1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/rcupdate_wait.h> 21 #include <linux/swapops.h> 22 #include <linux/shmem_fs.h> 23 #include <linux/ksm.h> 24 25 #include <asm/tlb.h> 26 #include <asm/pgalloc.h> 27 #include "internal.h" 28 #include "mm_slot.h" 29 30 enum scan_result { 31 SCAN_FAIL, 32 SCAN_SUCCEED, 33 SCAN_PMD_NULL, 34 SCAN_PMD_NONE, 35 SCAN_PMD_MAPPED, 36 SCAN_EXCEED_NONE_PTE, 37 SCAN_EXCEED_SWAP_PTE, 38 SCAN_EXCEED_SHARED_PTE, 39 SCAN_PTE_NON_PRESENT, 40 SCAN_PTE_UFFD_WP, 41 SCAN_PTE_MAPPED_HUGEPAGE, 42 SCAN_PAGE_RO, 43 SCAN_LACK_REFERENCED_PAGE, 44 SCAN_PAGE_NULL, 45 SCAN_SCAN_ABORT, 46 SCAN_PAGE_COUNT, 47 SCAN_PAGE_LRU, 48 SCAN_PAGE_LOCK, 49 SCAN_PAGE_ANON, 50 SCAN_PAGE_COMPOUND, 51 SCAN_ANY_PROCESS, 52 SCAN_VMA_NULL, 53 SCAN_VMA_CHECK, 54 SCAN_ADDRESS_RANGE, 55 SCAN_DEL_PAGE_LRU, 56 SCAN_ALLOC_HUGE_PAGE_FAIL, 57 SCAN_CGROUP_CHARGE_FAIL, 58 SCAN_TRUNCATED, 59 SCAN_PAGE_HAS_PRIVATE, 60 SCAN_STORE_FAILED, 61 SCAN_COPY_MC, 62 SCAN_PAGE_FILLED, 63 }; 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/huge_memory.h> 67 68 static struct task_struct *khugepaged_thread __read_mostly; 69 static DEFINE_MUTEX(khugepaged_mutex); 70 71 /* default scan 8*512 pte (or vmas) every 30 second */ 72 static unsigned int khugepaged_pages_to_scan __read_mostly; 73 static unsigned int khugepaged_pages_collapsed; 74 static unsigned int khugepaged_full_scans; 75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 76 /* during fragmentation poll the hugepage allocator once every minute */ 77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 78 static unsigned long khugepaged_sleep_expire; 79 static DEFINE_SPINLOCK(khugepaged_mm_lock); 80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 81 /* 82 * default collapse hugepages if there is at least one pte mapped like 83 * it would have happened if the vma was large enough during page 84 * fault. 85 * 86 * Note that these are only respected if collapse was initiated by khugepaged. 87 */ 88 static unsigned int khugepaged_max_ptes_none __read_mostly; 89 static unsigned int khugepaged_max_ptes_swap __read_mostly; 90 static unsigned int khugepaged_max_ptes_shared __read_mostly; 91 92 #define MM_SLOTS_HASH_BITS 10 93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 94 95 static struct kmem_cache *mm_slot_cache __ro_after_init; 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 109 * @slot: hash lookup from mm to mm_slot 110 */ 111 struct khugepaged_mm_slot { 112 struct mm_slot slot; 113 }; 114 115 /** 116 * struct khugepaged_scan - cursor for scanning 117 * @mm_head: the head of the mm list to scan 118 * @mm_slot: the current mm_slot we are scanning 119 * @address: the next address inside that to be scanned 120 * 121 * There is only the one khugepaged_scan instance of this cursor structure. 122 */ 123 struct khugepaged_scan { 124 struct list_head mm_head; 125 struct khugepaged_mm_slot *mm_slot; 126 unsigned long address; 127 }; 128 129 static struct khugepaged_scan khugepaged_scan = { 130 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 131 }; 132 133 #ifdef CONFIG_SYSFS 134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 135 struct kobj_attribute *attr, 136 char *buf) 137 { 138 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 139 } 140 141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 142 struct kobj_attribute *attr, 143 const char *buf, size_t count) 144 { 145 unsigned int msecs; 146 int err; 147 148 err = kstrtouint(buf, 10, &msecs); 149 if (err) 150 return -EINVAL; 151 152 khugepaged_scan_sleep_millisecs = msecs; 153 khugepaged_sleep_expire = 0; 154 wake_up_interruptible(&khugepaged_wait); 155 156 return count; 157 } 158 static struct kobj_attribute scan_sleep_millisecs_attr = 159 __ATTR_RW(scan_sleep_millisecs); 160 161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 162 struct kobj_attribute *attr, 163 char *buf) 164 { 165 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 166 } 167 168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 169 struct kobj_attribute *attr, 170 const char *buf, size_t count) 171 { 172 unsigned int msecs; 173 int err; 174 175 err = kstrtouint(buf, 10, &msecs); 176 if (err) 177 return -EINVAL; 178 179 khugepaged_alloc_sleep_millisecs = msecs; 180 khugepaged_sleep_expire = 0; 181 wake_up_interruptible(&khugepaged_wait); 182 183 return count; 184 } 185 static struct kobj_attribute alloc_sleep_millisecs_attr = 186 __ATTR_RW(alloc_sleep_millisecs); 187 188 static ssize_t pages_to_scan_show(struct kobject *kobj, 189 struct kobj_attribute *attr, 190 char *buf) 191 { 192 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 193 } 194 static ssize_t pages_to_scan_store(struct kobject *kobj, 195 struct kobj_attribute *attr, 196 const char *buf, size_t count) 197 { 198 unsigned int pages; 199 int err; 200 201 err = kstrtouint(buf, 10, &pages); 202 if (err || !pages) 203 return -EINVAL; 204 205 khugepaged_pages_to_scan = pages; 206 207 return count; 208 } 209 static struct kobj_attribute pages_to_scan_attr = 210 __ATTR_RW(pages_to_scan); 211 212 static ssize_t pages_collapsed_show(struct kobject *kobj, 213 struct kobj_attribute *attr, 214 char *buf) 215 { 216 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 217 } 218 static struct kobj_attribute pages_collapsed_attr = 219 __ATTR_RO(pages_collapsed); 220 221 static ssize_t full_scans_show(struct kobject *kobj, 222 struct kobj_attribute *attr, 223 char *buf) 224 { 225 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 226 } 227 static struct kobj_attribute full_scans_attr = 228 __ATTR_RO(full_scans); 229 230 static ssize_t defrag_show(struct kobject *kobj, 231 struct kobj_attribute *attr, char *buf) 232 { 233 return single_hugepage_flag_show(kobj, attr, buf, 234 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 235 } 236 static ssize_t defrag_store(struct kobject *kobj, 237 struct kobj_attribute *attr, 238 const char *buf, size_t count) 239 { 240 return single_hugepage_flag_store(kobj, attr, buf, count, 241 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 242 } 243 static struct kobj_attribute khugepaged_defrag_attr = 244 __ATTR_RW(defrag); 245 246 /* 247 * max_ptes_none controls if khugepaged should collapse hugepages over 248 * any unmapped ptes in turn potentially increasing the memory 249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 250 * reduce the available free memory in the system as it 251 * runs. Increasing max_ptes_none will instead potentially reduce the 252 * free memory in the system during the khugepaged scan. 253 */ 254 static ssize_t max_ptes_none_show(struct kobject *kobj, 255 struct kobj_attribute *attr, 256 char *buf) 257 { 258 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 259 } 260 static ssize_t max_ptes_none_store(struct kobject *kobj, 261 struct kobj_attribute *attr, 262 const char *buf, size_t count) 263 { 264 int err; 265 unsigned long max_ptes_none; 266 267 err = kstrtoul(buf, 10, &max_ptes_none); 268 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 269 return -EINVAL; 270 271 khugepaged_max_ptes_none = max_ptes_none; 272 273 return count; 274 } 275 static struct kobj_attribute khugepaged_max_ptes_none_attr = 276 __ATTR_RW(max_ptes_none); 277 278 static ssize_t max_ptes_swap_show(struct kobject *kobj, 279 struct kobj_attribute *attr, 280 char *buf) 281 { 282 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 283 } 284 285 static ssize_t max_ptes_swap_store(struct kobject *kobj, 286 struct kobj_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int err; 290 unsigned long max_ptes_swap; 291 292 err = kstrtoul(buf, 10, &max_ptes_swap); 293 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 294 return -EINVAL; 295 296 khugepaged_max_ptes_swap = max_ptes_swap; 297 298 return count; 299 } 300 301 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 302 __ATTR_RW(max_ptes_swap); 303 304 static ssize_t max_ptes_shared_show(struct kobject *kobj, 305 struct kobj_attribute *attr, 306 char *buf) 307 { 308 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 309 } 310 311 static ssize_t max_ptes_shared_store(struct kobject *kobj, 312 struct kobj_attribute *attr, 313 const char *buf, size_t count) 314 { 315 int err; 316 unsigned long max_ptes_shared; 317 318 err = kstrtoul(buf, 10, &max_ptes_shared); 319 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 320 return -EINVAL; 321 322 khugepaged_max_ptes_shared = max_ptes_shared; 323 324 return count; 325 } 326 327 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 328 __ATTR_RW(max_ptes_shared); 329 330 static struct attribute *khugepaged_attr[] = { 331 &khugepaged_defrag_attr.attr, 332 &khugepaged_max_ptes_none_attr.attr, 333 &khugepaged_max_ptes_swap_attr.attr, 334 &khugepaged_max_ptes_shared_attr.attr, 335 &pages_to_scan_attr.attr, 336 &pages_collapsed_attr.attr, 337 &full_scans_attr.attr, 338 &scan_sleep_millisecs_attr.attr, 339 &alloc_sleep_millisecs_attr.attr, 340 NULL, 341 }; 342 343 struct attribute_group khugepaged_attr_group = { 344 .attrs = khugepaged_attr, 345 .name = "khugepaged", 346 }; 347 #endif /* CONFIG_SYSFS */ 348 349 int hugepage_madvise(struct vm_area_struct *vma, 350 unsigned long *vm_flags, int advice) 351 { 352 switch (advice) { 353 case MADV_HUGEPAGE: 354 #ifdef CONFIG_S390 355 /* 356 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 357 * can't handle this properly after s390_enable_sie, so we simply 358 * ignore the madvise to prevent qemu from causing a SIGSEGV. 359 */ 360 if (mm_has_pgste(vma->vm_mm)) 361 return 0; 362 #endif 363 *vm_flags &= ~VM_NOHUGEPAGE; 364 *vm_flags |= VM_HUGEPAGE; 365 /* 366 * If the vma become good for khugepaged to scan, 367 * register it here without waiting a page fault that 368 * may not happen any time soon. 369 */ 370 khugepaged_enter_vma(vma, *vm_flags); 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 389 sizeof(struct khugepaged_mm_slot), 390 __alignof__(struct khugepaged_mm_slot), 391 0, NULL); 392 if (!mm_slot_cache) 393 return -ENOMEM; 394 395 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 396 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 397 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 398 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 399 400 return 0; 401 } 402 403 void __init khugepaged_destroy(void) 404 { 405 kmem_cache_destroy(mm_slot_cache); 406 } 407 408 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 409 { 410 return atomic_read(&mm->mm_users) == 0; 411 } 412 413 void __khugepaged_enter(struct mm_struct *mm) 414 { 415 struct khugepaged_mm_slot *mm_slot; 416 struct mm_slot *slot; 417 int wakeup; 418 419 /* __khugepaged_exit() must not run from under us */ 420 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 421 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 422 return; 423 424 mm_slot = mm_slot_alloc(mm_slot_cache); 425 if (!mm_slot) 426 return; 427 428 slot = &mm_slot->slot; 429 430 spin_lock(&khugepaged_mm_lock); 431 mm_slot_insert(mm_slots_hash, mm, slot); 432 /* 433 * Insert just behind the scanning cursor, to let the area settle 434 * down a little. 435 */ 436 wakeup = list_empty(&khugepaged_scan.mm_head); 437 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 438 spin_unlock(&khugepaged_mm_lock); 439 440 mmgrab(mm); 441 if (wakeup) 442 wake_up_interruptible(&khugepaged_wait); 443 } 444 445 void khugepaged_enter_vma(struct vm_area_struct *vma, 446 unsigned long vm_flags) 447 { 448 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 449 hugepage_flags_enabled()) { 450 if (thp_vma_allowable_order(vma, vm_flags, false, false, true, 451 PMD_ORDER)) 452 __khugepaged_enter(vma->vm_mm); 453 } 454 } 455 456 void __khugepaged_exit(struct mm_struct *mm) 457 { 458 struct khugepaged_mm_slot *mm_slot; 459 struct mm_slot *slot; 460 int free = 0; 461 462 spin_lock(&khugepaged_mm_lock); 463 slot = mm_slot_lookup(mm_slots_hash, mm); 464 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 465 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 466 hash_del(&slot->hash); 467 list_del(&slot->mm_node); 468 free = 1; 469 } 470 spin_unlock(&khugepaged_mm_lock); 471 472 if (free) { 473 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 474 mm_slot_free(mm_slot_cache, mm_slot); 475 mmdrop(mm); 476 } else if (mm_slot) { 477 /* 478 * This is required to serialize against 479 * hpage_collapse_test_exit() (which is guaranteed to run 480 * under mmap sem read mode). Stop here (after we return all 481 * pagetables will be destroyed) until khugepaged has finished 482 * working on the pagetables under the mmap_lock. 483 */ 484 mmap_write_lock(mm); 485 mmap_write_unlock(mm); 486 } 487 } 488 489 static void release_pte_folio(struct folio *folio) 490 { 491 node_stat_mod_folio(folio, 492 NR_ISOLATED_ANON + folio_is_file_lru(folio), 493 -folio_nr_pages(folio)); 494 folio_unlock(folio); 495 folio_putback_lru(folio); 496 } 497 498 static void release_pte_pages(pte_t *pte, pte_t *_pte, 499 struct list_head *compound_pagelist) 500 { 501 struct folio *folio, *tmp; 502 503 while (--_pte >= pte) { 504 pte_t pteval = ptep_get(_pte); 505 unsigned long pfn; 506 507 if (pte_none(pteval)) 508 continue; 509 pfn = pte_pfn(pteval); 510 if (is_zero_pfn(pfn)) 511 continue; 512 folio = pfn_folio(pfn); 513 if (folio_test_large(folio)) 514 continue; 515 release_pte_folio(folio); 516 } 517 518 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 519 list_del(&folio->lru); 520 release_pte_folio(folio); 521 } 522 } 523 524 static bool is_refcount_suitable(struct folio *folio) 525 { 526 int expected_refcount; 527 528 expected_refcount = folio_mapcount(folio); 529 if (folio_test_swapcache(folio)) 530 expected_refcount += folio_nr_pages(folio); 531 532 return folio_ref_count(folio) == expected_refcount; 533 } 534 535 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 536 unsigned long address, 537 pte_t *pte, 538 struct collapse_control *cc, 539 struct list_head *compound_pagelist) 540 { 541 struct page *page = NULL; 542 struct folio *folio = NULL; 543 pte_t *_pte; 544 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 545 bool writable = false; 546 547 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 548 _pte++, address += PAGE_SIZE) { 549 pte_t pteval = ptep_get(_pte); 550 if (pte_none(pteval) || (pte_present(pteval) && 551 is_zero_pfn(pte_pfn(pteval)))) { 552 ++none_or_zero; 553 if (!userfaultfd_armed(vma) && 554 (!cc->is_khugepaged || 555 none_or_zero <= khugepaged_max_ptes_none)) { 556 continue; 557 } else { 558 result = SCAN_EXCEED_NONE_PTE; 559 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 560 goto out; 561 } 562 } 563 if (!pte_present(pteval)) { 564 result = SCAN_PTE_NON_PRESENT; 565 goto out; 566 } 567 if (pte_uffd_wp(pteval)) { 568 result = SCAN_PTE_UFFD_WP; 569 goto out; 570 } 571 page = vm_normal_page(vma, address, pteval); 572 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 573 result = SCAN_PAGE_NULL; 574 goto out; 575 } 576 577 folio = page_folio(page); 578 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 579 580 if (page_mapcount(page) > 1) { 581 ++shared; 582 if (cc->is_khugepaged && 583 shared > khugepaged_max_ptes_shared) { 584 result = SCAN_EXCEED_SHARED_PTE; 585 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 586 goto out; 587 } 588 } 589 590 if (folio_test_large(folio)) { 591 struct folio *f; 592 593 /* 594 * Check if we have dealt with the compound page 595 * already 596 */ 597 list_for_each_entry(f, compound_pagelist, lru) { 598 if (folio == f) 599 goto next; 600 } 601 } 602 603 /* 604 * We can do it before isolate_lru_page because the 605 * page can't be freed from under us. NOTE: PG_lock 606 * is needed to serialize against split_huge_page 607 * when invoked from the VM. 608 */ 609 if (!folio_trylock(folio)) { 610 result = SCAN_PAGE_LOCK; 611 goto out; 612 } 613 614 /* 615 * Check if the page has any GUP (or other external) pins. 616 * 617 * The page table that maps the page has been already unlinked 618 * from the page table tree and this process cannot get 619 * an additional pin on the page. 620 * 621 * New pins can come later if the page is shared across fork, 622 * but not from this process. The other process cannot write to 623 * the page, only trigger CoW. 624 */ 625 if (!is_refcount_suitable(folio)) { 626 folio_unlock(folio); 627 result = SCAN_PAGE_COUNT; 628 goto out; 629 } 630 631 /* 632 * Isolate the page to avoid collapsing an hugepage 633 * currently in use by the VM. 634 */ 635 if (!folio_isolate_lru(folio)) { 636 folio_unlock(folio); 637 result = SCAN_DEL_PAGE_LRU; 638 goto out; 639 } 640 node_stat_mod_folio(folio, 641 NR_ISOLATED_ANON + folio_is_file_lru(folio), 642 folio_nr_pages(folio)); 643 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 644 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 645 646 if (folio_test_large(folio)) 647 list_add_tail(&folio->lru, compound_pagelist); 648 next: 649 /* 650 * If collapse was initiated by khugepaged, check that there is 651 * enough young pte to justify collapsing the page 652 */ 653 if (cc->is_khugepaged && 654 (pte_young(pteval) || folio_test_young(folio) || 655 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 656 address))) 657 referenced++; 658 659 if (pte_write(pteval)) 660 writable = true; 661 } 662 663 if (unlikely(!writable)) { 664 result = SCAN_PAGE_RO; 665 } else if (unlikely(cc->is_khugepaged && !referenced)) { 666 result = SCAN_LACK_REFERENCED_PAGE; 667 } else { 668 result = SCAN_SUCCEED; 669 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 670 referenced, writable, result); 671 return result; 672 } 673 out: 674 release_pte_pages(pte, _pte, compound_pagelist); 675 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 676 referenced, writable, result); 677 return result; 678 } 679 680 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 681 struct vm_area_struct *vma, 682 unsigned long address, 683 spinlock_t *ptl, 684 struct list_head *compound_pagelist) 685 { 686 struct folio *src_folio; 687 struct page *src_page; 688 struct page *tmp; 689 pte_t *_pte; 690 pte_t pteval; 691 692 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 693 _pte++, address += PAGE_SIZE) { 694 pteval = ptep_get(_pte); 695 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 696 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 697 if (is_zero_pfn(pte_pfn(pteval))) { 698 /* 699 * ptl mostly unnecessary. 700 */ 701 spin_lock(ptl); 702 ptep_clear(vma->vm_mm, address, _pte); 703 spin_unlock(ptl); 704 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 705 } 706 } else { 707 src_page = pte_page(pteval); 708 src_folio = page_folio(src_page); 709 if (!folio_test_large(src_folio)) 710 release_pte_folio(src_folio); 711 /* 712 * ptl mostly unnecessary, but preempt has to 713 * be disabled to update the per-cpu stats 714 * inside folio_remove_rmap_pte(). 715 */ 716 spin_lock(ptl); 717 ptep_clear(vma->vm_mm, address, _pte); 718 folio_remove_rmap_pte(src_folio, src_page, vma); 719 spin_unlock(ptl); 720 free_page_and_swap_cache(src_page); 721 } 722 } 723 724 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 725 list_del(&src_page->lru); 726 mod_node_page_state(page_pgdat(src_page), 727 NR_ISOLATED_ANON + page_is_file_lru(src_page), 728 -compound_nr(src_page)); 729 unlock_page(src_page); 730 free_swap_cache(src_page); 731 putback_lru_page(src_page); 732 } 733 } 734 735 static void __collapse_huge_page_copy_failed(pte_t *pte, 736 pmd_t *pmd, 737 pmd_t orig_pmd, 738 struct vm_area_struct *vma, 739 struct list_head *compound_pagelist) 740 { 741 spinlock_t *pmd_ptl; 742 743 /* 744 * Re-establish the PMD to point to the original page table 745 * entry. Restoring PMD needs to be done prior to releasing 746 * pages. Since pages are still isolated and locked here, 747 * acquiring anon_vma_lock_write is unnecessary. 748 */ 749 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 750 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 751 spin_unlock(pmd_ptl); 752 /* 753 * Release both raw and compound pages isolated 754 * in __collapse_huge_page_isolate. 755 */ 756 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 757 } 758 759 /* 760 * __collapse_huge_page_copy - attempts to copy memory contents from raw 761 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 762 * otherwise restores the original page table and releases isolated raw pages. 763 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 764 * 765 * @pte: starting of the PTEs to copy from 766 * @page: the new hugepage to copy contents to 767 * @pmd: pointer to the new hugepage's PMD 768 * @orig_pmd: the original raw pages' PMD 769 * @vma: the original raw pages' virtual memory area 770 * @address: starting address to copy 771 * @ptl: lock on raw pages' PTEs 772 * @compound_pagelist: list that stores compound pages 773 */ 774 static int __collapse_huge_page_copy(pte_t *pte, 775 struct page *page, 776 pmd_t *pmd, 777 pmd_t orig_pmd, 778 struct vm_area_struct *vma, 779 unsigned long address, 780 spinlock_t *ptl, 781 struct list_head *compound_pagelist) 782 { 783 struct page *src_page; 784 pte_t *_pte; 785 pte_t pteval; 786 unsigned long _address; 787 int result = SCAN_SUCCEED; 788 789 /* 790 * Copying pages' contents is subject to memory poison at any iteration. 791 */ 792 for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR; 793 _pte++, page++, _address += PAGE_SIZE) { 794 pteval = ptep_get(_pte); 795 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 796 clear_user_highpage(page, _address); 797 continue; 798 } 799 src_page = pte_page(pteval); 800 if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) { 801 result = SCAN_COPY_MC; 802 break; 803 } 804 } 805 806 if (likely(result == SCAN_SUCCEED)) 807 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 808 compound_pagelist); 809 else 810 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 811 compound_pagelist); 812 813 return result; 814 } 815 816 static void khugepaged_alloc_sleep(void) 817 { 818 DEFINE_WAIT(wait); 819 820 add_wait_queue(&khugepaged_wait, &wait); 821 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 822 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 823 remove_wait_queue(&khugepaged_wait, &wait); 824 } 825 826 struct collapse_control khugepaged_collapse_control = { 827 .is_khugepaged = true, 828 }; 829 830 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 831 { 832 int i; 833 834 /* 835 * If node_reclaim_mode is disabled, then no extra effort is made to 836 * allocate memory locally. 837 */ 838 if (!node_reclaim_enabled()) 839 return false; 840 841 /* If there is a count for this node already, it must be acceptable */ 842 if (cc->node_load[nid]) 843 return false; 844 845 for (i = 0; i < MAX_NUMNODES; i++) { 846 if (!cc->node_load[i]) 847 continue; 848 if (node_distance(nid, i) > node_reclaim_distance) 849 return true; 850 } 851 return false; 852 } 853 854 #define khugepaged_defrag() \ 855 (transparent_hugepage_flags & \ 856 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 857 858 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 859 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 860 { 861 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 862 } 863 864 #ifdef CONFIG_NUMA 865 static int hpage_collapse_find_target_node(struct collapse_control *cc) 866 { 867 int nid, target_node = 0, max_value = 0; 868 869 /* find first node with max normal pages hit */ 870 for (nid = 0; nid < MAX_NUMNODES; nid++) 871 if (cc->node_load[nid] > max_value) { 872 max_value = cc->node_load[nid]; 873 target_node = nid; 874 } 875 876 for_each_online_node(nid) { 877 if (max_value == cc->node_load[nid]) 878 node_set(nid, cc->alloc_nmask); 879 } 880 881 return target_node; 882 } 883 #else 884 static int hpage_collapse_find_target_node(struct collapse_control *cc) 885 { 886 return 0; 887 } 888 #endif 889 890 static bool hpage_collapse_alloc_folio(struct folio **folio, gfp_t gfp, int node, 891 nodemask_t *nmask) 892 { 893 *folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, nmask); 894 895 if (unlikely(!*folio)) { 896 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 897 return false; 898 } 899 900 count_vm_event(THP_COLLAPSE_ALLOC); 901 return true; 902 } 903 904 /* 905 * If mmap_lock temporarily dropped, revalidate vma 906 * before taking mmap_lock. 907 * Returns enum scan_result value. 908 */ 909 910 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 911 bool expect_anon, 912 struct vm_area_struct **vmap, 913 struct collapse_control *cc) 914 { 915 struct vm_area_struct *vma; 916 917 if (unlikely(hpage_collapse_test_exit(mm))) 918 return SCAN_ANY_PROCESS; 919 920 *vmap = vma = find_vma(mm, address); 921 if (!vma) 922 return SCAN_VMA_NULL; 923 924 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 925 return SCAN_ADDRESS_RANGE; 926 if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, 927 cc->is_khugepaged, PMD_ORDER)) 928 return SCAN_VMA_CHECK; 929 /* 930 * Anon VMA expected, the address may be unmapped then 931 * remapped to file after khugepaged reaquired the mmap_lock. 932 * 933 * thp_vma_allowable_order may return true for qualified file 934 * vmas. 935 */ 936 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 937 return SCAN_PAGE_ANON; 938 return SCAN_SUCCEED; 939 } 940 941 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 942 unsigned long address, 943 pmd_t **pmd) 944 { 945 pmd_t pmde; 946 947 *pmd = mm_find_pmd(mm, address); 948 if (!*pmd) 949 return SCAN_PMD_NULL; 950 951 pmde = pmdp_get_lockless(*pmd); 952 if (pmd_none(pmde)) 953 return SCAN_PMD_NONE; 954 if (!pmd_present(pmde)) 955 return SCAN_PMD_NULL; 956 if (pmd_trans_huge(pmde)) 957 return SCAN_PMD_MAPPED; 958 if (pmd_devmap(pmde)) 959 return SCAN_PMD_NULL; 960 if (pmd_bad(pmde)) 961 return SCAN_PMD_NULL; 962 return SCAN_SUCCEED; 963 } 964 965 static int check_pmd_still_valid(struct mm_struct *mm, 966 unsigned long address, 967 pmd_t *pmd) 968 { 969 pmd_t *new_pmd; 970 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 971 972 if (result != SCAN_SUCCEED) 973 return result; 974 if (new_pmd != pmd) 975 return SCAN_FAIL; 976 return SCAN_SUCCEED; 977 } 978 979 /* 980 * Bring missing pages in from swap, to complete THP collapse. 981 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 982 * 983 * Called and returns without pte mapped or spinlocks held. 984 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 985 */ 986 static int __collapse_huge_page_swapin(struct mm_struct *mm, 987 struct vm_area_struct *vma, 988 unsigned long haddr, pmd_t *pmd, 989 int referenced) 990 { 991 int swapped_in = 0; 992 vm_fault_t ret = 0; 993 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 994 int result; 995 pte_t *pte = NULL; 996 spinlock_t *ptl; 997 998 for (address = haddr; address < end; address += PAGE_SIZE) { 999 struct vm_fault vmf = { 1000 .vma = vma, 1001 .address = address, 1002 .pgoff = linear_page_index(vma, address), 1003 .flags = FAULT_FLAG_ALLOW_RETRY, 1004 .pmd = pmd, 1005 }; 1006 1007 if (!pte++) { 1008 pte = pte_offset_map_nolock(mm, pmd, address, &ptl); 1009 if (!pte) { 1010 mmap_read_unlock(mm); 1011 result = SCAN_PMD_NULL; 1012 goto out; 1013 } 1014 } 1015 1016 vmf.orig_pte = ptep_get_lockless(pte); 1017 if (!is_swap_pte(vmf.orig_pte)) 1018 continue; 1019 1020 vmf.pte = pte; 1021 vmf.ptl = ptl; 1022 ret = do_swap_page(&vmf); 1023 /* Which unmaps pte (after perhaps re-checking the entry) */ 1024 pte = NULL; 1025 1026 /* 1027 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1028 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1029 * we do not retry here and swap entry will remain in pagetable 1030 * resulting in later failure. 1031 */ 1032 if (ret & VM_FAULT_RETRY) { 1033 /* Likely, but not guaranteed, that page lock failed */ 1034 result = SCAN_PAGE_LOCK; 1035 goto out; 1036 } 1037 if (ret & VM_FAULT_ERROR) { 1038 mmap_read_unlock(mm); 1039 result = SCAN_FAIL; 1040 goto out; 1041 } 1042 swapped_in++; 1043 } 1044 1045 if (pte) 1046 pte_unmap(pte); 1047 1048 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1049 if (swapped_in) 1050 lru_add_drain(); 1051 1052 result = SCAN_SUCCEED; 1053 out: 1054 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1055 return result; 1056 } 1057 1058 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, 1059 struct collapse_control *cc) 1060 { 1061 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1062 GFP_TRANSHUGE); 1063 int node = hpage_collapse_find_target_node(cc); 1064 struct folio *folio; 1065 1066 if (!hpage_collapse_alloc_folio(&folio, gfp, node, &cc->alloc_nmask)) { 1067 *hpage = NULL; 1068 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1069 } 1070 1071 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1072 folio_put(folio); 1073 *hpage = NULL; 1074 return SCAN_CGROUP_CHARGE_FAIL; 1075 } 1076 1077 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1078 1079 *hpage = folio_page(folio, 0); 1080 return SCAN_SUCCEED; 1081 } 1082 1083 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1084 int referenced, int unmapped, 1085 struct collapse_control *cc) 1086 { 1087 LIST_HEAD(compound_pagelist); 1088 pmd_t *pmd, _pmd; 1089 pte_t *pte; 1090 pgtable_t pgtable; 1091 struct folio *folio; 1092 struct page *hpage; 1093 spinlock_t *pmd_ptl, *pte_ptl; 1094 int result = SCAN_FAIL; 1095 struct vm_area_struct *vma; 1096 struct mmu_notifier_range range; 1097 1098 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1099 1100 /* 1101 * Before allocating the hugepage, release the mmap_lock read lock. 1102 * The allocation can take potentially a long time if it involves 1103 * sync compaction, and we do not need to hold the mmap_lock during 1104 * that. We will recheck the vma after taking it again in write mode. 1105 */ 1106 mmap_read_unlock(mm); 1107 1108 result = alloc_charge_hpage(&hpage, mm, cc); 1109 if (result != SCAN_SUCCEED) 1110 goto out_nolock; 1111 1112 mmap_read_lock(mm); 1113 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1114 if (result != SCAN_SUCCEED) { 1115 mmap_read_unlock(mm); 1116 goto out_nolock; 1117 } 1118 1119 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1120 if (result != SCAN_SUCCEED) { 1121 mmap_read_unlock(mm); 1122 goto out_nolock; 1123 } 1124 1125 if (unmapped) { 1126 /* 1127 * __collapse_huge_page_swapin will return with mmap_lock 1128 * released when it fails. So we jump out_nolock directly in 1129 * that case. Continuing to collapse causes inconsistency. 1130 */ 1131 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1132 referenced); 1133 if (result != SCAN_SUCCEED) 1134 goto out_nolock; 1135 } 1136 1137 mmap_read_unlock(mm); 1138 /* 1139 * Prevent all access to pagetables with the exception of 1140 * gup_fast later handled by the ptep_clear_flush and the VM 1141 * handled by the anon_vma lock + PG_lock. 1142 * 1143 * UFFDIO_MOVE is prevented to race as well thanks to the 1144 * mmap_lock. 1145 */ 1146 mmap_write_lock(mm); 1147 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1148 if (result != SCAN_SUCCEED) 1149 goto out_up_write; 1150 /* check if the pmd is still valid */ 1151 result = check_pmd_still_valid(mm, address, pmd); 1152 if (result != SCAN_SUCCEED) 1153 goto out_up_write; 1154 1155 vma_start_write(vma); 1156 anon_vma_lock_write(vma->anon_vma); 1157 1158 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1159 address + HPAGE_PMD_SIZE); 1160 mmu_notifier_invalidate_range_start(&range); 1161 1162 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1163 /* 1164 * This removes any huge TLB entry from the CPU so we won't allow 1165 * huge and small TLB entries for the same virtual address to 1166 * avoid the risk of CPU bugs in that area. 1167 * 1168 * Parallel fast GUP is fine since fast GUP will back off when 1169 * it detects PMD is changed. 1170 */ 1171 _pmd = pmdp_collapse_flush(vma, address, pmd); 1172 spin_unlock(pmd_ptl); 1173 mmu_notifier_invalidate_range_end(&range); 1174 tlb_remove_table_sync_one(); 1175 1176 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1177 if (pte) { 1178 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1179 &compound_pagelist); 1180 spin_unlock(pte_ptl); 1181 } else { 1182 result = SCAN_PMD_NULL; 1183 } 1184 1185 if (unlikely(result != SCAN_SUCCEED)) { 1186 if (pte) 1187 pte_unmap(pte); 1188 spin_lock(pmd_ptl); 1189 BUG_ON(!pmd_none(*pmd)); 1190 /* 1191 * We can only use set_pmd_at when establishing 1192 * hugepmds and never for establishing regular pmds that 1193 * points to regular pagetables. Use pmd_populate for that 1194 */ 1195 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1196 spin_unlock(pmd_ptl); 1197 anon_vma_unlock_write(vma->anon_vma); 1198 goto out_up_write; 1199 } 1200 1201 /* 1202 * All pages are isolated and locked so anon_vma rmap 1203 * can't run anymore. 1204 */ 1205 anon_vma_unlock_write(vma->anon_vma); 1206 1207 result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd, 1208 vma, address, pte_ptl, 1209 &compound_pagelist); 1210 pte_unmap(pte); 1211 if (unlikely(result != SCAN_SUCCEED)) 1212 goto out_up_write; 1213 1214 folio = page_folio(hpage); 1215 /* 1216 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1217 * copy_huge_page writes become visible before the set_pmd_at() 1218 * write. 1219 */ 1220 __folio_mark_uptodate(folio); 1221 pgtable = pmd_pgtable(_pmd); 1222 1223 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); 1224 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1225 1226 spin_lock(pmd_ptl); 1227 BUG_ON(!pmd_none(*pmd)); 1228 folio_add_new_anon_rmap(folio, vma, address); 1229 folio_add_lru_vma(folio, vma); 1230 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1231 set_pmd_at(mm, address, pmd, _pmd); 1232 update_mmu_cache_pmd(vma, address, pmd); 1233 spin_unlock(pmd_ptl); 1234 1235 hpage = NULL; 1236 1237 result = SCAN_SUCCEED; 1238 out_up_write: 1239 mmap_write_unlock(mm); 1240 out_nolock: 1241 if (hpage) 1242 put_page(hpage); 1243 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1244 return result; 1245 } 1246 1247 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1248 struct vm_area_struct *vma, 1249 unsigned long address, bool *mmap_locked, 1250 struct collapse_control *cc) 1251 { 1252 pmd_t *pmd; 1253 pte_t *pte, *_pte; 1254 int result = SCAN_FAIL, referenced = 0; 1255 int none_or_zero = 0, shared = 0; 1256 struct page *page = NULL; 1257 struct folio *folio = NULL; 1258 unsigned long _address; 1259 spinlock_t *ptl; 1260 int node = NUMA_NO_NODE, unmapped = 0; 1261 bool writable = false; 1262 1263 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1264 1265 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1266 if (result != SCAN_SUCCEED) 1267 goto out; 1268 1269 memset(cc->node_load, 0, sizeof(cc->node_load)); 1270 nodes_clear(cc->alloc_nmask); 1271 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1272 if (!pte) { 1273 result = SCAN_PMD_NULL; 1274 goto out; 1275 } 1276 1277 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1278 _pte++, _address += PAGE_SIZE) { 1279 pte_t pteval = ptep_get(_pte); 1280 if (is_swap_pte(pteval)) { 1281 ++unmapped; 1282 if (!cc->is_khugepaged || 1283 unmapped <= khugepaged_max_ptes_swap) { 1284 /* 1285 * Always be strict with uffd-wp 1286 * enabled swap entries. Please see 1287 * comment below for pte_uffd_wp(). 1288 */ 1289 if (pte_swp_uffd_wp_any(pteval)) { 1290 result = SCAN_PTE_UFFD_WP; 1291 goto out_unmap; 1292 } 1293 continue; 1294 } else { 1295 result = SCAN_EXCEED_SWAP_PTE; 1296 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1297 goto out_unmap; 1298 } 1299 } 1300 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1301 ++none_or_zero; 1302 if (!userfaultfd_armed(vma) && 1303 (!cc->is_khugepaged || 1304 none_or_zero <= khugepaged_max_ptes_none)) { 1305 continue; 1306 } else { 1307 result = SCAN_EXCEED_NONE_PTE; 1308 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1309 goto out_unmap; 1310 } 1311 } 1312 if (pte_uffd_wp(pteval)) { 1313 /* 1314 * Don't collapse the page if any of the small 1315 * PTEs are armed with uffd write protection. 1316 * Here we can also mark the new huge pmd as 1317 * write protected if any of the small ones is 1318 * marked but that could bring unknown 1319 * userfault messages that falls outside of 1320 * the registered range. So, just be simple. 1321 */ 1322 result = SCAN_PTE_UFFD_WP; 1323 goto out_unmap; 1324 } 1325 if (pte_write(pteval)) 1326 writable = true; 1327 1328 page = vm_normal_page(vma, _address, pteval); 1329 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1330 result = SCAN_PAGE_NULL; 1331 goto out_unmap; 1332 } 1333 1334 if (page_mapcount(page) > 1) { 1335 ++shared; 1336 if (cc->is_khugepaged && 1337 shared > khugepaged_max_ptes_shared) { 1338 result = SCAN_EXCEED_SHARED_PTE; 1339 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1340 goto out_unmap; 1341 } 1342 } 1343 1344 folio = page_folio(page); 1345 /* 1346 * Record which node the original page is from and save this 1347 * information to cc->node_load[]. 1348 * Khugepaged will allocate hugepage from the node has the max 1349 * hit record. 1350 */ 1351 node = folio_nid(folio); 1352 if (hpage_collapse_scan_abort(node, cc)) { 1353 result = SCAN_SCAN_ABORT; 1354 goto out_unmap; 1355 } 1356 cc->node_load[node]++; 1357 if (!folio_test_lru(folio)) { 1358 result = SCAN_PAGE_LRU; 1359 goto out_unmap; 1360 } 1361 if (folio_test_locked(folio)) { 1362 result = SCAN_PAGE_LOCK; 1363 goto out_unmap; 1364 } 1365 if (!folio_test_anon(folio)) { 1366 result = SCAN_PAGE_ANON; 1367 goto out_unmap; 1368 } 1369 1370 /* 1371 * Check if the page has any GUP (or other external) pins. 1372 * 1373 * Here the check may be racy: 1374 * it may see total_mapcount > refcount in some cases? 1375 * But such case is ephemeral we could always retry collapse 1376 * later. However it may report false positive if the page 1377 * has excessive GUP pins (i.e. 512). Anyway the same check 1378 * will be done again later the risk seems low. 1379 */ 1380 if (!is_refcount_suitable(folio)) { 1381 result = SCAN_PAGE_COUNT; 1382 goto out_unmap; 1383 } 1384 1385 /* 1386 * If collapse was initiated by khugepaged, check that there is 1387 * enough young pte to justify collapsing the page 1388 */ 1389 if (cc->is_khugepaged && 1390 (pte_young(pteval) || folio_test_young(folio) || 1391 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 1392 address))) 1393 referenced++; 1394 } 1395 if (!writable) { 1396 result = SCAN_PAGE_RO; 1397 } else if (cc->is_khugepaged && 1398 (!referenced || 1399 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1400 result = SCAN_LACK_REFERENCED_PAGE; 1401 } else { 1402 result = SCAN_SUCCEED; 1403 } 1404 out_unmap: 1405 pte_unmap_unlock(pte, ptl); 1406 if (result == SCAN_SUCCEED) { 1407 result = collapse_huge_page(mm, address, referenced, 1408 unmapped, cc); 1409 /* collapse_huge_page will return with the mmap_lock released */ 1410 *mmap_locked = false; 1411 } 1412 out: 1413 trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced, 1414 none_or_zero, result, unmapped); 1415 return result; 1416 } 1417 1418 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1419 { 1420 struct mm_slot *slot = &mm_slot->slot; 1421 struct mm_struct *mm = slot->mm; 1422 1423 lockdep_assert_held(&khugepaged_mm_lock); 1424 1425 if (hpage_collapse_test_exit(mm)) { 1426 /* free mm_slot */ 1427 hash_del(&slot->hash); 1428 list_del(&slot->mm_node); 1429 1430 /* 1431 * Not strictly needed because the mm exited already. 1432 * 1433 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1434 */ 1435 1436 /* khugepaged_mm_lock actually not necessary for the below */ 1437 mm_slot_free(mm_slot_cache, mm_slot); 1438 mmdrop(mm); 1439 } 1440 } 1441 1442 #ifdef CONFIG_SHMEM 1443 /* hpage must be locked, and mmap_lock must be held */ 1444 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1445 pmd_t *pmdp, struct page *hpage) 1446 { 1447 struct vm_fault vmf = { 1448 .vma = vma, 1449 .address = addr, 1450 .flags = 0, 1451 .pmd = pmdp, 1452 }; 1453 1454 VM_BUG_ON(!PageTransHuge(hpage)); 1455 mmap_assert_locked(vma->vm_mm); 1456 1457 if (do_set_pmd(&vmf, hpage)) 1458 return SCAN_FAIL; 1459 1460 get_page(hpage); 1461 return SCAN_SUCCEED; 1462 } 1463 1464 /** 1465 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1466 * address haddr. 1467 * 1468 * @mm: process address space where collapse happens 1469 * @addr: THP collapse address 1470 * @install_pmd: If a huge PMD should be installed 1471 * 1472 * This function checks whether all the PTEs in the PMD are pointing to the 1473 * right THP. If so, retract the page table so the THP can refault in with 1474 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1475 */ 1476 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1477 bool install_pmd) 1478 { 1479 struct mmu_notifier_range range; 1480 bool notified = false; 1481 unsigned long haddr = addr & HPAGE_PMD_MASK; 1482 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1483 struct folio *folio; 1484 pte_t *start_pte, *pte; 1485 pmd_t *pmd, pgt_pmd; 1486 spinlock_t *pml = NULL, *ptl; 1487 int nr_ptes = 0, result = SCAN_FAIL; 1488 int i; 1489 1490 mmap_assert_locked(mm); 1491 1492 /* First check VMA found, in case page tables are being torn down */ 1493 if (!vma || !vma->vm_file || 1494 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1495 return SCAN_VMA_CHECK; 1496 1497 /* Fast check before locking page if already PMD-mapped */ 1498 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1499 if (result == SCAN_PMD_MAPPED) 1500 return result; 1501 1502 /* 1503 * If we are here, we've succeeded in replacing all the native pages 1504 * in the page cache with a single hugepage. If a mm were to fault-in 1505 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1506 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1507 * analogously elide sysfs THP settings here. 1508 */ 1509 if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, false, 1510 PMD_ORDER)) 1511 return SCAN_VMA_CHECK; 1512 1513 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1514 if (userfaultfd_wp(vma)) 1515 return SCAN_PTE_UFFD_WP; 1516 1517 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1518 linear_page_index(vma, haddr)); 1519 if (IS_ERR(folio)) 1520 return SCAN_PAGE_NULL; 1521 1522 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1523 result = SCAN_PAGE_COMPOUND; 1524 goto drop_folio; 1525 } 1526 1527 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1528 switch (result) { 1529 case SCAN_SUCCEED: 1530 break; 1531 case SCAN_PMD_NONE: 1532 /* 1533 * All pte entries have been removed and pmd cleared. 1534 * Skip all the pte checks and just update the pmd mapping. 1535 */ 1536 goto maybe_install_pmd; 1537 default: 1538 goto drop_folio; 1539 } 1540 1541 result = SCAN_FAIL; 1542 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1543 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1544 goto drop_folio; 1545 1546 /* step 1: check all mapped PTEs are to the right huge page */ 1547 for (i = 0, addr = haddr, pte = start_pte; 1548 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1549 struct page *page; 1550 pte_t ptent = ptep_get(pte); 1551 1552 /* empty pte, skip */ 1553 if (pte_none(ptent)) 1554 continue; 1555 1556 /* page swapped out, abort */ 1557 if (!pte_present(ptent)) { 1558 result = SCAN_PTE_NON_PRESENT; 1559 goto abort; 1560 } 1561 1562 page = vm_normal_page(vma, addr, ptent); 1563 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1564 page = NULL; 1565 /* 1566 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1567 * page table, but the new page will not be a subpage of hpage. 1568 */ 1569 if (folio_page(folio, i) != page) 1570 goto abort; 1571 } 1572 1573 pte_unmap_unlock(start_pte, ptl); 1574 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1575 haddr, haddr + HPAGE_PMD_SIZE); 1576 mmu_notifier_invalidate_range_start(&range); 1577 notified = true; 1578 1579 /* 1580 * pmd_lock covers a wider range than ptl, and (if split from mm's 1581 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1582 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1583 * inserts a valid as-if-COWed PTE without even looking up page cache. 1584 * So page lock of folio does not protect from it, so we must not drop 1585 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1586 */ 1587 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1588 pml = pmd_lock(mm, pmd); 1589 1590 start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl); 1591 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1592 goto abort; 1593 if (!pml) 1594 spin_lock(ptl); 1595 else if (ptl != pml) 1596 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1597 1598 /* step 2: clear page table and adjust rmap */ 1599 for (i = 0, addr = haddr, pte = start_pte; 1600 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1601 struct page *page; 1602 pte_t ptent = ptep_get(pte); 1603 1604 if (pte_none(ptent)) 1605 continue; 1606 /* 1607 * We dropped ptl after the first scan, to do the mmu_notifier: 1608 * page lock stops more PTEs of the folio being faulted in, but 1609 * does not stop write faults COWing anon copies from existing 1610 * PTEs; and does not stop those being swapped out or migrated. 1611 */ 1612 if (!pte_present(ptent)) { 1613 result = SCAN_PTE_NON_PRESENT; 1614 goto abort; 1615 } 1616 page = vm_normal_page(vma, addr, ptent); 1617 if (folio_page(folio, i) != page) 1618 goto abort; 1619 1620 /* 1621 * Must clear entry, or a racing truncate may re-remove it. 1622 * TLB flush can be left until pmdp_collapse_flush() does it. 1623 * PTE dirty? Shmem page is already dirty; file is read-only. 1624 */ 1625 ptep_clear(mm, addr, pte); 1626 folio_remove_rmap_pte(folio, page, vma); 1627 nr_ptes++; 1628 } 1629 1630 pte_unmap(start_pte); 1631 if (!pml) 1632 spin_unlock(ptl); 1633 1634 /* step 3: set proper refcount and mm_counters. */ 1635 if (nr_ptes) { 1636 folio_ref_sub(folio, nr_ptes); 1637 add_mm_counter(mm, mm_counter_file(&folio->page), -nr_ptes); 1638 } 1639 1640 /* step 4: remove empty page table */ 1641 if (!pml) { 1642 pml = pmd_lock(mm, pmd); 1643 if (ptl != pml) 1644 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1645 } 1646 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1647 pmdp_get_lockless_sync(); 1648 if (ptl != pml) 1649 spin_unlock(ptl); 1650 spin_unlock(pml); 1651 1652 mmu_notifier_invalidate_range_end(&range); 1653 1654 mm_dec_nr_ptes(mm); 1655 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1656 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1657 1658 maybe_install_pmd: 1659 /* step 5: install pmd entry */ 1660 result = install_pmd 1661 ? set_huge_pmd(vma, haddr, pmd, &folio->page) 1662 : SCAN_SUCCEED; 1663 goto drop_folio; 1664 abort: 1665 if (nr_ptes) { 1666 flush_tlb_mm(mm); 1667 folio_ref_sub(folio, nr_ptes); 1668 add_mm_counter(mm, mm_counter_file(&folio->page), -nr_ptes); 1669 } 1670 if (start_pte) 1671 pte_unmap_unlock(start_pte, ptl); 1672 if (pml && pml != ptl) 1673 spin_unlock(pml); 1674 if (notified) 1675 mmu_notifier_invalidate_range_end(&range); 1676 drop_folio: 1677 folio_unlock(folio); 1678 folio_put(folio); 1679 return result; 1680 } 1681 1682 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1683 { 1684 struct vm_area_struct *vma; 1685 1686 i_mmap_lock_read(mapping); 1687 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1688 struct mmu_notifier_range range; 1689 struct mm_struct *mm; 1690 unsigned long addr; 1691 pmd_t *pmd, pgt_pmd; 1692 spinlock_t *pml; 1693 spinlock_t *ptl; 1694 bool skipped_uffd = false; 1695 1696 /* 1697 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1698 * got written to. These VMAs are likely not worth removing 1699 * page tables from, as PMD-mapping is likely to be split later. 1700 */ 1701 if (READ_ONCE(vma->anon_vma)) 1702 continue; 1703 1704 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1705 if (addr & ~HPAGE_PMD_MASK || 1706 vma->vm_end < addr + HPAGE_PMD_SIZE) 1707 continue; 1708 1709 mm = vma->vm_mm; 1710 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1711 continue; 1712 1713 if (hpage_collapse_test_exit(mm)) 1714 continue; 1715 /* 1716 * When a vma is registered with uffd-wp, we cannot recycle 1717 * the page table because there may be pte markers installed. 1718 * Other vmas can still have the same file mapped hugely, but 1719 * skip this one: it will always be mapped in small page size 1720 * for uffd-wp registered ranges. 1721 */ 1722 if (userfaultfd_wp(vma)) 1723 continue; 1724 1725 /* PTEs were notified when unmapped; but now for the PMD? */ 1726 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1727 addr, addr + HPAGE_PMD_SIZE); 1728 mmu_notifier_invalidate_range_start(&range); 1729 1730 pml = pmd_lock(mm, pmd); 1731 ptl = pte_lockptr(mm, pmd); 1732 if (ptl != pml) 1733 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1734 1735 /* 1736 * Huge page lock is still held, so normally the page table 1737 * must remain empty; and we have already skipped anon_vma 1738 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1739 * held, it is still possible for a racing userfaultfd_ioctl() 1740 * to have inserted ptes or markers. Now that we hold ptlock, 1741 * repeating the anon_vma check protects from one category, 1742 * and repeating the userfaultfd_wp() check from another. 1743 */ 1744 if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) { 1745 skipped_uffd = true; 1746 } else { 1747 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1748 pmdp_get_lockless_sync(); 1749 } 1750 1751 if (ptl != pml) 1752 spin_unlock(ptl); 1753 spin_unlock(pml); 1754 1755 mmu_notifier_invalidate_range_end(&range); 1756 1757 if (!skipped_uffd) { 1758 mm_dec_nr_ptes(mm); 1759 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1760 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1761 } 1762 } 1763 i_mmap_unlock_read(mapping); 1764 } 1765 1766 /** 1767 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1768 * 1769 * @mm: process address space where collapse happens 1770 * @addr: virtual collapse start address 1771 * @file: file that collapse on 1772 * @start: collapse start address 1773 * @cc: collapse context and scratchpad 1774 * 1775 * Basic scheme is simple, details are more complex: 1776 * - allocate and lock a new huge page; 1777 * - scan page cache, locking old pages 1778 * + swap/gup in pages if necessary; 1779 * - copy data to new page 1780 * - handle shmem holes 1781 * + re-validate that holes weren't filled by someone else 1782 * + check for userfaultfd 1783 * - finalize updates to the page cache; 1784 * - if replacing succeeds: 1785 * + unlock huge page; 1786 * + free old pages; 1787 * - if replacing failed; 1788 * + unlock old pages 1789 * + unlock and free huge page; 1790 */ 1791 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1792 struct file *file, pgoff_t start, 1793 struct collapse_control *cc) 1794 { 1795 struct address_space *mapping = file->f_mapping; 1796 struct page *hpage; 1797 struct page *page; 1798 struct page *tmp; 1799 struct folio *folio; 1800 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1801 LIST_HEAD(pagelist); 1802 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1803 int nr_none = 0, result = SCAN_SUCCEED; 1804 bool is_shmem = shmem_file(file); 1805 int nr = 0; 1806 1807 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1808 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1809 1810 result = alloc_charge_hpage(&hpage, mm, cc); 1811 if (result != SCAN_SUCCEED) 1812 goto out; 1813 1814 __SetPageLocked(hpage); 1815 if (is_shmem) 1816 __SetPageSwapBacked(hpage); 1817 hpage->index = start; 1818 hpage->mapping = mapping; 1819 1820 /* 1821 * Ensure we have slots for all the pages in the range. This is 1822 * almost certainly a no-op because most of the pages must be present 1823 */ 1824 do { 1825 xas_lock_irq(&xas); 1826 xas_create_range(&xas); 1827 if (!xas_error(&xas)) 1828 break; 1829 xas_unlock_irq(&xas); 1830 if (!xas_nomem(&xas, GFP_KERNEL)) { 1831 result = SCAN_FAIL; 1832 goto rollback; 1833 } 1834 } while (1); 1835 1836 for (index = start; index < end; index++) { 1837 xas_set(&xas, index); 1838 page = xas_load(&xas); 1839 1840 VM_BUG_ON(index != xas.xa_index); 1841 if (is_shmem) { 1842 if (!page) { 1843 /* 1844 * Stop if extent has been truncated or 1845 * hole-punched, and is now completely 1846 * empty. 1847 */ 1848 if (index == start) { 1849 if (!xas_next_entry(&xas, end - 1)) { 1850 result = SCAN_TRUNCATED; 1851 goto xa_locked; 1852 } 1853 } 1854 nr_none++; 1855 continue; 1856 } 1857 1858 if (xa_is_value(page) || !PageUptodate(page)) { 1859 xas_unlock_irq(&xas); 1860 /* swap in or instantiate fallocated page */ 1861 if (shmem_get_folio(mapping->host, index, 1862 &folio, SGP_NOALLOC)) { 1863 result = SCAN_FAIL; 1864 goto xa_unlocked; 1865 } 1866 /* drain lru cache to help isolate_lru_page() */ 1867 lru_add_drain(); 1868 page = folio_file_page(folio, index); 1869 } else if (trylock_page(page)) { 1870 get_page(page); 1871 xas_unlock_irq(&xas); 1872 } else { 1873 result = SCAN_PAGE_LOCK; 1874 goto xa_locked; 1875 } 1876 } else { /* !is_shmem */ 1877 if (!page || xa_is_value(page)) { 1878 xas_unlock_irq(&xas); 1879 page_cache_sync_readahead(mapping, &file->f_ra, 1880 file, index, 1881 end - index); 1882 /* drain lru cache to help isolate_lru_page() */ 1883 lru_add_drain(); 1884 page = find_lock_page(mapping, index); 1885 if (unlikely(page == NULL)) { 1886 result = SCAN_FAIL; 1887 goto xa_unlocked; 1888 } 1889 } else if (PageDirty(page)) { 1890 /* 1891 * khugepaged only works on read-only fd, 1892 * so this page is dirty because it hasn't 1893 * been flushed since first write. There 1894 * won't be new dirty pages. 1895 * 1896 * Trigger async flush here and hope the 1897 * writeback is done when khugepaged 1898 * revisits this page. 1899 * 1900 * This is a one-off situation. We are not 1901 * forcing writeback in loop. 1902 */ 1903 xas_unlock_irq(&xas); 1904 filemap_flush(mapping); 1905 result = SCAN_FAIL; 1906 goto xa_unlocked; 1907 } else if (PageWriteback(page)) { 1908 xas_unlock_irq(&xas); 1909 result = SCAN_FAIL; 1910 goto xa_unlocked; 1911 } else if (trylock_page(page)) { 1912 get_page(page); 1913 xas_unlock_irq(&xas); 1914 } else { 1915 result = SCAN_PAGE_LOCK; 1916 goto xa_locked; 1917 } 1918 } 1919 1920 /* 1921 * The page must be locked, so we can drop the i_pages lock 1922 * without racing with truncate. 1923 */ 1924 VM_BUG_ON_PAGE(!PageLocked(page), page); 1925 1926 /* make sure the page is up to date */ 1927 if (unlikely(!PageUptodate(page))) { 1928 result = SCAN_FAIL; 1929 goto out_unlock; 1930 } 1931 1932 /* 1933 * If file was truncated then extended, or hole-punched, before 1934 * we locked the first page, then a THP might be there already. 1935 * This will be discovered on the first iteration. 1936 */ 1937 if (PageTransCompound(page)) { 1938 struct page *head = compound_head(page); 1939 1940 result = compound_order(head) == HPAGE_PMD_ORDER && 1941 head->index == start 1942 /* Maybe PMD-mapped */ 1943 ? SCAN_PTE_MAPPED_HUGEPAGE 1944 : SCAN_PAGE_COMPOUND; 1945 goto out_unlock; 1946 } 1947 1948 folio = page_folio(page); 1949 1950 if (folio_mapping(folio) != mapping) { 1951 result = SCAN_TRUNCATED; 1952 goto out_unlock; 1953 } 1954 1955 if (!is_shmem && (folio_test_dirty(folio) || 1956 folio_test_writeback(folio))) { 1957 /* 1958 * khugepaged only works on read-only fd, so this 1959 * page is dirty because it hasn't been flushed 1960 * since first write. 1961 */ 1962 result = SCAN_FAIL; 1963 goto out_unlock; 1964 } 1965 1966 if (!folio_isolate_lru(folio)) { 1967 result = SCAN_DEL_PAGE_LRU; 1968 goto out_unlock; 1969 } 1970 1971 if (!filemap_release_folio(folio, GFP_KERNEL)) { 1972 result = SCAN_PAGE_HAS_PRIVATE; 1973 folio_putback_lru(folio); 1974 goto out_unlock; 1975 } 1976 1977 if (folio_mapped(folio)) 1978 try_to_unmap(folio, 1979 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1980 1981 xas_lock_irq(&xas); 1982 1983 VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page); 1984 1985 /* 1986 * We control three references to the page: 1987 * - we hold a pin on it; 1988 * - one reference from page cache; 1989 * - one from isolate_lru_page; 1990 * If those are the only references, then any new usage of the 1991 * page will have to fetch it from the page cache. That requires 1992 * locking the page to handle truncate, so any new usage will be 1993 * blocked until we unlock page after collapse/during rollback. 1994 */ 1995 if (page_count(page) != 3) { 1996 result = SCAN_PAGE_COUNT; 1997 xas_unlock_irq(&xas); 1998 putback_lru_page(page); 1999 goto out_unlock; 2000 } 2001 2002 /* 2003 * Accumulate the pages that are being collapsed. 2004 */ 2005 list_add_tail(&page->lru, &pagelist); 2006 continue; 2007 out_unlock: 2008 unlock_page(page); 2009 put_page(page); 2010 goto xa_unlocked; 2011 } 2012 2013 if (!is_shmem) { 2014 filemap_nr_thps_inc(mapping); 2015 /* 2016 * Paired with smp_mb() in do_dentry_open() to ensure 2017 * i_writecount is up to date and the update to nr_thps is 2018 * visible. Ensures the page cache will be truncated if the 2019 * file is opened writable. 2020 */ 2021 smp_mb(); 2022 if (inode_is_open_for_write(mapping->host)) { 2023 result = SCAN_FAIL; 2024 filemap_nr_thps_dec(mapping); 2025 } 2026 } 2027 2028 xa_locked: 2029 xas_unlock_irq(&xas); 2030 xa_unlocked: 2031 2032 /* 2033 * If collapse is successful, flush must be done now before copying. 2034 * If collapse is unsuccessful, does flush actually need to be done? 2035 * Do it anyway, to clear the state. 2036 */ 2037 try_to_unmap_flush(); 2038 2039 if (result == SCAN_SUCCEED && nr_none && 2040 !shmem_charge(mapping->host, nr_none)) 2041 result = SCAN_FAIL; 2042 if (result != SCAN_SUCCEED) { 2043 nr_none = 0; 2044 goto rollback; 2045 } 2046 2047 /* 2048 * The old pages are locked, so they won't change anymore. 2049 */ 2050 index = start; 2051 list_for_each_entry(page, &pagelist, lru) { 2052 while (index < page->index) { 2053 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2054 index++; 2055 } 2056 if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) { 2057 result = SCAN_COPY_MC; 2058 goto rollback; 2059 } 2060 index++; 2061 } 2062 while (index < end) { 2063 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2064 index++; 2065 } 2066 2067 if (nr_none) { 2068 struct vm_area_struct *vma; 2069 int nr_none_check = 0; 2070 2071 i_mmap_lock_read(mapping); 2072 xas_lock_irq(&xas); 2073 2074 xas_set(&xas, start); 2075 for (index = start; index < end; index++) { 2076 if (!xas_next(&xas)) { 2077 xas_store(&xas, XA_RETRY_ENTRY); 2078 if (xas_error(&xas)) { 2079 result = SCAN_STORE_FAILED; 2080 goto immap_locked; 2081 } 2082 nr_none_check++; 2083 } 2084 } 2085 2086 if (nr_none != nr_none_check) { 2087 result = SCAN_PAGE_FILLED; 2088 goto immap_locked; 2089 } 2090 2091 /* 2092 * If userspace observed a missing page in a VMA with a MODE_MISSING 2093 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that 2094 * page. If so, we need to roll back to avoid suppressing such an 2095 * event. Since wp/minor userfaultfds don't give userspace any 2096 * guarantees that the kernel doesn't fill a missing page with a zero 2097 * page, so they don't matter here. 2098 * 2099 * Any userfaultfds registered after this point will not be able to 2100 * observe any missing pages due to the previously inserted retry 2101 * entries. 2102 */ 2103 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2104 if (userfaultfd_missing(vma)) { 2105 result = SCAN_EXCEED_NONE_PTE; 2106 goto immap_locked; 2107 } 2108 } 2109 2110 immap_locked: 2111 i_mmap_unlock_read(mapping); 2112 if (result != SCAN_SUCCEED) { 2113 xas_set(&xas, start); 2114 for (index = start; index < end; index++) { 2115 if (xas_next(&xas) == XA_RETRY_ENTRY) 2116 xas_store(&xas, NULL); 2117 } 2118 2119 xas_unlock_irq(&xas); 2120 goto rollback; 2121 } 2122 } else { 2123 xas_lock_irq(&xas); 2124 } 2125 2126 folio = page_folio(hpage); 2127 nr = folio_nr_pages(folio); 2128 if (is_shmem) 2129 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr); 2130 else 2131 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, nr); 2132 2133 if (nr_none) { 2134 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr_none); 2135 /* nr_none is always 0 for non-shmem. */ 2136 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr_none); 2137 } 2138 2139 /* 2140 * Mark hpage as uptodate before inserting it into the page cache so 2141 * that it isn't mistaken for an fallocated but unwritten page. 2142 */ 2143 folio_mark_uptodate(folio); 2144 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2145 2146 if (is_shmem) 2147 folio_mark_dirty(folio); 2148 folio_add_lru(folio); 2149 2150 /* Join all the small entries into a single multi-index entry. */ 2151 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2152 xas_store(&xas, folio); 2153 WARN_ON_ONCE(xas_error(&xas)); 2154 xas_unlock_irq(&xas); 2155 2156 /* 2157 * Remove pte page tables, so we can re-fault the page as huge. 2158 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2159 */ 2160 retract_page_tables(mapping, start); 2161 if (cc && !cc->is_khugepaged) 2162 result = SCAN_PTE_MAPPED_HUGEPAGE; 2163 folio_unlock(folio); 2164 2165 /* 2166 * The collapse has succeeded, so free the old pages. 2167 */ 2168 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2169 list_del(&page->lru); 2170 page->mapping = NULL; 2171 ClearPageActive(page); 2172 ClearPageUnevictable(page); 2173 unlock_page(page); 2174 folio_put_refs(page_folio(page), 3); 2175 } 2176 2177 goto out; 2178 2179 rollback: 2180 /* Something went wrong: roll back page cache changes */ 2181 if (nr_none) { 2182 xas_lock_irq(&xas); 2183 mapping->nrpages -= nr_none; 2184 xas_unlock_irq(&xas); 2185 shmem_uncharge(mapping->host, nr_none); 2186 } 2187 2188 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2189 list_del(&page->lru); 2190 unlock_page(page); 2191 putback_lru_page(page); 2192 put_page(page); 2193 } 2194 /* 2195 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2196 * file only. This undo is not needed unless failure is 2197 * due to SCAN_COPY_MC. 2198 */ 2199 if (!is_shmem && result == SCAN_COPY_MC) { 2200 filemap_nr_thps_dec(mapping); 2201 /* 2202 * Paired with smp_mb() in do_dentry_open() to 2203 * ensure the update to nr_thps is visible. 2204 */ 2205 smp_mb(); 2206 } 2207 2208 hpage->mapping = NULL; 2209 2210 unlock_page(hpage); 2211 put_page(hpage); 2212 out: 2213 VM_BUG_ON(!list_empty(&pagelist)); 2214 trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result); 2215 return result; 2216 } 2217 2218 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2219 struct file *file, pgoff_t start, 2220 struct collapse_control *cc) 2221 { 2222 struct page *page = NULL; 2223 struct address_space *mapping = file->f_mapping; 2224 XA_STATE(xas, &mapping->i_pages, start); 2225 int present, swap; 2226 int node = NUMA_NO_NODE; 2227 int result = SCAN_SUCCEED; 2228 2229 present = 0; 2230 swap = 0; 2231 memset(cc->node_load, 0, sizeof(cc->node_load)); 2232 nodes_clear(cc->alloc_nmask); 2233 rcu_read_lock(); 2234 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2235 if (xas_retry(&xas, page)) 2236 continue; 2237 2238 if (xa_is_value(page)) { 2239 ++swap; 2240 if (cc->is_khugepaged && 2241 swap > khugepaged_max_ptes_swap) { 2242 result = SCAN_EXCEED_SWAP_PTE; 2243 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2244 break; 2245 } 2246 continue; 2247 } 2248 2249 /* 2250 * TODO: khugepaged should compact smaller compound pages 2251 * into a PMD sized page 2252 */ 2253 if (PageTransCompound(page)) { 2254 struct page *head = compound_head(page); 2255 2256 result = compound_order(head) == HPAGE_PMD_ORDER && 2257 head->index == start 2258 /* Maybe PMD-mapped */ 2259 ? SCAN_PTE_MAPPED_HUGEPAGE 2260 : SCAN_PAGE_COMPOUND; 2261 /* 2262 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2263 * by the caller won't touch the page cache, and so 2264 * it's safe to skip LRU and refcount checks before 2265 * returning. 2266 */ 2267 break; 2268 } 2269 2270 node = page_to_nid(page); 2271 if (hpage_collapse_scan_abort(node, cc)) { 2272 result = SCAN_SCAN_ABORT; 2273 break; 2274 } 2275 cc->node_load[node]++; 2276 2277 if (!PageLRU(page)) { 2278 result = SCAN_PAGE_LRU; 2279 break; 2280 } 2281 2282 if (page_count(page) != 2283 1 + page_mapcount(page) + page_has_private(page)) { 2284 result = SCAN_PAGE_COUNT; 2285 break; 2286 } 2287 2288 /* 2289 * We probably should check if the page is referenced here, but 2290 * nobody would transfer pte_young() to PageReferenced() for us. 2291 * And rmap walk here is just too costly... 2292 */ 2293 2294 present++; 2295 2296 if (need_resched()) { 2297 xas_pause(&xas); 2298 cond_resched_rcu(); 2299 } 2300 } 2301 rcu_read_unlock(); 2302 2303 if (result == SCAN_SUCCEED) { 2304 if (cc->is_khugepaged && 2305 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2306 result = SCAN_EXCEED_NONE_PTE; 2307 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2308 } else { 2309 result = collapse_file(mm, addr, file, start, cc); 2310 } 2311 } 2312 2313 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result); 2314 return result; 2315 } 2316 #else 2317 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2318 struct file *file, pgoff_t start, 2319 struct collapse_control *cc) 2320 { 2321 BUILD_BUG(); 2322 } 2323 #endif 2324 2325 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2326 struct collapse_control *cc) 2327 __releases(&khugepaged_mm_lock) 2328 __acquires(&khugepaged_mm_lock) 2329 { 2330 struct vma_iterator vmi; 2331 struct khugepaged_mm_slot *mm_slot; 2332 struct mm_slot *slot; 2333 struct mm_struct *mm; 2334 struct vm_area_struct *vma; 2335 int progress = 0; 2336 2337 VM_BUG_ON(!pages); 2338 lockdep_assert_held(&khugepaged_mm_lock); 2339 *result = SCAN_FAIL; 2340 2341 if (khugepaged_scan.mm_slot) { 2342 mm_slot = khugepaged_scan.mm_slot; 2343 slot = &mm_slot->slot; 2344 } else { 2345 slot = list_entry(khugepaged_scan.mm_head.next, 2346 struct mm_slot, mm_node); 2347 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2348 khugepaged_scan.address = 0; 2349 khugepaged_scan.mm_slot = mm_slot; 2350 } 2351 spin_unlock(&khugepaged_mm_lock); 2352 2353 mm = slot->mm; 2354 /* 2355 * Don't wait for semaphore (to avoid long wait times). Just move to 2356 * the next mm on the list. 2357 */ 2358 vma = NULL; 2359 if (unlikely(!mmap_read_trylock(mm))) 2360 goto breakouterloop_mmap_lock; 2361 2362 progress++; 2363 if (unlikely(hpage_collapse_test_exit(mm))) 2364 goto breakouterloop; 2365 2366 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2367 for_each_vma(vmi, vma) { 2368 unsigned long hstart, hend; 2369 2370 cond_resched(); 2371 if (unlikely(hpage_collapse_test_exit(mm))) { 2372 progress++; 2373 break; 2374 } 2375 if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, 2376 true, PMD_ORDER)) { 2377 skip: 2378 progress++; 2379 continue; 2380 } 2381 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2382 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2383 if (khugepaged_scan.address > hend) 2384 goto skip; 2385 if (khugepaged_scan.address < hstart) 2386 khugepaged_scan.address = hstart; 2387 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2388 2389 while (khugepaged_scan.address < hend) { 2390 bool mmap_locked = true; 2391 2392 cond_resched(); 2393 if (unlikely(hpage_collapse_test_exit(mm))) 2394 goto breakouterloop; 2395 2396 VM_BUG_ON(khugepaged_scan.address < hstart || 2397 khugepaged_scan.address + HPAGE_PMD_SIZE > 2398 hend); 2399 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2400 struct file *file = get_file(vma->vm_file); 2401 pgoff_t pgoff = linear_page_index(vma, 2402 khugepaged_scan.address); 2403 2404 mmap_read_unlock(mm); 2405 mmap_locked = false; 2406 *result = hpage_collapse_scan_file(mm, 2407 khugepaged_scan.address, file, pgoff, cc); 2408 fput(file); 2409 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2410 mmap_read_lock(mm); 2411 if (hpage_collapse_test_exit(mm)) 2412 goto breakouterloop; 2413 *result = collapse_pte_mapped_thp(mm, 2414 khugepaged_scan.address, false); 2415 if (*result == SCAN_PMD_MAPPED) 2416 *result = SCAN_SUCCEED; 2417 mmap_read_unlock(mm); 2418 } 2419 } else { 2420 *result = hpage_collapse_scan_pmd(mm, vma, 2421 khugepaged_scan.address, &mmap_locked, cc); 2422 } 2423 2424 if (*result == SCAN_SUCCEED) 2425 ++khugepaged_pages_collapsed; 2426 2427 /* move to next address */ 2428 khugepaged_scan.address += HPAGE_PMD_SIZE; 2429 progress += HPAGE_PMD_NR; 2430 if (!mmap_locked) 2431 /* 2432 * We released mmap_lock so break loop. Note 2433 * that we drop mmap_lock before all hugepage 2434 * allocations, so if allocation fails, we are 2435 * guaranteed to break here and report the 2436 * correct result back to caller. 2437 */ 2438 goto breakouterloop_mmap_lock; 2439 if (progress >= pages) 2440 goto breakouterloop; 2441 } 2442 } 2443 breakouterloop: 2444 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2445 breakouterloop_mmap_lock: 2446 2447 spin_lock(&khugepaged_mm_lock); 2448 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2449 /* 2450 * Release the current mm_slot if this mm is about to die, or 2451 * if we scanned all vmas of this mm. 2452 */ 2453 if (hpage_collapse_test_exit(mm) || !vma) { 2454 /* 2455 * Make sure that if mm_users is reaching zero while 2456 * khugepaged runs here, khugepaged_exit will find 2457 * mm_slot not pointing to the exiting mm. 2458 */ 2459 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2460 slot = list_entry(slot->mm_node.next, 2461 struct mm_slot, mm_node); 2462 khugepaged_scan.mm_slot = 2463 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2464 khugepaged_scan.address = 0; 2465 } else { 2466 khugepaged_scan.mm_slot = NULL; 2467 khugepaged_full_scans++; 2468 } 2469 2470 collect_mm_slot(mm_slot); 2471 } 2472 2473 return progress; 2474 } 2475 2476 static int khugepaged_has_work(void) 2477 { 2478 return !list_empty(&khugepaged_scan.mm_head) && 2479 hugepage_flags_enabled(); 2480 } 2481 2482 static int khugepaged_wait_event(void) 2483 { 2484 return !list_empty(&khugepaged_scan.mm_head) || 2485 kthread_should_stop(); 2486 } 2487 2488 static void khugepaged_do_scan(struct collapse_control *cc) 2489 { 2490 unsigned int progress = 0, pass_through_head = 0; 2491 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2492 bool wait = true; 2493 int result = SCAN_SUCCEED; 2494 2495 lru_add_drain_all(); 2496 2497 while (true) { 2498 cond_resched(); 2499 2500 if (unlikely(kthread_should_stop())) 2501 break; 2502 2503 spin_lock(&khugepaged_mm_lock); 2504 if (!khugepaged_scan.mm_slot) 2505 pass_through_head++; 2506 if (khugepaged_has_work() && 2507 pass_through_head < 2) 2508 progress += khugepaged_scan_mm_slot(pages - progress, 2509 &result, cc); 2510 else 2511 progress = pages; 2512 spin_unlock(&khugepaged_mm_lock); 2513 2514 if (progress >= pages) 2515 break; 2516 2517 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2518 /* 2519 * If fail to allocate the first time, try to sleep for 2520 * a while. When hit again, cancel the scan. 2521 */ 2522 if (!wait) 2523 break; 2524 wait = false; 2525 khugepaged_alloc_sleep(); 2526 } 2527 } 2528 } 2529 2530 static bool khugepaged_should_wakeup(void) 2531 { 2532 return kthread_should_stop() || 2533 time_after_eq(jiffies, khugepaged_sleep_expire); 2534 } 2535 2536 static void khugepaged_wait_work(void) 2537 { 2538 if (khugepaged_has_work()) { 2539 const unsigned long scan_sleep_jiffies = 2540 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2541 2542 if (!scan_sleep_jiffies) 2543 return; 2544 2545 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2546 wait_event_freezable_timeout(khugepaged_wait, 2547 khugepaged_should_wakeup(), 2548 scan_sleep_jiffies); 2549 return; 2550 } 2551 2552 if (hugepage_flags_enabled()) 2553 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2554 } 2555 2556 static int khugepaged(void *none) 2557 { 2558 struct khugepaged_mm_slot *mm_slot; 2559 2560 set_freezable(); 2561 set_user_nice(current, MAX_NICE); 2562 2563 while (!kthread_should_stop()) { 2564 khugepaged_do_scan(&khugepaged_collapse_control); 2565 khugepaged_wait_work(); 2566 } 2567 2568 spin_lock(&khugepaged_mm_lock); 2569 mm_slot = khugepaged_scan.mm_slot; 2570 khugepaged_scan.mm_slot = NULL; 2571 if (mm_slot) 2572 collect_mm_slot(mm_slot); 2573 spin_unlock(&khugepaged_mm_lock); 2574 return 0; 2575 } 2576 2577 static void set_recommended_min_free_kbytes(void) 2578 { 2579 struct zone *zone; 2580 int nr_zones = 0; 2581 unsigned long recommended_min; 2582 2583 if (!hugepage_flags_enabled()) { 2584 calculate_min_free_kbytes(); 2585 goto update_wmarks; 2586 } 2587 2588 for_each_populated_zone(zone) { 2589 /* 2590 * We don't need to worry about fragmentation of 2591 * ZONE_MOVABLE since it only has movable pages. 2592 */ 2593 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2594 continue; 2595 2596 nr_zones++; 2597 } 2598 2599 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2600 recommended_min = pageblock_nr_pages * nr_zones * 2; 2601 2602 /* 2603 * Make sure that on average at least two pageblocks are almost free 2604 * of another type, one for a migratetype to fall back to and a 2605 * second to avoid subsequent fallbacks of other types There are 3 2606 * MIGRATE_TYPES we care about. 2607 */ 2608 recommended_min += pageblock_nr_pages * nr_zones * 2609 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2610 2611 /* don't ever allow to reserve more than 5% of the lowmem */ 2612 recommended_min = min(recommended_min, 2613 (unsigned long) nr_free_buffer_pages() / 20); 2614 recommended_min <<= (PAGE_SHIFT-10); 2615 2616 if (recommended_min > min_free_kbytes) { 2617 if (user_min_free_kbytes >= 0) 2618 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2619 min_free_kbytes, recommended_min); 2620 2621 min_free_kbytes = recommended_min; 2622 } 2623 2624 update_wmarks: 2625 setup_per_zone_wmarks(); 2626 } 2627 2628 int start_stop_khugepaged(void) 2629 { 2630 int err = 0; 2631 2632 mutex_lock(&khugepaged_mutex); 2633 if (hugepage_flags_enabled()) { 2634 if (!khugepaged_thread) 2635 khugepaged_thread = kthread_run(khugepaged, NULL, 2636 "khugepaged"); 2637 if (IS_ERR(khugepaged_thread)) { 2638 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2639 err = PTR_ERR(khugepaged_thread); 2640 khugepaged_thread = NULL; 2641 goto fail; 2642 } 2643 2644 if (!list_empty(&khugepaged_scan.mm_head)) 2645 wake_up_interruptible(&khugepaged_wait); 2646 } else if (khugepaged_thread) { 2647 kthread_stop(khugepaged_thread); 2648 khugepaged_thread = NULL; 2649 } 2650 set_recommended_min_free_kbytes(); 2651 fail: 2652 mutex_unlock(&khugepaged_mutex); 2653 return err; 2654 } 2655 2656 void khugepaged_min_free_kbytes_update(void) 2657 { 2658 mutex_lock(&khugepaged_mutex); 2659 if (hugepage_flags_enabled() && khugepaged_thread) 2660 set_recommended_min_free_kbytes(); 2661 mutex_unlock(&khugepaged_mutex); 2662 } 2663 2664 bool current_is_khugepaged(void) 2665 { 2666 return kthread_func(current) == khugepaged; 2667 } 2668 2669 static int madvise_collapse_errno(enum scan_result r) 2670 { 2671 /* 2672 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2673 * actionable feedback to caller, so they may take an appropriate 2674 * fallback measure depending on the nature of the failure. 2675 */ 2676 switch (r) { 2677 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2678 return -ENOMEM; 2679 case SCAN_CGROUP_CHARGE_FAIL: 2680 case SCAN_EXCEED_NONE_PTE: 2681 return -EBUSY; 2682 /* Resource temporary unavailable - trying again might succeed */ 2683 case SCAN_PAGE_COUNT: 2684 case SCAN_PAGE_LOCK: 2685 case SCAN_PAGE_LRU: 2686 case SCAN_DEL_PAGE_LRU: 2687 case SCAN_PAGE_FILLED: 2688 return -EAGAIN; 2689 /* 2690 * Other: Trying again likely not to succeed / error intrinsic to 2691 * specified memory range. khugepaged likely won't be able to collapse 2692 * either. 2693 */ 2694 default: 2695 return -EINVAL; 2696 } 2697 } 2698 2699 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2700 unsigned long start, unsigned long end) 2701 { 2702 struct collapse_control *cc; 2703 struct mm_struct *mm = vma->vm_mm; 2704 unsigned long hstart, hend, addr; 2705 int thps = 0, last_fail = SCAN_FAIL; 2706 bool mmap_locked = true; 2707 2708 BUG_ON(vma->vm_start > start); 2709 BUG_ON(vma->vm_end < end); 2710 2711 *prev = vma; 2712 2713 if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, false, 2714 PMD_ORDER)) 2715 return -EINVAL; 2716 2717 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2718 if (!cc) 2719 return -ENOMEM; 2720 cc->is_khugepaged = false; 2721 2722 mmgrab(mm); 2723 lru_add_drain_all(); 2724 2725 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2726 hend = end & HPAGE_PMD_MASK; 2727 2728 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2729 int result = SCAN_FAIL; 2730 2731 if (!mmap_locked) { 2732 cond_resched(); 2733 mmap_read_lock(mm); 2734 mmap_locked = true; 2735 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2736 cc); 2737 if (result != SCAN_SUCCEED) { 2738 last_fail = result; 2739 goto out_nolock; 2740 } 2741 2742 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2743 } 2744 mmap_assert_locked(mm); 2745 memset(cc->node_load, 0, sizeof(cc->node_load)); 2746 nodes_clear(cc->alloc_nmask); 2747 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2748 struct file *file = get_file(vma->vm_file); 2749 pgoff_t pgoff = linear_page_index(vma, addr); 2750 2751 mmap_read_unlock(mm); 2752 mmap_locked = false; 2753 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2754 cc); 2755 fput(file); 2756 } else { 2757 result = hpage_collapse_scan_pmd(mm, vma, addr, 2758 &mmap_locked, cc); 2759 } 2760 if (!mmap_locked) 2761 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2762 2763 handle_result: 2764 switch (result) { 2765 case SCAN_SUCCEED: 2766 case SCAN_PMD_MAPPED: 2767 ++thps; 2768 break; 2769 case SCAN_PTE_MAPPED_HUGEPAGE: 2770 BUG_ON(mmap_locked); 2771 BUG_ON(*prev); 2772 mmap_read_lock(mm); 2773 result = collapse_pte_mapped_thp(mm, addr, true); 2774 mmap_read_unlock(mm); 2775 goto handle_result; 2776 /* Whitelisted set of results where continuing OK */ 2777 case SCAN_PMD_NULL: 2778 case SCAN_PTE_NON_PRESENT: 2779 case SCAN_PTE_UFFD_WP: 2780 case SCAN_PAGE_RO: 2781 case SCAN_LACK_REFERENCED_PAGE: 2782 case SCAN_PAGE_NULL: 2783 case SCAN_PAGE_COUNT: 2784 case SCAN_PAGE_LOCK: 2785 case SCAN_PAGE_COMPOUND: 2786 case SCAN_PAGE_LRU: 2787 case SCAN_DEL_PAGE_LRU: 2788 last_fail = result; 2789 break; 2790 default: 2791 last_fail = result; 2792 /* Other error, exit */ 2793 goto out_maybelock; 2794 } 2795 } 2796 2797 out_maybelock: 2798 /* Caller expects us to hold mmap_lock on return */ 2799 if (!mmap_locked) 2800 mmap_read_lock(mm); 2801 out_nolock: 2802 mmap_assert_locked(mm); 2803 mmdrop(mm); 2804 kfree(cc); 2805 2806 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2807 : madvise_collapse_errno(last_fail); 2808 } 2809