1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/mmu_notifier.h> 8 #include <linux/rmap.h> 9 #include <linux/swap.h> 10 #include <linux/mm_inline.h> 11 #include <linux/kthread.h> 12 #include <linux/khugepaged.h> 13 #include <linux/freezer.h> 14 #include <linux/mman.h> 15 #include <linux/hashtable.h> 16 #include <linux/userfaultfd_k.h> 17 #include <linux/page_idle.h> 18 #include <linux/page_table_check.h> 19 #include <linux/rcupdate_wait.h> 20 #include <linux/leafops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/dax.h> 23 #include <linux/ksm.h> 24 #include <linux/pgalloc.h> 25 26 #include <asm/tlb.h> 27 #include "internal.h" 28 #include "mm_slot.h" 29 30 enum scan_result { 31 SCAN_FAIL, 32 SCAN_SUCCEED, 33 SCAN_NO_PTE_TABLE, 34 SCAN_PMD_MAPPED, 35 SCAN_EXCEED_NONE_PTE, 36 SCAN_EXCEED_SWAP_PTE, 37 SCAN_EXCEED_SHARED_PTE, 38 SCAN_PTE_NON_PRESENT, 39 SCAN_PTE_UFFD_WP, 40 SCAN_PTE_MAPPED_HUGEPAGE, 41 SCAN_LACK_REFERENCED_PAGE, 42 SCAN_PAGE_NULL, 43 SCAN_SCAN_ABORT, 44 SCAN_PAGE_COUNT, 45 SCAN_PAGE_LRU, 46 SCAN_PAGE_LOCK, 47 SCAN_PAGE_ANON, 48 SCAN_PAGE_COMPOUND, 49 SCAN_ANY_PROCESS, 50 SCAN_VMA_NULL, 51 SCAN_VMA_CHECK, 52 SCAN_ADDRESS_RANGE, 53 SCAN_DEL_PAGE_LRU, 54 SCAN_ALLOC_HUGE_PAGE_FAIL, 55 SCAN_CGROUP_CHARGE_FAIL, 56 SCAN_TRUNCATED, 57 SCAN_PAGE_HAS_PRIVATE, 58 SCAN_STORE_FAILED, 59 SCAN_COPY_MC, 60 SCAN_PAGE_FILLED, 61 }; 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/huge_memory.h> 65 66 static struct task_struct *khugepaged_thread __read_mostly; 67 static DEFINE_MUTEX(khugepaged_mutex); 68 69 /* default scan 8*HPAGE_PMD_NR ptes (or vmas) every 10 second */ 70 static unsigned int khugepaged_pages_to_scan __read_mostly; 71 static unsigned int khugepaged_pages_collapsed; 72 static unsigned int khugepaged_full_scans; 73 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 74 /* during fragmentation poll the hugepage allocator once every minute */ 75 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 76 static unsigned long khugepaged_sleep_expire; 77 static DEFINE_SPINLOCK(khugepaged_mm_lock); 78 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 79 /* 80 * default collapse hugepages if there is at least one pte mapped like 81 * it would have happened if the vma was large enough during page 82 * fault. 83 * 84 * Note that these are only respected if collapse was initiated by khugepaged. 85 */ 86 unsigned int khugepaged_max_ptes_none __read_mostly; 87 static unsigned int khugepaged_max_ptes_swap __read_mostly; 88 static unsigned int khugepaged_max_ptes_shared __read_mostly; 89 90 #define MM_SLOTS_HASH_BITS 10 91 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 92 93 static struct kmem_cache *mm_slot_cache __ro_after_init; 94 95 struct collapse_control { 96 bool is_khugepaged; 97 98 /* Num pages scanned per node */ 99 u32 node_load[MAX_NUMNODES]; 100 101 /* nodemask for allocation fallback */ 102 nodemask_t alloc_nmask; 103 }; 104 105 /** 106 * struct khugepaged_scan - cursor for scanning 107 * @mm_head: the head of the mm list to scan 108 * @mm_slot: the current mm_slot we are scanning 109 * @address: the next address inside that to be scanned 110 * 111 * There is only the one khugepaged_scan instance of this cursor structure. 112 */ 113 struct khugepaged_scan { 114 struct list_head mm_head; 115 struct mm_slot *mm_slot; 116 unsigned long address; 117 }; 118 119 static struct khugepaged_scan khugepaged_scan = { 120 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 121 }; 122 123 #ifdef CONFIG_SYSFS 124 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 125 struct kobj_attribute *attr, 126 char *buf) 127 { 128 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 129 } 130 131 static ssize_t __sleep_millisecs_store(const char *buf, size_t count, 132 unsigned int *millisecs) 133 { 134 unsigned int msecs; 135 int err; 136 137 err = kstrtouint(buf, 10, &msecs); 138 if (err) 139 return -EINVAL; 140 141 *millisecs = msecs; 142 khugepaged_sleep_expire = 0; 143 wake_up_interruptible(&khugepaged_wait); 144 145 return count; 146 } 147 148 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 149 struct kobj_attribute *attr, 150 const char *buf, size_t count) 151 { 152 return __sleep_millisecs_store(buf, count, &khugepaged_scan_sleep_millisecs); 153 } 154 static struct kobj_attribute scan_sleep_millisecs_attr = 155 __ATTR_RW(scan_sleep_millisecs); 156 157 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 158 struct kobj_attribute *attr, 159 char *buf) 160 { 161 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 162 } 163 164 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 165 struct kobj_attribute *attr, 166 const char *buf, size_t count) 167 { 168 return __sleep_millisecs_store(buf, count, &khugepaged_alloc_sleep_millisecs); 169 } 170 static struct kobj_attribute alloc_sleep_millisecs_attr = 171 __ATTR_RW(alloc_sleep_millisecs); 172 173 static ssize_t pages_to_scan_show(struct kobject *kobj, 174 struct kobj_attribute *attr, 175 char *buf) 176 { 177 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 178 } 179 static ssize_t pages_to_scan_store(struct kobject *kobj, 180 struct kobj_attribute *attr, 181 const char *buf, size_t count) 182 { 183 unsigned int pages; 184 int err; 185 186 err = kstrtouint(buf, 10, &pages); 187 if (err || !pages) 188 return -EINVAL; 189 190 khugepaged_pages_to_scan = pages; 191 192 return count; 193 } 194 static struct kobj_attribute pages_to_scan_attr = 195 __ATTR_RW(pages_to_scan); 196 197 static ssize_t pages_collapsed_show(struct kobject *kobj, 198 struct kobj_attribute *attr, 199 char *buf) 200 { 201 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 202 } 203 static struct kobj_attribute pages_collapsed_attr = 204 __ATTR_RO(pages_collapsed); 205 206 static ssize_t full_scans_show(struct kobject *kobj, 207 struct kobj_attribute *attr, 208 char *buf) 209 { 210 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 211 } 212 static struct kobj_attribute full_scans_attr = 213 __ATTR_RO(full_scans); 214 215 static ssize_t defrag_show(struct kobject *kobj, 216 struct kobj_attribute *attr, char *buf) 217 { 218 return single_hugepage_flag_show(kobj, attr, buf, 219 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 220 } 221 static ssize_t defrag_store(struct kobject *kobj, 222 struct kobj_attribute *attr, 223 const char *buf, size_t count) 224 { 225 return single_hugepage_flag_store(kobj, attr, buf, count, 226 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 227 } 228 static struct kobj_attribute khugepaged_defrag_attr = 229 __ATTR_RW(defrag); 230 231 /* 232 * max_ptes_none controls if khugepaged should collapse hugepages over 233 * any unmapped ptes in turn potentially increasing the memory 234 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 235 * reduce the available free memory in the system as it 236 * runs. Increasing max_ptes_none will instead potentially reduce the 237 * free memory in the system during the khugepaged scan. 238 */ 239 static ssize_t max_ptes_none_show(struct kobject *kobj, 240 struct kobj_attribute *attr, 241 char *buf) 242 { 243 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 244 } 245 static ssize_t max_ptes_none_store(struct kobject *kobj, 246 struct kobj_attribute *attr, 247 const char *buf, size_t count) 248 { 249 int err; 250 unsigned long max_ptes_none; 251 252 err = kstrtoul(buf, 10, &max_ptes_none); 253 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 254 return -EINVAL; 255 256 khugepaged_max_ptes_none = max_ptes_none; 257 258 return count; 259 } 260 static struct kobj_attribute khugepaged_max_ptes_none_attr = 261 __ATTR_RW(max_ptes_none); 262 263 static ssize_t max_ptes_swap_show(struct kobject *kobj, 264 struct kobj_attribute *attr, 265 char *buf) 266 { 267 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 268 } 269 270 static ssize_t max_ptes_swap_store(struct kobject *kobj, 271 struct kobj_attribute *attr, 272 const char *buf, size_t count) 273 { 274 int err; 275 unsigned long max_ptes_swap; 276 277 err = kstrtoul(buf, 10, &max_ptes_swap); 278 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 279 return -EINVAL; 280 281 khugepaged_max_ptes_swap = max_ptes_swap; 282 283 return count; 284 } 285 286 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 287 __ATTR_RW(max_ptes_swap); 288 289 static ssize_t max_ptes_shared_show(struct kobject *kobj, 290 struct kobj_attribute *attr, 291 char *buf) 292 { 293 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 294 } 295 296 static ssize_t max_ptes_shared_store(struct kobject *kobj, 297 struct kobj_attribute *attr, 298 const char *buf, size_t count) 299 { 300 int err; 301 unsigned long max_ptes_shared; 302 303 err = kstrtoul(buf, 10, &max_ptes_shared); 304 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 305 return -EINVAL; 306 307 khugepaged_max_ptes_shared = max_ptes_shared; 308 309 return count; 310 } 311 312 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 313 __ATTR_RW(max_ptes_shared); 314 315 static struct attribute *khugepaged_attr[] = { 316 &khugepaged_defrag_attr.attr, 317 &khugepaged_max_ptes_none_attr.attr, 318 &khugepaged_max_ptes_swap_attr.attr, 319 &khugepaged_max_ptes_shared_attr.attr, 320 &pages_to_scan_attr.attr, 321 &pages_collapsed_attr.attr, 322 &full_scans_attr.attr, 323 &scan_sleep_millisecs_attr.attr, 324 &alloc_sleep_millisecs_attr.attr, 325 NULL, 326 }; 327 328 struct attribute_group khugepaged_attr_group = { 329 .attrs = khugepaged_attr, 330 .name = "khugepaged", 331 }; 332 #endif /* CONFIG_SYSFS */ 333 334 static bool pte_none_or_zero(pte_t pte) 335 { 336 if (pte_none(pte)) 337 return true; 338 return pte_present(pte) && is_zero_pfn(pte_pfn(pte)); 339 } 340 341 int hugepage_madvise(struct vm_area_struct *vma, 342 vm_flags_t *vm_flags, int advice) 343 { 344 switch (advice) { 345 case MADV_HUGEPAGE: 346 #ifdef CONFIG_S390 347 /* 348 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 349 * can't handle this properly after s390_enable_sie, so we simply 350 * ignore the madvise to prevent qemu from causing a SIGSEGV. 351 */ 352 if (mm_has_pgste(vma->vm_mm)) 353 return 0; 354 #endif 355 *vm_flags &= ~VM_NOHUGEPAGE; 356 *vm_flags |= VM_HUGEPAGE; 357 /* 358 * If the vma become good for khugepaged to scan, 359 * register it here without waiting a page fault that 360 * may not happen any time soon. 361 */ 362 khugepaged_enter_vma(vma, *vm_flags); 363 break; 364 case MADV_NOHUGEPAGE: 365 *vm_flags &= ~VM_HUGEPAGE; 366 *vm_flags |= VM_NOHUGEPAGE; 367 /* 368 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 369 * this vma even if we leave the mm registered in khugepaged if 370 * it got registered before VM_NOHUGEPAGE was set. 371 */ 372 break; 373 } 374 375 return 0; 376 } 377 378 int __init khugepaged_init(void) 379 { 380 mm_slot_cache = KMEM_CACHE(mm_slot, 0); 381 if (!mm_slot_cache) 382 return -ENOMEM; 383 384 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 385 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 386 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 387 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 388 389 return 0; 390 } 391 392 void __init khugepaged_destroy(void) 393 { 394 kmem_cache_destroy(mm_slot_cache); 395 } 396 397 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 398 { 399 return atomic_read(&mm->mm_users) == 0; 400 } 401 402 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 403 { 404 return hpage_collapse_test_exit(mm) || 405 mm_flags_test(MMF_DISABLE_THP_COMPLETELY, mm); 406 } 407 408 static bool hugepage_pmd_enabled(void) 409 { 410 /* 411 * We cover the anon, shmem and the file-backed case here; file-backed 412 * hugepages, when configured in, are determined by the global control. 413 * Anon pmd-sized hugepages are determined by the pmd-size control. 414 * Shmem pmd-sized hugepages are also determined by its pmd-size control, 415 * except when the global shmem_huge is set to SHMEM_HUGE_DENY. 416 */ 417 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 418 hugepage_global_enabled()) 419 return true; 420 if (test_bit(PMD_ORDER, &huge_anon_orders_always)) 421 return true; 422 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) 423 return true; 424 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && 425 hugepage_global_enabled()) 426 return true; 427 if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled()) 428 return true; 429 return false; 430 } 431 432 void __khugepaged_enter(struct mm_struct *mm) 433 { 434 struct mm_slot *slot; 435 int wakeup; 436 437 /* __khugepaged_exit() must not run from under us */ 438 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 439 if (unlikely(mm_flags_test_and_set(MMF_VM_HUGEPAGE, mm))) 440 return; 441 442 slot = mm_slot_alloc(mm_slot_cache); 443 if (!slot) 444 return; 445 446 spin_lock(&khugepaged_mm_lock); 447 mm_slot_insert(mm_slots_hash, mm, slot); 448 /* 449 * Insert just behind the scanning cursor, to let the area settle 450 * down a little. 451 */ 452 wakeup = list_empty(&khugepaged_scan.mm_head); 453 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 454 spin_unlock(&khugepaged_mm_lock); 455 456 mmgrab(mm); 457 if (wakeup) 458 wake_up_interruptible(&khugepaged_wait); 459 } 460 461 void khugepaged_enter_vma(struct vm_area_struct *vma, 462 vm_flags_t vm_flags) 463 { 464 if (!mm_flags_test(MMF_VM_HUGEPAGE, vma->vm_mm) && 465 hugepage_pmd_enabled()) { 466 if (thp_vma_allowable_order(vma, vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) 467 __khugepaged_enter(vma->vm_mm); 468 } 469 } 470 471 void __khugepaged_exit(struct mm_struct *mm) 472 { 473 struct mm_slot *slot; 474 int free = 0; 475 476 spin_lock(&khugepaged_mm_lock); 477 slot = mm_slot_lookup(mm_slots_hash, mm); 478 if (slot && khugepaged_scan.mm_slot != slot) { 479 hash_del(&slot->hash); 480 list_del(&slot->mm_node); 481 free = 1; 482 } 483 spin_unlock(&khugepaged_mm_lock); 484 485 if (free) { 486 mm_flags_clear(MMF_VM_HUGEPAGE, mm); 487 mm_slot_free(mm_slot_cache, slot); 488 mmdrop(mm); 489 } else if (slot) { 490 /* 491 * This is required to serialize against 492 * hpage_collapse_test_exit() (which is guaranteed to run 493 * under mmap sem read mode). Stop here (after we return all 494 * pagetables will be destroyed) until khugepaged has finished 495 * working on the pagetables under the mmap_lock. 496 */ 497 mmap_write_lock(mm); 498 mmap_write_unlock(mm); 499 } 500 } 501 502 static void release_pte_folio(struct folio *folio) 503 { 504 node_stat_mod_folio(folio, 505 NR_ISOLATED_ANON + folio_is_file_lru(folio), 506 -folio_nr_pages(folio)); 507 folio_unlock(folio); 508 folio_putback_lru(folio); 509 } 510 511 static void release_pte_pages(pte_t *pte, pte_t *_pte, 512 struct list_head *compound_pagelist) 513 { 514 struct folio *folio, *tmp; 515 516 while (--_pte >= pte) { 517 pte_t pteval = ptep_get(_pte); 518 unsigned long pfn; 519 520 if (pte_none(pteval)) 521 continue; 522 VM_WARN_ON_ONCE(!pte_present(pteval)); 523 pfn = pte_pfn(pteval); 524 if (is_zero_pfn(pfn)) 525 continue; 526 folio = pfn_folio(pfn); 527 if (folio_test_large(folio)) 528 continue; 529 release_pte_folio(folio); 530 } 531 532 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 533 list_del(&folio->lru); 534 release_pte_folio(folio); 535 } 536 } 537 538 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 539 unsigned long start_addr, 540 pte_t *pte, 541 struct collapse_control *cc, 542 struct list_head *compound_pagelist) 543 { 544 struct page *page = NULL; 545 struct folio *folio = NULL; 546 unsigned long addr = start_addr; 547 pte_t *_pte; 548 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 549 550 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 551 _pte++, addr += PAGE_SIZE) { 552 pte_t pteval = ptep_get(_pte); 553 if (pte_none_or_zero(pteval)) { 554 ++none_or_zero; 555 if (!userfaultfd_armed(vma) && 556 (!cc->is_khugepaged || 557 none_or_zero <= khugepaged_max_ptes_none)) { 558 continue; 559 } else { 560 result = SCAN_EXCEED_NONE_PTE; 561 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 562 goto out; 563 } 564 } 565 if (!pte_present(pteval)) { 566 result = SCAN_PTE_NON_PRESENT; 567 goto out; 568 } 569 if (pte_uffd_wp(pteval)) { 570 result = SCAN_PTE_UFFD_WP; 571 goto out; 572 } 573 page = vm_normal_page(vma, addr, pteval); 574 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 575 result = SCAN_PAGE_NULL; 576 goto out; 577 } 578 579 folio = page_folio(page); 580 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 581 582 /* See hpage_collapse_scan_pmd(). */ 583 if (folio_maybe_mapped_shared(folio)) { 584 ++shared; 585 if (cc->is_khugepaged && 586 shared > khugepaged_max_ptes_shared) { 587 result = SCAN_EXCEED_SHARED_PTE; 588 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 589 goto out; 590 } 591 } 592 593 if (folio_test_large(folio)) { 594 struct folio *f; 595 596 /* 597 * Check if we have dealt with the compound page 598 * already 599 */ 600 list_for_each_entry(f, compound_pagelist, lru) { 601 if (folio == f) 602 goto next; 603 } 604 } 605 606 /* 607 * We can do it before folio_isolate_lru because the 608 * folio can't be freed from under us. NOTE: PG_lock 609 * is needed to serialize against split_huge_page 610 * when invoked from the VM. 611 */ 612 if (!folio_trylock(folio)) { 613 result = SCAN_PAGE_LOCK; 614 goto out; 615 } 616 617 /* 618 * Check if the page has any GUP (or other external) pins. 619 * 620 * The page table that maps the page has been already unlinked 621 * from the page table tree and this process cannot get 622 * an additional pin on the page. 623 * 624 * New pins can come later if the page is shared across fork, 625 * but not from this process. The other process cannot write to 626 * the page, only trigger CoW. 627 */ 628 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 629 folio_unlock(folio); 630 result = SCAN_PAGE_COUNT; 631 goto out; 632 } 633 634 /* 635 * Isolate the page to avoid collapsing an hugepage 636 * currently in use by the VM. 637 */ 638 if (!folio_isolate_lru(folio)) { 639 folio_unlock(folio); 640 result = SCAN_DEL_PAGE_LRU; 641 goto out; 642 } 643 node_stat_mod_folio(folio, 644 NR_ISOLATED_ANON + folio_is_file_lru(folio), 645 folio_nr_pages(folio)); 646 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 647 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 648 649 if (folio_test_large(folio)) 650 list_add_tail(&folio->lru, compound_pagelist); 651 next: 652 /* 653 * If collapse was initiated by khugepaged, check that there is 654 * enough young pte to justify collapsing the page 655 */ 656 if (cc->is_khugepaged && 657 (pte_young(pteval) || folio_test_young(folio) || 658 folio_test_referenced(folio) || 659 mmu_notifier_test_young(vma->vm_mm, addr))) 660 referenced++; 661 } 662 663 if (unlikely(cc->is_khugepaged && !referenced)) { 664 result = SCAN_LACK_REFERENCED_PAGE; 665 } else { 666 result = SCAN_SUCCEED; 667 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 668 referenced, result); 669 return result; 670 } 671 out: 672 release_pte_pages(pte, _pte, compound_pagelist); 673 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 674 referenced, result); 675 return result; 676 } 677 678 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 679 struct vm_area_struct *vma, 680 unsigned long address, 681 spinlock_t *ptl, 682 struct list_head *compound_pagelist) 683 { 684 unsigned long end = address + HPAGE_PMD_SIZE; 685 struct folio *src, *tmp; 686 pte_t pteval; 687 pte_t *_pte; 688 unsigned int nr_ptes; 689 690 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte += nr_ptes, 691 address += nr_ptes * PAGE_SIZE) { 692 nr_ptes = 1; 693 pteval = ptep_get(_pte); 694 if (pte_none_or_zero(pteval)) { 695 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 696 if (pte_none(pteval)) 697 continue; 698 /* 699 * ptl mostly unnecessary. 700 */ 701 spin_lock(ptl); 702 ptep_clear(vma->vm_mm, address, _pte); 703 spin_unlock(ptl); 704 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 705 } else { 706 struct page *src_page = pte_page(pteval); 707 708 src = page_folio(src_page); 709 710 if (folio_test_large(src)) { 711 unsigned int max_nr_ptes = (end - address) >> PAGE_SHIFT; 712 713 nr_ptes = folio_pte_batch(src, _pte, pteval, max_nr_ptes); 714 } else { 715 release_pte_folio(src); 716 } 717 718 /* 719 * ptl mostly unnecessary, but preempt has to 720 * be disabled to update the per-cpu stats 721 * inside folio_remove_rmap_pte(). 722 */ 723 spin_lock(ptl); 724 clear_ptes(vma->vm_mm, address, _pte, nr_ptes); 725 folio_remove_rmap_ptes(src, src_page, nr_ptes, vma); 726 spin_unlock(ptl); 727 free_swap_cache(src); 728 folio_put_refs(src, nr_ptes); 729 } 730 } 731 732 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 733 list_del(&src->lru); 734 node_stat_sub_folio(src, NR_ISOLATED_ANON + 735 folio_is_file_lru(src)); 736 folio_unlock(src); 737 free_swap_cache(src); 738 folio_putback_lru(src); 739 } 740 } 741 742 static void __collapse_huge_page_copy_failed(pte_t *pte, 743 pmd_t *pmd, 744 pmd_t orig_pmd, 745 struct vm_area_struct *vma, 746 struct list_head *compound_pagelist) 747 { 748 spinlock_t *pmd_ptl; 749 750 /* 751 * Re-establish the PMD to point to the original page table 752 * entry. Restoring PMD needs to be done prior to releasing 753 * pages. Since pages are still isolated and locked here, 754 * acquiring anon_vma_lock_write is unnecessary. 755 */ 756 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 757 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 758 spin_unlock(pmd_ptl); 759 /* 760 * Release both raw and compound pages isolated 761 * in __collapse_huge_page_isolate. 762 */ 763 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 764 } 765 766 /* 767 * __collapse_huge_page_copy - attempts to copy memory contents from raw 768 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 769 * otherwise restores the original page table and releases isolated raw pages. 770 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 771 * 772 * @pte: starting of the PTEs to copy from 773 * @folio: the new hugepage to copy contents to 774 * @pmd: pointer to the new hugepage's PMD 775 * @orig_pmd: the original raw pages' PMD 776 * @vma: the original raw pages' virtual memory area 777 * @address: starting address to copy 778 * @ptl: lock on raw pages' PTEs 779 * @compound_pagelist: list that stores compound pages 780 */ 781 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 782 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 783 unsigned long address, spinlock_t *ptl, 784 struct list_head *compound_pagelist) 785 { 786 unsigned int i; 787 int result = SCAN_SUCCEED; 788 789 /* 790 * Copying pages' contents is subject to memory poison at any iteration. 791 */ 792 for (i = 0; i < HPAGE_PMD_NR; i++) { 793 pte_t pteval = ptep_get(pte + i); 794 struct page *page = folio_page(folio, i); 795 unsigned long src_addr = address + i * PAGE_SIZE; 796 struct page *src_page; 797 798 if (pte_none_or_zero(pteval)) { 799 clear_user_highpage(page, src_addr); 800 continue; 801 } 802 src_page = pte_page(pteval); 803 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 804 result = SCAN_COPY_MC; 805 break; 806 } 807 } 808 809 if (likely(result == SCAN_SUCCEED)) 810 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 811 compound_pagelist); 812 else 813 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 814 compound_pagelist); 815 816 return result; 817 } 818 819 static void khugepaged_alloc_sleep(void) 820 { 821 DEFINE_WAIT(wait); 822 823 add_wait_queue(&khugepaged_wait, &wait); 824 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 825 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 826 remove_wait_queue(&khugepaged_wait, &wait); 827 } 828 829 struct collapse_control khugepaged_collapse_control = { 830 .is_khugepaged = true, 831 }; 832 833 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 834 { 835 int i; 836 837 /* 838 * If node_reclaim_mode is disabled, then no extra effort is made to 839 * allocate memory locally. 840 */ 841 if (!node_reclaim_enabled()) 842 return false; 843 844 /* If there is a count for this node already, it must be acceptable */ 845 if (cc->node_load[nid]) 846 return false; 847 848 for (i = 0; i < MAX_NUMNODES; i++) { 849 if (!cc->node_load[i]) 850 continue; 851 if (node_distance(nid, i) > node_reclaim_distance) 852 return true; 853 } 854 return false; 855 } 856 857 #define khugepaged_defrag() \ 858 (transparent_hugepage_flags & \ 859 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 860 861 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 862 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 863 { 864 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 865 } 866 867 #ifdef CONFIG_NUMA 868 static int hpage_collapse_find_target_node(struct collapse_control *cc) 869 { 870 int nid, target_node = 0, max_value = 0; 871 872 /* find first node with max normal pages hit */ 873 for (nid = 0; nid < MAX_NUMNODES; nid++) 874 if (cc->node_load[nid] > max_value) { 875 max_value = cc->node_load[nid]; 876 target_node = nid; 877 } 878 879 for_each_online_node(nid) { 880 if (max_value == cc->node_load[nid]) 881 node_set(nid, cc->alloc_nmask); 882 } 883 884 return target_node; 885 } 886 #else 887 static int hpage_collapse_find_target_node(struct collapse_control *cc) 888 { 889 return 0; 890 } 891 #endif 892 893 /* 894 * If mmap_lock temporarily dropped, revalidate vma 895 * before taking mmap_lock. 896 * Returns enum scan_result value. 897 */ 898 899 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 900 bool expect_anon, 901 struct vm_area_struct **vmap, 902 struct collapse_control *cc) 903 { 904 struct vm_area_struct *vma; 905 enum tva_type type = cc->is_khugepaged ? TVA_KHUGEPAGED : 906 TVA_FORCED_COLLAPSE; 907 908 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 909 return SCAN_ANY_PROCESS; 910 911 *vmap = vma = find_vma(mm, address); 912 if (!vma) 913 return SCAN_VMA_NULL; 914 915 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 916 return SCAN_ADDRESS_RANGE; 917 if (!thp_vma_allowable_order(vma, vma->vm_flags, type, PMD_ORDER)) 918 return SCAN_VMA_CHECK; 919 /* 920 * Anon VMA expected, the address may be unmapped then 921 * remapped to file after khugepaged reaquired the mmap_lock. 922 * 923 * thp_vma_allowable_order may return true for qualified file 924 * vmas. 925 */ 926 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 927 return SCAN_PAGE_ANON; 928 return SCAN_SUCCEED; 929 } 930 931 static inline int check_pmd_state(pmd_t *pmd) 932 { 933 pmd_t pmde = pmdp_get_lockless(pmd); 934 935 if (pmd_none(pmde)) 936 return SCAN_NO_PTE_TABLE; 937 938 /* 939 * The folio may be under migration when khugepaged is trying to 940 * collapse it. Migration success or failure will eventually end 941 * up with a present PMD mapping a folio again. 942 */ 943 if (pmd_is_migration_entry(pmde)) 944 return SCAN_PMD_MAPPED; 945 if (!pmd_present(pmde)) 946 return SCAN_NO_PTE_TABLE; 947 if (pmd_trans_huge(pmde)) 948 return SCAN_PMD_MAPPED; 949 if (pmd_bad(pmde)) 950 return SCAN_NO_PTE_TABLE; 951 return SCAN_SUCCEED; 952 } 953 954 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 955 unsigned long address, 956 pmd_t **pmd) 957 { 958 *pmd = mm_find_pmd(mm, address); 959 if (!*pmd) 960 return SCAN_NO_PTE_TABLE; 961 962 return check_pmd_state(*pmd); 963 } 964 965 static int check_pmd_still_valid(struct mm_struct *mm, 966 unsigned long address, 967 pmd_t *pmd) 968 { 969 pmd_t *new_pmd; 970 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 971 972 if (result != SCAN_SUCCEED) 973 return result; 974 if (new_pmd != pmd) 975 return SCAN_FAIL; 976 return SCAN_SUCCEED; 977 } 978 979 /* 980 * Bring missing pages in from swap, to complete THP collapse. 981 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 982 * 983 * Called and returns without pte mapped or spinlocks held. 984 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 985 */ 986 static int __collapse_huge_page_swapin(struct mm_struct *mm, 987 struct vm_area_struct *vma, 988 unsigned long start_addr, pmd_t *pmd, 989 int referenced) 990 { 991 int swapped_in = 0; 992 vm_fault_t ret = 0; 993 unsigned long addr, end = start_addr + (HPAGE_PMD_NR * PAGE_SIZE); 994 int result; 995 pte_t *pte = NULL; 996 spinlock_t *ptl; 997 998 for (addr = start_addr; addr < end; addr += PAGE_SIZE) { 999 struct vm_fault vmf = { 1000 .vma = vma, 1001 .address = addr, 1002 .pgoff = linear_page_index(vma, addr), 1003 .flags = FAULT_FLAG_ALLOW_RETRY, 1004 .pmd = pmd, 1005 }; 1006 1007 if (!pte++) { 1008 /* 1009 * Here the ptl is only used to check pte_same() in 1010 * do_swap_page(), so readonly version is enough. 1011 */ 1012 pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl); 1013 if (!pte) { 1014 mmap_read_unlock(mm); 1015 result = SCAN_NO_PTE_TABLE; 1016 goto out; 1017 } 1018 } 1019 1020 vmf.orig_pte = ptep_get_lockless(pte); 1021 if (pte_none(vmf.orig_pte) || 1022 pte_present(vmf.orig_pte)) 1023 continue; 1024 1025 vmf.pte = pte; 1026 vmf.ptl = ptl; 1027 ret = do_swap_page(&vmf); 1028 /* Which unmaps pte (after perhaps re-checking the entry) */ 1029 pte = NULL; 1030 1031 /* 1032 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1033 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1034 * we do not retry here and swap entry will remain in pagetable 1035 * resulting in later failure. 1036 */ 1037 if (ret & VM_FAULT_RETRY) { 1038 /* Likely, but not guaranteed, that page lock failed */ 1039 result = SCAN_PAGE_LOCK; 1040 goto out; 1041 } 1042 if (ret & VM_FAULT_ERROR) { 1043 mmap_read_unlock(mm); 1044 result = SCAN_FAIL; 1045 goto out; 1046 } 1047 swapped_in++; 1048 } 1049 1050 if (pte) 1051 pte_unmap(pte); 1052 1053 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1054 if (swapped_in) 1055 lru_add_drain(); 1056 1057 result = SCAN_SUCCEED; 1058 out: 1059 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1060 return result; 1061 } 1062 1063 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1064 struct collapse_control *cc) 1065 { 1066 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1067 GFP_TRANSHUGE); 1068 int node = hpage_collapse_find_target_node(cc); 1069 struct folio *folio; 1070 1071 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1072 if (!folio) { 1073 *foliop = NULL; 1074 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1075 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1076 } 1077 1078 count_vm_event(THP_COLLAPSE_ALLOC); 1079 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1080 folio_put(folio); 1081 *foliop = NULL; 1082 return SCAN_CGROUP_CHARGE_FAIL; 1083 } 1084 1085 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1086 1087 *foliop = folio; 1088 return SCAN_SUCCEED; 1089 } 1090 1091 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1092 int referenced, int unmapped, 1093 struct collapse_control *cc) 1094 { 1095 LIST_HEAD(compound_pagelist); 1096 pmd_t *pmd, _pmd; 1097 pte_t *pte; 1098 pgtable_t pgtable; 1099 struct folio *folio; 1100 spinlock_t *pmd_ptl, *pte_ptl; 1101 int result = SCAN_FAIL; 1102 struct vm_area_struct *vma; 1103 struct mmu_notifier_range range; 1104 1105 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1106 1107 /* 1108 * Before allocating the hugepage, release the mmap_lock read lock. 1109 * The allocation can take potentially a long time if it involves 1110 * sync compaction, and we do not need to hold the mmap_lock during 1111 * that. We will recheck the vma after taking it again in write mode. 1112 */ 1113 mmap_read_unlock(mm); 1114 1115 result = alloc_charge_folio(&folio, mm, cc); 1116 if (result != SCAN_SUCCEED) 1117 goto out_nolock; 1118 1119 mmap_read_lock(mm); 1120 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1121 if (result != SCAN_SUCCEED) { 1122 mmap_read_unlock(mm); 1123 goto out_nolock; 1124 } 1125 1126 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1127 if (result != SCAN_SUCCEED) { 1128 mmap_read_unlock(mm); 1129 goto out_nolock; 1130 } 1131 1132 if (unmapped) { 1133 /* 1134 * __collapse_huge_page_swapin will return with mmap_lock 1135 * released when it fails. So we jump out_nolock directly in 1136 * that case. Continuing to collapse causes inconsistency. 1137 */ 1138 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1139 referenced); 1140 if (result != SCAN_SUCCEED) 1141 goto out_nolock; 1142 } 1143 1144 mmap_read_unlock(mm); 1145 /* 1146 * Prevent all access to pagetables with the exception of 1147 * gup_fast later handled by the ptep_clear_flush and the VM 1148 * handled by the anon_vma lock + PG_lock. 1149 * 1150 * UFFDIO_MOVE is prevented to race as well thanks to the 1151 * mmap_lock. 1152 */ 1153 mmap_write_lock(mm); 1154 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1155 if (result != SCAN_SUCCEED) 1156 goto out_up_write; 1157 /* check if the pmd is still valid */ 1158 vma_start_write(vma); 1159 result = check_pmd_still_valid(mm, address, pmd); 1160 if (result != SCAN_SUCCEED) 1161 goto out_up_write; 1162 1163 anon_vma_lock_write(vma->anon_vma); 1164 1165 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1166 address + HPAGE_PMD_SIZE); 1167 mmu_notifier_invalidate_range_start(&range); 1168 1169 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1170 /* 1171 * This removes any huge TLB entry from the CPU so we won't allow 1172 * huge and small TLB entries for the same virtual address to 1173 * avoid the risk of CPU bugs in that area. 1174 * 1175 * Parallel GUP-fast is fine since GUP-fast will back off when 1176 * it detects PMD is changed. 1177 */ 1178 _pmd = pmdp_collapse_flush(vma, address, pmd); 1179 spin_unlock(pmd_ptl); 1180 mmu_notifier_invalidate_range_end(&range); 1181 tlb_remove_table_sync_one(); 1182 1183 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1184 if (pte) { 1185 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1186 &compound_pagelist); 1187 spin_unlock(pte_ptl); 1188 } else { 1189 result = SCAN_NO_PTE_TABLE; 1190 } 1191 1192 if (unlikely(result != SCAN_SUCCEED)) { 1193 if (pte) 1194 pte_unmap(pte); 1195 spin_lock(pmd_ptl); 1196 BUG_ON(!pmd_none(*pmd)); 1197 /* 1198 * We can only use set_pmd_at when establishing 1199 * hugepmds and never for establishing regular pmds that 1200 * points to regular pagetables. Use pmd_populate for that 1201 */ 1202 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1203 spin_unlock(pmd_ptl); 1204 anon_vma_unlock_write(vma->anon_vma); 1205 goto out_up_write; 1206 } 1207 1208 /* 1209 * All pages are isolated and locked so anon_vma rmap 1210 * can't run anymore. 1211 */ 1212 anon_vma_unlock_write(vma->anon_vma); 1213 1214 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1215 vma, address, pte_ptl, 1216 &compound_pagelist); 1217 pte_unmap(pte); 1218 if (unlikely(result != SCAN_SUCCEED)) 1219 goto out_up_write; 1220 1221 /* 1222 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1223 * copy_huge_page writes become visible before the set_pmd_at() 1224 * write. 1225 */ 1226 __folio_mark_uptodate(folio); 1227 pgtable = pmd_pgtable(_pmd); 1228 1229 spin_lock(pmd_ptl); 1230 BUG_ON(!pmd_none(*pmd)); 1231 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1232 map_anon_folio_pmd_nopf(folio, pmd, vma, address); 1233 spin_unlock(pmd_ptl); 1234 1235 folio = NULL; 1236 1237 result = SCAN_SUCCEED; 1238 out_up_write: 1239 mmap_write_unlock(mm); 1240 out_nolock: 1241 if (folio) 1242 folio_put(folio); 1243 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1244 return result; 1245 } 1246 1247 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1248 struct vm_area_struct *vma, 1249 unsigned long start_addr, bool *mmap_locked, 1250 struct collapse_control *cc) 1251 { 1252 pmd_t *pmd; 1253 pte_t *pte, *_pte; 1254 int result = SCAN_FAIL, referenced = 0; 1255 int none_or_zero = 0, shared = 0; 1256 struct page *page = NULL; 1257 struct folio *folio = NULL; 1258 unsigned long addr; 1259 spinlock_t *ptl; 1260 int node = NUMA_NO_NODE, unmapped = 0; 1261 1262 VM_BUG_ON(start_addr & ~HPAGE_PMD_MASK); 1263 1264 result = find_pmd_or_thp_or_none(mm, start_addr, &pmd); 1265 if (result != SCAN_SUCCEED) 1266 goto out; 1267 1268 memset(cc->node_load, 0, sizeof(cc->node_load)); 1269 nodes_clear(cc->alloc_nmask); 1270 pte = pte_offset_map_lock(mm, pmd, start_addr, &ptl); 1271 if (!pte) { 1272 result = SCAN_NO_PTE_TABLE; 1273 goto out; 1274 } 1275 1276 for (addr = start_addr, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1277 _pte++, addr += PAGE_SIZE) { 1278 pte_t pteval = ptep_get(_pte); 1279 if (pte_none_or_zero(pteval)) { 1280 ++none_or_zero; 1281 if (!userfaultfd_armed(vma) && 1282 (!cc->is_khugepaged || 1283 none_or_zero <= khugepaged_max_ptes_none)) { 1284 continue; 1285 } else { 1286 result = SCAN_EXCEED_NONE_PTE; 1287 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1288 goto out_unmap; 1289 } 1290 } 1291 if (!pte_present(pteval)) { 1292 ++unmapped; 1293 if (!cc->is_khugepaged || 1294 unmapped <= khugepaged_max_ptes_swap) { 1295 /* 1296 * Always be strict with uffd-wp 1297 * enabled swap entries. Please see 1298 * comment below for pte_uffd_wp(). 1299 */ 1300 if (pte_swp_uffd_wp_any(pteval)) { 1301 result = SCAN_PTE_UFFD_WP; 1302 goto out_unmap; 1303 } 1304 continue; 1305 } else { 1306 result = SCAN_EXCEED_SWAP_PTE; 1307 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1308 goto out_unmap; 1309 } 1310 } 1311 if (pte_uffd_wp(pteval)) { 1312 /* 1313 * Don't collapse the page if any of the small 1314 * PTEs are armed with uffd write protection. 1315 * Here we can also mark the new huge pmd as 1316 * write protected if any of the small ones is 1317 * marked but that could bring unknown 1318 * userfault messages that falls outside of 1319 * the registered range. So, just be simple. 1320 */ 1321 result = SCAN_PTE_UFFD_WP; 1322 goto out_unmap; 1323 } 1324 1325 page = vm_normal_page(vma, addr, pteval); 1326 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1327 result = SCAN_PAGE_NULL; 1328 goto out_unmap; 1329 } 1330 folio = page_folio(page); 1331 1332 if (!folio_test_anon(folio)) { 1333 result = SCAN_PAGE_ANON; 1334 goto out_unmap; 1335 } 1336 1337 /* 1338 * We treat a single page as shared if any part of the THP 1339 * is shared. 1340 */ 1341 if (folio_maybe_mapped_shared(folio)) { 1342 ++shared; 1343 if (cc->is_khugepaged && 1344 shared > khugepaged_max_ptes_shared) { 1345 result = SCAN_EXCEED_SHARED_PTE; 1346 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1347 goto out_unmap; 1348 } 1349 } 1350 1351 /* 1352 * Record which node the original page is from and save this 1353 * information to cc->node_load[]. 1354 * Khugepaged will allocate hugepage from the node has the max 1355 * hit record. 1356 */ 1357 node = folio_nid(folio); 1358 if (hpage_collapse_scan_abort(node, cc)) { 1359 result = SCAN_SCAN_ABORT; 1360 goto out_unmap; 1361 } 1362 cc->node_load[node]++; 1363 if (!folio_test_lru(folio)) { 1364 result = SCAN_PAGE_LRU; 1365 goto out_unmap; 1366 } 1367 if (folio_test_locked(folio)) { 1368 result = SCAN_PAGE_LOCK; 1369 goto out_unmap; 1370 } 1371 1372 /* 1373 * Check if the page has any GUP (or other external) pins. 1374 * 1375 * Here the check may be racy: 1376 * it may see folio_mapcount() > folio_ref_count(). 1377 * But such case is ephemeral we could always retry collapse 1378 * later. However it may report false positive if the page 1379 * has excessive GUP pins (i.e. 512). Anyway the same check 1380 * will be done again later the risk seems low. 1381 */ 1382 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 1383 result = SCAN_PAGE_COUNT; 1384 goto out_unmap; 1385 } 1386 1387 /* 1388 * If collapse was initiated by khugepaged, check that there is 1389 * enough young pte to justify collapsing the page 1390 */ 1391 if (cc->is_khugepaged && 1392 (pte_young(pteval) || folio_test_young(folio) || 1393 folio_test_referenced(folio) || 1394 mmu_notifier_test_young(vma->vm_mm, addr))) 1395 referenced++; 1396 } 1397 if (cc->is_khugepaged && 1398 (!referenced || 1399 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1400 result = SCAN_LACK_REFERENCED_PAGE; 1401 } else { 1402 result = SCAN_SUCCEED; 1403 } 1404 out_unmap: 1405 pte_unmap_unlock(pte, ptl); 1406 if (result == SCAN_SUCCEED) { 1407 result = collapse_huge_page(mm, start_addr, referenced, 1408 unmapped, cc); 1409 /* collapse_huge_page will return with the mmap_lock released */ 1410 *mmap_locked = false; 1411 } 1412 out: 1413 trace_mm_khugepaged_scan_pmd(mm, folio, referenced, 1414 none_or_zero, result, unmapped); 1415 return result; 1416 } 1417 1418 static void collect_mm_slot(struct mm_slot *slot) 1419 { 1420 struct mm_struct *mm = slot->mm; 1421 1422 lockdep_assert_held(&khugepaged_mm_lock); 1423 1424 if (hpage_collapse_test_exit(mm)) { 1425 /* free mm_slot */ 1426 hash_del(&slot->hash); 1427 list_del(&slot->mm_node); 1428 1429 /* 1430 * Not strictly needed because the mm exited already. 1431 * 1432 * mm_flags_clear(MMF_VM_HUGEPAGE, mm); 1433 */ 1434 1435 /* khugepaged_mm_lock actually not necessary for the below */ 1436 mm_slot_free(mm_slot_cache, slot); 1437 mmdrop(mm); 1438 } 1439 } 1440 1441 /* folio must be locked, and mmap_lock must be held */ 1442 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1443 pmd_t *pmdp, struct folio *folio, struct page *page) 1444 { 1445 struct mm_struct *mm = vma->vm_mm; 1446 struct vm_fault vmf = { 1447 .vma = vma, 1448 .address = addr, 1449 .flags = 0, 1450 }; 1451 pgd_t *pgdp; 1452 p4d_t *p4dp; 1453 pud_t *pudp; 1454 1455 mmap_assert_locked(vma->vm_mm); 1456 1457 if (!pmdp) { 1458 pgdp = pgd_offset(mm, addr); 1459 p4dp = p4d_alloc(mm, pgdp, addr); 1460 if (!p4dp) 1461 return SCAN_FAIL; 1462 pudp = pud_alloc(mm, p4dp, addr); 1463 if (!pudp) 1464 return SCAN_FAIL; 1465 pmdp = pmd_alloc(mm, pudp, addr); 1466 if (!pmdp) 1467 return SCAN_FAIL; 1468 } 1469 1470 vmf.pmd = pmdp; 1471 if (do_set_pmd(&vmf, folio, page)) 1472 return SCAN_FAIL; 1473 1474 folio_get(folio); 1475 return SCAN_SUCCEED; 1476 } 1477 1478 /** 1479 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1480 * address haddr. 1481 * 1482 * @mm: process address space where collapse happens 1483 * @addr: THP collapse address 1484 * @install_pmd: If a huge PMD should be installed 1485 * 1486 * This function checks whether all the PTEs in the PMD are pointing to the 1487 * right THP. If so, retract the page table so the THP can refault in with 1488 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1489 */ 1490 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1491 bool install_pmd) 1492 { 1493 int nr_mapped_ptes = 0, result = SCAN_FAIL; 1494 unsigned int nr_batch_ptes; 1495 struct mmu_notifier_range range; 1496 bool notified = false; 1497 unsigned long haddr = addr & HPAGE_PMD_MASK; 1498 unsigned long end = haddr + HPAGE_PMD_SIZE; 1499 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1500 struct folio *folio; 1501 pte_t *start_pte, *pte; 1502 pmd_t *pmd, pgt_pmd; 1503 spinlock_t *pml = NULL, *ptl; 1504 int i; 1505 1506 mmap_assert_locked(mm); 1507 1508 /* First check VMA found, in case page tables are being torn down */ 1509 if (!vma || !vma->vm_file || 1510 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1511 return SCAN_VMA_CHECK; 1512 1513 /* Fast check before locking page if already PMD-mapped */ 1514 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1515 if (result == SCAN_PMD_MAPPED) 1516 return result; 1517 1518 /* 1519 * If we are here, we've succeeded in replacing all the native pages 1520 * in the page cache with a single hugepage. If a mm were to fault-in 1521 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1522 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1523 * analogously elide sysfs THP settings here and force collapse. 1524 */ 1525 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER)) 1526 return SCAN_VMA_CHECK; 1527 1528 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1529 if (userfaultfd_wp(vma)) 1530 return SCAN_PTE_UFFD_WP; 1531 1532 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1533 linear_page_index(vma, haddr)); 1534 if (IS_ERR(folio)) 1535 return SCAN_PAGE_NULL; 1536 1537 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1538 result = SCAN_PAGE_COMPOUND; 1539 goto drop_folio; 1540 } 1541 1542 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1543 switch (result) { 1544 case SCAN_SUCCEED: 1545 break; 1546 case SCAN_NO_PTE_TABLE: 1547 /* 1548 * All pte entries have been removed and pmd cleared. 1549 * Skip all the pte checks and just update the pmd mapping. 1550 */ 1551 goto maybe_install_pmd; 1552 default: 1553 goto drop_folio; 1554 } 1555 1556 result = SCAN_FAIL; 1557 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1558 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1559 goto drop_folio; 1560 1561 /* step 1: check all mapped PTEs are to the right huge page */ 1562 for (i = 0, addr = haddr, pte = start_pte; 1563 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1564 struct page *page; 1565 pte_t ptent = ptep_get(pte); 1566 1567 /* empty pte, skip */ 1568 if (pte_none(ptent)) 1569 continue; 1570 1571 /* page swapped out, abort */ 1572 if (!pte_present(ptent)) { 1573 result = SCAN_PTE_NON_PRESENT; 1574 goto abort; 1575 } 1576 1577 page = vm_normal_page(vma, addr, ptent); 1578 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1579 page = NULL; 1580 /* 1581 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1582 * page table, but the new page will not be a subpage of hpage. 1583 */ 1584 if (folio_page(folio, i) != page) 1585 goto abort; 1586 } 1587 1588 pte_unmap_unlock(start_pte, ptl); 1589 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1590 haddr, haddr + HPAGE_PMD_SIZE); 1591 mmu_notifier_invalidate_range_start(&range); 1592 notified = true; 1593 1594 /* 1595 * pmd_lock covers a wider range than ptl, and (if split from mm's 1596 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1597 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1598 * inserts a valid as-if-COWed PTE without even looking up page cache. 1599 * So page lock of folio does not protect from it, so we must not drop 1600 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1601 */ 1602 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1603 pml = pmd_lock(mm, pmd); 1604 1605 start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl); 1606 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1607 goto abort; 1608 if (!pml) 1609 spin_lock(ptl); 1610 else if (ptl != pml) 1611 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1612 1613 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) 1614 goto abort; 1615 1616 /* step 2: clear page table and adjust rmap */ 1617 for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR; 1618 i += nr_batch_ptes, addr += nr_batch_ptes * PAGE_SIZE, 1619 pte += nr_batch_ptes) { 1620 unsigned int max_nr_batch_ptes = (end - addr) >> PAGE_SHIFT; 1621 struct page *page; 1622 pte_t ptent = ptep_get(pte); 1623 1624 nr_batch_ptes = 1; 1625 1626 if (pte_none(ptent)) 1627 continue; 1628 /* 1629 * We dropped ptl after the first scan, to do the mmu_notifier: 1630 * page lock stops more PTEs of the folio being faulted in, but 1631 * does not stop write faults COWing anon copies from existing 1632 * PTEs; and does not stop those being swapped out or migrated. 1633 */ 1634 if (!pte_present(ptent)) { 1635 result = SCAN_PTE_NON_PRESENT; 1636 goto abort; 1637 } 1638 page = vm_normal_page(vma, addr, ptent); 1639 1640 if (folio_page(folio, i) != page) 1641 goto abort; 1642 1643 nr_batch_ptes = folio_pte_batch(folio, pte, ptent, max_nr_batch_ptes); 1644 1645 /* 1646 * Must clear entry, or a racing truncate may re-remove it. 1647 * TLB flush can be left until pmdp_collapse_flush() does it. 1648 * PTE dirty? Shmem page is already dirty; file is read-only. 1649 */ 1650 clear_ptes(mm, addr, pte, nr_batch_ptes); 1651 folio_remove_rmap_ptes(folio, page, nr_batch_ptes, vma); 1652 nr_mapped_ptes += nr_batch_ptes; 1653 } 1654 1655 if (!pml) 1656 spin_unlock(ptl); 1657 1658 /* step 3: set proper refcount and mm_counters. */ 1659 if (nr_mapped_ptes) { 1660 folio_ref_sub(folio, nr_mapped_ptes); 1661 add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes); 1662 } 1663 1664 /* step 4: remove empty page table */ 1665 if (!pml) { 1666 pml = pmd_lock(mm, pmd); 1667 if (ptl != pml) { 1668 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1669 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) { 1670 flush_tlb_mm(mm); 1671 goto unlock; 1672 } 1673 } 1674 } 1675 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1676 pmdp_get_lockless_sync(); 1677 pte_unmap_unlock(start_pte, ptl); 1678 if (ptl != pml) 1679 spin_unlock(pml); 1680 1681 mmu_notifier_invalidate_range_end(&range); 1682 1683 mm_dec_nr_ptes(mm); 1684 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1685 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1686 1687 maybe_install_pmd: 1688 /* step 5: install pmd entry */ 1689 result = install_pmd 1690 ? set_huge_pmd(vma, haddr, pmd, folio, &folio->page) 1691 : SCAN_SUCCEED; 1692 goto drop_folio; 1693 abort: 1694 if (nr_mapped_ptes) { 1695 flush_tlb_mm(mm); 1696 folio_ref_sub(folio, nr_mapped_ptes); 1697 add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes); 1698 } 1699 unlock: 1700 if (start_pte) 1701 pte_unmap_unlock(start_pte, ptl); 1702 if (pml && pml != ptl) 1703 spin_unlock(pml); 1704 if (notified) 1705 mmu_notifier_invalidate_range_end(&range); 1706 drop_folio: 1707 folio_unlock(folio); 1708 folio_put(folio); 1709 return result; 1710 } 1711 1712 /* Can we retract page tables for this file-backed VMA? */ 1713 static bool file_backed_vma_is_retractable(struct vm_area_struct *vma) 1714 { 1715 /* 1716 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1717 * got written to. These VMAs are likely not worth removing 1718 * page tables from, as PMD-mapping is likely to be split later. 1719 */ 1720 if (READ_ONCE(vma->anon_vma)) 1721 return false; 1722 1723 /* 1724 * When a vma is registered with uffd-wp, we cannot recycle 1725 * the page table because there may be pte markers installed. 1726 * Other vmas can still have the same file mapped hugely, but 1727 * skip this one: it will always be mapped in small page size 1728 * for uffd-wp registered ranges. 1729 */ 1730 if (userfaultfd_wp(vma)) 1731 return false; 1732 1733 /* 1734 * If the VMA contains guard regions then we can't collapse it. 1735 * 1736 * This is set atomically on guard marker installation under mmap/VMA 1737 * read lock, and here we may not hold any VMA or mmap lock at all. 1738 * 1739 * This is therefore serialised on the PTE page table lock, which is 1740 * obtained on guard region installation after the flag is set, so this 1741 * check being performed under this lock excludes races. 1742 */ 1743 if (vma_flag_test_atomic(vma, VMA_MAYBE_GUARD_BIT)) 1744 return false; 1745 1746 return true; 1747 } 1748 1749 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1750 { 1751 struct vm_area_struct *vma; 1752 1753 i_mmap_lock_read(mapping); 1754 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1755 struct mmu_notifier_range range; 1756 struct mm_struct *mm; 1757 unsigned long addr; 1758 pmd_t *pmd, pgt_pmd; 1759 spinlock_t *pml; 1760 spinlock_t *ptl; 1761 bool success = false; 1762 1763 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1764 if (addr & ~HPAGE_PMD_MASK || 1765 vma->vm_end < addr + HPAGE_PMD_SIZE) 1766 continue; 1767 1768 mm = vma->vm_mm; 1769 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1770 continue; 1771 1772 if (hpage_collapse_test_exit(mm)) 1773 continue; 1774 1775 if (!file_backed_vma_is_retractable(vma)) 1776 continue; 1777 1778 /* PTEs were notified when unmapped; but now for the PMD? */ 1779 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1780 addr, addr + HPAGE_PMD_SIZE); 1781 mmu_notifier_invalidate_range_start(&range); 1782 1783 pml = pmd_lock(mm, pmd); 1784 /* 1785 * The lock of new_folio is still held, we will be blocked in 1786 * the page fault path, which prevents the pte entries from 1787 * being set again. So even though the old empty PTE page may be 1788 * concurrently freed and a new PTE page is filled into the pmd 1789 * entry, it is still empty and can be removed. 1790 * 1791 * So here we only need to recheck if the state of pmd entry 1792 * still meets our requirements, rather than checking pmd_same() 1793 * like elsewhere. 1794 */ 1795 if (check_pmd_state(pmd) != SCAN_SUCCEED) 1796 goto drop_pml; 1797 ptl = pte_lockptr(mm, pmd); 1798 if (ptl != pml) 1799 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1800 1801 /* 1802 * Huge page lock is still held, so normally the page table must 1803 * remain empty; and we have already skipped anon_vma and 1804 * userfaultfd_wp() vmas. But since the mmap_lock is not held, 1805 * it is still possible for a racing userfaultfd_ioctl() or 1806 * madvise() to have inserted ptes or markers. Now that we hold 1807 * ptlock, repeating the retractable checks protects us from 1808 * races against the prior checks. 1809 */ 1810 if (likely(file_backed_vma_is_retractable(vma))) { 1811 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1812 pmdp_get_lockless_sync(); 1813 success = true; 1814 } 1815 1816 if (ptl != pml) 1817 spin_unlock(ptl); 1818 drop_pml: 1819 spin_unlock(pml); 1820 1821 mmu_notifier_invalidate_range_end(&range); 1822 1823 if (success) { 1824 mm_dec_nr_ptes(mm); 1825 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1826 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1827 } 1828 } 1829 i_mmap_unlock_read(mapping); 1830 } 1831 1832 /** 1833 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1834 * 1835 * @mm: process address space where collapse happens 1836 * @addr: virtual collapse start address 1837 * @file: file that collapse on 1838 * @start: collapse start address 1839 * @cc: collapse context and scratchpad 1840 * 1841 * Basic scheme is simple, details are more complex: 1842 * - allocate and lock a new huge page; 1843 * - scan page cache, locking old pages 1844 * + swap/gup in pages if necessary; 1845 * - copy data to new page 1846 * - handle shmem holes 1847 * + re-validate that holes weren't filled by someone else 1848 * + check for userfaultfd 1849 * - finalize updates to the page cache; 1850 * - if replacing succeeds: 1851 * + unlock huge page; 1852 * + free old pages; 1853 * - if replacing failed; 1854 * + unlock old pages 1855 * + unlock and free huge page; 1856 */ 1857 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1858 struct file *file, pgoff_t start, 1859 struct collapse_control *cc) 1860 { 1861 struct address_space *mapping = file->f_mapping; 1862 struct page *dst; 1863 struct folio *folio, *tmp, *new_folio; 1864 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1865 LIST_HEAD(pagelist); 1866 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1867 int nr_none = 0, result = SCAN_SUCCEED; 1868 bool is_shmem = shmem_file(file); 1869 1870 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1871 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1872 1873 result = alloc_charge_folio(&new_folio, mm, cc); 1874 if (result != SCAN_SUCCEED) 1875 goto out; 1876 1877 mapping_set_update(&xas, mapping); 1878 1879 __folio_set_locked(new_folio); 1880 if (is_shmem) 1881 __folio_set_swapbacked(new_folio); 1882 new_folio->index = start; 1883 new_folio->mapping = mapping; 1884 1885 /* 1886 * Ensure we have slots for all the pages in the range. This is 1887 * almost certainly a no-op because most of the pages must be present 1888 */ 1889 do { 1890 xas_lock_irq(&xas); 1891 xas_create_range(&xas); 1892 if (!xas_error(&xas)) 1893 break; 1894 xas_unlock_irq(&xas); 1895 if (!xas_nomem(&xas, GFP_KERNEL)) { 1896 result = SCAN_FAIL; 1897 goto rollback; 1898 } 1899 } while (1); 1900 1901 for (index = start; index < end;) { 1902 xas_set(&xas, index); 1903 folio = xas_load(&xas); 1904 1905 VM_BUG_ON(index != xas.xa_index); 1906 if (is_shmem) { 1907 if (!folio) { 1908 /* 1909 * Stop if extent has been truncated or 1910 * hole-punched, and is now completely 1911 * empty. 1912 */ 1913 if (index == start) { 1914 if (!xas_next_entry(&xas, end - 1)) { 1915 result = SCAN_TRUNCATED; 1916 goto xa_locked; 1917 } 1918 } 1919 nr_none++; 1920 index++; 1921 continue; 1922 } 1923 1924 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1925 xas_unlock_irq(&xas); 1926 /* swap in or instantiate fallocated page */ 1927 if (shmem_get_folio(mapping->host, index, 0, 1928 &folio, SGP_NOALLOC)) { 1929 result = SCAN_FAIL; 1930 goto xa_unlocked; 1931 } 1932 /* drain lru cache to help folio_isolate_lru() */ 1933 lru_add_drain(); 1934 } else if (folio_trylock(folio)) { 1935 folio_get(folio); 1936 xas_unlock_irq(&xas); 1937 } else { 1938 result = SCAN_PAGE_LOCK; 1939 goto xa_locked; 1940 } 1941 } else { /* !is_shmem */ 1942 if (!folio || xa_is_value(folio)) { 1943 xas_unlock_irq(&xas); 1944 page_cache_sync_readahead(mapping, &file->f_ra, 1945 file, index, 1946 end - index); 1947 /* drain lru cache to help folio_isolate_lru() */ 1948 lru_add_drain(); 1949 folio = filemap_lock_folio(mapping, index); 1950 if (IS_ERR(folio)) { 1951 result = SCAN_FAIL; 1952 goto xa_unlocked; 1953 } 1954 } else if (folio_test_dirty(folio)) { 1955 /* 1956 * khugepaged only works on read-only fd, 1957 * so this page is dirty because it hasn't 1958 * been flushed since first write. There 1959 * won't be new dirty pages. 1960 * 1961 * Trigger async flush here and hope the 1962 * writeback is done when khugepaged 1963 * revisits this page. 1964 * 1965 * This is a one-off situation. We are not 1966 * forcing writeback in loop. 1967 */ 1968 xas_unlock_irq(&xas); 1969 filemap_flush(mapping); 1970 result = SCAN_FAIL; 1971 goto xa_unlocked; 1972 } else if (folio_test_writeback(folio)) { 1973 xas_unlock_irq(&xas); 1974 result = SCAN_FAIL; 1975 goto xa_unlocked; 1976 } else if (folio_trylock(folio)) { 1977 folio_get(folio); 1978 xas_unlock_irq(&xas); 1979 } else { 1980 result = SCAN_PAGE_LOCK; 1981 goto xa_locked; 1982 } 1983 } 1984 1985 /* 1986 * The folio must be locked, so we can drop the i_pages lock 1987 * without racing with truncate. 1988 */ 1989 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1990 1991 /* make sure the folio is up to date */ 1992 if (unlikely(!folio_test_uptodate(folio))) { 1993 result = SCAN_FAIL; 1994 goto out_unlock; 1995 } 1996 1997 /* 1998 * If file was truncated then extended, or hole-punched, before 1999 * we locked the first folio, then a THP might be there already. 2000 * This will be discovered on the first iteration. 2001 */ 2002 if (folio_order(folio) == HPAGE_PMD_ORDER && 2003 folio->index == start) { 2004 /* Maybe PMD-mapped */ 2005 result = SCAN_PTE_MAPPED_HUGEPAGE; 2006 goto out_unlock; 2007 } 2008 2009 if (folio_mapping(folio) != mapping) { 2010 result = SCAN_TRUNCATED; 2011 goto out_unlock; 2012 } 2013 2014 if (!is_shmem && (folio_test_dirty(folio) || 2015 folio_test_writeback(folio))) { 2016 /* 2017 * khugepaged only works on read-only fd, so this 2018 * folio is dirty because it hasn't been flushed 2019 * since first write. 2020 */ 2021 result = SCAN_FAIL; 2022 goto out_unlock; 2023 } 2024 2025 if (!folio_isolate_lru(folio)) { 2026 result = SCAN_DEL_PAGE_LRU; 2027 goto out_unlock; 2028 } 2029 2030 if (!filemap_release_folio(folio, GFP_KERNEL)) { 2031 result = SCAN_PAGE_HAS_PRIVATE; 2032 folio_putback_lru(folio); 2033 goto out_unlock; 2034 } 2035 2036 if (folio_mapped(folio)) 2037 try_to_unmap(folio, 2038 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 2039 2040 xas_lock_irq(&xas); 2041 2042 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 2043 2044 /* 2045 * We control 2 + nr_pages references to the folio: 2046 * - we hold a pin on it; 2047 * - nr_pages reference from page cache; 2048 * - one from lru_isolate_folio; 2049 * If those are the only references, then any new usage 2050 * of the folio will have to fetch it from the page 2051 * cache. That requires locking the folio to handle 2052 * truncate, so any new usage will be blocked until we 2053 * unlock folio after collapse/during rollback. 2054 */ 2055 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) { 2056 result = SCAN_PAGE_COUNT; 2057 xas_unlock_irq(&xas); 2058 folio_putback_lru(folio); 2059 goto out_unlock; 2060 } 2061 2062 /* 2063 * Accumulate the folios that are being collapsed. 2064 */ 2065 list_add_tail(&folio->lru, &pagelist); 2066 index += folio_nr_pages(folio); 2067 continue; 2068 out_unlock: 2069 folio_unlock(folio); 2070 folio_put(folio); 2071 goto xa_unlocked; 2072 } 2073 2074 if (!is_shmem) { 2075 filemap_nr_thps_inc(mapping); 2076 /* 2077 * Paired with the fence in do_dentry_open() -> get_write_access() 2078 * to ensure i_writecount is up to date and the update to nr_thps 2079 * is visible. Ensures the page cache will be truncated if the 2080 * file is opened writable. 2081 */ 2082 smp_mb(); 2083 if (inode_is_open_for_write(mapping->host)) { 2084 result = SCAN_FAIL; 2085 filemap_nr_thps_dec(mapping); 2086 } 2087 } 2088 2089 xa_locked: 2090 xas_unlock_irq(&xas); 2091 xa_unlocked: 2092 2093 /* 2094 * If collapse is successful, flush must be done now before copying. 2095 * If collapse is unsuccessful, does flush actually need to be done? 2096 * Do it anyway, to clear the state. 2097 */ 2098 try_to_unmap_flush(); 2099 2100 if (result == SCAN_SUCCEED && nr_none && 2101 !shmem_charge(mapping->host, nr_none)) 2102 result = SCAN_FAIL; 2103 if (result != SCAN_SUCCEED) { 2104 nr_none = 0; 2105 goto rollback; 2106 } 2107 2108 /* 2109 * The old folios are locked, so they won't change anymore. 2110 */ 2111 index = start; 2112 dst = folio_page(new_folio, 0); 2113 list_for_each_entry(folio, &pagelist, lru) { 2114 int i, nr_pages = folio_nr_pages(folio); 2115 2116 while (index < folio->index) { 2117 clear_highpage(dst); 2118 index++; 2119 dst++; 2120 } 2121 2122 for (i = 0; i < nr_pages; i++) { 2123 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) { 2124 result = SCAN_COPY_MC; 2125 goto rollback; 2126 } 2127 index++; 2128 dst++; 2129 } 2130 } 2131 while (index < end) { 2132 clear_highpage(dst); 2133 index++; 2134 dst++; 2135 } 2136 2137 if (nr_none) { 2138 struct vm_area_struct *vma; 2139 int nr_none_check = 0; 2140 2141 i_mmap_lock_read(mapping); 2142 xas_lock_irq(&xas); 2143 2144 xas_set(&xas, start); 2145 for (index = start; index < end; index++) { 2146 if (!xas_next(&xas)) { 2147 xas_store(&xas, XA_RETRY_ENTRY); 2148 if (xas_error(&xas)) { 2149 result = SCAN_STORE_FAILED; 2150 goto immap_locked; 2151 } 2152 nr_none_check++; 2153 } 2154 } 2155 2156 if (nr_none != nr_none_check) { 2157 result = SCAN_PAGE_FILLED; 2158 goto immap_locked; 2159 } 2160 2161 /* 2162 * If userspace observed a missing page in a VMA with 2163 * a MODE_MISSING userfaultfd, then it might expect a 2164 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2165 * roll back to avoid suppressing such an event. Since 2166 * wp/minor userfaultfds don't give userspace any 2167 * guarantees that the kernel doesn't fill a missing 2168 * page with a zero page, so they don't matter here. 2169 * 2170 * Any userfaultfds registered after this point will 2171 * not be able to observe any missing pages due to the 2172 * previously inserted retry entries. 2173 */ 2174 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2175 if (userfaultfd_missing(vma)) { 2176 result = SCAN_EXCEED_NONE_PTE; 2177 goto immap_locked; 2178 } 2179 } 2180 2181 immap_locked: 2182 i_mmap_unlock_read(mapping); 2183 if (result != SCAN_SUCCEED) { 2184 xas_set(&xas, start); 2185 for (index = start; index < end; index++) { 2186 if (xas_next(&xas) == XA_RETRY_ENTRY) 2187 xas_store(&xas, NULL); 2188 } 2189 2190 xas_unlock_irq(&xas); 2191 goto rollback; 2192 } 2193 } else { 2194 xas_lock_irq(&xas); 2195 } 2196 2197 if (is_shmem) 2198 lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2199 else 2200 lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2201 2202 if (nr_none) { 2203 lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none); 2204 /* nr_none is always 0 for non-shmem. */ 2205 lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none); 2206 } 2207 2208 /* 2209 * Mark new_folio as uptodate before inserting it into the 2210 * page cache so that it isn't mistaken for an fallocated but 2211 * unwritten page. 2212 */ 2213 folio_mark_uptodate(new_folio); 2214 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2215 2216 if (is_shmem) 2217 folio_mark_dirty(new_folio); 2218 folio_add_lru(new_folio); 2219 2220 /* Join all the small entries into a single multi-index entry. */ 2221 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2222 xas_store(&xas, new_folio); 2223 WARN_ON_ONCE(xas_error(&xas)); 2224 xas_unlock_irq(&xas); 2225 2226 /* 2227 * Remove pte page tables, so we can re-fault the page as huge. 2228 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2229 */ 2230 retract_page_tables(mapping, start); 2231 if (cc && !cc->is_khugepaged) 2232 result = SCAN_PTE_MAPPED_HUGEPAGE; 2233 folio_unlock(new_folio); 2234 2235 /* 2236 * The collapse has succeeded, so free the old folios. 2237 */ 2238 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2239 list_del(&folio->lru); 2240 folio->mapping = NULL; 2241 folio_clear_active(folio); 2242 folio_clear_unevictable(folio); 2243 folio_unlock(folio); 2244 folio_put_refs(folio, 2 + folio_nr_pages(folio)); 2245 } 2246 2247 goto out; 2248 2249 rollback: 2250 /* Something went wrong: roll back page cache changes */ 2251 if (nr_none) { 2252 xas_lock_irq(&xas); 2253 mapping->nrpages -= nr_none; 2254 xas_unlock_irq(&xas); 2255 shmem_uncharge(mapping->host, nr_none); 2256 } 2257 2258 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2259 list_del(&folio->lru); 2260 folio_unlock(folio); 2261 folio_putback_lru(folio); 2262 folio_put(folio); 2263 } 2264 /* 2265 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2266 * file only. This undo is not needed unless failure is 2267 * due to SCAN_COPY_MC. 2268 */ 2269 if (!is_shmem && result == SCAN_COPY_MC) { 2270 filemap_nr_thps_dec(mapping); 2271 /* 2272 * Paired with the fence in do_dentry_open() -> get_write_access() 2273 * to ensure the update to nr_thps is visible. 2274 */ 2275 smp_mb(); 2276 } 2277 2278 new_folio->mapping = NULL; 2279 2280 folio_unlock(new_folio); 2281 folio_put(new_folio); 2282 out: 2283 VM_BUG_ON(!list_empty(&pagelist)); 2284 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result); 2285 return result; 2286 } 2287 2288 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2289 struct file *file, pgoff_t start, 2290 struct collapse_control *cc) 2291 { 2292 struct folio *folio = NULL; 2293 struct address_space *mapping = file->f_mapping; 2294 XA_STATE(xas, &mapping->i_pages, start); 2295 int present, swap; 2296 int node = NUMA_NO_NODE; 2297 int result = SCAN_SUCCEED; 2298 2299 present = 0; 2300 swap = 0; 2301 memset(cc->node_load, 0, sizeof(cc->node_load)); 2302 nodes_clear(cc->alloc_nmask); 2303 rcu_read_lock(); 2304 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2305 if (xas_retry(&xas, folio)) 2306 continue; 2307 2308 if (xa_is_value(folio)) { 2309 swap += 1 << xas_get_order(&xas); 2310 if (cc->is_khugepaged && 2311 swap > khugepaged_max_ptes_swap) { 2312 result = SCAN_EXCEED_SWAP_PTE; 2313 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2314 break; 2315 } 2316 continue; 2317 } 2318 2319 if (!folio_try_get(folio)) { 2320 xas_reset(&xas); 2321 continue; 2322 } 2323 2324 if (unlikely(folio != xas_reload(&xas))) { 2325 folio_put(folio); 2326 xas_reset(&xas); 2327 continue; 2328 } 2329 2330 if (folio_order(folio) == HPAGE_PMD_ORDER && 2331 folio->index == start) { 2332 /* Maybe PMD-mapped */ 2333 result = SCAN_PTE_MAPPED_HUGEPAGE; 2334 /* 2335 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2336 * by the caller won't touch the page cache, and so 2337 * it's safe to skip LRU and refcount checks before 2338 * returning. 2339 */ 2340 folio_put(folio); 2341 break; 2342 } 2343 2344 node = folio_nid(folio); 2345 if (hpage_collapse_scan_abort(node, cc)) { 2346 result = SCAN_SCAN_ABORT; 2347 folio_put(folio); 2348 break; 2349 } 2350 cc->node_load[node]++; 2351 2352 if (!folio_test_lru(folio)) { 2353 result = SCAN_PAGE_LRU; 2354 folio_put(folio); 2355 break; 2356 } 2357 2358 if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) { 2359 result = SCAN_PAGE_COUNT; 2360 folio_put(folio); 2361 break; 2362 } 2363 2364 /* 2365 * We probably should check if the folio is referenced 2366 * here, but nobody would transfer pte_young() to 2367 * folio_test_referenced() for us. And rmap walk here 2368 * is just too costly... 2369 */ 2370 2371 present += folio_nr_pages(folio); 2372 folio_put(folio); 2373 2374 if (need_resched()) { 2375 xas_pause(&xas); 2376 cond_resched_rcu(); 2377 } 2378 } 2379 rcu_read_unlock(); 2380 2381 if (result == SCAN_SUCCEED) { 2382 if (cc->is_khugepaged && 2383 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2384 result = SCAN_EXCEED_NONE_PTE; 2385 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2386 } else { 2387 result = collapse_file(mm, addr, file, start, cc); 2388 } 2389 } 2390 2391 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2392 return result; 2393 } 2394 2395 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2396 struct collapse_control *cc) 2397 __releases(&khugepaged_mm_lock) 2398 __acquires(&khugepaged_mm_lock) 2399 { 2400 struct vma_iterator vmi; 2401 struct mm_slot *slot; 2402 struct mm_struct *mm; 2403 struct vm_area_struct *vma; 2404 int progress = 0; 2405 2406 VM_BUG_ON(!pages); 2407 lockdep_assert_held(&khugepaged_mm_lock); 2408 *result = SCAN_FAIL; 2409 2410 if (khugepaged_scan.mm_slot) { 2411 slot = khugepaged_scan.mm_slot; 2412 } else { 2413 slot = list_first_entry(&khugepaged_scan.mm_head, 2414 struct mm_slot, mm_node); 2415 khugepaged_scan.address = 0; 2416 khugepaged_scan.mm_slot = slot; 2417 } 2418 spin_unlock(&khugepaged_mm_lock); 2419 2420 mm = slot->mm; 2421 /* 2422 * Don't wait for semaphore (to avoid long wait times). Just move to 2423 * the next mm on the list. 2424 */ 2425 vma = NULL; 2426 if (unlikely(!mmap_read_trylock(mm))) 2427 goto breakouterloop_mmap_lock; 2428 2429 progress++; 2430 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2431 goto breakouterloop; 2432 2433 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2434 for_each_vma(vmi, vma) { 2435 unsigned long hstart, hend; 2436 2437 cond_resched(); 2438 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2439 progress++; 2440 break; 2441 } 2442 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) { 2443 skip: 2444 progress++; 2445 continue; 2446 } 2447 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2448 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2449 if (khugepaged_scan.address > hend) 2450 goto skip; 2451 if (khugepaged_scan.address < hstart) 2452 khugepaged_scan.address = hstart; 2453 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2454 2455 while (khugepaged_scan.address < hend) { 2456 bool mmap_locked = true; 2457 2458 cond_resched(); 2459 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2460 goto breakouterloop; 2461 2462 VM_BUG_ON(khugepaged_scan.address < hstart || 2463 khugepaged_scan.address + HPAGE_PMD_SIZE > 2464 hend); 2465 if (!vma_is_anonymous(vma)) { 2466 struct file *file = get_file(vma->vm_file); 2467 pgoff_t pgoff = linear_page_index(vma, 2468 khugepaged_scan.address); 2469 2470 mmap_read_unlock(mm); 2471 mmap_locked = false; 2472 *result = hpage_collapse_scan_file(mm, 2473 khugepaged_scan.address, file, pgoff, cc); 2474 fput(file); 2475 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2476 mmap_read_lock(mm); 2477 if (hpage_collapse_test_exit_or_disable(mm)) 2478 goto breakouterloop; 2479 *result = collapse_pte_mapped_thp(mm, 2480 khugepaged_scan.address, false); 2481 if (*result == SCAN_PMD_MAPPED) 2482 *result = SCAN_SUCCEED; 2483 mmap_read_unlock(mm); 2484 } 2485 } else { 2486 *result = hpage_collapse_scan_pmd(mm, vma, 2487 khugepaged_scan.address, &mmap_locked, cc); 2488 } 2489 2490 if (*result == SCAN_SUCCEED) 2491 ++khugepaged_pages_collapsed; 2492 2493 /* move to next address */ 2494 khugepaged_scan.address += HPAGE_PMD_SIZE; 2495 progress += HPAGE_PMD_NR; 2496 if (!mmap_locked) 2497 /* 2498 * We released mmap_lock so break loop. Note 2499 * that we drop mmap_lock before all hugepage 2500 * allocations, so if allocation fails, we are 2501 * guaranteed to break here and report the 2502 * correct result back to caller. 2503 */ 2504 goto breakouterloop_mmap_lock; 2505 if (progress >= pages) 2506 goto breakouterloop; 2507 } 2508 } 2509 breakouterloop: 2510 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2511 breakouterloop_mmap_lock: 2512 2513 spin_lock(&khugepaged_mm_lock); 2514 VM_BUG_ON(khugepaged_scan.mm_slot != slot); 2515 /* 2516 * Release the current mm_slot if this mm is about to die, or 2517 * if we scanned all vmas of this mm. 2518 */ 2519 if (hpage_collapse_test_exit(mm) || !vma) { 2520 /* 2521 * Make sure that if mm_users is reaching zero while 2522 * khugepaged runs here, khugepaged_exit will find 2523 * mm_slot not pointing to the exiting mm. 2524 */ 2525 if (!list_is_last(&slot->mm_node, &khugepaged_scan.mm_head)) { 2526 khugepaged_scan.mm_slot = list_next_entry(slot, mm_node); 2527 khugepaged_scan.address = 0; 2528 } else { 2529 khugepaged_scan.mm_slot = NULL; 2530 khugepaged_full_scans++; 2531 } 2532 2533 collect_mm_slot(slot); 2534 } 2535 2536 return progress; 2537 } 2538 2539 static int khugepaged_has_work(void) 2540 { 2541 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); 2542 } 2543 2544 static int khugepaged_wait_event(void) 2545 { 2546 return !list_empty(&khugepaged_scan.mm_head) || 2547 kthread_should_stop(); 2548 } 2549 2550 static void khugepaged_do_scan(struct collapse_control *cc) 2551 { 2552 unsigned int progress = 0, pass_through_head = 0; 2553 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2554 bool wait = true; 2555 int result = SCAN_SUCCEED; 2556 2557 lru_add_drain_all(); 2558 2559 while (true) { 2560 cond_resched(); 2561 2562 if (unlikely(kthread_should_stop())) 2563 break; 2564 2565 spin_lock(&khugepaged_mm_lock); 2566 if (!khugepaged_scan.mm_slot) 2567 pass_through_head++; 2568 if (khugepaged_has_work() && 2569 pass_through_head < 2) 2570 progress += khugepaged_scan_mm_slot(pages - progress, 2571 &result, cc); 2572 else 2573 progress = pages; 2574 spin_unlock(&khugepaged_mm_lock); 2575 2576 if (progress >= pages) 2577 break; 2578 2579 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2580 /* 2581 * If fail to allocate the first time, try to sleep for 2582 * a while. When hit again, cancel the scan. 2583 */ 2584 if (!wait) 2585 break; 2586 wait = false; 2587 khugepaged_alloc_sleep(); 2588 } 2589 } 2590 } 2591 2592 static bool khugepaged_should_wakeup(void) 2593 { 2594 return kthread_should_stop() || 2595 time_after_eq(jiffies, khugepaged_sleep_expire); 2596 } 2597 2598 static void khugepaged_wait_work(void) 2599 { 2600 if (khugepaged_has_work()) { 2601 const unsigned long scan_sleep_jiffies = 2602 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2603 2604 if (!scan_sleep_jiffies) 2605 return; 2606 2607 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2608 wait_event_freezable_timeout(khugepaged_wait, 2609 khugepaged_should_wakeup(), 2610 scan_sleep_jiffies); 2611 return; 2612 } 2613 2614 if (hugepage_pmd_enabled()) 2615 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2616 } 2617 2618 static int khugepaged(void *none) 2619 { 2620 struct mm_slot *slot; 2621 2622 set_freezable(); 2623 set_user_nice(current, MAX_NICE); 2624 2625 while (!kthread_should_stop()) { 2626 khugepaged_do_scan(&khugepaged_collapse_control); 2627 khugepaged_wait_work(); 2628 } 2629 2630 spin_lock(&khugepaged_mm_lock); 2631 slot = khugepaged_scan.mm_slot; 2632 khugepaged_scan.mm_slot = NULL; 2633 if (slot) 2634 collect_mm_slot(slot); 2635 spin_unlock(&khugepaged_mm_lock); 2636 return 0; 2637 } 2638 2639 static void set_recommended_min_free_kbytes(void) 2640 { 2641 struct zone *zone; 2642 int nr_zones = 0; 2643 unsigned long recommended_min; 2644 2645 if (!hugepage_pmd_enabled()) { 2646 calculate_min_free_kbytes(); 2647 goto update_wmarks; 2648 } 2649 2650 for_each_populated_zone(zone) { 2651 /* 2652 * We don't need to worry about fragmentation of 2653 * ZONE_MOVABLE since it only has movable pages. 2654 */ 2655 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2656 continue; 2657 2658 nr_zones++; 2659 } 2660 2661 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2662 recommended_min = pageblock_nr_pages * nr_zones * 2; 2663 2664 /* 2665 * Make sure that on average at least two pageblocks are almost free 2666 * of another type, one for a migratetype to fall back to and a 2667 * second to avoid subsequent fallbacks of other types There are 3 2668 * MIGRATE_TYPES we care about. 2669 */ 2670 recommended_min += pageblock_nr_pages * nr_zones * 2671 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2672 2673 /* don't ever allow to reserve more than 5% of the lowmem */ 2674 recommended_min = min(recommended_min, 2675 (unsigned long) nr_free_buffer_pages() / 20); 2676 recommended_min <<= (PAGE_SHIFT-10); 2677 2678 if (recommended_min > min_free_kbytes) { 2679 if (user_min_free_kbytes >= 0) 2680 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2681 min_free_kbytes, recommended_min); 2682 2683 min_free_kbytes = recommended_min; 2684 } 2685 2686 update_wmarks: 2687 setup_per_zone_wmarks(); 2688 } 2689 2690 int start_stop_khugepaged(void) 2691 { 2692 int err = 0; 2693 2694 mutex_lock(&khugepaged_mutex); 2695 if (hugepage_pmd_enabled()) { 2696 if (!khugepaged_thread) 2697 khugepaged_thread = kthread_run(khugepaged, NULL, 2698 "khugepaged"); 2699 if (IS_ERR(khugepaged_thread)) { 2700 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2701 err = PTR_ERR(khugepaged_thread); 2702 khugepaged_thread = NULL; 2703 goto fail; 2704 } 2705 2706 if (!list_empty(&khugepaged_scan.mm_head)) 2707 wake_up_interruptible(&khugepaged_wait); 2708 } else if (khugepaged_thread) { 2709 kthread_stop(khugepaged_thread); 2710 khugepaged_thread = NULL; 2711 } 2712 set_recommended_min_free_kbytes(); 2713 fail: 2714 mutex_unlock(&khugepaged_mutex); 2715 return err; 2716 } 2717 2718 void khugepaged_min_free_kbytes_update(void) 2719 { 2720 mutex_lock(&khugepaged_mutex); 2721 if (hugepage_pmd_enabled() && khugepaged_thread) 2722 set_recommended_min_free_kbytes(); 2723 mutex_unlock(&khugepaged_mutex); 2724 } 2725 2726 bool current_is_khugepaged(void) 2727 { 2728 return kthread_func(current) == khugepaged; 2729 } 2730 2731 static int madvise_collapse_errno(enum scan_result r) 2732 { 2733 /* 2734 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2735 * actionable feedback to caller, so they may take an appropriate 2736 * fallback measure depending on the nature of the failure. 2737 */ 2738 switch (r) { 2739 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2740 return -ENOMEM; 2741 case SCAN_CGROUP_CHARGE_FAIL: 2742 case SCAN_EXCEED_NONE_PTE: 2743 return -EBUSY; 2744 /* Resource temporary unavailable - trying again might succeed */ 2745 case SCAN_PAGE_COUNT: 2746 case SCAN_PAGE_LOCK: 2747 case SCAN_PAGE_LRU: 2748 case SCAN_DEL_PAGE_LRU: 2749 case SCAN_PAGE_FILLED: 2750 return -EAGAIN; 2751 /* 2752 * Other: Trying again likely not to succeed / error intrinsic to 2753 * specified memory range. khugepaged likely won't be able to collapse 2754 * either. 2755 */ 2756 default: 2757 return -EINVAL; 2758 } 2759 } 2760 2761 int madvise_collapse(struct vm_area_struct *vma, unsigned long start, 2762 unsigned long end, bool *lock_dropped) 2763 { 2764 struct collapse_control *cc; 2765 struct mm_struct *mm = vma->vm_mm; 2766 unsigned long hstart, hend, addr; 2767 int thps = 0, last_fail = SCAN_FAIL; 2768 bool mmap_locked = true; 2769 2770 BUG_ON(vma->vm_start > start); 2771 BUG_ON(vma->vm_end < end); 2772 2773 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER)) 2774 return -EINVAL; 2775 2776 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2777 if (!cc) 2778 return -ENOMEM; 2779 cc->is_khugepaged = false; 2780 2781 mmgrab(mm); 2782 lru_add_drain_all(); 2783 2784 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2785 hend = end & HPAGE_PMD_MASK; 2786 2787 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2788 int result = SCAN_FAIL; 2789 2790 if (!mmap_locked) { 2791 cond_resched(); 2792 mmap_read_lock(mm); 2793 mmap_locked = true; 2794 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2795 cc); 2796 if (result != SCAN_SUCCEED) { 2797 last_fail = result; 2798 goto out_nolock; 2799 } 2800 2801 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2802 } 2803 mmap_assert_locked(mm); 2804 if (!vma_is_anonymous(vma)) { 2805 struct file *file = get_file(vma->vm_file); 2806 pgoff_t pgoff = linear_page_index(vma, addr); 2807 2808 mmap_read_unlock(mm); 2809 mmap_locked = false; 2810 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2811 cc); 2812 fput(file); 2813 } else { 2814 result = hpage_collapse_scan_pmd(mm, vma, addr, 2815 &mmap_locked, cc); 2816 } 2817 if (!mmap_locked) 2818 *lock_dropped = true; 2819 2820 handle_result: 2821 switch (result) { 2822 case SCAN_SUCCEED: 2823 case SCAN_PMD_MAPPED: 2824 ++thps; 2825 break; 2826 case SCAN_PTE_MAPPED_HUGEPAGE: 2827 BUG_ON(mmap_locked); 2828 mmap_read_lock(mm); 2829 result = collapse_pte_mapped_thp(mm, addr, true); 2830 mmap_read_unlock(mm); 2831 goto handle_result; 2832 /* Whitelisted set of results where continuing OK */ 2833 case SCAN_NO_PTE_TABLE: 2834 case SCAN_PTE_NON_PRESENT: 2835 case SCAN_PTE_UFFD_WP: 2836 case SCAN_LACK_REFERENCED_PAGE: 2837 case SCAN_PAGE_NULL: 2838 case SCAN_PAGE_COUNT: 2839 case SCAN_PAGE_LOCK: 2840 case SCAN_PAGE_COMPOUND: 2841 case SCAN_PAGE_LRU: 2842 case SCAN_DEL_PAGE_LRU: 2843 last_fail = result; 2844 break; 2845 default: 2846 last_fail = result; 2847 /* Other error, exit */ 2848 goto out_maybelock; 2849 } 2850 } 2851 2852 out_maybelock: 2853 /* Caller expects us to hold mmap_lock on return */ 2854 if (!mmap_locked) 2855 mmap_read_lock(mm); 2856 out_nolock: 2857 mmap_assert_locked(mm); 2858 mmdrop(mm); 2859 kfree(cc); 2860 2861 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2862 : madvise_collapse_errno(last_fail); 2863 } 2864