm_slot *mm_slot;
2565 
2566 	set_freezable();
2567 	set_user_nice(current, MAX_NICE);
2568 
2569 	while (!kthread_should_stop()) {
2570 		khugepaged_do_scan(&khugepaged_collapse_control);
2571 		khugepaged_wait_work();
2572 	}
2573 
2574 	spin_lock(&khugepaged_mm_lock);
2575 	mm_slot = khugepaged_scan.mm_slot;
2576 	khugepaged_scan.mm_slot = NULL;
2577 	if (mm_slot)
2578 		collect_mm_slot(mm_slot);
2579 	spin_unlock(&khugepaged_mm_lock);
2580 	return 0;
2581 }
2582 
2583 static void set_recommended_min_free_kbytes(void)
2584 {
2585 	struct zone *zone;
2586 	int nr_zones = 0;
2587 	unsigned long recommended_min;
2588 
2589 	if (!hugepage_pmd_enabled()) {
2590 		calculate_min_free_kbytes();
2591 		goto update_wmarks;
2592 	}
2593 
2594 	for_each_populated_zone(zone) {
2595 		/*
2596 		 * We don't need to worry about fragmentation of
2597 		 * ZONE_MOVABLE since it only has movable pages.
2598 		 */
2599 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2600 			continue;
2601 
2602 		nr_zones++;
2603 	}
2604 
2605 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2606 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2607 
2608 	/*
2609 	 * Make sure that on average at least two pageblocks are almost free
2610 	 * of another type, one for a migratetype to fall back to and a
2611 	 * second to avoid subsequent fallbacks of other types There are 3
2612 	 * MIGRATE_TYPES we care about.
2613 	 */
2614 	recommended_min += pageblock_nr_pages * nr_zones *
2615 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2616 
2617 	/* don't ever allow to reserve more than 5% of the lowmem */
2618 	recommended_min = min(recommended_min,
2619 			      (unsigned long) nr_free_buffer_pages() / 20);
2620 	recommended_min <<= (PAGE_SHIFT-10);
2621 
2622 	if (recommended_min > min_free_kbytes) {
2623 		if (user_min_free_kbytes >= 0)
2624 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2625 				min_free_kbytes, recommended_min);
2626 
2627 		min_free_kbytes = recommended_min;
2628 	}
2629 
2630 update_wmarks:
2631 	setup_per_zone_wmarks();
2632 }
2633 
2634 int start_stop_khugepaged(void)
2635 {
2636 	int err = 0;
2637 
2638 	mutex_lock(&khugepaged_mutex);
2639 	if (hugepage_pmd_enabled()) {
2640 		if (!khugepaged_thread)
2641 			khugepaged_thread = kthread_run(khugepaged, NULL,
2642 							"khugepaged");
2643 		if (IS_ERR(khugepaged_thread)) {
2644 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2645 			err = PTR_ERR(khugepaged_thread);
2646 			khugepaged_thread = NULL;
2647 			goto fail;
2648 		}
2649 
2650 		if (!list_empty(&khugepaged_scan.mm_head))
2651 			wake_up_interruptible(&khugepaged_wait);
2652 	} else if (khugepaged_thread) {
2653 		kthread_stop(khugepaged_thread);
2654 		khugepaged_thread = NULL;
2655 	}
2656 	set_recommended_min_free_kbytes();
2657 fail:
2658 	mutex_unlock(&khugepaged_mutex);
2659 	return err;
2660 }
2661 
2662 void khugepaged_min_free_kbytes_update(void)
2663 {
2664 	mutex_lock(&khugepaged_mutex);
2665 	if (hugepage_pmd_enabled() && khugepaged_thread)
2666 		set_recommended_min_free_kbytes();
2667 	mutex_unlock(&khugepaged_mutex);
2668 }
2669 
2670 bool current_is_khugepaged(void)
2671 {
2672 	return kthread_func(current) == khugepaged;
2673 }
2674 
2675 static int madvise_collapse_errno(enum scan_result r)
2676 {
2677 	/*
2678 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2679 	 * actionable feedback to caller, so they may take an appropriate
2680 	 * fallback measure depending on the nature of the failure.
2681 	 */
2682 	switch (r) {
2683 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2684 		return -ENOMEM;
2685 	case SCAN_CGROUP_CHARGE_FAIL:
2686 	case SCAN_EXCEED_NONE_PTE:
2687 		return -EBUSY;
2688 	/* Resource temporary unavailable - trying again might succeed */
2689 	case SCAN_PAGE_COUNT:
2690 	case SCAN_PAGE_LOCK:
2691 	case SCAN_PAGE_LRU:
2692 	case SCAN_DEL_PAGE_LRU:
2693 	case SCAN_PAGE_FILLED:
2694 		return -EAGAIN;
2695 	/*
2696 	 * Other: Trying again likely not to succeed / error intrinsic to
2697 	 * specified memory range. khugepaged likely won't be able to collapse
2698 	 * either.
2699 	 */
2700 	default:
2701 		return -EINVAL;
2702 	}
2703 }
2704 
2705 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2706 		     unsigned long start, unsigned long end)
2707 {
2708 	struct collapse_control *cc;
2709 	struct mm_struct *mm = vma->vm_mm;
2710 	unsigned long hstart, hend, addr;
2711 	int thps = 0, last_fail = SCAN_FAIL;
2712 	bool mmap_locked = true;
2713 
2714 	BUG_ON(vma->vm_start > start);
2715 	BUG_ON(vma->vm_end < end);
2716 
2717 	*prev = vma;
2718 
2719 	if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
2720 		return -EINVAL;
2721 
2722 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2723 	if (!cc)
2724 		return -ENOMEM;
2725 	cc->is_khugepaged = false;
2726 
2727 	mmgrab(mm);
2728 	lru_add_drain_all();
2729 
2730 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2731 	hend = end & HPAGE_PMD_MASK;
2732 
2733 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2734 		int result = SCAN_FAIL;
2735 
2736 		if (!mmap_locked) {
2737 			cond_resched();
2738 			mmap_read_lock(mm);
2739 			mmap_locked = true;
2740 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2741 							 cc);
2742 			if (result  != SCAN_SUCCEED) {
2743 				last_fail = result;
2744 				goto out_nolock;
2745 			}
2746 
2747 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2748 		}
2749 		mmap_assert_locked(mm);
2750 		memset(cc->node_load, 0, sizeof(cc->node_load));
2751 		nodes_clear(cc->alloc_nmask);
2752 		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2753 			struct file *file = get_file(vma->vm_file);
2754 			pgoff_t pgoff = linear_page_index(vma, addr);
2755 
2756 			mmap_read_unlock(mm);
2757 			mmap_locked = false;
2758 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2759 							  cc);
2760 			fput(file);
2761 		} else {
2762 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2763 							 &mmap_locked, cc);
2764 		}
2765 		if (!mmap_locked)
2766 			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2767 
2768 handle_result:
2769 		switch (result) {
2770 		case SCAN_SUCCEED:
2771 		case SCAN_PMD_MAPPED:
2772 			++thps;
2773 			break;
2774 		case SCAN_PTE_MAPPED_HUGEPAGE:
2775 			BUG_ON(mmap_locked);
2776 			BUG_ON(*prev);
2777 			mmap_read_lock(mm);
2778 			result = collapse_pte_mapped_thp(mm, addr, true);
2779 			mmap_read_unlock(mm);
2780 			goto handle_result;
2781 		/* Whitelisted set of results where continuing OK */
2782 		case SCAN_PMD_NULL:
2783 		case SCAN_PTE_NON_PRESENT:
2784 		case SCAN_PTE_UFFD_WP:
2785 		case SCAN_PAGE_RO:
2786 		case SCAN_LACK_REFERENCED_PAGE:
2787 		case SCAN_PAGE_NULL:
2788 		case SCAN_PAGE_COUNT:
2789 		case SCAN_PAGE_LOCK:
2790 		case SCAN_PAGE_COMPOUND:
2791 		case SCAN_PAGE_LRU:
2792 		case SCAN_DEL_PAGE_LRU:
2793 			last_fail = result;
2794 			break;
2795 		default:
2796 			last_fail = result;
2797 			/* Other error, exit */
2798 			goto out_maybelock;
2799 		}
2800 	}
2801 
2802 out_maybelock:
2803 	/* Caller expects us to hold mmap_lock on return */
2804 	if (!mmap_locked)
2805 		mmap_read_lock(mm);
2806 out_nolock:
2807 	mmap_assert_locked(mm);
2808 	mmdrop(mm);
2809 	kfree(cc);
2810 
2811 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2812 			: madvise_collapse_errno(last_fail);
2813 }
2814