1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/tlb.h> 24 #include <asm/pgalloc.h> 25 #include "internal.h" 26 27 enum scan_result { 28 SCAN_FAIL, 29 SCAN_SUCCEED, 30 SCAN_PMD_NULL, 31 SCAN_EXCEED_NONE_PTE, 32 SCAN_EXCEED_SWAP_PTE, 33 SCAN_EXCEED_SHARED_PTE, 34 SCAN_PTE_NON_PRESENT, 35 SCAN_PTE_UFFD_WP, 36 SCAN_PAGE_RO, 37 SCAN_LACK_REFERENCED_PAGE, 38 SCAN_PAGE_NULL, 39 SCAN_SCAN_ABORT, 40 SCAN_PAGE_COUNT, 41 SCAN_PAGE_LRU, 42 SCAN_PAGE_LOCK, 43 SCAN_PAGE_ANON, 44 SCAN_PAGE_COMPOUND, 45 SCAN_ANY_PROCESS, 46 SCAN_VMA_NULL, 47 SCAN_VMA_CHECK, 48 SCAN_ADDRESS_RANGE, 49 SCAN_DEL_PAGE_LRU, 50 SCAN_ALLOC_HUGE_PAGE_FAIL, 51 SCAN_CGROUP_CHARGE_FAIL, 52 SCAN_TRUNCATED, 53 SCAN_PAGE_HAS_PRIVATE, 54 }; 55 56 #define CREATE_TRACE_POINTS 57 #include <trace/events/huge_memory.h> 58 59 static struct task_struct *khugepaged_thread __read_mostly; 60 static DEFINE_MUTEX(khugepaged_mutex); 61 62 /* default scan 8*512 pte (or vmas) every 30 second */ 63 static unsigned int khugepaged_pages_to_scan __read_mostly; 64 static unsigned int khugepaged_pages_collapsed; 65 static unsigned int khugepaged_full_scans; 66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 67 /* during fragmentation poll the hugepage allocator once every minute */ 68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 69 static unsigned long khugepaged_sleep_expire; 70 static DEFINE_SPINLOCK(khugepaged_mm_lock); 71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 72 /* 73 * default collapse hugepages if there is at least one pte mapped like 74 * it would have happened if the vma was large enough during page 75 * fault. 76 */ 77 static unsigned int khugepaged_max_ptes_none __read_mostly; 78 static unsigned int khugepaged_max_ptes_swap __read_mostly; 79 static unsigned int khugepaged_max_ptes_shared __read_mostly; 80 81 #define MM_SLOTS_HASH_BITS 10 82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 83 84 static struct kmem_cache *mm_slot_cache __read_mostly; 85 86 #define MAX_PTE_MAPPED_THP 8 87 88 /** 89 * struct mm_slot - hash lookup from mm to mm_slot 90 * @hash: hash collision list 91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head 92 * @mm: the mm that this information is valid for 93 * @nr_pte_mapped_thp: number of pte mapped THP 94 * @pte_mapped_thp: address array corresponding pte mapped THP 95 */ 96 struct mm_slot { 97 struct hlist_node hash; 98 struct list_head mm_node; 99 struct mm_struct *mm; 100 101 /* pte-mapped THP in this mm */ 102 int nr_pte_mapped_thp; 103 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 104 }; 105 106 /** 107 * struct khugepaged_scan - cursor for scanning 108 * @mm_head: the head of the mm list to scan 109 * @mm_slot: the current mm_slot we are scanning 110 * @address: the next address inside that to be scanned 111 * 112 * There is only the one khugepaged_scan instance of this cursor structure. 113 */ 114 struct khugepaged_scan { 115 struct list_head mm_head; 116 struct mm_slot *mm_slot; 117 unsigned long address; 118 }; 119 120 static struct khugepaged_scan khugepaged_scan = { 121 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 122 }; 123 124 #ifdef CONFIG_SYSFS 125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 126 struct kobj_attribute *attr, 127 char *buf) 128 { 129 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 130 } 131 132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 133 struct kobj_attribute *attr, 134 const char *buf, size_t count) 135 { 136 unsigned int msecs; 137 int err; 138 139 err = kstrtouint(buf, 10, &msecs); 140 if (err) 141 return -EINVAL; 142 143 khugepaged_scan_sleep_millisecs = msecs; 144 khugepaged_sleep_expire = 0; 145 wake_up_interruptible(&khugepaged_wait); 146 147 return count; 148 } 149 static struct kobj_attribute scan_sleep_millisecs_attr = 150 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show, 151 scan_sleep_millisecs_store); 152 153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 154 struct kobj_attribute *attr, 155 char *buf) 156 { 157 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 158 } 159 160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 161 struct kobj_attribute *attr, 162 const char *buf, size_t count) 163 { 164 unsigned int msecs; 165 int err; 166 167 err = kstrtouint(buf, 10, &msecs); 168 if (err) 169 return -EINVAL; 170 171 khugepaged_alloc_sleep_millisecs = msecs; 172 khugepaged_sleep_expire = 0; 173 wake_up_interruptible(&khugepaged_wait); 174 175 return count; 176 } 177 static struct kobj_attribute alloc_sleep_millisecs_attr = 178 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show, 179 alloc_sleep_millisecs_store); 180 181 static ssize_t pages_to_scan_show(struct kobject *kobj, 182 struct kobj_attribute *attr, 183 char *buf) 184 { 185 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 186 } 187 static ssize_t pages_to_scan_store(struct kobject *kobj, 188 struct kobj_attribute *attr, 189 const char *buf, size_t count) 190 { 191 unsigned int pages; 192 int err; 193 194 err = kstrtouint(buf, 10, &pages); 195 if (err || !pages) 196 return -EINVAL; 197 198 khugepaged_pages_to_scan = pages; 199 200 return count; 201 } 202 static struct kobj_attribute pages_to_scan_attr = 203 __ATTR(pages_to_scan, 0644, pages_to_scan_show, 204 pages_to_scan_store); 205 206 static ssize_t pages_collapsed_show(struct kobject *kobj, 207 struct kobj_attribute *attr, 208 char *buf) 209 { 210 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 211 } 212 static struct kobj_attribute pages_collapsed_attr = 213 __ATTR_RO(pages_collapsed); 214 215 static ssize_t full_scans_show(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 char *buf) 218 { 219 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 220 } 221 static struct kobj_attribute full_scans_attr = 222 __ATTR_RO(full_scans); 223 224 static ssize_t khugepaged_defrag_show(struct kobject *kobj, 225 struct kobj_attribute *attr, char *buf) 226 { 227 return single_hugepage_flag_show(kobj, attr, buf, 228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 229 } 230 static ssize_t khugepaged_defrag_store(struct kobject *kobj, 231 struct kobj_attribute *attr, 232 const char *buf, size_t count) 233 { 234 return single_hugepage_flag_store(kobj, attr, buf, count, 235 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 236 } 237 static struct kobj_attribute khugepaged_defrag_attr = 238 __ATTR(defrag, 0644, khugepaged_defrag_show, 239 khugepaged_defrag_store); 240 241 /* 242 * max_ptes_none controls if khugepaged should collapse hugepages over 243 * any unmapped ptes in turn potentially increasing the memory 244 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 245 * reduce the available free memory in the system as it 246 * runs. Increasing max_ptes_none will instead potentially reduce the 247 * free memory in the system during the khugepaged scan. 248 */ 249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj, 250 struct kobj_attribute *attr, 251 char *buf) 252 { 253 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 254 } 255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj, 256 struct kobj_attribute *attr, 257 const char *buf, size_t count) 258 { 259 int err; 260 unsigned long max_ptes_none; 261 262 err = kstrtoul(buf, 10, &max_ptes_none); 263 if (err || max_ptes_none > HPAGE_PMD_NR-1) 264 return -EINVAL; 265 266 khugepaged_max_ptes_none = max_ptes_none; 267 268 return count; 269 } 270 static struct kobj_attribute khugepaged_max_ptes_none_attr = 271 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show, 272 khugepaged_max_ptes_none_store); 273 274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj, 275 struct kobj_attribute *attr, 276 char *buf) 277 { 278 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 279 } 280 281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj, 282 struct kobj_attribute *attr, 283 const char *buf, size_t count) 284 { 285 int err; 286 unsigned long max_ptes_swap; 287 288 err = kstrtoul(buf, 10, &max_ptes_swap); 289 if (err || max_ptes_swap > HPAGE_PMD_NR-1) 290 return -EINVAL; 291 292 khugepaged_max_ptes_swap = max_ptes_swap; 293 294 return count; 295 } 296 297 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 298 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show, 299 khugepaged_max_ptes_swap_store); 300 301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj, 302 struct kobj_attribute *attr, 303 char *buf) 304 { 305 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 306 } 307 308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj, 309 struct kobj_attribute *attr, 310 const char *buf, size_t count) 311 { 312 int err; 313 unsigned long max_ptes_shared; 314 315 err = kstrtoul(buf, 10, &max_ptes_shared); 316 if (err || max_ptes_shared > HPAGE_PMD_NR-1) 317 return -EINVAL; 318 319 khugepaged_max_ptes_shared = max_ptes_shared; 320 321 return count; 322 } 323 324 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 325 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show, 326 khugepaged_max_ptes_shared_store); 327 328 static struct attribute *khugepaged_attr[] = { 329 &khugepaged_defrag_attr.attr, 330 &khugepaged_max_ptes_none_attr.attr, 331 &khugepaged_max_ptes_swap_attr.attr, 332 &khugepaged_max_ptes_shared_attr.attr, 333 &pages_to_scan_attr.attr, 334 &pages_collapsed_attr.attr, 335 &full_scans_attr.attr, 336 &scan_sleep_millisecs_attr.attr, 337 &alloc_sleep_millisecs_attr.attr, 338 NULL, 339 }; 340 341 struct attribute_group khugepaged_attr_group = { 342 .attrs = khugepaged_attr, 343 .name = "khugepaged", 344 }; 345 #endif /* CONFIG_SYSFS */ 346 347 int hugepage_madvise(struct vm_area_struct *vma, 348 unsigned long *vm_flags, int advice) 349 { 350 switch (advice) { 351 case MADV_HUGEPAGE: 352 #ifdef CONFIG_S390 353 /* 354 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 355 * can't handle this properly after s390_enable_sie, so we simply 356 * ignore the madvise to prevent qemu from causing a SIGSEGV. 357 */ 358 if (mm_has_pgste(vma->vm_mm)) 359 return 0; 360 #endif 361 *vm_flags &= ~VM_NOHUGEPAGE; 362 *vm_flags |= VM_HUGEPAGE; 363 /* 364 * If the vma become good for khugepaged to scan, 365 * register it here without waiting a page fault that 366 * may not happen any time soon. 367 */ 368 khugepaged_enter_vma(vma, *vm_flags); 369 break; 370 case MADV_NOHUGEPAGE: 371 *vm_flags &= ~VM_HUGEPAGE; 372 *vm_flags |= VM_NOHUGEPAGE; 373 /* 374 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 375 * this vma even if we leave the mm registered in khugepaged if 376 * it got registered before VM_NOHUGEPAGE was set. 377 */ 378 break; 379 } 380 381 return 0; 382 } 383 384 int __init khugepaged_init(void) 385 { 386 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 387 sizeof(struct mm_slot), 388 __alignof__(struct mm_slot), 0, NULL); 389 if (!mm_slot_cache) 390 return -ENOMEM; 391 392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 396 397 return 0; 398 } 399 400 void __init khugepaged_destroy(void) 401 { 402 kmem_cache_destroy(mm_slot_cache); 403 } 404 405 static inline struct mm_slot *alloc_mm_slot(void) 406 { 407 if (!mm_slot_cache) /* initialization failed */ 408 return NULL; 409 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL); 410 } 411 412 static inline void free_mm_slot(struct mm_slot *mm_slot) 413 { 414 kmem_cache_free(mm_slot_cache, mm_slot); 415 } 416 417 static struct mm_slot *get_mm_slot(struct mm_struct *mm) 418 { 419 struct mm_slot *mm_slot; 420 421 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm) 422 if (mm == mm_slot->mm) 423 return mm_slot; 424 425 return NULL; 426 } 427 428 static void insert_to_mm_slots_hash(struct mm_struct *mm, 429 struct mm_slot *mm_slot) 430 { 431 mm_slot->mm = mm; 432 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm); 433 } 434 435 static inline int khugepaged_test_exit(struct mm_struct *mm) 436 { 437 return atomic_read(&mm->mm_users) == 0; 438 } 439 440 bool hugepage_vma_check(struct vm_area_struct *vma, 441 unsigned long vm_flags) 442 { 443 if (!transhuge_vma_enabled(vma, vm_flags)) 444 return false; 445 446 if (vm_flags & VM_NO_KHUGEPAGED) 447 return false; 448 449 /* Don't run khugepaged against DAX vma */ 450 if (vma_is_dax(vma)) 451 return false; 452 453 if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - 454 vma->vm_pgoff, HPAGE_PMD_NR)) 455 return false; 456 457 /* Enabled via shmem mount options or sysfs settings. */ 458 if (shmem_file(vma->vm_file)) 459 return shmem_huge_enabled(vma); 460 461 /* THP settings require madvise. */ 462 if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) 463 return false; 464 465 /* Only regular file is valid */ 466 if (file_thp_enabled(vma)) 467 return true; 468 469 if (!vma->anon_vma || !vma_is_anonymous(vma)) 470 return false; 471 if (vma_is_temporary_stack(vma)) 472 return false; 473 474 return true; 475 } 476 477 void __khugepaged_enter(struct mm_struct *mm) 478 { 479 struct mm_slot *mm_slot; 480 int wakeup; 481 482 mm_slot = alloc_mm_slot(); 483 if (!mm_slot) 484 return; 485 486 /* __khugepaged_exit() must not run from under us */ 487 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm); 488 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 489 free_mm_slot(mm_slot); 490 return; 491 } 492 493 spin_lock(&khugepaged_mm_lock); 494 insert_to_mm_slots_hash(mm, mm_slot); 495 /* 496 * Insert just behind the scanning cursor, to let the area settle 497 * down a little. 498 */ 499 wakeup = list_empty(&khugepaged_scan.mm_head); 500 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head); 501 spin_unlock(&khugepaged_mm_lock); 502 503 mmgrab(mm); 504 if (wakeup) 505 wake_up_interruptible(&khugepaged_wait); 506 } 507 508 void khugepaged_enter_vma(struct vm_area_struct *vma, 509 unsigned long vm_flags) 510 { 511 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 512 khugepaged_enabled() && 513 (((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) < 514 (vma->vm_end & HPAGE_PMD_MASK))) { 515 if (hugepage_vma_check(vma, vm_flags)) 516 __khugepaged_enter(vma->vm_mm); 517 } 518 } 519 520 void __khugepaged_exit(struct mm_struct *mm) 521 { 522 struct mm_slot *mm_slot; 523 int free = 0; 524 525 spin_lock(&khugepaged_mm_lock); 526 mm_slot = get_mm_slot(mm); 527 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 528 hash_del(&mm_slot->hash); 529 list_del(&mm_slot->mm_node); 530 free = 1; 531 } 532 spin_unlock(&khugepaged_mm_lock); 533 534 if (free) { 535 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 536 free_mm_slot(mm_slot); 537 mmdrop(mm); 538 } else if (mm_slot) { 539 /* 540 * This is required to serialize against 541 * khugepaged_test_exit() (which is guaranteed to run 542 * under mmap sem read mode). Stop here (after we 543 * return all pagetables will be destroyed) until 544 * khugepaged has finished working on the pagetables 545 * under the mmap_lock. 546 */ 547 mmap_write_lock(mm); 548 mmap_write_unlock(mm); 549 } 550 } 551 552 static void release_pte_page(struct page *page) 553 { 554 mod_node_page_state(page_pgdat(page), 555 NR_ISOLATED_ANON + page_is_file_lru(page), 556 -compound_nr(page)); 557 unlock_page(page); 558 putback_lru_page(page); 559 } 560 561 static void release_pte_pages(pte_t *pte, pte_t *_pte, 562 struct list_head *compound_pagelist) 563 { 564 struct page *page, *tmp; 565 566 while (--_pte >= pte) { 567 pte_t pteval = *_pte; 568 569 page = pte_page(pteval); 570 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && 571 !PageCompound(page)) 572 release_pte_page(page); 573 } 574 575 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { 576 list_del(&page->lru); 577 release_pte_page(page); 578 } 579 } 580 581 static bool is_refcount_suitable(struct page *page) 582 { 583 int expected_refcount; 584 585 expected_refcount = total_mapcount(page); 586 if (PageSwapCache(page)) 587 expected_refcount += compound_nr(page); 588 589 return page_count(page) == expected_refcount; 590 } 591 592 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 593 unsigned long address, 594 pte_t *pte, 595 struct list_head *compound_pagelist) 596 { 597 struct page *page = NULL; 598 pte_t *_pte; 599 int none_or_zero = 0, shared = 0, result = 0, referenced = 0; 600 bool writable = false; 601 602 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; 603 _pte++, address += PAGE_SIZE) { 604 pte_t pteval = *_pte; 605 if (pte_none(pteval) || (pte_present(pteval) && 606 is_zero_pfn(pte_pfn(pteval)))) { 607 if (!userfaultfd_armed(vma) && 608 ++none_or_zero <= khugepaged_max_ptes_none) { 609 continue; 610 } else { 611 result = SCAN_EXCEED_NONE_PTE; 612 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 613 goto out; 614 } 615 } 616 if (!pte_present(pteval)) { 617 result = SCAN_PTE_NON_PRESENT; 618 goto out; 619 } 620 page = vm_normal_page(vma, address, pteval); 621 if (unlikely(!page)) { 622 result = SCAN_PAGE_NULL; 623 goto out; 624 } 625 626 VM_BUG_ON_PAGE(!PageAnon(page), page); 627 628 if (page_mapcount(page) > 1 && 629 ++shared > khugepaged_max_ptes_shared) { 630 result = SCAN_EXCEED_SHARED_PTE; 631 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 632 goto out; 633 } 634 635 if (PageCompound(page)) { 636 struct page *p; 637 page = compound_head(page); 638 639 /* 640 * Check if we have dealt with the compound page 641 * already 642 */ 643 list_for_each_entry(p, compound_pagelist, lru) { 644 if (page == p) 645 goto next; 646 } 647 } 648 649 /* 650 * We can do it before isolate_lru_page because the 651 * page can't be freed from under us. NOTE: PG_lock 652 * is needed to serialize against split_huge_page 653 * when invoked from the VM. 654 */ 655 if (!trylock_page(page)) { 656 result = SCAN_PAGE_LOCK; 657 goto out; 658 } 659 660 /* 661 * Check if the page has any GUP (or other external) pins. 662 * 663 * The page table that maps the page has been already unlinked 664 * from the page table tree and this process cannot get 665 * an additional pin on the page. 666 * 667 * New pins can come later if the page is shared across fork, 668 * but not from this process. The other process cannot write to 669 * the page, only trigger CoW. 670 */ 671 if (!is_refcount_suitable(page)) { 672 unlock_page(page); 673 result = SCAN_PAGE_COUNT; 674 goto out; 675 } 676 677 /* 678 * Isolate the page to avoid collapsing an hugepage 679 * currently in use by the VM. 680 */ 681 if (isolate_lru_page(page)) { 682 unlock_page(page); 683 result = SCAN_DEL_PAGE_LRU; 684 goto out; 685 } 686 mod_node_page_state(page_pgdat(page), 687 NR_ISOLATED_ANON + page_is_file_lru(page), 688 compound_nr(page)); 689 VM_BUG_ON_PAGE(!PageLocked(page), page); 690 VM_BUG_ON_PAGE(PageLRU(page), page); 691 692 if (PageCompound(page)) 693 list_add_tail(&page->lru, compound_pagelist); 694 next: 695 /* There should be enough young pte to collapse the page */ 696 if (pte_young(pteval) || 697 page_is_young(page) || PageReferenced(page) || 698 mmu_notifier_test_young(vma->vm_mm, address)) 699 referenced++; 700 701 if (pte_write(pteval)) 702 writable = true; 703 } 704 705 if (unlikely(!writable)) { 706 result = SCAN_PAGE_RO; 707 } else if (unlikely(!referenced)) { 708 result = SCAN_LACK_REFERENCED_PAGE; 709 } else { 710 result = SCAN_SUCCEED; 711 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 712 referenced, writable, result); 713 return 1; 714 } 715 out: 716 release_pte_pages(pte, _pte, compound_pagelist); 717 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 718 referenced, writable, result); 719 return 0; 720 } 721 722 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 723 struct vm_area_struct *vma, 724 unsigned long address, 725 spinlock_t *ptl, 726 struct list_head *compound_pagelist) 727 { 728 struct page *src_page, *tmp; 729 pte_t *_pte; 730 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 731 _pte++, page++, address += PAGE_SIZE) { 732 pte_t pteval = *_pte; 733 734 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 735 clear_user_highpage(page, address); 736 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 737 if (is_zero_pfn(pte_pfn(pteval))) { 738 /* 739 * ptl mostly unnecessary. 740 */ 741 spin_lock(ptl); 742 ptep_clear(vma->vm_mm, address, _pte); 743 spin_unlock(ptl); 744 } 745 } else { 746 src_page = pte_page(pteval); 747 copy_user_highpage(page, src_page, address, vma); 748 if (!PageCompound(src_page)) 749 release_pte_page(src_page); 750 /* 751 * ptl mostly unnecessary, but preempt has to 752 * be disabled to update the per-cpu stats 753 * inside page_remove_rmap(). 754 */ 755 spin_lock(ptl); 756 ptep_clear(vma->vm_mm, address, _pte); 757 page_remove_rmap(src_page, vma, false); 758 spin_unlock(ptl); 759 free_page_and_swap_cache(src_page); 760 } 761 } 762 763 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 764 list_del(&src_page->lru); 765 release_pte_page(src_page); 766 } 767 } 768 769 static void khugepaged_alloc_sleep(void) 770 { 771 DEFINE_WAIT(wait); 772 773 add_wait_queue(&khugepaged_wait, &wait); 774 freezable_schedule_timeout_interruptible( 775 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 776 remove_wait_queue(&khugepaged_wait, &wait); 777 } 778 779 static int khugepaged_node_load[MAX_NUMNODES]; 780 781 static bool khugepaged_scan_abort(int nid) 782 { 783 int i; 784 785 /* 786 * If node_reclaim_mode is disabled, then no extra effort is made to 787 * allocate memory locally. 788 */ 789 if (!node_reclaim_enabled()) 790 return false; 791 792 /* If there is a count for this node already, it must be acceptable */ 793 if (khugepaged_node_load[nid]) 794 return false; 795 796 for (i = 0; i < MAX_NUMNODES; i++) { 797 if (!khugepaged_node_load[i]) 798 continue; 799 if (node_distance(nid, i) > node_reclaim_distance) 800 return true; 801 } 802 return false; 803 } 804 805 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 806 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 807 { 808 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 809 } 810 811 #ifdef CONFIG_NUMA 812 static int khugepaged_find_target_node(void) 813 { 814 static int last_khugepaged_target_node = NUMA_NO_NODE; 815 int nid, target_node = 0, max_value = 0; 816 817 /* find first node with max normal pages hit */ 818 for (nid = 0; nid < MAX_NUMNODES; nid++) 819 if (khugepaged_node_load[nid] > max_value) { 820 max_value = khugepaged_node_load[nid]; 821 target_node = nid; 822 } 823 824 /* do some balance if several nodes have the same hit record */ 825 if (target_node <= last_khugepaged_target_node) 826 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES; 827 nid++) 828 if (max_value == khugepaged_node_load[nid]) { 829 target_node = nid; 830 break; 831 } 832 833 last_khugepaged_target_node = target_node; 834 return target_node; 835 } 836 837 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 838 { 839 if (IS_ERR(*hpage)) { 840 if (!*wait) 841 return false; 842 843 *wait = false; 844 *hpage = NULL; 845 khugepaged_alloc_sleep(); 846 } else if (*hpage) { 847 put_page(*hpage); 848 *hpage = NULL; 849 } 850 851 return true; 852 } 853 854 static struct page * 855 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 856 { 857 VM_BUG_ON_PAGE(*hpage, *hpage); 858 859 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); 860 if (unlikely(!*hpage)) { 861 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 862 *hpage = ERR_PTR(-ENOMEM); 863 return NULL; 864 } 865 866 prep_transhuge_page(*hpage); 867 count_vm_event(THP_COLLAPSE_ALLOC); 868 return *hpage; 869 } 870 #else 871 static int khugepaged_find_target_node(void) 872 { 873 return 0; 874 } 875 876 static inline struct page *alloc_khugepaged_hugepage(void) 877 { 878 struct page *page; 879 880 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(), 881 HPAGE_PMD_ORDER); 882 if (page) 883 prep_transhuge_page(page); 884 return page; 885 } 886 887 static struct page *khugepaged_alloc_hugepage(bool *wait) 888 { 889 struct page *hpage; 890 891 do { 892 hpage = alloc_khugepaged_hugepage(); 893 if (!hpage) { 894 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 895 if (!*wait) 896 return NULL; 897 898 *wait = false; 899 khugepaged_alloc_sleep(); 900 } else 901 count_vm_event(THP_COLLAPSE_ALLOC); 902 } while (unlikely(!hpage) && likely(khugepaged_enabled())); 903 904 return hpage; 905 } 906 907 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait) 908 { 909 /* 910 * If the hpage allocated earlier was briefly exposed in page cache 911 * before collapse_file() failed, it is possible that racing lookups 912 * have not yet completed, and would then be unpleasantly surprised by 913 * finding the hpage reused for the same mapping at a different offset. 914 * Just release the previous allocation if there is any danger of that. 915 */ 916 if (*hpage && page_count(*hpage) > 1) { 917 put_page(*hpage); 918 *hpage = NULL; 919 } 920 921 if (!*hpage) 922 *hpage = khugepaged_alloc_hugepage(wait); 923 924 if (unlikely(!*hpage)) 925 return false; 926 927 return true; 928 } 929 930 static struct page * 931 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node) 932 { 933 VM_BUG_ON(!*hpage); 934 935 return *hpage; 936 } 937 #endif 938 939 /* 940 * If mmap_lock temporarily dropped, revalidate vma 941 * before taking mmap_lock. 942 * Return 0 if succeeds, otherwise return none-zero 943 * value (scan code). 944 */ 945 946 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 947 struct vm_area_struct **vmap) 948 { 949 struct vm_area_struct *vma; 950 unsigned long hstart, hend; 951 952 if (unlikely(khugepaged_test_exit(mm))) 953 return SCAN_ANY_PROCESS; 954 955 *vmap = vma = find_vma(mm, address); 956 if (!vma) 957 return SCAN_VMA_NULL; 958 959 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 960 hend = vma->vm_end & HPAGE_PMD_MASK; 961 if (address < hstart || address + HPAGE_PMD_SIZE > hend) 962 return SCAN_ADDRESS_RANGE; 963 if (!hugepage_vma_check(vma, vma->vm_flags)) 964 return SCAN_VMA_CHECK; 965 /* Anon VMA expected */ 966 if (!vma->anon_vma || !vma_is_anonymous(vma)) 967 return SCAN_VMA_CHECK; 968 return 0; 969 } 970 971 /* 972 * Bring missing pages in from swap, to complete THP collapse. 973 * Only done if khugepaged_scan_pmd believes it is worthwhile. 974 * 975 * Called and returns without pte mapped or spinlocks held, 976 * but with mmap_lock held to protect against vma changes. 977 */ 978 979 static bool __collapse_huge_page_swapin(struct mm_struct *mm, 980 struct vm_area_struct *vma, 981 unsigned long haddr, pmd_t *pmd, 982 int referenced) 983 { 984 int swapped_in = 0; 985 vm_fault_t ret = 0; 986 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 987 988 for (address = haddr; address < end; address += PAGE_SIZE) { 989 struct vm_fault vmf = { 990 .vma = vma, 991 .address = address, 992 .pgoff = linear_page_index(vma, haddr), 993 .flags = FAULT_FLAG_ALLOW_RETRY, 994 .pmd = pmd, 995 }; 996 997 vmf.pte = pte_offset_map(pmd, address); 998 vmf.orig_pte = *vmf.pte; 999 if (!is_swap_pte(vmf.orig_pte)) { 1000 pte_unmap(vmf.pte); 1001 continue; 1002 } 1003 swapped_in++; 1004 ret = do_swap_page(&vmf); 1005 1006 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */ 1007 if (ret & VM_FAULT_RETRY) { 1008 mmap_read_lock(mm); 1009 if (hugepage_vma_revalidate(mm, haddr, &vma)) { 1010 /* vma is no longer available, don't continue to swapin */ 1011 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1012 return false; 1013 } 1014 /* check if the pmd is still valid */ 1015 if (mm_find_pmd(mm, haddr) != pmd) { 1016 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1017 return false; 1018 } 1019 } 1020 if (ret & VM_FAULT_ERROR) { 1021 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 1022 return false; 1023 } 1024 } 1025 1026 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 1027 if (swapped_in) 1028 lru_add_drain(); 1029 1030 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 1031 return true; 1032 } 1033 1034 static void collapse_huge_page(struct mm_struct *mm, 1035 unsigned long address, 1036 struct page **hpage, 1037 int node, int referenced, int unmapped) 1038 { 1039 LIST_HEAD(compound_pagelist); 1040 pmd_t *pmd, _pmd; 1041 pte_t *pte; 1042 pgtable_t pgtable; 1043 struct page *new_page; 1044 spinlock_t *pmd_ptl, *pte_ptl; 1045 int isolated = 0, result = 0; 1046 struct vm_area_struct *vma; 1047 struct mmu_notifier_range range; 1048 gfp_t gfp; 1049 1050 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1051 1052 /* Only allocate from the target node */ 1053 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1054 1055 /* 1056 * Before allocating the hugepage, release the mmap_lock read lock. 1057 * The allocation can take potentially a long time if it involves 1058 * sync compaction, and we do not need to hold the mmap_lock during 1059 * that. We will recheck the vma after taking it again in write mode. 1060 */ 1061 mmap_read_unlock(mm); 1062 new_page = khugepaged_alloc_page(hpage, gfp, node); 1063 if (!new_page) { 1064 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1065 goto out_nolock; 1066 } 1067 1068 if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { 1069 result = SCAN_CGROUP_CHARGE_FAIL; 1070 goto out_nolock; 1071 } 1072 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1073 1074 mmap_read_lock(mm); 1075 result = hugepage_vma_revalidate(mm, address, &vma); 1076 if (result) { 1077 mmap_read_unlock(mm); 1078 goto out_nolock; 1079 } 1080 1081 pmd = mm_find_pmd(mm, address); 1082 if (!pmd) { 1083 result = SCAN_PMD_NULL; 1084 mmap_read_unlock(mm); 1085 goto out_nolock; 1086 } 1087 1088 /* 1089 * __collapse_huge_page_swapin always returns with mmap_lock locked. 1090 * If it fails, we release mmap_lock and jump out_nolock. 1091 * Continuing to collapse causes inconsistency. 1092 */ 1093 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address, 1094 pmd, referenced)) { 1095 mmap_read_unlock(mm); 1096 goto out_nolock; 1097 } 1098 1099 mmap_read_unlock(mm); 1100 /* 1101 * Prevent all access to pagetables with the exception of 1102 * gup_fast later handled by the ptep_clear_flush and the VM 1103 * handled by the anon_vma lock + PG_lock. 1104 */ 1105 mmap_write_lock(mm); 1106 result = hugepage_vma_revalidate(mm, address, &vma); 1107 if (result) 1108 goto out_up_write; 1109 /* check if the pmd is still valid */ 1110 if (mm_find_pmd(mm, address) != pmd) 1111 goto out_up_write; 1112 1113 anon_vma_lock_write(vma->anon_vma); 1114 1115 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 1116 address, address + HPAGE_PMD_SIZE); 1117 mmu_notifier_invalidate_range_start(&range); 1118 1119 pte = pte_offset_map(pmd, address); 1120 pte_ptl = pte_lockptr(mm, pmd); 1121 1122 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1123 /* 1124 * After this gup_fast can't run anymore. This also removes 1125 * any huge TLB entry from the CPU so we won't allow 1126 * huge and small TLB entries for the same virtual address 1127 * to avoid the risk of CPU bugs in that area. 1128 */ 1129 _pmd = pmdp_collapse_flush(vma, address, pmd); 1130 spin_unlock(pmd_ptl); 1131 mmu_notifier_invalidate_range_end(&range); 1132 1133 spin_lock(pte_ptl); 1134 isolated = __collapse_huge_page_isolate(vma, address, pte, 1135 &compound_pagelist); 1136 spin_unlock(pte_ptl); 1137 1138 if (unlikely(!isolated)) { 1139 pte_unmap(pte); 1140 spin_lock(pmd_ptl); 1141 BUG_ON(!pmd_none(*pmd)); 1142 /* 1143 * We can only use set_pmd_at when establishing 1144 * hugepmds and never for establishing regular pmds that 1145 * points to regular pagetables. Use pmd_populate for that 1146 */ 1147 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1148 spin_unlock(pmd_ptl); 1149 anon_vma_unlock_write(vma->anon_vma); 1150 result = SCAN_FAIL; 1151 goto out_up_write; 1152 } 1153 1154 /* 1155 * All pages are isolated and locked so anon_vma rmap 1156 * can't run anymore. 1157 */ 1158 anon_vma_unlock_write(vma->anon_vma); 1159 1160 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl, 1161 &compound_pagelist); 1162 pte_unmap(pte); 1163 /* 1164 * spin_lock() below is not the equivalent of smp_wmb(), but 1165 * the smp_wmb() inside __SetPageUptodate() can be reused to 1166 * avoid the copy_huge_page writes to become visible after 1167 * the set_pmd_at() write. 1168 */ 1169 __SetPageUptodate(new_page); 1170 pgtable = pmd_pgtable(_pmd); 1171 1172 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot); 1173 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1174 1175 spin_lock(pmd_ptl); 1176 BUG_ON(!pmd_none(*pmd)); 1177 page_add_new_anon_rmap(new_page, vma, address); 1178 lru_cache_add_inactive_or_unevictable(new_page, vma); 1179 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1180 set_pmd_at(mm, address, pmd, _pmd); 1181 update_mmu_cache_pmd(vma, address, pmd); 1182 spin_unlock(pmd_ptl); 1183 1184 *hpage = NULL; 1185 1186 khugepaged_pages_collapsed++; 1187 result = SCAN_SUCCEED; 1188 out_up_write: 1189 mmap_write_unlock(mm); 1190 out_nolock: 1191 if (!IS_ERR_OR_NULL(*hpage)) 1192 mem_cgroup_uncharge(page_folio(*hpage)); 1193 trace_mm_collapse_huge_page(mm, isolated, result); 1194 return; 1195 } 1196 1197 static int khugepaged_scan_pmd(struct mm_struct *mm, 1198 struct vm_area_struct *vma, 1199 unsigned long address, 1200 struct page **hpage) 1201 { 1202 pmd_t *pmd; 1203 pte_t *pte, *_pte; 1204 int ret = 0, result = 0, referenced = 0; 1205 int none_or_zero = 0, shared = 0; 1206 struct page *page = NULL; 1207 unsigned long _address; 1208 spinlock_t *ptl; 1209 int node = NUMA_NO_NODE, unmapped = 0; 1210 bool writable = false; 1211 1212 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1213 1214 pmd = mm_find_pmd(mm, address); 1215 if (!pmd) { 1216 result = SCAN_PMD_NULL; 1217 goto out; 1218 } 1219 1220 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 1221 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1222 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR; 1223 _pte++, _address += PAGE_SIZE) { 1224 pte_t pteval = *_pte; 1225 if (is_swap_pte(pteval)) { 1226 if (++unmapped <= khugepaged_max_ptes_swap) { 1227 /* 1228 * Always be strict with uffd-wp 1229 * enabled swap entries. Please see 1230 * comment below for pte_uffd_wp(). 1231 */ 1232 if (pte_swp_uffd_wp(pteval)) { 1233 result = SCAN_PTE_UFFD_WP; 1234 goto out_unmap; 1235 } 1236 continue; 1237 } else { 1238 result = SCAN_EXCEED_SWAP_PTE; 1239 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1240 goto out_unmap; 1241 } 1242 } 1243 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1244 if (!userfaultfd_armed(vma) && 1245 ++none_or_zero <= khugepaged_max_ptes_none) { 1246 continue; 1247 } else { 1248 result = SCAN_EXCEED_NONE_PTE; 1249 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1250 goto out_unmap; 1251 } 1252 } 1253 if (pte_uffd_wp(pteval)) { 1254 /* 1255 * Don't collapse the page if any of the small 1256 * PTEs are armed with uffd write protection. 1257 * Here we can also mark the new huge pmd as 1258 * write protected if any of the small ones is 1259 * marked but that could bring unknown 1260 * userfault messages that falls outside of 1261 * the registered range. So, just be simple. 1262 */ 1263 result = SCAN_PTE_UFFD_WP; 1264 goto out_unmap; 1265 } 1266 if (pte_write(pteval)) 1267 writable = true; 1268 1269 page = vm_normal_page(vma, _address, pteval); 1270 if (unlikely(!page)) { 1271 result = SCAN_PAGE_NULL; 1272 goto out_unmap; 1273 } 1274 1275 if (page_mapcount(page) > 1 && 1276 ++shared > khugepaged_max_ptes_shared) { 1277 result = SCAN_EXCEED_SHARED_PTE; 1278 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1279 goto out_unmap; 1280 } 1281 1282 page = compound_head(page); 1283 1284 /* 1285 * Record which node the original page is from and save this 1286 * information to khugepaged_node_load[]. 1287 * Khugepaged will allocate hugepage from the node has the max 1288 * hit record. 1289 */ 1290 node = page_to_nid(page); 1291 if (khugepaged_scan_abort(node)) { 1292 result = SCAN_SCAN_ABORT; 1293 goto out_unmap; 1294 } 1295 khugepaged_node_load[node]++; 1296 if (!PageLRU(page)) { 1297 result = SCAN_PAGE_LRU; 1298 goto out_unmap; 1299 } 1300 if (PageLocked(page)) { 1301 result = SCAN_PAGE_LOCK; 1302 goto out_unmap; 1303 } 1304 if (!PageAnon(page)) { 1305 result = SCAN_PAGE_ANON; 1306 goto out_unmap; 1307 } 1308 1309 /* 1310 * Check if the page has any GUP (or other external) pins. 1311 * 1312 * Here the check is racy it may see totmal_mapcount > refcount 1313 * in some cases. 1314 * For example, one process with one forked child process. 1315 * The parent has the PMD split due to MADV_DONTNEED, then 1316 * the child is trying unmap the whole PMD, but khugepaged 1317 * may be scanning the parent between the child has 1318 * PageDoubleMap flag cleared and dec the mapcount. So 1319 * khugepaged may see total_mapcount > refcount. 1320 * 1321 * But such case is ephemeral we could always retry collapse 1322 * later. However it may report false positive if the page 1323 * has excessive GUP pins (i.e. 512). Anyway the same check 1324 * will be done again later the risk seems low. 1325 */ 1326 if (!is_refcount_suitable(page)) { 1327 result = SCAN_PAGE_COUNT; 1328 goto out_unmap; 1329 } 1330 if (pte_young(pteval) || 1331 page_is_young(page) || PageReferenced(page) || 1332 mmu_notifier_test_young(vma->vm_mm, address)) 1333 referenced++; 1334 } 1335 if (!writable) { 1336 result = SCAN_PAGE_RO; 1337 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) { 1338 result = SCAN_LACK_REFERENCED_PAGE; 1339 } else { 1340 result = SCAN_SUCCEED; 1341 ret = 1; 1342 } 1343 out_unmap: 1344 pte_unmap_unlock(pte, ptl); 1345 if (ret) { 1346 node = khugepaged_find_target_node(); 1347 /* collapse_huge_page will return with the mmap_lock released */ 1348 collapse_huge_page(mm, address, hpage, node, 1349 referenced, unmapped); 1350 } 1351 out: 1352 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1353 none_or_zero, result, unmapped); 1354 return ret; 1355 } 1356 1357 static void collect_mm_slot(struct mm_slot *mm_slot) 1358 { 1359 struct mm_struct *mm = mm_slot->mm; 1360 1361 lockdep_assert_held(&khugepaged_mm_lock); 1362 1363 if (khugepaged_test_exit(mm)) { 1364 /* free mm_slot */ 1365 hash_del(&mm_slot->hash); 1366 list_del(&mm_slot->mm_node); 1367 1368 /* 1369 * Not strictly needed because the mm exited already. 1370 * 1371 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1372 */ 1373 1374 /* khugepaged_mm_lock actually not necessary for the below */ 1375 free_mm_slot(mm_slot); 1376 mmdrop(mm); 1377 } 1378 } 1379 1380 #ifdef CONFIG_SHMEM 1381 /* 1382 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1383 * khugepaged should try to collapse the page table. 1384 */ 1385 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1386 unsigned long addr) 1387 { 1388 struct mm_slot *mm_slot; 1389 1390 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1391 1392 spin_lock(&khugepaged_mm_lock); 1393 mm_slot = get_mm_slot(mm); 1394 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) 1395 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1396 spin_unlock(&khugepaged_mm_lock); 1397 return 0; 1398 } 1399 1400 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 1401 unsigned long addr, pmd_t *pmdp) 1402 { 1403 spinlock_t *ptl; 1404 pmd_t pmd; 1405 1406 mmap_assert_write_locked(mm); 1407 ptl = pmd_lock(vma->vm_mm, pmdp); 1408 pmd = pmdp_collapse_flush(vma, addr, pmdp); 1409 spin_unlock(ptl); 1410 mm_dec_nr_ptes(mm); 1411 page_table_check_pte_clear_range(mm, addr, pmd); 1412 pte_free(mm, pmd_pgtable(pmd)); 1413 } 1414 1415 /** 1416 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1417 * address haddr. 1418 * 1419 * @mm: process address space where collapse happens 1420 * @addr: THP collapse address 1421 * 1422 * This function checks whether all the PTEs in the PMD are pointing to the 1423 * right THP. If so, retract the page table so the THP can refault in with 1424 * as pmd-mapped. 1425 */ 1426 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr) 1427 { 1428 unsigned long haddr = addr & HPAGE_PMD_MASK; 1429 struct vm_area_struct *vma = find_vma(mm, haddr); 1430 struct page *hpage; 1431 pte_t *start_pte, *pte; 1432 pmd_t *pmd; 1433 spinlock_t *ptl; 1434 int count = 0; 1435 int i; 1436 1437 if (!vma || !vma->vm_file || 1438 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1439 return; 1440 1441 /* 1442 * This vm_flags may not have VM_HUGEPAGE if the page was not 1443 * collapsed by this mm. But we can still collapse if the page is 1444 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check() 1445 * will not fail the vma for missing VM_HUGEPAGE 1446 */ 1447 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE)) 1448 return; 1449 1450 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1451 if (userfaultfd_wp(vma)) 1452 return; 1453 1454 hpage = find_lock_page(vma->vm_file->f_mapping, 1455 linear_page_index(vma, haddr)); 1456 if (!hpage) 1457 return; 1458 1459 if (!PageHead(hpage)) 1460 goto drop_hpage; 1461 1462 pmd = mm_find_pmd(mm, haddr); 1463 if (!pmd) 1464 goto drop_hpage; 1465 1466 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1467 1468 /* step 1: check all mapped PTEs are to the right huge page */ 1469 for (i = 0, addr = haddr, pte = start_pte; 1470 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1471 struct page *page; 1472 1473 /* empty pte, skip */ 1474 if (pte_none(*pte)) 1475 continue; 1476 1477 /* page swapped out, abort */ 1478 if (!pte_present(*pte)) 1479 goto abort; 1480 1481 page = vm_normal_page(vma, addr, *pte); 1482 1483 /* 1484 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1485 * page table, but the new page will not be a subpage of hpage. 1486 */ 1487 if (hpage + i != page) 1488 goto abort; 1489 count++; 1490 } 1491 1492 /* step 2: adjust rmap */ 1493 for (i = 0, addr = haddr, pte = start_pte; 1494 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1495 struct page *page; 1496 1497 if (pte_none(*pte)) 1498 continue; 1499 page = vm_normal_page(vma, addr, *pte); 1500 page_remove_rmap(page, vma, false); 1501 } 1502 1503 pte_unmap_unlock(start_pte, ptl); 1504 1505 /* step 3: set proper refcount and mm_counters. */ 1506 if (count) { 1507 page_ref_sub(hpage, count); 1508 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1509 } 1510 1511 /* step 4: collapse pmd */ 1512 collapse_and_free_pmd(mm, vma, haddr, pmd); 1513 drop_hpage: 1514 unlock_page(hpage); 1515 put_page(hpage); 1516 return; 1517 1518 abort: 1519 pte_unmap_unlock(start_pte, ptl); 1520 goto drop_hpage; 1521 } 1522 1523 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 1524 { 1525 struct mm_struct *mm = mm_slot->mm; 1526 int i; 1527 1528 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1529 return; 1530 1531 if (!mmap_write_trylock(mm)) 1532 return; 1533 1534 if (unlikely(khugepaged_test_exit(mm))) 1535 goto out; 1536 1537 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1538 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]); 1539 1540 out: 1541 mm_slot->nr_pte_mapped_thp = 0; 1542 mmap_write_unlock(mm); 1543 } 1544 1545 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1546 { 1547 struct vm_area_struct *vma; 1548 struct mm_struct *mm; 1549 unsigned long addr; 1550 pmd_t *pmd; 1551 1552 i_mmap_lock_write(mapping); 1553 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1554 /* 1555 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1556 * got written to. These VMAs are likely not worth investing 1557 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1558 * later. 1559 * 1560 * Not that vma->anon_vma check is racy: it can be set up after 1561 * the check but before we took mmap_lock by the fault path. 1562 * But page lock would prevent establishing any new ptes of the 1563 * page, so we are safe. 1564 * 1565 * An alternative would be drop the check, but check that page 1566 * table is clear before calling pmdp_collapse_flush() under 1567 * ptl. It has higher chance to recover THP for the VMA, but 1568 * has higher cost too. 1569 */ 1570 if (vma->anon_vma) 1571 continue; 1572 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1573 if (addr & ~HPAGE_PMD_MASK) 1574 continue; 1575 if (vma->vm_end < addr + HPAGE_PMD_SIZE) 1576 continue; 1577 mm = vma->vm_mm; 1578 pmd = mm_find_pmd(mm, addr); 1579 if (!pmd) 1580 continue; 1581 /* 1582 * We need exclusive mmap_lock to retract page table. 1583 * 1584 * We use trylock due to lock inversion: we need to acquire 1585 * mmap_lock while holding page lock. Fault path does it in 1586 * reverse order. Trylock is a way to avoid deadlock. 1587 */ 1588 if (mmap_write_trylock(mm)) { 1589 /* 1590 * When a vma is registered with uffd-wp, we can't 1591 * recycle the pmd pgtable because there can be pte 1592 * markers installed. Skip it only, so the rest mm/vma 1593 * can still have the same file mapped hugely, however 1594 * it'll always mapped in small page size for uffd-wp 1595 * registered ranges. 1596 */ 1597 if (!khugepaged_test_exit(mm) && !userfaultfd_wp(vma)) 1598 collapse_and_free_pmd(mm, vma, addr, pmd); 1599 mmap_write_unlock(mm); 1600 } else { 1601 /* Try again later */ 1602 khugepaged_add_pte_mapped_thp(mm, addr); 1603 } 1604 } 1605 i_mmap_unlock_write(mapping); 1606 } 1607 1608 /** 1609 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1610 * 1611 * @mm: process address space where collapse happens 1612 * @file: file that collapse on 1613 * @start: collapse start address 1614 * @hpage: new allocated huge page for collapse 1615 * @node: appointed node the new huge page allocate from 1616 * 1617 * Basic scheme is simple, details are more complex: 1618 * - allocate and lock a new huge page; 1619 * - scan page cache replacing old pages with the new one 1620 * + swap/gup in pages if necessary; 1621 * + fill in gaps; 1622 * + keep old pages around in case rollback is required; 1623 * - if replacing succeeds: 1624 * + copy data over; 1625 * + free old pages; 1626 * + unlock huge page; 1627 * - if replacing failed; 1628 * + put all pages back and unfreeze them; 1629 * + restore gaps in the page cache; 1630 * + unlock and free huge page; 1631 */ 1632 static void collapse_file(struct mm_struct *mm, 1633 struct file *file, pgoff_t start, 1634 struct page **hpage, int node) 1635 { 1636 struct address_space *mapping = file->f_mapping; 1637 gfp_t gfp; 1638 struct page *new_page; 1639 pgoff_t index, end = start + HPAGE_PMD_NR; 1640 LIST_HEAD(pagelist); 1641 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1642 int nr_none = 0, result = SCAN_SUCCEED; 1643 bool is_shmem = shmem_file(file); 1644 int nr; 1645 1646 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1647 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1648 1649 /* Only allocate from the target node */ 1650 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE; 1651 1652 new_page = khugepaged_alloc_page(hpage, gfp, node); 1653 if (!new_page) { 1654 result = SCAN_ALLOC_HUGE_PAGE_FAIL; 1655 goto out; 1656 } 1657 1658 if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) { 1659 result = SCAN_CGROUP_CHARGE_FAIL; 1660 goto out; 1661 } 1662 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC); 1663 1664 /* 1665 * Ensure we have slots for all the pages in the range. This is 1666 * almost certainly a no-op because most of the pages must be present 1667 */ 1668 do { 1669 xas_lock_irq(&xas); 1670 xas_create_range(&xas); 1671 if (!xas_error(&xas)) 1672 break; 1673 xas_unlock_irq(&xas); 1674 if (!xas_nomem(&xas, GFP_KERNEL)) { 1675 result = SCAN_FAIL; 1676 goto out; 1677 } 1678 } while (1); 1679 1680 __SetPageLocked(new_page); 1681 if (is_shmem) 1682 __SetPageSwapBacked(new_page); 1683 new_page->index = start; 1684 new_page->mapping = mapping; 1685 1686 /* 1687 * At this point the new_page is locked and not up-to-date. 1688 * It's safe to insert it into the page cache, because nobody would 1689 * be able to map it or use it in another way until we unlock it. 1690 */ 1691 1692 xas_set(&xas, start); 1693 for (index = start; index < end; index++) { 1694 struct page *page = xas_next(&xas); 1695 1696 VM_BUG_ON(index != xas.xa_index); 1697 if (is_shmem) { 1698 if (!page) { 1699 /* 1700 * Stop if extent has been truncated or 1701 * hole-punched, and is now completely 1702 * empty. 1703 */ 1704 if (index == start) { 1705 if (!xas_next_entry(&xas, end - 1)) { 1706 result = SCAN_TRUNCATED; 1707 goto xa_locked; 1708 } 1709 xas_set(&xas, index); 1710 } 1711 if (!shmem_charge(mapping->host, 1)) { 1712 result = SCAN_FAIL; 1713 goto xa_locked; 1714 } 1715 xas_store(&xas, new_page); 1716 nr_none++; 1717 continue; 1718 } 1719 1720 if (xa_is_value(page) || !PageUptodate(page)) { 1721 xas_unlock_irq(&xas); 1722 /* swap in or instantiate fallocated page */ 1723 if (shmem_getpage(mapping->host, index, &page, 1724 SGP_NOALLOC)) { 1725 result = SCAN_FAIL; 1726 goto xa_unlocked; 1727 } 1728 } else if (trylock_page(page)) { 1729 get_page(page); 1730 xas_unlock_irq(&xas); 1731 } else { 1732 result = SCAN_PAGE_LOCK; 1733 goto xa_locked; 1734 } 1735 } else { /* !is_shmem */ 1736 if (!page || xa_is_value(page)) { 1737 xas_unlock_irq(&xas); 1738 page_cache_sync_readahead(mapping, &file->f_ra, 1739 file, index, 1740 end - index); 1741 /* drain pagevecs to help isolate_lru_page() */ 1742 lru_add_drain(); 1743 page = find_lock_page(mapping, index); 1744 if (unlikely(page == NULL)) { 1745 result = SCAN_FAIL; 1746 goto xa_unlocked; 1747 } 1748 } else if (PageDirty(page)) { 1749 /* 1750 * khugepaged only works on read-only fd, 1751 * so this page is dirty because it hasn't 1752 * been flushed since first write. There 1753 * won't be new dirty pages. 1754 * 1755 * Trigger async flush here and hope the 1756 * writeback is done when khugepaged 1757 * revisits this page. 1758 * 1759 * This is a one-off situation. We are not 1760 * forcing writeback in loop. 1761 */ 1762 xas_unlock_irq(&xas); 1763 filemap_flush(mapping); 1764 result = SCAN_FAIL; 1765 goto xa_unlocked; 1766 } else if (PageWriteback(page)) { 1767 xas_unlock_irq(&xas); 1768 result = SCAN_FAIL; 1769 goto xa_unlocked; 1770 } else if (trylock_page(page)) { 1771 get_page(page); 1772 xas_unlock_irq(&xas); 1773 } else { 1774 result = SCAN_PAGE_LOCK; 1775 goto xa_locked; 1776 } 1777 } 1778 1779 /* 1780 * The page must be locked, so we can drop the i_pages lock 1781 * without racing with truncate. 1782 */ 1783 VM_BUG_ON_PAGE(!PageLocked(page), page); 1784 1785 /* make sure the page is up to date */ 1786 if (unlikely(!PageUptodate(page))) { 1787 result = SCAN_FAIL; 1788 goto out_unlock; 1789 } 1790 1791 /* 1792 * If file was truncated then extended, or hole-punched, before 1793 * we locked the first page, then a THP might be there already. 1794 */ 1795 if (PageTransCompound(page)) { 1796 result = SCAN_PAGE_COMPOUND; 1797 goto out_unlock; 1798 } 1799 1800 if (page_mapping(page) != mapping) { 1801 result = SCAN_TRUNCATED; 1802 goto out_unlock; 1803 } 1804 1805 if (!is_shmem && (PageDirty(page) || 1806 PageWriteback(page))) { 1807 /* 1808 * khugepaged only works on read-only fd, so this 1809 * page is dirty because it hasn't been flushed 1810 * since first write. 1811 */ 1812 result = SCAN_FAIL; 1813 goto out_unlock; 1814 } 1815 1816 if (isolate_lru_page(page)) { 1817 result = SCAN_DEL_PAGE_LRU; 1818 goto out_unlock; 1819 } 1820 1821 if (page_has_private(page) && 1822 !try_to_release_page(page, GFP_KERNEL)) { 1823 result = SCAN_PAGE_HAS_PRIVATE; 1824 putback_lru_page(page); 1825 goto out_unlock; 1826 } 1827 1828 if (page_mapped(page)) 1829 try_to_unmap(page_folio(page), 1830 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1831 1832 xas_lock_irq(&xas); 1833 xas_set(&xas, index); 1834 1835 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1836 1837 /* 1838 * The page is expected to have page_count() == 3: 1839 * - we hold a pin on it; 1840 * - one reference from page cache; 1841 * - one from isolate_lru_page; 1842 */ 1843 if (!page_ref_freeze(page, 3)) { 1844 result = SCAN_PAGE_COUNT; 1845 xas_unlock_irq(&xas); 1846 putback_lru_page(page); 1847 goto out_unlock; 1848 } 1849 1850 /* 1851 * Add the page to the list to be able to undo the collapse if 1852 * something go wrong. 1853 */ 1854 list_add_tail(&page->lru, &pagelist); 1855 1856 /* Finally, replace with the new page. */ 1857 xas_store(&xas, new_page); 1858 continue; 1859 out_unlock: 1860 unlock_page(page); 1861 put_page(page); 1862 goto xa_unlocked; 1863 } 1864 nr = thp_nr_pages(new_page); 1865 1866 if (is_shmem) 1867 __mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr); 1868 else { 1869 __mod_lruvec_page_state(new_page, NR_FILE_THPS, nr); 1870 filemap_nr_thps_inc(mapping); 1871 /* 1872 * Paired with smp_mb() in do_dentry_open() to ensure 1873 * i_writecount is up to date and the update to nr_thps is 1874 * visible. Ensures the page cache will be truncated if the 1875 * file is opened writable. 1876 */ 1877 smp_mb(); 1878 if (inode_is_open_for_write(mapping->host)) { 1879 result = SCAN_FAIL; 1880 __mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr); 1881 filemap_nr_thps_dec(mapping); 1882 goto xa_locked; 1883 } 1884 } 1885 1886 if (nr_none) { 1887 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none); 1888 if (is_shmem) 1889 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none); 1890 } 1891 1892 /* Join all the small entries into a single multi-index entry */ 1893 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 1894 xas_store(&xas, new_page); 1895 xa_locked: 1896 xas_unlock_irq(&xas); 1897 xa_unlocked: 1898 1899 /* 1900 * If collapse is successful, flush must be done now before copying. 1901 * If collapse is unsuccessful, does flush actually need to be done? 1902 * Do it anyway, to clear the state. 1903 */ 1904 try_to_unmap_flush(); 1905 1906 if (result == SCAN_SUCCEED) { 1907 struct page *page, *tmp; 1908 1909 /* 1910 * Replacing old pages with new one has succeeded, now we 1911 * need to copy the content and free the old pages. 1912 */ 1913 index = start; 1914 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 1915 while (index < page->index) { 1916 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1917 index++; 1918 } 1919 copy_highpage(new_page + (page->index % HPAGE_PMD_NR), 1920 page); 1921 list_del(&page->lru); 1922 page->mapping = NULL; 1923 page_ref_unfreeze(page, 1); 1924 ClearPageActive(page); 1925 ClearPageUnevictable(page); 1926 unlock_page(page); 1927 put_page(page); 1928 index++; 1929 } 1930 while (index < end) { 1931 clear_highpage(new_page + (index % HPAGE_PMD_NR)); 1932 index++; 1933 } 1934 1935 SetPageUptodate(new_page); 1936 page_ref_add(new_page, HPAGE_PMD_NR - 1); 1937 if (is_shmem) 1938 set_page_dirty(new_page); 1939 lru_cache_add(new_page); 1940 1941 /* 1942 * Remove pte page tables, so we can re-fault the page as huge. 1943 */ 1944 retract_page_tables(mapping, start); 1945 *hpage = NULL; 1946 1947 khugepaged_pages_collapsed++; 1948 } else { 1949 struct page *page; 1950 1951 /* Something went wrong: roll back page cache changes */ 1952 xas_lock_irq(&xas); 1953 mapping->nrpages -= nr_none; 1954 1955 if (is_shmem) 1956 shmem_uncharge(mapping->host, nr_none); 1957 1958 xas_set(&xas, start); 1959 xas_for_each(&xas, page, end - 1) { 1960 page = list_first_entry_or_null(&pagelist, 1961 struct page, lru); 1962 if (!page || xas.xa_index < page->index) { 1963 if (!nr_none) 1964 break; 1965 nr_none--; 1966 /* Put holes back where they were */ 1967 xas_store(&xas, NULL); 1968 continue; 1969 } 1970 1971 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 1972 1973 /* Unfreeze the page. */ 1974 list_del(&page->lru); 1975 page_ref_unfreeze(page, 2); 1976 xas_store(&xas, page); 1977 xas_pause(&xas); 1978 xas_unlock_irq(&xas); 1979 unlock_page(page); 1980 putback_lru_page(page); 1981 xas_lock_irq(&xas); 1982 } 1983 VM_BUG_ON(nr_none); 1984 xas_unlock_irq(&xas); 1985 1986 new_page->mapping = NULL; 1987 } 1988 1989 unlock_page(new_page); 1990 out: 1991 VM_BUG_ON(!list_empty(&pagelist)); 1992 if (!IS_ERR_OR_NULL(*hpage)) 1993 mem_cgroup_uncharge(page_folio(*hpage)); 1994 /* TODO: tracepoints */ 1995 } 1996 1997 static void khugepaged_scan_file(struct mm_struct *mm, 1998 struct file *file, pgoff_t start, struct page **hpage) 1999 { 2000 struct page *page = NULL; 2001 struct address_space *mapping = file->f_mapping; 2002 XA_STATE(xas, &mapping->i_pages, start); 2003 int present, swap; 2004 int node = NUMA_NO_NODE; 2005 int result = SCAN_SUCCEED; 2006 2007 present = 0; 2008 swap = 0; 2009 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load)); 2010 rcu_read_lock(); 2011 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2012 if (xas_retry(&xas, page)) 2013 continue; 2014 2015 if (xa_is_value(page)) { 2016 if (++swap > khugepaged_max_ptes_swap) { 2017 result = SCAN_EXCEED_SWAP_PTE; 2018 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2019 break; 2020 } 2021 continue; 2022 } 2023 2024 /* 2025 * XXX: khugepaged should compact smaller compound pages 2026 * into a PMD sized page 2027 */ 2028 if (PageTransCompound(page)) { 2029 result = SCAN_PAGE_COMPOUND; 2030 break; 2031 } 2032 2033 node = page_to_nid(page); 2034 if (khugepaged_scan_abort(node)) { 2035 result = SCAN_SCAN_ABORT; 2036 break; 2037 } 2038 khugepaged_node_load[node]++; 2039 2040 if (!PageLRU(page)) { 2041 result = SCAN_PAGE_LRU; 2042 break; 2043 } 2044 2045 if (page_count(page) != 2046 1 + page_mapcount(page) + page_has_private(page)) { 2047 result = SCAN_PAGE_COUNT; 2048 break; 2049 } 2050 2051 /* 2052 * We probably should check if the page is referenced here, but 2053 * nobody would transfer pte_young() to PageReferenced() for us. 2054 * And rmap walk here is just too costly... 2055 */ 2056 2057 present++; 2058 2059 if (need_resched()) { 2060 xas_pause(&xas); 2061 cond_resched_rcu(); 2062 } 2063 } 2064 rcu_read_unlock(); 2065 2066 if (result == SCAN_SUCCEED) { 2067 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2068 result = SCAN_EXCEED_NONE_PTE; 2069 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2070 } else { 2071 node = khugepaged_find_target_node(); 2072 collapse_file(mm, file, start, hpage, node); 2073 } 2074 } 2075 2076 /* TODO: tracepoints */ 2077 } 2078 #else 2079 static void khugepaged_scan_file(struct mm_struct *mm, 2080 struct file *file, pgoff_t start, struct page **hpage) 2081 { 2082 BUILD_BUG(); 2083 } 2084 2085 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot) 2086 { 2087 } 2088 #endif 2089 2090 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, 2091 struct page **hpage) 2092 __releases(&khugepaged_mm_lock) 2093 __acquires(&khugepaged_mm_lock) 2094 { 2095 struct mm_slot *mm_slot; 2096 struct mm_struct *mm; 2097 struct vm_area_struct *vma; 2098 int progress = 0; 2099 2100 VM_BUG_ON(!pages); 2101 lockdep_assert_held(&khugepaged_mm_lock); 2102 2103 if (khugepaged_scan.mm_slot) 2104 mm_slot = khugepaged_scan.mm_slot; 2105 else { 2106 mm_slot = list_entry(khugepaged_scan.mm_head.next, 2107 struct mm_slot, mm_node); 2108 khugepaged_scan.address = 0; 2109 khugepaged_scan.mm_slot = mm_slot; 2110 } 2111 spin_unlock(&khugepaged_mm_lock); 2112 khugepaged_collapse_pte_mapped_thps(mm_slot); 2113 2114 mm = mm_slot->mm; 2115 /* 2116 * Don't wait for semaphore (to avoid long wait times). Just move to 2117 * the next mm on the list. 2118 */ 2119 vma = NULL; 2120 if (unlikely(!mmap_read_trylock(mm))) 2121 goto breakouterloop_mmap_lock; 2122 if (likely(!khugepaged_test_exit(mm))) 2123 vma = find_vma(mm, khugepaged_scan.address); 2124 2125 progress++; 2126 for (; vma; vma = vma->vm_next) { 2127 unsigned long hstart, hend; 2128 2129 cond_resched(); 2130 if (unlikely(khugepaged_test_exit(mm))) { 2131 progress++; 2132 break; 2133 } 2134 if (!hugepage_vma_check(vma, vma->vm_flags)) { 2135 skip: 2136 progress++; 2137 continue; 2138 } 2139 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2140 hend = vma->vm_end & HPAGE_PMD_MASK; 2141 if (hstart >= hend) 2142 goto skip; 2143 if (khugepaged_scan.address > hend) 2144 goto skip; 2145 if (khugepaged_scan.address < hstart) 2146 khugepaged_scan.address = hstart; 2147 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2148 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma)) 2149 goto skip; 2150 2151 while (khugepaged_scan.address < hend) { 2152 int ret; 2153 cond_resched(); 2154 if (unlikely(khugepaged_test_exit(mm))) 2155 goto breakouterloop; 2156 2157 VM_BUG_ON(khugepaged_scan.address < hstart || 2158 khugepaged_scan.address + HPAGE_PMD_SIZE > 2159 hend); 2160 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2161 struct file *file = get_file(vma->vm_file); 2162 pgoff_t pgoff = linear_page_index(vma, 2163 khugepaged_scan.address); 2164 2165 mmap_read_unlock(mm); 2166 ret = 1; 2167 khugepaged_scan_file(mm, file, pgoff, hpage); 2168 fput(file); 2169 } else { 2170 ret = khugepaged_scan_pmd(mm, vma, 2171 khugepaged_scan.address, 2172 hpage); 2173 } 2174 /* move to next address */ 2175 khugepaged_scan.address += HPAGE_PMD_SIZE; 2176 progress += HPAGE_PMD_NR; 2177 if (ret) 2178 /* we released mmap_lock so break loop */ 2179 goto breakouterloop_mmap_lock; 2180 if (progress >= pages) 2181 goto breakouterloop; 2182 } 2183 } 2184 breakouterloop: 2185 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2186 breakouterloop_mmap_lock: 2187 2188 spin_lock(&khugepaged_mm_lock); 2189 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2190 /* 2191 * Release the current mm_slot if this mm is about to die, or 2192 * if we scanned all vmas of this mm. 2193 */ 2194 if (khugepaged_test_exit(mm) || !vma) { 2195 /* 2196 * Make sure that if mm_users is reaching zero while 2197 * khugepaged runs here, khugepaged_exit will find 2198 * mm_slot not pointing to the exiting mm. 2199 */ 2200 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) { 2201 khugepaged_scan.mm_slot = list_entry( 2202 mm_slot->mm_node.next, 2203 struct mm_slot, mm_node); 2204 khugepaged_scan.address = 0; 2205 } else { 2206 khugepaged_scan.mm_slot = NULL; 2207 khugepaged_full_scans++; 2208 } 2209 2210 collect_mm_slot(mm_slot); 2211 } 2212 2213 return progress; 2214 } 2215 2216 static int khugepaged_has_work(void) 2217 { 2218 return !list_empty(&khugepaged_scan.mm_head) && 2219 khugepaged_enabled(); 2220 } 2221 2222 static int khugepaged_wait_event(void) 2223 { 2224 return !list_empty(&khugepaged_scan.mm_head) || 2225 kthread_should_stop(); 2226 } 2227 2228 static void khugepaged_do_scan(void) 2229 { 2230 struct page *hpage = NULL; 2231 unsigned int progress = 0, pass_through_head = 0; 2232 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2233 bool wait = true; 2234 2235 lru_add_drain_all(); 2236 2237 while (progress < pages) { 2238 if (!khugepaged_prealloc_page(&hpage, &wait)) 2239 break; 2240 2241 cond_resched(); 2242 2243 if (unlikely(kthread_should_stop() || try_to_freeze())) 2244 break; 2245 2246 spin_lock(&khugepaged_mm_lock); 2247 if (!khugepaged_scan.mm_slot) 2248 pass_through_head++; 2249 if (khugepaged_has_work() && 2250 pass_through_head < 2) 2251 progress += khugepaged_scan_mm_slot(pages - progress, 2252 &hpage); 2253 else 2254 progress = pages; 2255 spin_unlock(&khugepaged_mm_lock); 2256 } 2257 2258 if (!IS_ERR_OR_NULL(hpage)) 2259 put_page(hpage); 2260 } 2261 2262 static bool khugepaged_should_wakeup(void) 2263 { 2264 return kthread_should_stop() || 2265 time_after_eq(jiffies, khugepaged_sleep_expire); 2266 } 2267 2268 static void khugepaged_wait_work(void) 2269 { 2270 if (khugepaged_has_work()) { 2271 const unsigned long scan_sleep_jiffies = 2272 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2273 2274 if (!scan_sleep_jiffies) 2275 return; 2276 2277 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2278 wait_event_freezable_timeout(khugepaged_wait, 2279 khugepaged_should_wakeup(), 2280 scan_sleep_jiffies); 2281 return; 2282 } 2283 2284 if (khugepaged_enabled()) 2285 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2286 } 2287 2288 static int khugepaged(void *none) 2289 { 2290 struct mm_slot *mm_slot; 2291 2292 set_freezable(); 2293 set_user_nice(current, MAX_NICE); 2294 2295 while (!kthread_should_stop()) { 2296 khugepaged_do_scan(); 2297 khugepaged_wait_work(); 2298 } 2299 2300 spin_lock(&khugepaged_mm_lock); 2301 mm_slot = khugepaged_scan.mm_slot; 2302 khugepaged_scan.mm_slot = NULL; 2303 if (mm_slot) 2304 collect_mm_slot(mm_slot); 2305 spin_unlock(&khugepaged_mm_lock); 2306 return 0; 2307 } 2308 2309 static void set_recommended_min_free_kbytes(void) 2310 { 2311 struct zone *zone; 2312 int nr_zones = 0; 2313 unsigned long recommended_min; 2314 2315 if (!khugepaged_enabled()) { 2316 calculate_min_free_kbytes(); 2317 goto update_wmarks; 2318 } 2319 2320 for_each_populated_zone(zone) { 2321 /* 2322 * We don't need to worry about fragmentation of 2323 * ZONE_MOVABLE since it only has movable pages. 2324 */ 2325 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2326 continue; 2327 2328 nr_zones++; 2329 } 2330 2331 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2332 recommended_min = pageblock_nr_pages * nr_zones * 2; 2333 2334 /* 2335 * Make sure that on average at least two pageblocks are almost free 2336 * of another type, one for a migratetype to fall back to and a 2337 * second to avoid subsequent fallbacks of other types There are 3 2338 * MIGRATE_TYPES we care about. 2339 */ 2340 recommended_min += pageblock_nr_pages * nr_zones * 2341 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2342 2343 /* don't ever allow to reserve more than 5% of the lowmem */ 2344 recommended_min = min(recommended_min, 2345 (unsigned long) nr_free_buffer_pages() / 20); 2346 recommended_min <<= (PAGE_SHIFT-10); 2347 2348 if (recommended_min > min_free_kbytes) { 2349 if (user_min_free_kbytes >= 0) 2350 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2351 min_free_kbytes, recommended_min); 2352 2353 min_free_kbytes = recommended_min; 2354 } 2355 2356 update_wmarks: 2357 setup_per_zone_wmarks(); 2358 } 2359 2360 int start_stop_khugepaged(void) 2361 { 2362 int err = 0; 2363 2364 mutex_lock(&khugepaged_mutex); 2365 if (khugepaged_enabled()) { 2366 if (!khugepaged_thread) 2367 khugepaged_thread = kthread_run(khugepaged, NULL, 2368 "khugepaged"); 2369 if (IS_ERR(khugepaged_thread)) { 2370 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2371 err = PTR_ERR(khugepaged_thread); 2372 khugepaged_thread = NULL; 2373 goto fail; 2374 } 2375 2376 if (!list_empty(&khugepaged_scan.mm_head)) 2377 wake_up_interruptible(&khugepaged_wait); 2378 } else if (khugepaged_thread) { 2379 kthread_stop(khugepaged_thread); 2380 khugepaged_thread = NULL; 2381 } 2382 set_recommended_min_free_kbytes(); 2383 fail: 2384 mutex_unlock(&khugepaged_mutex); 2385 return err; 2386 } 2387 2388 void khugepaged_min_free_kbytes_update(void) 2389 { 2390 mutex_lock(&khugepaged_mutex); 2391 if (khugepaged_enabled() && khugepaged_thread) 2392 set_recommended_min_free_kbytes(); 2393 mutex_unlock(&khugepaged_mutex); 2394 } 2395