xref: /linux/mm/khugepaged.c (revision 90d32e92011eaae8e70a9169b4e7acf4ca8f9d3a)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/rcupdate_wait.h>
21 #include <linux/swapops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/ksm.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 #include "mm_slot.h"
29 
30 enum scan_result {
31 	SCAN_FAIL,
32 	SCAN_SUCCEED,
33 	SCAN_PMD_NULL,
34 	SCAN_PMD_NONE,
35 	SCAN_PMD_MAPPED,
36 	SCAN_EXCEED_NONE_PTE,
37 	SCAN_EXCEED_SWAP_PTE,
38 	SCAN_EXCEED_SHARED_PTE,
39 	SCAN_PTE_NON_PRESENT,
40 	SCAN_PTE_UFFD_WP,
41 	SCAN_PTE_MAPPED_HUGEPAGE,
42 	SCAN_PAGE_RO,
43 	SCAN_LACK_REFERENCED_PAGE,
44 	SCAN_PAGE_NULL,
45 	SCAN_SCAN_ABORT,
46 	SCAN_PAGE_COUNT,
47 	SCAN_PAGE_LRU,
48 	SCAN_PAGE_LOCK,
49 	SCAN_PAGE_ANON,
50 	SCAN_PAGE_COMPOUND,
51 	SCAN_ANY_PROCESS,
52 	SCAN_VMA_NULL,
53 	SCAN_VMA_CHECK,
54 	SCAN_ADDRESS_RANGE,
55 	SCAN_DEL_PAGE_LRU,
56 	SCAN_ALLOC_HUGE_PAGE_FAIL,
57 	SCAN_CGROUP_CHARGE_FAIL,
58 	SCAN_TRUNCATED,
59 	SCAN_PAGE_HAS_PRIVATE,
60 	SCAN_STORE_FAILED,
61 	SCAN_COPY_MC,
62 	SCAN_PAGE_FILLED,
63 };
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/huge_memory.h>
67 
68 static struct task_struct *khugepaged_thread __read_mostly;
69 static DEFINE_MUTEX(khugepaged_mutex);
70 
71 /* default scan 8*512 pte (or vmas) every 30 second */
72 static unsigned int khugepaged_pages_to_scan __read_mostly;
73 static unsigned int khugepaged_pages_collapsed;
74 static unsigned int khugepaged_full_scans;
75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
76 /* during fragmentation poll the hugepage allocator once every minute */
77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
78 static unsigned long khugepaged_sleep_expire;
79 static DEFINE_SPINLOCK(khugepaged_mm_lock);
80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
81 /*
82  * default collapse hugepages if there is at least one pte mapped like
83  * it would have happened if the vma was large enough during page
84  * fault.
85  *
86  * Note that these are only respected if collapse was initiated by khugepaged.
87  */
88 static unsigned int khugepaged_max_ptes_none __read_mostly;
89 static unsigned int khugepaged_max_ptes_swap __read_mostly;
90 static unsigned int khugepaged_max_ptes_shared __read_mostly;
91 
92 #define MM_SLOTS_HASH_BITS 10
93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
94 
95 static struct kmem_cache *mm_slot_cache __ro_after_init;
96 
97 struct collapse_control {
98 	bool is_khugepaged;
99 
100 	/* Num pages scanned per node */
101 	u32 node_load[MAX_NUMNODES];
102 
103 	/* nodemask for allocation fallback */
104 	nodemask_t alloc_nmask;
105 };
106 
107 /**
108  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
109  * @slot: hash lookup from mm to mm_slot
110  */
111 struct khugepaged_mm_slot {
112 	struct mm_slot slot;
113 };
114 
115 /**
116  * struct khugepaged_scan - cursor for scanning
117  * @mm_head: the head of the mm list to scan
118  * @mm_slot: the current mm_slot we are scanning
119  * @address: the next address inside that to be scanned
120  *
121  * There is only the one khugepaged_scan instance of this cursor structure.
122  */
123 struct khugepaged_scan {
124 	struct list_head mm_head;
125 	struct khugepaged_mm_slot *mm_slot;
126 	unsigned long address;
127 };
128 
129 static struct khugepaged_scan khugepaged_scan = {
130 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
131 };
132 
133 #ifdef CONFIG_SYSFS
134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
135 					 struct kobj_attribute *attr,
136 					 char *buf)
137 {
138 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
139 }
140 
141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
142 					  struct kobj_attribute *attr,
143 					  const char *buf, size_t count)
144 {
145 	unsigned int msecs;
146 	int err;
147 
148 	err = kstrtouint(buf, 10, &msecs);
149 	if (err)
150 		return -EINVAL;
151 
152 	khugepaged_scan_sleep_millisecs = msecs;
153 	khugepaged_sleep_expire = 0;
154 	wake_up_interruptible(&khugepaged_wait);
155 
156 	return count;
157 }
158 static struct kobj_attribute scan_sleep_millisecs_attr =
159 	__ATTR_RW(scan_sleep_millisecs);
160 
161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
162 					  struct kobj_attribute *attr,
163 					  char *buf)
164 {
165 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
166 }
167 
168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
169 					   struct kobj_attribute *attr,
170 					   const char *buf, size_t count)
171 {
172 	unsigned int msecs;
173 	int err;
174 
175 	err = kstrtouint(buf, 10, &msecs);
176 	if (err)
177 		return -EINVAL;
178 
179 	khugepaged_alloc_sleep_millisecs = msecs;
180 	khugepaged_sleep_expire = 0;
181 	wake_up_interruptible(&khugepaged_wait);
182 
183 	return count;
184 }
185 static struct kobj_attribute alloc_sleep_millisecs_attr =
186 	__ATTR_RW(alloc_sleep_millisecs);
187 
188 static ssize_t pages_to_scan_show(struct kobject *kobj,
189 				  struct kobj_attribute *attr,
190 				  char *buf)
191 {
192 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
193 }
194 static ssize_t pages_to_scan_store(struct kobject *kobj,
195 				   struct kobj_attribute *attr,
196 				   const char *buf, size_t count)
197 {
198 	unsigned int pages;
199 	int err;
200 
201 	err = kstrtouint(buf, 10, &pages);
202 	if (err || !pages)
203 		return -EINVAL;
204 
205 	khugepaged_pages_to_scan = pages;
206 
207 	return count;
208 }
209 static struct kobj_attribute pages_to_scan_attr =
210 	__ATTR_RW(pages_to_scan);
211 
212 static ssize_t pages_collapsed_show(struct kobject *kobj,
213 				    struct kobj_attribute *attr,
214 				    char *buf)
215 {
216 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
217 }
218 static struct kobj_attribute pages_collapsed_attr =
219 	__ATTR_RO(pages_collapsed);
220 
221 static ssize_t full_scans_show(struct kobject *kobj,
222 			       struct kobj_attribute *attr,
223 			       char *buf)
224 {
225 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
226 }
227 static struct kobj_attribute full_scans_attr =
228 	__ATTR_RO(full_scans);
229 
230 static ssize_t defrag_show(struct kobject *kobj,
231 			   struct kobj_attribute *attr, char *buf)
232 {
233 	return single_hugepage_flag_show(kobj, attr, buf,
234 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
235 }
236 static ssize_t defrag_store(struct kobject *kobj,
237 			    struct kobj_attribute *attr,
238 			    const char *buf, size_t count)
239 {
240 	return single_hugepage_flag_store(kobj, attr, buf, count,
241 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
242 }
243 static struct kobj_attribute khugepaged_defrag_attr =
244 	__ATTR_RW(defrag);
245 
246 /*
247  * max_ptes_none controls if khugepaged should collapse hugepages over
248  * any unmapped ptes in turn potentially increasing the memory
249  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
250  * reduce the available free memory in the system as it
251  * runs. Increasing max_ptes_none will instead potentially reduce the
252  * free memory in the system during the khugepaged scan.
253  */
254 static ssize_t max_ptes_none_show(struct kobject *kobj,
255 				  struct kobj_attribute *attr,
256 				  char *buf)
257 {
258 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
259 }
260 static ssize_t max_ptes_none_store(struct kobject *kobj,
261 				   struct kobj_attribute *attr,
262 				   const char *buf, size_t count)
263 {
264 	int err;
265 	unsigned long max_ptes_none;
266 
267 	err = kstrtoul(buf, 10, &max_ptes_none);
268 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
269 		return -EINVAL;
270 
271 	khugepaged_max_ptes_none = max_ptes_none;
272 
273 	return count;
274 }
275 static struct kobj_attribute khugepaged_max_ptes_none_attr =
276 	__ATTR_RW(max_ptes_none);
277 
278 static ssize_t max_ptes_swap_show(struct kobject *kobj,
279 				  struct kobj_attribute *attr,
280 				  char *buf)
281 {
282 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
283 }
284 
285 static ssize_t max_ptes_swap_store(struct kobject *kobj,
286 				   struct kobj_attribute *attr,
287 				   const char *buf, size_t count)
288 {
289 	int err;
290 	unsigned long max_ptes_swap;
291 
292 	err  = kstrtoul(buf, 10, &max_ptes_swap);
293 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
294 		return -EINVAL;
295 
296 	khugepaged_max_ptes_swap = max_ptes_swap;
297 
298 	return count;
299 }
300 
301 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
302 	__ATTR_RW(max_ptes_swap);
303 
304 static ssize_t max_ptes_shared_show(struct kobject *kobj,
305 				    struct kobj_attribute *attr,
306 				    char *buf)
307 {
308 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
309 }
310 
311 static ssize_t max_ptes_shared_store(struct kobject *kobj,
312 				     struct kobj_attribute *attr,
313 				     const char *buf, size_t count)
314 {
315 	int err;
316 	unsigned long max_ptes_shared;
317 
318 	err  = kstrtoul(buf, 10, &max_ptes_shared);
319 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
320 		return -EINVAL;
321 
322 	khugepaged_max_ptes_shared = max_ptes_shared;
323 
324 	return count;
325 }
326 
327 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
328 	__ATTR_RW(max_ptes_shared);
329 
330 static struct attribute *khugepaged_attr[] = {
331 	&khugepaged_defrag_attr.attr,
332 	&khugepaged_max_ptes_none_attr.attr,
333 	&khugepaged_max_ptes_swap_attr.attr,
334 	&khugepaged_max_ptes_shared_attr.attr,
335 	&pages_to_scan_attr.attr,
336 	&pages_collapsed_attr.attr,
337 	&full_scans_attr.attr,
338 	&scan_sleep_millisecs_attr.attr,
339 	&alloc_sleep_millisecs_attr.attr,
340 	NULL,
341 };
342 
343 struct attribute_group khugepaged_attr_group = {
344 	.attrs = khugepaged_attr,
345 	.name = "khugepaged",
346 };
347 #endif /* CONFIG_SYSFS */
348 
349 int hugepage_madvise(struct vm_area_struct *vma,
350 		     unsigned long *vm_flags, int advice)
351 {
352 	switch (advice) {
353 	case MADV_HUGEPAGE:
354 #ifdef CONFIG_S390
355 		/*
356 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
357 		 * can't handle this properly after s390_enable_sie, so we simply
358 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
359 		 */
360 		if (mm_has_pgste(vma->vm_mm))
361 			return 0;
362 #endif
363 		*vm_flags &= ~VM_NOHUGEPAGE;
364 		*vm_flags |= VM_HUGEPAGE;
365 		/*
366 		 * If the vma become good for khugepaged to scan,
367 		 * register it here without waiting a page fault that
368 		 * may not happen any time soon.
369 		 */
370 		khugepaged_enter_vma(vma, *vm_flags);
371 		break;
372 	case MADV_NOHUGEPAGE:
373 		*vm_flags &= ~VM_HUGEPAGE;
374 		*vm_flags |= VM_NOHUGEPAGE;
375 		/*
376 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 		 * this vma even if we leave the mm registered in khugepaged if
378 		 * it got registered before VM_NOHUGEPAGE was set.
379 		 */
380 		break;
381 	}
382 
383 	return 0;
384 }
385 
386 int __init khugepaged_init(void)
387 {
388 	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389 					  sizeof(struct khugepaged_mm_slot),
390 					  __alignof__(struct khugepaged_mm_slot),
391 					  0, NULL);
392 	if (!mm_slot_cache)
393 		return -ENOMEM;
394 
395 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
396 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
397 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
398 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
399 
400 	return 0;
401 }
402 
403 void __init khugepaged_destroy(void)
404 {
405 	kmem_cache_destroy(mm_slot_cache);
406 }
407 
408 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
409 {
410 	return atomic_read(&mm->mm_users) == 0;
411 }
412 
413 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
414 {
415 	return hpage_collapse_test_exit(mm) ||
416 	       test_bit(MMF_DISABLE_THP, &mm->flags);
417 }
418 
419 void __khugepaged_enter(struct mm_struct *mm)
420 {
421 	struct khugepaged_mm_slot *mm_slot;
422 	struct mm_slot *slot;
423 	int wakeup;
424 
425 	/* __khugepaged_exit() must not run from under us */
426 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
427 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
428 		return;
429 
430 	mm_slot = mm_slot_alloc(mm_slot_cache);
431 	if (!mm_slot)
432 		return;
433 
434 	slot = &mm_slot->slot;
435 
436 	spin_lock(&khugepaged_mm_lock);
437 	mm_slot_insert(mm_slots_hash, mm, slot);
438 	/*
439 	 * Insert just behind the scanning cursor, to let the area settle
440 	 * down a little.
441 	 */
442 	wakeup = list_empty(&khugepaged_scan.mm_head);
443 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
444 	spin_unlock(&khugepaged_mm_lock);
445 
446 	mmgrab(mm);
447 	if (wakeup)
448 		wake_up_interruptible(&khugepaged_wait);
449 }
450 
451 void khugepaged_enter_vma(struct vm_area_struct *vma,
452 			  unsigned long vm_flags)
453 {
454 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
455 	    hugepage_flags_enabled()) {
456 		if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS,
457 					    PMD_ORDER))
458 			__khugepaged_enter(vma->vm_mm);
459 	}
460 }
461 
462 void __khugepaged_exit(struct mm_struct *mm)
463 {
464 	struct khugepaged_mm_slot *mm_slot;
465 	struct mm_slot *slot;
466 	int free = 0;
467 
468 	spin_lock(&khugepaged_mm_lock);
469 	slot = mm_slot_lookup(mm_slots_hash, mm);
470 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
471 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
472 		hash_del(&slot->hash);
473 		list_del(&slot->mm_node);
474 		free = 1;
475 	}
476 	spin_unlock(&khugepaged_mm_lock);
477 
478 	if (free) {
479 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
480 		mm_slot_free(mm_slot_cache, mm_slot);
481 		mmdrop(mm);
482 	} else if (mm_slot) {
483 		/*
484 		 * This is required to serialize against
485 		 * hpage_collapse_test_exit() (which is guaranteed to run
486 		 * under mmap sem read mode). Stop here (after we return all
487 		 * pagetables will be destroyed) until khugepaged has finished
488 		 * working on the pagetables under the mmap_lock.
489 		 */
490 		mmap_write_lock(mm);
491 		mmap_write_unlock(mm);
492 	}
493 }
494 
495 static void release_pte_folio(struct folio *folio)
496 {
497 	node_stat_mod_folio(folio,
498 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
499 			-folio_nr_pages(folio));
500 	folio_unlock(folio);
501 	folio_putback_lru(folio);
502 }
503 
504 static void release_pte_pages(pte_t *pte, pte_t *_pte,
505 		struct list_head *compound_pagelist)
506 {
507 	struct folio *folio, *tmp;
508 
509 	while (--_pte >= pte) {
510 		pte_t pteval = ptep_get(_pte);
511 		unsigned long pfn;
512 
513 		if (pte_none(pteval))
514 			continue;
515 		pfn = pte_pfn(pteval);
516 		if (is_zero_pfn(pfn))
517 			continue;
518 		folio = pfn_folio(pfn);
519 		if (folio_test_large(folio))
520 			continue;
521 		release_pte_folio(folio);
522 	}
523 
524 	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
525 		list_del(&folio->lru);
526 		release_pte_folio(folio);
527 	}
528 }
529 
530 static bool is_refcount_suitable(struct folio *folio)
531 {
532 	int expected_refcount;
533 
534 	expected_refcount = folio_mapcount(folio);
535 	if (folio_test_swapcache(folio))
536 		expected_refcount += folio_nr_pages(folio);
537 
538 	return folio_ref_count(folio) == expected_refcount;
539 }
540 
541 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
542 					unsigned long address,
543 					pte_t *pte,
544 					struct collapse_control *cc,
545 					struct list_head *compound_pagelist)
546 {
547 	struct page *page = NULL;
548 	struct folio *folio = NULL;
549 	pte_t *_pte;
550 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
551 	bool writable = false;
552 
553 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
554 	     _pte++, address += PAGE_SIZE) {
555 		pte_t pteval = ptep_get(_pte);
556 		if (pte_none(pteval) || (pte_present(pteval) &&
557 				is_zero_pfn(pte_pfn(pteval)))) {
558 			++none_or_zero;
559 			if (!userfaultfd_armed(vma) &&
560 			    (!cc->is_khugepaged ||
561 			     none_or_zero <= khugepaged_max_ptes_none)) {
562 				continue;
563 			} else {
564 				result = SCAN_EXCEED_NONE_PTE;
565 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
566 				goto out;
567 			}
568 		}
569 		if (!pte_present(pteval)) {
570 			result = SCAN_PTE_NON_PRESENT;
571 			goto out;
572 		}
573 		if (pte_uffd_wp(pteval)) {
574 			result = SCAN_PTE_UFFD_WP;
575 			goto out;
576 		}
577 		page = vm_normal_page(vma, address, pteval);
578 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
579 			result = SCAN_PAGE_NULL;
580 			goto out;
581 		}
582 
583 		folio = page_folio(page);
584 		VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
585 
586 		/* See hpage_collapse_scan_pmd(). */
587 		if (folio_likely_mapped_shared(folio)) {
588 			++shared;
589 			if (cc->is_khugepaged &&
590 			    shared > khugepaged_max_ptes_shared) {
591 				result = SCAN_EXCEED_SHARED_PTE;
592 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
593 				goto out;
594 			}
595 		}
596 
597 		if (folio_test_large(folio)) {
598 			struct folio *f;
599 
600 			/*
601 			 * Check if we have dealt with the compound page
602 			 * already
603 			 */
604 			list_for_each_entry(f, compound_pagelist, lru) {
605 				if (folio == f)
606 					goto next;
607 			}
608 		}
609 
610 		/*
611 		 * We can do it before isolate_lru_page because the
612 		 * page can't be freed from under us. NOTE: PG_lock
613 		 * is needed to serialize against split_huge_page
614 		 * when invoked from the VM.
615 		 */
616 		if (!folio_trylock(folio)) {
617 			result = SCAN_PAGE_LOCK;
618 			goto out;
619 		}
620 
621 		/*
622 		 * Check if the page has any GUP (or other external) pins.
623 		 *
624 		 * The page table that maps the page has been already unlinked
625 		 * from the page table tree and this process cannot get
626 		 * an additional pin on the page.
627 		 *
628 		 * New pins can come later if the page is shared across fork,
629 		 * but not from this process. The other process cannot write to
630 		 * the page, only trigger CoW.
631 		 */
632 		if (!is_refcount_suitable(folio)) {
633 			folio_unlock(folio);
634 			result = SCAN_PAGE_COUNT;
635 			goto out;
636 		}
637 
638 		/*
639 		 * Isolate the page to avoid collapsing an hugepage
640 		 * currently in use by the VM.
641 		 */
642 		if (!folio_isolate_lru(folio)) {
643 			folio_unlock(folio);
644 			result = SCAN_DEL_PAGE_LRU;
645 			goto out;
646 		}
647 		node_stat_mod_folio(folio,
648 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
649 				folio_nr_pages(folio));
650 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
651 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
652 
653 		if (folio_test_large(folio))
654 			list_add_tail(&folio->lru, compound_pagelist);
655 next:
656 		/*
657 		 * If collapse was initiated by khugepaged, check that there is
658 		 * enough young pte to justify collapsing the page
659 		 */
660 		if (cc->is_khugepaged &&
661 		    (pte_young(pteval) || folio_test_young(folio) ||
662 		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
663 								     address)))
664 			referenced++;
665 
666 		if (pte_write(pteval))
667 			writable = true;
668 	}
669 
670 	if (unlikely(!writable)) {
671 		result = SCAN_PAGE_RO;
672 	} else if (unlikely(cc->is_khugepaged && !referenced)) {
673 		result = SCAN_LACK_REFERENCED_PAGE;
674 	} else {
675 		result = SCAN_SUCCEED;
676 		trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
677 						    referenced, writable, result);
678 		return result;
679 	}
680 out:
681 	release_pte_pages(pte, _pte, compound_pagelist);
682 	trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
683 					    referenced, writable, result);
684 	return result;
685 }
686 
687 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
688 						struct vm_area_struct *vma,
689 						unsigned long address,
690 						spinlock_t *ptl,
691 						struct list_head *compound_pagelist)
692 {
693 	struct folio *src, *tmp;
694 	pte_t *_pte;
695 	pte_t pteval;
696 
697 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
698 	     _pte++, address += PAGE_SIZE) {
699 		pteval = ptep_get(_pte);
700 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
701 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
702 			if (is_zero_pfn(pte_pfn(pteval))) {
703 				/*
704 				 * ptl mostly unnecessary.
705 				 */
706 				spin_lock(ptl);
707 				ptep_clear(vma->vm_mm, address, _pte);
708 				spin_unlock(ptl);
709 				ksm_might_unmap_zero_page(vma->vm_mm, pteval);
710 			}
711 		} else {
712 			struct page *src_page = pte_page(pteval);
713 
714 			src = page_folio(src_page);
715 			if (!folio_test_large(src))
716 				release_pte_folio(src);
717 			/*
718 			 * ptl mostly unnecessary, but preempt has to
719 			 * be disabled to update the per-cpu stats
720 			 * inside folio_remove_rmap_pte().
721 			 */
722 			spin_lock(ptl);
723 			ptep_clear(vma->vm_mm, address, _pte);
724 			folio_remove_rmap_pte(src, src_page, vma);
725 			spin_unlock(ptl);
726 			free_page_and_swap_cache(src_page);
727 		}
728 	}
729 
730 	list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
731 		list_del(&src->lru);
732 		node_stat_sub_folio(src, NR_ISOLATED_ANON +
733 				folio_is_file_lru(src));
734 		folio_unlock(src);
735 		free_swap_cache(src);
736 		folio_putback_lru(src);
737 	}
738 }
739 
740 static void __collapse_huge_page_copy_failed(pte_t *pte,
741 					     pmd_t *pmd,
742 					     pmd_t orig_pmd,
743 					     struct vm_area_struct *vma,
744 					     struct list_head *compound_pagelist)
745 {
746 	spinlock_t *pmd_ptl;
747 
748 	/*
749 	 * Re-establish the PMD to point to the original page table
750 	 * entry. Restoring PMD needs to be done prior to releasing
751 	 * pages. Since pages are still isolated and locked here,
752 	 * acquiring anon_vma_lock_write is unnecessary.
753 	 */
754 	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
755 	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
756 	spin_unlock(pmd_ptl);
757 	/*
758 	 * Release both raw and compound pages isolated
759 	 * in __collapse_huge_page_isolate.
760 	 */
761 	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
762 }
763 
764 /*
765  * __collapse_huge_page_copy - attempts to copy memory contents from raw
766  * pages to a hugepage. Cleans up the raw pages if copying succeeds;
767  * otherwise restores the original page table and releases isolated raw pages.
768  * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
769  *
770  * @pte: starting of the PTEs to copy from
771  * @folio: the new hugepage to copy contents to
772  * @pmd: pointer to the new hugepage's PMD
773  * @orig_pmd: the original raw pages' PMD
774  * @vma: the original raw pages' virtual memory area
775  * @address: starting address to copy
776  * @ptl: lock on raw pages' PTEs
777  * @compound_pagelist: list that stores compound pages
778  */
779 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
780 		pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
781 		unsigned long address, spinlock_t *ptl,
782 		struct list_head *compound_pagelist)
783 {
784 	unsigned int i;
785 	int result = SCAN_SUCCEED;
786 
787 	/*
788 	 * Copying pages' contents is subject to memory poison at any iteration.
789 	 */
790 	for (i = 0; i < HPAGE_PMD_NR; i++) {
791 		pte_t pteval = ptep_get(pte + i);
792 		struct page *page = folio_page(folio, i);
793 		unsigned long src_addr = address + i * PAGE_SIZE;
794 		struct page *src_page;
795 
796 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
797 			clear_user_highpage(page, src_addr);
798 			continue;
799 		}
800 		src_page = pte_page(pteval);
801 		if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
802 			result = SCAN_COPY_MC;
803 			break;
804 		}
805 	}
806 
807 	if (likely(result == SCAN_SUCCEED))
808 		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
809 						    compound_pagelist);
810 	else
811 		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
812 						 compound_pagelist);
813 
814 	return result;
815 }
816 
817 static void khugepaged_alloc_sleep(void)
818 {
819 	DEFINE_WAIT(wait);
820 
821 	add_wait_queue(&khugepaged_wait, &wait);
822 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
823 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
824 	remove_wait_queue(&khugepaged_wait, &wait);
825 }
826 
827 struct collapse_control khugepaged_collapse_control = {
828 	.is_khugepaged = true,
829 };
830 
831 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
832 {
833 	int i;
834 
835 	/*
836 	 * If node_reclaim_mode is disabled, then no extra effort is made to
837 	 * allocate memory locally.
838 	 */
839 	if (!node_reclaim_enabled())
840 		return false;
841 
842 	/* If there is a count for this node already, it must be acceptable */
843 	if (cc->node_load[nid])
844 		return false;
845 
846 	for (i = 0; i < MAX_NUMNODES; i++) {
847 		if (!cc->node_load[i])
848 			continue;
849 		if (node_distance(nid, i) > node_reclaim_distance)
850 			return true;
851 	}
852 	return false;
853 }
854 
855 #define khugepaged_defrag()					\
856 	(transparent_hugepage_flags &				\
857 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
858 
859 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
860 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
861 {
862 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
863 }
864 
865 #ifdef CONFIG_NUMA
866 static int hpage_collapse_find_target_node(struct collapse_control *cc)
867 {
868 	int nid, target_node = 0, max_value = 0;
869 
870 	/* find first node with max normal pages hit */
871 	for (nid = 0; nid < MAX_NUMNODES; nid++)
872 		if (cc->node_load[nid] > max_value) {
873 			max_value = cc->node_load[nid];
874 			target_node = nid;
875 		}
876 
877 	for_each_online_node(nid) {
878 		if (max_value == cc->node_load[nid])
879 			node_set(nid, cc->alloc_nmask);
880 	}
881 
882 	return target_node;
883 }
884 #else
885 static int hpage_collapse_find_target_node(struct collapse_control *cc)
886 {
887 	return 0;
888 }
889 #endif
890 
891 /*
892  * If mmap_lock temporarily dropped, revalidate vma
893  * before taking mmap_lock.
894  * Returns enum scan_result value.
895  */
896 
897 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
898 				   bool expect_anon,
899 				   struct vm_area_struct **vmap,
900 				   struct collapse_control *cc)
901 {
902 	struct vm_area_struct *vma;
903 	unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0;
904 
905 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
906 		return SCAN_ANY_PROCESS;
907 
908 	*vmap = vma = find_vma(mm, address);
909 	if (!vma)
910 		return SCAN_VMA_NULL;
911 
912 	if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
913 		return SCAN_ADDRESS_RANGE;
914 	if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER))
915 		return SCAN_VMA_CHECK;
916 	/*
917 	 * Anon VMA expected, the address may be unmapped then
918 	 * remapped to file after khugepaged reaquired the mmap_lock.
919 	 *
920 	 * thp_vma_allowable_order may return true for qualified file
921 	 * vmas.
922 	 */
923 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
924 		return SCAN_PAGE_ANON;
925 	return SCAN_SUCCEED;
926 }
927 
928 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
929 				   unsigned long address,
930 				   pmd_t **pmd)
931 {
932 	pmd_t pmde;
933 
934 	*pmd = mm_find_pmd(mm, address);
935 	if (!*pmd)
936 		return SCAN_PMD_NULL;
937 
938 	pmde = pmdp_get_lockless(*pmd);
939 	if (pmd_none(pmde))
940 		return SCAN_PMD_NONE;
941 	if (!pmd_present(pmde))
942 		return SCAN_PMD_NULL;
943 	if (pmd_trans_huge(pmde))
944 		return SCAN_PMD_MAPPED;
945 	if (pmd_devmap(pmde))
946 		return SCAN_PMD_NULL;
947 	if (pmd_bad(pmde))
948 		return SCAN_PMD_NULL;
949 	return SCAN_SUCCEED;
950 }
951 
952 static int check_pmd_still_valid(struct mm_struct *mm,
953 				 unsigned long address,
954 				 pmd_t *pmd)
955 {
956 	pmd_t *new_pmd;
957 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
958 
959 	if (result != SCAN_SUCCEED)
960 		return result;
961 	if (new_pmd != pmd)
962 		return SCAN_FAIL;
963 	return SCAN_SUCCEED;
964 }
965 
966 /*
967  * Bring missing pages in from swap, to complete THP collapse.
968  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
969  *
970  * Called and returns without pte mapped or spinlocks held.
971  * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
972  */
973 static int __collapse_huge_page_swapin(struct mm_struct *mm,
974 				       struct vm_area_struct *vma,
975 				       unsigned long haddr, pmd_t *pmd,
976 				       int referenced)
977 {
978 	int swapped_in = 0;
979 	vm_fault_t ret = 0;
980 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
981 	int result;
982 	pte_t *pte = NULL;
983 	spinlock_t *ptl;
984 
985 	for (address = haddr; address < end; address += PAGE_SIZE) {
986 		struct vm_fault vmf = {
987 			.vma = vma,
988 			.address = address,
989 			.pgoff = linear_page_index(vma, address),
990 			.flags = FAULT_FLAG_ALLOW_RETRY,
991 			.pmd = pmd,
992 		};
993 
994 		if (!pte++) {
995 			pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
996 			if (!pte) {
997 				mmap_read_unlock(mm);
998 				result = SCAN_PMD_NULL;
999 				goto out;
1000 			}
1001 		}
1002 
1003 		vmf.orig_pte = ptep_get_lockless(pte);
1004 		if (!is_swap_pte(vmf.orig_pte))
1005 			continue;
1006 
1007 		vmf.pte = pte;
1008 		vmf.ptl = ptl;
1009 		ret = do_swap_page(&vmf);
1010 		/* Which unmaps pte (after perhaps re-checking the entry) */
1011 		pte = NULL;
1012 
1013 		/*
1014 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1015 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1016 		 * we do not retry here and swap entry will remain in pagetable
1017 		 * resulting in later failure.
1018 		 */
1019 		if (ret & VM_FAULT_RETRY) {
1020 			/* Likely, but not guaranteed, that page lock failed */
1021 			result = SCAN_PAGE_LOCK;
1022 			goto out;
1023 		}
1024 		if (ret & VM_FAULT_ERROR) {
1025 			mmap_read_unlock(mm);
1026 			result = SCAN_FAIL;
1027 			goto out;
1028 		}
1029 		swapped_in++;
1030 	}
1031 
1032 	if (pte)
1033 		pte_unmap(pte);
1034 
1035 	/* Drain LRU cache to remove extra pin on the swapped in pages */
1036 	if (swapped_in)
1037 		lru_add_drain();
1038 
1039 	result = SCAN_SUCCEED;
1040 out:
1041 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1042 	return result;
1043 }
1044 
1045 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1046 			      struct collapse_control *cc)
1047 {
1048 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1049 		     GFP_TRANSHUGE);
1050 	int node = hpage_collapse_find_target_node(cc);
1051 	struct folio *folio;
1052 
1053 	folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1054 	if (!folio) {
1055 		*foliop = NULL;
1056 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1057 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
1058 	}
1059 
1060 	count_vm_event(THP_COLLAPSE_ALLOC);
1061 	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1062 		folio_put(folio);
1063 		*foliop = NULL;
1064 		return SCAN_CGROUP_CHARGE_FAIL;
1065 	}
1066 
1067 	count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1068 
1069 	*foliop = folio;
1070 	return SCAN_SUCCEED;
1071 }
1072 
1073 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1074 			      int referenced, int unmapped,
1075 			      struct collapse_control *cc)
1076 {
1077 	LIST_HEAD(compound_pagelist);
1078 	pmd_t *pmd, _pmd;
1079 	pte_t *pte;
1080 	pgtable_t pgtable;
1081 	struct folio *folio;
1082 	spinlock_t *pmd_ptl, *pte_ptl;
1083 	int result = SCAN_FAIL;
1084 	struct vm_area_struct *vma;
1085 	struct mmu_notifier_range range;
1086 
1087 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1088 
1089 	/*
1090 	 * Before allocating the hugepage, release the mmap_lock read lock.
1091 	 * The allocation can take potentially a long time if it involves
1092 	 * sync compaction, and we do not need to hold the mmap_lock during
1093 	 * that. We will recheck the vma after taking it again in write mode.
1094 	 */
1095 	mmap_read_unlock(mm);
1096 
1097 	result = alloc_charge_folio(&folio, mm, cc);
1098 	if (result != SCAN_SUCCEED)
1099 		goto out_nolock;
1100 
1101 	mmap_read_lock(mm);
1102 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1103 	if (result != SCAN_SUCCEED) {
1104 		mmap_read_unlock(mm);
1105 		goto out_nolock;
1106 	}
1107 
1108 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1109 	if (result != SCAN_SUCCEED) {
1110 		mmap_read_unlock(mm);
1111 		goto out_nolock;
1112 	}
1113 
1114 	if (unmapped) {
1115 		/*
1116 		 * __collapse_huge_page_swapin will return with mmap_lock
1117 		 * released when it fails. So we jump out_nolock directly in
1118 		 * that case.  Continuing to collapse causes inconsistency.
1119 		 */
1120 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1121 						     referenced);
1122 		if (result != SCAN_SUCCEED)
1123 			goto out_nolock;
1124 	}
1125 
1126 	mmap_read_unlock(mm);
1127 	/*
1128 	 * Prevent all access to pagetables with the exception of
1129 	 * gup_fast later handled by the ptep_clear_flush and the VM
1130 	 * handled by the anon_vma lock + PG_lock.
1131 	 *
1132 	 * UFFDIO_MOVE is prevented to race as well thanks to the
1133 	 * mmap_lock.
1134 	 */
1135 	mmap_write_lock(mm);
1136 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1137 	if (result != SCAN_SUCCEED)
1138 		goto out_up_write;
1139 	/* check if the pmd is still valid */
1140 	result = check_pmd_still_valid(mm, address, pmd);
1141 	if (result != SCAN_SUCCEED)
1142 		goto out_up_write;
1143 
1144 	vma_start_write(vma);
1145 	anon_vma_lock_write(vma->anon_vma);
1146 
1147 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1148 				address + HPAGE_PMD_SIZE);
1149 	mmu_notifier_invalidate_range_start(&range);
1150 
1151 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1152 	/*
1153 	 * This removes any huge TLB entry from the CPU so we won't allow
1154 	 * huge and small TLB entries for the same virtual address to
1155 	 * avoid the risk of CPU bugs in that area.
1156 	 *
1157 	 * Parallel GUP-fast is fine since GUP-fast will back off when
1158 	 * it detects PMD is changed.
1159 	 */
1160 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1161 	spin_unlock(pmd_ptl);
1162 	mmu_notifier_invalidate_range_end(&range);
1163 	tlb_remove_table_sync_one();
1164 
1165 	pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1166 	if (pte) {
1167 		result = __collapse_huge_page_isolate(vma, address, pte, cc,
1168 						      &compound_pagelist);
1169 		spin_unlock(pte_ptl);
1170 	} else {
1171 		result = SCAN_PMD_NULL;
1172 	}
1173 
1174 	if (unlikely(result != SCAN_SUCCEED)) {
1175 		if (pte)
1176 			pte_unmap(pte);
1177 		spin_lock(pmd_ptl);
1178 		BUG_ON(!pmd_none(*pmd));
1179 		/*
1180 		 * We can only use set_pmd_at when establishing
1181 		 * hugepmds and never for establishing regular pmds that
1182 		 * points to regular pagetables. Use pmd_populate for that
1183 		 */
1184 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1185 		spin_unlock(pmd_ptl);
1186 		anon_vma_unlock_write(vma->anon_vma);
1187 		goto out_up_write;
1188 	}
1189 
1190 	/*
1191 	 * All pages are isolated and locked so anon_vma rmap
1192 	 * can't run anymore.
1193 	 */
1194 	anon_vma_unlock_write(vma->anon_vma);
1195 
1196 	result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1197 					   vma, address, pte_ptl,
1198 					   &compound_pagelist);
1199 	pte_unmap(pte);
1200 	if (unlikely(result != SCAN_SUCCEED))
1201 		goto out_up_write;
1202 
1203 	/*
1204 	 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1205 	 * copy_huge_page writes become visible before the set_pmd_at()
1206 	 * write.
1207 	 */
1208 	__folio_mark_uptodate(folio);
1209 	pgtable = pmd_pgtable(_pmd);
1210 
1211 	_pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot);
1212 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1213 
1214 	spin_lock(pmd_ptl);
1215 	BUG_ON(!pmd_none(*pmd));
1216 	folio_add_new_anon_rmap(folio, vma, address);
1217 	folio_add_lru_vma(folio, vma);
1218 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1219 	set_pmd_at(mm, address, pmd, _pmd);
1220 	update_mmu_cache_pmd(vma, address, pmd);
1221 	spin_unlock(pmd_ptl);
1222 
1223 	folio = NULL;
1224 
1225 	result = SCAN_SUCCEED;
1226 out_up_write:
1227 	mmap_write_unlock(mm);
1228 out_nolock:
1229 	if (folio)
1230 		folio_put(folio);
1231 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1232 	return result;
1233 }
1234 
1235 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1236 				   struct vm_area_struct *vma,
1237 				   unsigned long address, bool *mmap_locked,
1238 				   struct collapse_control *cc)
1239 {
1240 	pmd_t *pmd;
1241 	pte_t *pte, *_pte;
1242 	int result = SCAN_FAIL, referenced = 0;
1243 	int none_or_zero = 0, shared = 0;
1244 	struct page *page = NULL;
1245 	struct folio *folio = NULL;
1246 	unsigned long _address;
1247 	spinlock_t *ptl;
1248 	int node = NUMA_NO_NODE, unmapped = 0;
1249 	bool writable = false;
1250 
1251 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1252 
1253 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1254 	if (result != SCAN_SUCCEED)
1255 		goto out;
1256 
1257 	memset(cc->node_load, 0, sizeof(cc->node_load));
1258 	nodes_clear(cc->alloc_nmask);
1259 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1260 	if (!pte) {
1261 		result = SCAN_PMD_NULL;
1262 		goto out;
1263 	}
1264 
1265 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1266 	     _pte++, _address += PAGE_SIZE) {
1267 		pte_t pteval = ptep_get(_pte);
1268 		if (is_swap_pte(pteval)) {
1269 			++unmapped;
1270 			if (!cc->is_khugepaged ||
1271 			    unmapped <= khugepaged_max_ptes_swap) {
1272 				/*
1273 				 * Always be strict with uffd-wp
1274 				 * enabled swap entries.  Please see
1275 				 * comment below for pte_uffd_wp().
1276 				 */
1277 				if (pte_swp_uffd_wp_any(pteval)) {
1278 					result = SCAN_PTE_UFFD_WP;
1279 					goto out_unmap;
1280 				}
1281 				continue;
1282 			} else {
1283 				result = SCAN_EXCEED_SWAP_PTE;
1284 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1285 				goto out_unmap;
1286 			}
1287 		}
1288 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1289 			++none_or_zero;
1290 			if (!userfaultfd_armed(vma) &&
1291 			    (!cc->is_khugepaged ||
1292 			     none_or_zero <= khugepaged_max_ptes_none)) {
1293 				continue;
1294 			} else {
1295 				result = SCAN_EXCEED_NONE_PTE;
1296 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1297 				goto out_unmap;
1298 			}
1299 		}
1300 		if (pte_uffd_wp(pteval)) {
1301 			/*
1302 			 * Don't collapse the page if any of the small
1303 			 * PTEs are armed with uffd write protection.
1304 			 * Here we can also mark the new huge pmd as
1305 			 * write protected if any of the small ones is
1306 			 * marked but that could bring unknown
1307 			 * userfault messages that falls outside of
1308 			 * the registered range.  So, just be simple.
1309 			 */
1310 			result = SCAN_PTE_UFFD_WP;
1311 			goto out_unmap;
1312 		}
1313 		if (pte_write(pteval))
1314 			writable = true;
1315 
1316 		page = vm_normal_page(vma, _address, pteval);
1317 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1318 			result = SCAN_PAGE_NULL;
1319 			goto out_unmap;
1320 		}
1321 		folio = page_folio(page);
1322 
1323 		if (!folio_test_anon(folio)) {
1324 			result = SCAN_PAGE_ANON;
1325 			goto out_unmap;
1326 		}
1327 
1328 		/*
1329 		 * We treat a single page as shared if any part of the THP
1330 		 * is shared. "False negatives" from
1331 		 * folio_likely_mapped_shared() are not expected to matter
1332 		 * much in practice.
1333 		 */
1334 		if (folio_likely_mapped_shared(folio)) {
1335 			++shared;
1336 			if (cc->is_khugepaged &&
1337 			    shared > khugepaged_max_ptes_shared) {
1338 				result = SCAN_EXCEED_SHARED_PTE;
1339 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1340 				goto out_unmap;
1341 			}
1342 		}
1343 
1344 		/*
1345 		 * Record which node the original page is from and save this
1346 		 * information to cc->node_load[].
1347 		 * Khugepaged will allocate hugepage from the node has the max
1348 		 * hit record.
1349 		 */
1350 		node = folio_nid(folio);
1351 		if (hpage_collapse_scan_abort(node, cc)) {
1352 			result = SCAN_SCAN_ABORT;
1353 			goto out_unmap;
1354 		}
1355 		cc->node_load[node]++;
1356 		if (!folio_test_lru(folio)) {
1357 			result = SCAN_PAGE_LRU;
1358 			goto out_unmap;
1359 		}
1360 		if (folio_test_locked(folio)) {
1361 			result = SCAN_PAGE_LOCK;
1362 			goto out_unmap;
1363 		}
1364 
1365 		/*
1366 		 * Check if the page has any GUP (or other external) pins.
1367 		 *
1368 		 * Here the check may be racy:
1369 		 * it may see folio_mapcount() > folio_ref_count().
1370 		 * But such case is ephemeral we could always retry collapse
1371 		 * later.  However it may report false positive if the page
1372 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1373 		 * will be done again later the risk seems low.
1374 		 */
1375 		if (!is_refcount_suitable(folio)) {
1376 			result = SCAN_PAGE_COUNT;
1377 			goto out_unmap;
1378 		}
1379 
1380 		/*
1381 		 * If collapse was initiated by khugepaged, check that there is
1382 		 * enough young pte to justify collapsing the page
1383 		 */
1384 		if (cc->is_khugepaged &&
1385 		    (pte_young(pteval) || folio_test_young(folio) ||
1386 		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
1387 								     address)))
1388 			referenced++;
1389 	}
1390 	if (!writable) {
1391 		result = SCAN_PAGE_RO;
1392 	} else if (cc->is_khugepaged &&
1393 		   (!referenced ||
1394 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1395 		result = SCAN_LACK_REFERENCED_PAGE;
1396 	} else {
1397 		result = SCAN_SUCCEED;
1398 	}
1399 out_unmap:
1400 	pte_unmap_unlock(pte, ptl);
1401 	if (result == SCAN_SUCCEED) {
1402 		result = collapse_huge_page(mm, address, referenced,
1403 					    unmapped, cc);
1404 		/* collapse_huge_page will return with the mmap_lock released */
1405 		*mmap_locked = false;
1406 	}
1407 out:
1408 	trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced,
1409 				     none_or_zero, result, unmapped);
1410 	return result;
1411 }
1412 
1413 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1414 {
1415 	struct mm_slot *slot = &mm_slot->slot;
1416 	struct mm_struct *mm = slot->mm;
1417 
1418 	lockdep_assert_held(&khugepaged_mm_lock);
1419 
1420 	if (hpage_collapse_test_exit(mm)) {
1421 		/* free mm_slot */
1422 		hash_del(&slot->hash);
1423 		list_del(&slot->mm_node);
1424 
1425 		/*
1426 		 * Not strictly needed because the mm exited already.
1427 		 *
1428 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1429 		 */
1430 
1431 		/* khugepaged_mm_lock actually not necessary for the below */
1432 		mm_slot_free(mm_slot_cache, mm_slot);
1433 		mmdrop(mm);
1434 	}
1435 }
1436 
1437 #ifdef CONFIG_SHMEM
1438 /* hpage must be locked, and mmap_lock must be held */
1439 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1440 			pmd_t *pmdp, struct page *hpage)
1441 {
1442 	struct vm_fault vmf = {
1443 		.vma = vma,
1444 		.address = addr,
1445 		.flags = 0,
1446 		.pmd = pmdp,
1447 	};
1448 
1449 	VM_BUG_ON(!PageTransHuge(hpage));
1450 	mmap_assert_locked(vma->vm_mm);
1451 
1452 	if (do_set_pmd(&vmf, hpage))
1453 		return SCAN_FAIL;
1454 
1455 	get_page(hpage);
1456 	return SCAN_SUCCEED;
1457 }
1458 
1459 /**
1460  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1461  * address haddr.
1462  *
1463  * @mm: process address space where collapse happens
1464  * @addr: THP collapse address
1465  * @install_pmd: If a huge PMD should be installed
1466  *
1467  * This function checks whether all the PTEs in the PMD are pointing to the
1468  * right THP. If so, retract the page table so the THP can refault in with
1469  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1470  */
1471 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1472 			    bool install_pmd)
1473 {
1474 	struct mmu_notifier_range range;
1475 	bool notified = false;
1476 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1477 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1478 	struct folio *folio;
1479 	pte_t *start_pte, *pte;
1480 	pmd_t *pmd, pgt_pmd;
1481 	spinlock_t *pml = NULL, *ptl;
1482 	int nr_ptes = 0, result = SCAN_FAIL;
1483 	int i;
1484 
1485 	mmap_assert_locked(mm);
1486 
1487 	/* First check VMA found, in case page tables are being torn down */
1488 	if (!vma || !vma->vm_file ||
1489 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1490 		return SCAN_VMA_CHECK;
1491 
1492 	/* Fast check before locking page if already PMD-mapped */
1493 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1494 	if (result == SCAN_PMD_MAPPED)
1495 		return result;
1496 
1497 	/*
1498 	 * If we are here, we've succeeded in replacing all the native pages
1499 	 * in the page cache with a single hugepage. If a mm were to fault-in
1500 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1501 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1502 	 * analogously elide sysfs THP settings here.
1503 	 */
1504 	if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
1505 		return SCAN_VMA_CHECK;
1506 
1507 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1508 	if (userfaultfd_wp(vma))
1509 		return SCAN_PTE_UFFD_WP;
1510 
1511 	folio = filemap_lock_folio(vma->vm_file->f_mapping,
1512 			       linear_page_index(vma, haddr));
1513 	if (IS_ERR(folio))
1514 		return SCAN_PAGE_NULL;
1515 
1516 	if (folio_order(folio) != HPAGE_PMD_ORDER) {
1517 		result = SCAN_PAGE_COMPOUND;
1518 		goto drop_folio;
1519 	}
1520 
1521 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1522 	switch (result) {
1523 	case SCAN_SUCCEED:
1524 		break;
1525 	case SCAN_PMD_NONE:
1526 		/*
1527 		 * All pte entries have been removed and pmd cleared.
1528 		 * Skip all the pte checks and just update the pmd mapping.
1529 		 */
1530 		goto maybe_install_pmd;
1531 	default:
1532 		goto drop_folio;
1533 	}
1534 
1535 	result = SCAN_FAIL;
1536 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1537 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1538 		goto drop_folio;
1539 
1540 	/* step 1: check all mapped PTEs are to the right huge page */
1541 	for (i = 0, addr = haddr, pte = start_pte;
1542 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1543 		struct page *page;
1544 		pte_t ptent = ptep_get(pte);
1545 
1546 		/* empty pte, skip */
1547 		if (pte_none(ptent))
1548 			continue;
1549 
1550 		/* page swapped out, abort */
1551 		if (!pte_present(ptent)) {
1552 			result = SCAN_PTE_NON_PRESENT;
1553 			goto abort;
1554 		}
1555 
1556 		page = vm_normal_page(vma, addr, ptent);
1557 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1558 			page = NULL;
1559 		/*
1560 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1561 		 * page table, but the new page will not be a subpage of hpage.
1562 		 */
1563 		if (folio_page(folio, i) != page)
1564 			goto abort;
1565 	}
1566 
1567 	pte_unmap_unlock(start_pte, ptl);
1568 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1569 				haddr, haddr + HPAGE_PMD_SIZE);
1570 	mmu_notifier_invalidate_range_start(&range);
1571 	notified = true;
1572 
1573 	/*
1574 	 * pmd_lock covers a wider range than ptl, and (if split from mm's
1575 	 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1576 	 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1577 	 * inserts a valid as-if-COWed PTE without even looking up page cache.
1578 	 * So page lock of folio does not protect from it, so we must not drop
1579 	 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1580 	 */
1581 	if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1582 		pml = pmd_lock(mm, pmd);
1583 
1584 	start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl);
1585 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1586 		goto abort;
1587 	if (!pml)
1588 		spin_lock(ptl);
1589 	else if (ptl != pml)
1590 		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1591 
1592 	/* step 2: clear page table and adjust rmap */
1593 	for (i = 0, addr = haddr, pte = start_pte;
1594 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1595 		struct page *page;
1596 		pte_t ptent = ptep_get(pte);
1597 
1598 		if (pte_none(ptent))
1599 			continue;
1600 		/*
1601 		 * We dropped ptl after the first scan, to do the mmu_notifier:
1602 		 * page lock stops more PTEs of the folio being faulted in, but
1603 		 * does not stop write faults COWing anon copies from existing
1604 		 * PTEs; and does not stop those being swapped out or migrated.
1605 		 */
1606 		if (!pte_present(ptent)) {
1607 			result = SCAN_PTE_NON_PRESENT;
1608 			goto abort;
1609 		}
1610 		page = vm_normal_page(vma, addr, ptent);
1611 		if (folio_page(folio, i) != page)
1612 			goto abort;
1613 
1614 		/*
1615 		 * Must clear entry, or a racing truncate may re-remove it.
1616 		 * TLB flush can be left until pmdp_collapse_flush() does it.
1617 		 * PTE dirty? Shmem page is already dirty; file is read-only.
1618 		 */
1619 		ptep_clear(mm, addr, pte);
1620 		folio_remove_rmap_pte(folio, page, vma);
1621 		nr_ptes++;
1622 	}
1623 
1624 	pte_unmap(start_pte);
1625 	if (!pml)
1626 		spin_unlock(ptl);
1627 
1628 	/* step 3: set proper refcount and mm_counters. */
1629 	if (nr_ptes) {
1630 		folio_ref_sub(folio, nr_ptes);
1631 		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1632 	}
1633 
1634 	/* step 4: remove empty page table */
1635 	if (!pml) {
1636 		pml = pmd_lock(mm, pmd);
1637 		if (ptl != pml)
1638 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1639 	}
1640 	pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1641 	pmdp_get_lockless_sync();
1642 	if (ptl != pml)
1643 		spin_unlock(ptl);
1644 	spin_unlock(pml);
1645 
1646 	mmu_notifier_invalidate_range_end(&range);
1647 
1648 	mm_dec_nr_ptes(mm);
1649 	page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1650 	pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1651 
1652 maybe_install_pmd:
1653 	/* step 5: install pmd entry */
1654 	result = install_pmd
1655 			? set_huge_pmd(vma, haddr, pmd, &folio->page)
1656 			: SCAN_SUCCEED;
1657 	goto drop_folio;
1658 abort:
1659 	if (nr_ptes) {
1660 		flush_tlb_mm(mm);
1661 		folio_ref_sub(folio, nr_ptes);
1662 		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1663 	}
1664 	if (start_pte)
1665 		pte_unmap_unlock(start_pte, ptl);
1666 	if (pml && pml != ptl)
1667 		spin_unlock(pml);
1668 	if (notified)
1669 		mmu_notifier_invalidate_range_end(&range);
1670 drop_folio:
1671 	folio_unlock(folio);
1672 	folio_put(folio);
1673 	return result;
1674 }
1675 
1676 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1677 {
1678 	struct vm_area_struct *vma;
1679 
1680 	i_mmap_lock_read(mapping);
1681 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1682 		struct mmu_notifier_range range;
1683 		struct mm_struct *mm;
1684 		unsigned long addr;
1685 		pmd_t *pmd, pgt_pmd;
1686 		spinlock_t *pml;
1687 		spinlock_t *ptl;
1688 		bool skipped_uffd = false;
1689 
1690 		/*
1691 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1692 		 * got written to. These VMAs are likely not worth removing
1693 		 * page tables from, as PMD-mapping is likely to be split later.
1694 		 */
1695 		if (READ_ONCE(vma->anon_vma))
1696 			continue;
1697 
1698 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1699 		if (addr & ~HPAGE_PMD_MASK ||
1700 		    vma->vm_end < addr + HPAGE_PMD_SIZE)
1701 			continue;
1702 
1703 		mm = vma->vm_mm;
1704 		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1705 			continue;
1706 
1707 		if (hpage_collapse_test_exit(mm))
1708 			continue;
1709 		/*
1710 		 * When a vma is registered with uffd-wp, we cannot recycle
1711 		 * the page table because there may be pte markers installed.
1712 		 * Other vmas can still have the same file mapped hugely, but
1713 		 * skip this one: it will always be mapped in small page size
1714 		 * for uffd-wp registered ranges.
1715 		 */
1716 		if (userfaultfd_wp(vma))
1717 			continue;
1718 
1719 		/* PTEs were notified when unmapped; but now for the PMD? */
1720 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1721 					addr, addr + HPAGE_PMD_SIZE);
1722 		mmu_notifier_invalidate_range_start(&range);
1723 
1724 		pml = pmd_lock(mm, pmd);
1725 		ptl = pte_lockptr(mm, pmd);
1726 		if (ptl != pml)
1727 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1728 
1729 		/*
1730 		 * Huge page lock is still held, so normally the page table
1731 		 * must remain empty; and we have already skipped anon_vma
1732 		 * and userfaultfd_wp() vmas.  But since the mmap_lock is not
1733 		 * held, it is still possible for a racing userfaultfd_ioctl()
1734 		 * to have inserted ptes or markers.  Now that we hold ptlock,
1735 		 * repeating the anon_vma check protects from one category,
1736 		 * and repeating the userfaultfd_wp() check from another.
1737 		 */
1738 		if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
1739 			skipped_uffd = true;
1740 		} else {
1741 			pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1742 			pmdp_get_lockless_sync();
1743 		}
1744 
1745 		if (ptl != pml)
1746 			spin_unlock(ptl);
1747 		spin_unlock(pml);
1748 
1749 		mmu_notifier_invalidate_range_end(&range);
1750 
1751 		if (!skipped_uffd) {
1752 			mm_dec_nr_ptes(mm);
1753 			page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1754 			pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1755 		}
1756 	}
1757 	i_mmap_unlock_read(mapping);
1758 }
1759 
1760 /**
1761  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1762  *
1763  * @mm: process address space where collapse happens
1764  * @addr: virtual collapse start address
1765  * @file: file that collapse on
1766  * @start: collapse start address
1767  * @cc: collapse context and scratchpad
1768  *
1769  * Basic scheme is simple, details are more complex:
1770  *  - allocate and lock a new huge page;
1771  *  - scan page cache, locking old pages
1772  *    + swap/gup in pages if necessary;
1773  *  - copy data to new page
1774  *  - handle shmem holes
1775  *    + re-validate that holes weren't filled by someone else
1776  *    + check for userfaultfd
1777  *  - finalize updates to the page cache;
1778  *  - if replacing succeeds:
1779  *    + unlock huge page;
1780  *    + free old pages;
1781  *  - if replacing failed;
1782  *    + unlock old pages
1783  *    + unlock and free huge page;
1784  */
1785 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1786 			 struct file *file, pgoff_t start,
1787 			 struct collapse_control *cc)
1788 {
1789 	struct address_space *mapping = file->f_mapping;
1790 	struct page *dst;
1791 	struct folio *folio, *tmp, *new_folio;
1792 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1793 	LIST_HEAD(pagelist);
1794 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1795 	int nr_none = 0, result = SCAN_SUCCEED;
1796 	bool is_shmem = shmem_file(file);
1797 
1798 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1799 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1800 
1801 	result = alloc_charge_folio(&new_folio, mm, cc);
1802 	if (result != SCAN_SUCCEED)
1803 		goto out;
1804 
1805 	__folio_set_locked(new_folio);
1806 	if (is_shmem)
1807 		__folio_set_swapbacked(new_folio);
1808 	new_folio->index = start;
1809 	new_folio->mapping = mapping;
1810 
1811 	/*
1812 	 * Ensure we have slots for all the pages in the range.  This is
1813 	 * almost certainly a no-op because most of the pages must be present
1814 	 */
1815 	do {
1816 		xas_lock_irq(&xas);
1817 		xas_create_range(&xas);
1818 		if (!xas_error(&xas))
1819 			break;
1820 		xas_unlock_irq(&xas);
1821 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1822 			result = SCAN_FAIL;
1823 			goto rollback;
1824 		}
1825 	} while (1);
1826 
1827 	for (index = start; index < end; index++) {
1828 		xas_set(&xas, index);
1829 		folio = xas_load(&xas);
1830 
1831 		VM_BUG_ON(index != xas.xa_index);
1832 		if (is_shmem) {
1833 			if (!folio) {
1834 				/*
1835 				 * Stop if extent has been truncated or
1836 				 * hole-punched, and is now completely
1837 				 * empty.
1838 				 */
1839 				if (index == start) {
1840 					if (!xas_next_entry(&xas, end - 1)) {
1841 						result = SCAN_TRUNCATED;
1842 						goto xa_locked;
1843 					}
1844 				}
1845 				nr_none++;
1846 				continue;
1847 			}
1848 
1849 			if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1850 				xas_unlock_irq(&xas);
1851 				/* swap in or instantiate fallocated page */
1852 				if (shmem_get_folio(mapping->host, index,
1853 						&folio, SGP_NOALLOC)) {
1854 					result = SCAN_FAIL;
1855 					goto xa_unlocked;
1856 				}
1857 				/* drain lru cache to help isolate_lru_page() */
1858 				lru_add_drain();
1859 			} else if (folio_trylock(folio)) {
1860 				folio_get(folio);
1861 				xas_unlock_irq(&xas);
1862 			} else {
1863 				result = SCAN_PAGE_LOCK;
1864 				goto xa_locked;
1865 			}
1866 		} else {	/* !is_shmem */
1867 			if (!folio || xa_is_value(folio)) {
1868 				xas_unlock_irq(&xas);
1869 				page_cache_sync_readahead(mapping, &file->f_ra,
1870 							  file, index,
1871 							  end - index);
1872 				/* drain lru cache to help isolate_lru_page() */
1873 				lru_add_drain();
1874 				folio = filemap_lock_folio(mapping, index);
1875 				if (IS_ERR(folio)) {
1876 					result = SCAN_FAIL;
1877 					goto xa_unlocked;
1878 				}
1879 			} else if (folio_test_dirty(folio)) {
1880 				/*
1881 				 * khugepaged only works on read-only fd,
1882 				 * so this page is dirty because it hasn't
1883 				 * been flushed since first write. There
1884 				 * won't be new dirty pages.
1885 				 *
1886 				 * Trigger async flush here and hope the
1887 				 * writeback is done when khugepaged
1888 				 * revisits this page.
1889 				 *
1890 				 * This is a one-off situation. We are not
1891 				 * forcing writeback in loop.
1892 				 */
1893 				xas_unlock_irq(&xas);
1894 				filemap_flush(mapping);
1895 				result = SCAN_FAIL;
1896 				goto xa_unlocked;
1897 			} else if (folio_test_writeback(folio)) {
1898 				xas_unlock_irq(&xas);
1899 				result = SCAN_FAIL;
1900 				goto xa_unlocked;
1901 			} else if (folio_trylock(folio)) {
1902 				folio_get(folio);
1903 				xas_unlock_irq(&xas);
1904 			} else {
1905 				result = SCAN_PAGE_LOCK;
1906 				goto xa_locked;
1907 			}
1908 		}
1909 
1910 		/*
1911 		 * The folio must be locked, so we can drop the i_pages lock
1912 		 * without racing with truncate.
1913 		 */
1914 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1915 
1916 		/* make sure the folio is up to date */
1917 		if (unlikely(!folio_test_uptodate(folio))) {
1918 			result = SCAN_FAIL;
1919 			goto out_unlock;
1920 		}
1921 
1922 		/*
1923 		 * If file was truncated then extended, or hole-punched, before
1924 		 * we locked the first folio, then a THP might be there already.
1925 		 * This will be discovered on the first iteration.
1926 		 */
1927 		if (folio_test_large(folio)) {
1928 			result = folio_order(folio) == HPAGE_PMD_ORDER &&
1929 					folio->index == start
1930 					/* Maybe PMD-mapped */
1931 					? SCAN_PTE_MAPPED_HUGEPAGE
1932 					: SCAN_PAGE_COMPOUND;
1933 			goto out_unlock;
1934 		}
1935 
1936 		if (folio_mapping(folio) != mapping) {
1937 			result = SCAN_TRUNCATED;
1938 			goto out_unlock;
1939 		}
1940 
1941 		if (!is_shmem && (folio_test_dirty(folio) ||
1942 				  folio_test_writeback(folio))) {
1943 			/*
1944 			 * khugepaged only works on read-only fd, so this
1945 			 * folio is dirty because it hasn't been flushed
1946 			 * since first write.
1947 			 */
1948 			result = SCAN_FAIL;
1949 			goto out_unlock;
1950 		}
1951 
1952 		if (!folio_isolate_lru(folio)) {
1953 			result = SCAN_DEL_PAGE_LRU;
1954 			goto out_unlock;
1955 		}
1956 
1957 		if (!filemap_release_folio(folio, GFP_KERNEL)) {
1958 			result = SCAN_PAGE_HAS_PRIVATE;
1959 			folio_putback_lru(folio);
1960 			goto out_unlock;
1961 		}
1962 
1963 		if (folio_mapped(folio))
1964 			try_to_unmap(folio,
1965 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1966 
1967 		xas_lock_irq(&xas);
1968 
1969 		VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
1970 
1971 		/*
1972 		 * We control three references to the folio:
1973 		 *  - we hold a pin on it;
1974 		 *  - one reference from page cache;
1975 		 *  - one from lru_isolate_folio;
1976 		 * If those are the only references, then any new usage
1977 		 * of the folio will have to fetch it from the page
1978 		 * cache. That requires locking the folio to handle
1979 		 * truncate, so any new usage will be blocked until we
1980 		 * unlock folio after collapse/during rollback.
1981 		 */
1982 		if (folio_ref_count(folio) != 3) {
1983 			result = SCAN_PAGE_COUNT;
1984 			xas_unlock_irq(&xas);
1985 			folio_putback_lru(folio);
1986 			goto out_unlock;
1987 		}
1988 
1989 		/*
1990 		 * Accumulate the folios that are being collapsed.
1991 		 */
1992 		list_add_tail(&folio->lru, &pagelist);
1993 		continue;
1994 out_unlock:
1995 		folio_unlock(folio);
1996 		folio_put(folio);
1997 		goto xa_unlocked;
1998 	}
1999 
2000 	if (!is_shmem) {
2001 		filemap_nr_thps_inc(mapping);
2002 		/*
2003 		 * Paired with smp_mb() in do_dentry_open() to ensure
2004 		 * i_writecount is up to date and the update to nr_thps is
2005 		 * visible. Ensures the page cache will be truncated if the
2006 		 * file is opened writable.
2007 		 */
2008 		smp_mb();
2009 		if (inode_is_open_for_write(mapping->host)) {
2010 			result = SCAN_FAIL;
2011 			filemap_nr_thps_dec(mapping);
2012 		}
2013 	}
2014 
2015 xa_locked:
2016 	xas_unlock_irq(&xas);
2017 xa_unlocked:
2018 
2019 	/*
2020 	 * If collapse is successful, flush must be done now before copying.
2021 	 * If collapse is unsuccessful, does flush actually need to be done?
2022 	 * Do it anyway, to clear the state.
2023 	 */
2024 	try_to_unmap_flush();
2025 
2026 	if (result == SCAN_SUCCEED && nr_none &&
2027 	    !shmem_charge(mapping->host, nr_none))
2028 		result = SCAN_FAIL;
2029 	if (result != SCAN_SUCCEED) {
2030 		nr_none = 0;
2031 		goto rollback;
2032 	}
2033 
2034 	/*
2035 	 * The old folios are locked, so they won't change anymore.
2036 	 */
2037 	index = start;
2038 	dst = folio_page(new_folio, 0);
2039 	list_for_each_entry(folio, &pagelist, lru) {
2040 		while (index < folio->index) {
2041 			clear_highpage(dst);
2042 			index++;
2043 			dst++;
2044 		}
2045 		if (copy_mc_highpage(dst, folio_page(folio, 0)) > 0) {
2046 			result = SCAN_COPY_MC;
2047 			goto rollback;
2048 		}
2049 		index++;
2050 		dst++;
2051 	}
2052 	while (index < end) {
2053 		clear_highpage(dst);
2054 		index++;
2055 		dst++;
2056 	}
2057 
2058 	if (nr_none) {
2059 		struct vm_area_struct *vma;
2060 		int nr_none_check = 0;
2061 
2062 		i_mmap_lock_read(mapping);
2063 		xas_lock_irq(&xas);
2064 
2065 		xas_set(&xas, start);
2066 		for (index = start; index < end; index++) {
2067 			if (!xas_next(&xas)) {
2068 				xas_store(&xas, XA_RETRY_ENTRY);
2069 				if (xas_error(&xas)) {
2070 					result = SCAN_STORE_FAILED;
2071 					goto immap_locked;
2072 				}
2073 				nr_none_check++;
2074 			}
2075 		}
2076 
2077 		if (nr_none != nr_none_check) {
2078 			result = SCAN_PAGE_FILLED;
2079 			goto immap_locked;
2080 		}
2081 
2082 		/*
2083 		 * If userspace observed a missing page in a VMA with
2084 		 * a MODE_MISSING userfaultfd, then it might expect a
2085 		 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2086 		 * roll back to avoid suppressing such an event. Since
2087 		 * wp/minor userfaultfds don't give userspace any
2088 		 * guarantees that the kernel doesn't fill a missing
2089 		 * page with a zero page, so they don't matter here.
2090 		 *
2091 		 * Any userfaultfds registered after this point will
2092 		 * not be able to observe any missing pages due to the
2093 		 * previously inserted retry entries.
2094 		 */
2095 		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2096 			if (userfaultfd_missing(vma)) {
2097 				result = SCAN_EXCEED_NONE_PTE;
2098 				goto immap_locked;
2099 			}
2100 		}
2101 
2102 immap_locked:
2103 		i_mmap_unlock_read(mapping);
2104 		if (result != SCAN_SUCCEED) {
2105 			xas_set(&xas, start);
2106 			for (index = start; index < end; index++) {
2107 				if (xas_next(&xas) == XA_RETRY_ENTRY)
2108 					xas_store(&xas, NULL);
2109 			}
2110 
2111 			xas_unlock_irq(&xas);
2112 			goto rollback;
2113 		}
2114 	} else {
2115 		xas_lock_irq(&xas);
2116 	}
2117 
2118 	if (is_shmem)
2119 		__lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2120 	else
2121 		__lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2122 
2123 	if (nr_none) {
2124 		__lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2125 		/* nr_none is always 0 for non-shmem. */
2126 		__lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2127 	}
2128 
2129 	/*
2130 	 * Mark new_folio as uptodate before inserting it into the
2131 	 * page cache so that it isn't mistaken for an fallocated but
2132 	 * unwritten page.
2133 	 */
2134 	folio_mark_uptodate(new_folio);
2135 	folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2136 
2137 	if (is_shmem)
2138 		folio_mark_dirty(new_folio);
2139 	folio_add_lru(new_folio);
2140 
2141 	/* Join all the small entries into a single multi-index entry. */
2142 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2143 	xas_store(&xas, new_folio);
2144 	WARN_ON_ONCE(xas_error(&xas));
2145 	xas_unlock_irq(&xas);
2146 
2147 	/*
2148 	 * Remove pte page tables, so we can re-fault the page as huge.
2149 	 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2150 	 */
2151 	retract_page_tables(mapping, start);
2152 	if (cc && !cc->is_khugepaged)
2153 		result = SCAN_PTE_MAPPED_HUGEPAGE;
2154 	folio_unlock(new_folio);
2155 
2156 	/*
2157 	 * The collapse has succeeded, so free the old folios.
2158 	 */
2159 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2160 		list_del(&folio->lru);
2161 		folio->mapping = NULL;
2162 		folio_clear_active(folio);
2163 		folio_clear_unevictable(folio);
2164 		folio_unlock(folio);
2165 		folio_put_refs(folio, 3);
2166 	}
2167 
2168 	goto out;
2169 
2170 rollback:
2171 	/* Something went wrong: roll back page cache changes */
2172 	if (nr_none) {
2173 		xas_lock_irq(&xas);
2174 		mapping->nrpages -= nr_none;
2175 		xas_unlock_irq(&xas);
2176 		shmem_uncharge(mapping->host, nr_none);
2177 	}
2178 
2179 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2180 		list_del(&folio->lru);
2181 		folio_unlock(folio);
2182 		folio_putback_lru(folio);
2183 		folio_put(folio);
2184 	}
2185 	/*
2186 	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2187 	 * file only. This undo is not needed unless failure is
2188 	 * due to SCAN_COPY_MC.
2189 	 */
2190 	if (!is_shmem && result == SCAN_COPY_MC) {
2191 		filemap_nr_thps_dec(mapping);
2192 		/*
2193 		 * Paired with smp_mb() in do_dentry_open() to
2194 		 * ensure the update to nr_thps is visible.
2195 		 */
2196 		smp_mb();
2197 	}
2198 
2199 	new_folio->mapping = NULL;
2200 
2201 	folio_unlock(new_folio);
2202 	folio_put(new_folio);
2203 out:
2204 	VM_BUG_ON(!list_empty(&pagelist));
2205 	trace_mm_khugepaged_collapse_file(mm, new_folio, index, is_shmem, addr, file, HPAGE_PMD_NR, result);
2206 	return result;
2207 }
2208 
2209 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2210 				    struct file *file, pgoff_t start,
2211 				    struct collapse_control *cc)
2212 {
2213 	struct folio *folio = NULL;
2214 	struct address_space *mapping = file->f_mapping;
2215 	XA_STATE(xas, &mapping->i_pages, start);
2216 	int present, swap;
2217 	int node = NUMA_NO_NODE;
2218 	int result = SCAN_SUCCEED;
2219 
2220 	present = 0;
2221 	swap = 0;
2222 	memset(cc->node_load, 0, sizeof(cc->node_load));
2223 	nodes_clear(cc->alloc_nmask);
2224 	rcu_read_lock();
2225 	xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2226 		if (xas_retry(&xas, folio))
2227 			continue;
2228 
2229 		if (xa_is_value(folio)) {
2230 			++swap;
2231 			if (cc->is_khugepaged &&
2232 			    swap > khugepaged_max_ptes_swap) {
2233 				result = SCAN_EXCEED_SWAP_PTE;
2234 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2235 				break;
2236 			}
2237 			continue;
2238 		}
2239 
2240 		/*
2241 		 * TODO: khugepaged should compact smaller compound pages
2242 		 * into a PMD sized page
2243 		 */
2244 		if (folio_test_large(folio)) {
2245 			result = folio_order(folio) == HPAGE_PMD_ORDER &&
2246 					folio->index == start
2247 					/* Maybe PMD-mapped */
2248 					? SCAN_PTE_MAPPED_HUGEPAGE
2249 					: SCAN_PAGE_COMPOUND;
2250 			/*
2251 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2252 			 * by the caller won't touch the page cache, and so
2253 			 * it's safe to skip LRU and refcount checks before
2254 			 * returning.
2255 			 */
2256 			break;
2257 		}
2258 
2259 		node = folio_nid(folio);
2260 		if (hpage_collapse_scan_abort(node, cc)) {
2261 			result = SCAN_SCAN_ABORT;
2262 			break;
2263 		}
2264 		cc->node_load[node]++;
2265 
2266 		if (!folio_test_lru(folio)) {
2267 			result = SCAN_PAGE_LRU;
2268 			break;
2269 		}
2270 
2271 		if (folio_ref_count(folio) !=
2272 		    1 + folio_mapcount(folio) + folio_test_private(folio)) {
2273 			result = SCAN_PAGE_COUNT;
2274 			break;
2275 		}
2276 
2277 		/*
2278 		 * We probably should check if the folio is referenced
2279 		 * here, but nobody would transfer pte_young() to
2280 		 * folio_test_referenced() for us.  And rmap walk here
2281 		 * is just too costly...
2282 		 */
2283 
2284 		present++;
2285 
2286 		if (need_resched()) {
2287 			xas_pause(&xas);
2288 			cond_resched_rcu();
2289 		}
2290 	}
2291 	rcu_read_unlock();
2292 
2293 	if (result == SCAN_SUCCEED) {
2294 		if (cc->is_khugepaged &&
2295 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2296 			result = SCAN_EXCEED_NONE_PTE;
2297 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2298 		} else {
2299 			result = collapse_file(mm, addr, file, start, cc);
2300 		}
2301 	}
2302 
2303 	trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2304 	return result;
2305 }
2306 #else
2307 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2308 				    struct file *file, pgoff_t start,
2309 				    struct collapse_control *cc)
2310 {
2311 	BUILD_BUG();
2312 }
2313 #endif
2314 
2315 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2316 					    struct collapse_control *cc)
2317 	__releases(&khugepaged_mm_lock)
2318 	__acquires(&khugepaged_mm_lock)
2319 {
2320 	struct vma_iterator vmi;
2321 	struct khugepaged_mm_slot *mm_slot;
2322 	struct mm_slot *slot;
2323 	struct mm_struct *mm;
2324 	struct vm_area_struct *vma;
2325 	int progress = 0;
2326 
2327 	VM_BUG_ON(!pages);
2328 	lockdep_assert_held(&khugepaged_mm_lock);
2329 	*result = SCAN_FAIL;
2330 
2331 	if (khugepaged_scan.mm_slot) {
2332 		mm_slot = khugepaged_scan.mm_slot;
2333 		slot = &mm_slot->slot;
2334 	} else {
2335 		slot = list_entry(khugepaged_scan.mm_head.next,
2336 				     struct mm_slot, mm_node);
2337 		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2338 		khugepaged_scan.address = 0;
2339 		khugepaged_scan.mm_slot = mm_slot;
2340 	}
2341 	spin_unlock(&khugepaged_mm_lock);
2342 
2343 	mm = slot->mm;
2344 	/*
2345 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2346 	 * the next mm on the list.
2347 	 */
2348 	vma = NULL;
2349 	if (unlikely(!mmap_read_trylock(mm)))
2350 		goto breakouterloop_mmap_lock;
2351 
2352 	progress++;
2353 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2354 		goto breakouterloop;
2355 
2356 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2357 	for_each_vma(vmi, vma) {
2358 		unsigned long hstart, hend;
2359 
2360 		cond_resched();
2361 		if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2362 			progress++;
2363 			break;
2364 		}
2365 		if (!thp_vma_allowable_order(vma, vma->vm_flags,
2366 					TVA_ENFORCE_SYSFS, PMD_ORDER)) {
2367 skip:
2368 			progress++;
2369 			continue;
2370 		}
2371 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2372 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2373 		if (khugepaged_scan.address > hend)
2374 			goto skip;
2375 		if (khugepaged_scan.address < hstart)
2376 			khugepaged_scan.address = hstart;
2377 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2378 
2379 		while (khugepaged_scan.address < hend) {
2380 			bool mmap_locked = true;
2381 
2382 			cond_resched();
2383 			if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2384 				goto breakouterloop;
2385 
2386 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2387 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2388 				  hend);
2389 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2390 				struct file *file = get_file(vma->vm_file);
2391 				pgoff_t pgoff = linear_page_index(vma,
2392 						khugepaged_scan.address);
2393 
2394 				mmap_read_unlock(mm);
2395 				mmap_locked = false;
2396 				*result = hpage_collapse_scan_file(mm,
2397 					khugepaged_scan.address, file, pgoff, cc);
2398 				fput(file);
2399 				if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2400 					mmap_read_lock(mm);
2401 					if (hpage_collapse_test_exit_or_disable(mm))
2402 						goto breakouterloop;
2403 					*result = collapse_pte_mapped_thp(mm,
2404 						khugepaged_scan.address, false);
2405 					if (*result == SCAN_PMD_MAPPED)
2406 						*result = SCAN_SUCCEED;
2407 					mmap_read_unlock(mm);
2408 				}
2409 			} else {
2410 				*result = hpage_collapse_scan_pmd(mm, vma,
2411 					khugepaged_scan.address, &mmap_locked, cc);
2412 			}
2413 
2414 			if (*result == SCAN_SUCCEED)
2415 				++khugepaged_pages_collapsed;
2416 
2417 			/* move to next address */
2418 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2419 			progress += HPAGE_PMD_NR;
2420 			if (!mmap_locked)
2421 				/*
2422 				 * We released mmap_lock so break loop.  Note
2423 				 * that we drop mmap_lock before all hugepage
2424 				 * allocations, so if allocation fails, we are
2425 				 * guaranteed to break here and report the
2426 				 * correct result back to caller.
2427 				 */
2428 				goto breakouterloop_mmap_lock;
2429 			if (progress >= pages)
2430 				goto breakouterloop;
2431 		}
2432 	}
2433 breakouterloop:
2434 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2435 breakouterloop_mmap_lock:
2436 
2437 	spin_lock(&khugepaged_mm_lock);
2438 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2439 	/*
2440 	 * Release the current mm_slot if this mm is about to die, or
2441 	 * if we scanned all vmas of this mm.
2442 	 */
2443 	if (hpage_collapse_test_exit(mm) || !vma) {
2444 		/*
2445 		 * Make sure that if mm_users is reaching zero while
2446 		 * khugepaged runs here, khugepaged_exit will find
2447 		 * mm_slot not pointing to the exiting mm.
2448 		 */
2449 		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2450 			slot = list_entry(slot->mm_node.next,
2451 					  struct mm_slot, mm_node);
2452 			khugepaged_scan.mm_slot =
2453 				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2454 			khugepaged_scan.address = 0;
2455 		} else {
2456 			khugepaged_scan.mm_slot = NULL;
2457 			khugepaged_full_scans++;
2458 		}
2459 
2460 		collect_mm_slot(mm_slot);
2461 	}
2462 
2463 	return progress;
2464 }
2465 
2466 static int khugepaged_has_work(void)
2467 {
2468 	return !list_empty(&khugepaged_scan.mm_head) &&
2469 		hugepage_flags_enabled();
2470 }
2471 
2472 static int khugepaged_wait_event(void)
2473 {
2474 	return !list_empty(&khugepaged_scan.mm_head) ||
2475 		kthread_should_stop();
2476 }
2477 
2478 static void khugepaged_do_scan(struct collapse_control *cc)
2479 {
2480 	unsigned int progress = 0, pass_through_head = 0;
2481 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2482 	bool wait = true;
2483 	int result = SCAN_SUCCEED;
2484 
2485 	lru_add_drain_all();
2486 
2487 	while (true) {
2488 		cond_resched();
2489 
2490 		if (unlikely(kthread_should_stop()))
2491 			break;
2492 
2493 		spin_lock(&khugepaged_mm_lock);
2494 		if (!khugepaged_scan.mm_slot)
2495 			pass_through_head++;
2496 		if (khugepaged_has_work() &&
2497 		    pass_through_head < 2)
2498 			progress += khugepaged_scan_mm_slot(pages - progress,
2499 							    &result, cc);
2500 		else
2501 			progress = pages;
2502 		spin_unlock(&khugepaged_mm_lock);
2503 
2504 		if (progress >= pages)
2505 			break;
2506 
2507 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2508 			/*
2509 			 * If fail to allocate the first time, try to sleep for
2510 			 * a while.  When hit again, cancel the scan.
2511 			 */
2512 			if (!wait)
2513 				break;
2514 			wait = false;
2515 			khugepaged_alloc_sleep();
2516 		}
2517 	}
2518 }
2519 
2520 static bool khugepaged_should_wakeup(void)
2521 {
2522 	return kthread_should_stop() ||
2523 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2524 }
2525 
2526 static void khugepaged_wait_work(void)
2527 {
2528 	if (khugepaged_has_work()) {
2529 		const unsigned long scan_sleep_jiffies =
2530 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2531 
2532 		if (!scan_sleep_jiffies)
2533 			return;
2534 
2535 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2536 		wait_event_freezable_timeout(khugepaged_wait,
2537 					     khugepaged_should_wakeup(),
2538 					     scan_sleep_jiffies);
2539 		return;
2540 	}
2541 
2542 	if (hugepage_flags_enabled())
2543 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2544 }
2545 
2546 static int khugepaged(void *none)
2547 {
2548 	struct khugepaged_mm_slot *mm_slot;
2549 
2550 	set_freezable();
2551 	set_user_nice(current, MAX_NICE);
2552 
2553 	while (!kthread_should_stop()) {
2554 		khugepaged_do_scan(&khugepaged_collapse_control);
2555 		khugepaged_wait_work();
2556 	}
2557 
2558 	spin_lock(&khugepaged_mm_lock);
2559 	mm_slot = khugepaged_scan.mm_slot;
2560 	khugepaged_scan.mm_slot = NULL;
2561 	if (mm_slot)
2562 		collect_mm_slot(mm_slot);
2563 	spin_unlock(&khugepaged_mm_lock);
2564 	return 0;
2565 }
2566 
2567 static void set_recommended_min_free_kbytes(void)
2568 {
2569 	struct zone *zone;
2570 	int nr_zones = 0;
2571 	unsigned long recommended_min;
2572 
2573 	if (!hugepage_flags_enabled()) {
2574 		calculate_min_free_kbytes();
2575 		goto update_wmarks;
2576 	}
2577 
2578 	for_each_populated_zone(zone) {
2579 		/*
2580 		 * We don't need to worry about fragmentation of
2581 		 * ZONE_MOVABLE since it only has movable pages.
2582 		 */
2583 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2584 			continue;
2585 
2586 		nr_zones++;
2587 	}
2588 
2589 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2590 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2591 
2592 	/*
2593 	 * Make sure that on average at least two pageblocks are almost free
2594 	 * of another type, one for a migratetype to fall back to and a
2595 	 * second to avoid subsequent fallbacks of other types There are 3
2596 	 * MIGRATE_TYPES we care about.
2597 	 */
2598 	recommended_min += pageblock_nr_pages * nr_zones *
2599 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2600 
2601 	/* don't ever allow to reserve more than 5% of the lowmem */
2602 	recommended_min = min(recommended_min,
2603 			      (unsigned long) nr_free_buffer_pages() / 20);
2604 	recommended_min <<= (PAGE_SHIFT-10);
2605 
2606 	if (recommended_min > min_free_kbytes) {
2607 		if (user_min_free_kbytes >= 0)
2608 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2609 				min_free_kbytes, recommended_min);
2610 
2611 		min_free_kbytes = recommended_min;
2612 	}
2613 
2614 update_wmarks:
2615 	setup_per_zone_wmarks();
2616 }
2617 
2618 int start_stop_khugepaged(void)
2619 {
2620 	int err = 0;
2621 
2622 	mutex_lock(&khugepaged_mutex);
2623 	if (hugepage_flags_enabled()) {
2624 		if (!khugepaged_thread)
2625 			khugepaged_thread = kthread_run(khugepaged, NULL,
2626 							"khugepaged");
2627 		if (IS_ERR(khugepaged_thread)) {
2628 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2629 			err = PTR_ERR(khugepaged_thread);
2630 			khugepaged_thread = NULL;
2631 			goto fail;
2632 		}
2633 
2634 		if (!list_empty(&khugepaged_scan.mm_head))
2635 			wake_up_interruptible(&khugepaged_wait);
2636 	} else if (khugepaged_thread) {
2637 		kthread_stop(khugepaged_thread);
2638 		khugepaged_thread = NULL;
2639 	}
2640 	set_recommended_min_free_kbytes();
2641 fail:
2642 	mutex_unlock(&khugepaged_mutex);
2643 	return err;
2644 }
2645 
2646 void khugepaged_min_free_kbytes_update(void)
2647 {
2648 	mutex_lock(&khugepaged_mutex);
2649 	if (hugepage_flags_enabled() && khugepaged_thread)
2650 		set_recommended_min_free_kbytes();
2651 	mutex_unlock(&khugepaged_mutex);
2652 }
2653 
2654 bool current_is_khugepaged(void)
2655 {
2656 	return kthread_func(current) == khugepaged;
2657 }
2658 
2659 static int madvise_collapse_errno(enum scan_result r)
2660 {
2661 	/*
2662 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2663 	 * actionable feedback to caller, so they may take an appropriate
2664 	 * fallback measure depending on the nature of the failure.
2665 	 */
2666 	switch (r) {
2667 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2668 		return -ENOMEM;
2669 	case SCAN_CGROUP_CHARGE_FAIL:
2670 	case SCAN_EXCEED_NONE_PTE:
2671 		return -EBUSY;
2672 	/* Resource temporary unavailable - trying again might succeed */
2673 	case SCAN_PAGE_COUNT:
2674 	case SCAN_PAGE_LOCK:
2675 	case SCAN_PAGE_LRU:
2676 	case SCAN_DEL_PAGE_LRU:
2677 	case SCAN_PAGE_FILLED:
2678 		return -EAGAIN;
2679 	/*
2680 	 * Other: Trying again likely not to succeed / error intrinsic to
2681 	 * specified memory range. khugepaged likely won't be able to collapse
2682 	 * either.
2683 	 */
2684 	default:
2685 		return -EINVAL;
2686 	}
2687 }
2688 
2689 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2690 		     unsigned long start, unsigned long end)
2691 {
2692 	struct collapse_control *cc;
2693 	struct mm_struct *mm = vma->vm_mm;
2694 	unsigned long hstart, hend, addr;
2695 	int thps = 0, last_fail = SCAN_FAIL;
2696 	bool mmap_locked = true;
2697 
2698 	BUG_ON(vma->vm_start > start);
2699 	BUG_ON(vma->vm_end < end);
2700 
2701 	*prev = vma;
2702 
2703 	if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
2704 		return -EINVAL;
2705 
2706 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2707 	if (!cc)
2708 		return -ENOMEM;
2709 	cc->is_khugepaged = false;
2710 
2711 	mmgrab(mm);
2712 	lru_add_drain_all();
2713 
2714 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2715 	hend = end & HPAGE_PMD_MASK;
2716 
2717 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2718 		int result = SCAN_FAIL;
2719 
2720 		if (!mmap_locked) {
2721 			cond_resched();
2722 			mmap_read_lock(mm);
2723 			mmap_locked = true;
2724 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2725 							 cc);
2726 			if (result  != SCAN_SUCCEED) {
2727 				last_fail = result;
2728 				goto out_nolock;
2729 			}
2730 
2731 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2732 		}
2733 		mmap_assert_locked(mm);
2734 		memset(cc->node_load, 0, sizeof(cc->node_load));
2735 		nodes_clear(cc->alloc_nmask);
2736 		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2737 			struct file *file = get_file(vma->vm_file);
2738 			pgoff_t pgoff = linear_page_index(vma, addr);
2739 
2740 			mmap_read_unlock(mm);
2741 			mmap_locked = false;
2742 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2743 							  cc);
2744 			fput(file);
2745 		} else {
2746 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2747 							 &mmap_locked, cc);
2748 		}
2749 		if (!mmap_locked)
2750 			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2751 
2752 handle_result:
2753 		switch (result) {
2754 		case SCAN_SUCCEED:
2755 		case SCAN_PMD_MAPPED:
2756 			++thps;
2757 			break;
2758 		case SCAN_PTE_MAPPED_HUGEPAGE:
2759 			BUG_ON(mmap_locked);
2760 			BUG_ON(*prev);
2761 			mmap_read_lock(mm);
2762 			result = collapse_pte_mapped_thp(mm, addr, true);
2763 			mmap_read_unlock(mm);
2764 			goto handle_result;
2765 		/* Whitelisted set of results where continuing OK */
2766 		case SCAN_PMD_NULL:
2767 		case SCAN_PTE_NON_PRESENT:
2768 		case SCAN_PTE_UFFD_WP:
2769 		case SCAN_PAGE_RO:
2770 		case SCAN_LACK_REFERENCED_PAGE:
2771 		case SCAN_PAGE_NULL:
2772 		case SCAN_PAGE_COUNT:
2773 		case SCAN_PAGE_LOCK:
2774 		case SCAN_PAGE_COMPOUND:
2775 		case SCAN_PAGE_LRU:
2776 		case SCAN_DEL_PAGE_LRU:
2777 			last_fail = result;
2778 			break;
2779 		default:
2780 			last_fail = result;
2781 			/* Other error, exit */
2782 			goto out_maybelock;
2783 		}
2784 	}
2785 
2786 out_maybelock:
2787 	/* Caller expects us to hold mmap_lock on return */
2788 	if (!mmap_locked)
2789 		mmap_read_lock(mm);
2790 out_nolock:
2791 	mmap_assert_locked(mm);
2792 	mmdrop(mm);
2793 	kfree(cc);
2794 
2795 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2796 			: madvise_collapse_errno(last_fail);
2797 }
2798