1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/rcupdate_wait.h> 21 #include <linux/swapops.h> 22 #include <linux/shmem_fs.h> 23 #include <linux/ksm.h> 24 25 #include <asm/tlb.h> 26 #include <asm/pgalloc.h> 27 #include "internal.h" 28 #include "mm_slot.h" 29 30 enum scan_result { 31 SCAN_FAIL, 32 SCAN_SUCCEED, 33 SCAN_PMD_NULL, 34 SCAN_PMD_NONE, 35 SCAN_PMD_MAPPED, 36 SCAN_EXCEED_NONE_PTE, 37 SCAN_EXCEED_SWAP_PTE, 38 SCAN_EXCEED_SHARED_PTE, 39 SCAN_PTE_NON_PRESENT, 40 SCAN_PTE_UFFD_WP, 41 SCAN_PTE_MAPPED_HUGEPAGE, 42 SCAN_PAGE_RO, 43 SCAN_LACK_REFERENCED_PAGE, 44 SCAN_PAGE_NULL, 45 SCAN_SCAN_ABORT, 46 SCAN_PAGE_COUNT, 47 SCAN_PAGE_LRU, 48 SCAN_PAGE_LOCK, 49 SCAN_PAGE_ANON, 50 SCAN_PAGE_COMPOUND, 51 SCAN_ANY_PROCESS, 52 SCAN_VMA_NULL, 53 SCAN_VMA_CHECK, 54 SCAN_ADDRESS_RANGE, 55 SCAN_DEL_PAGE_LRU, 56 SCAN_ALLOC_HUGE_PAGE_FAIL, 57 SCAN_CGROUP_CHARGE_FAIL, 58 SCAN_TRUNCATED, 59 SCAN_PAGE_HAS_PRIVATE, 60 SCAN_STORE_FAILED, 61 SCAN_COPY_MC, 62 SCAN_PAGE_FILLED, 63 }; 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/huge_memory.h> 67 68 static struct task_struct *khugepaged_thread __read_mostly; 69 static DEFINE_MUTEX(khugepaged_mutex); 70 71 /* default scan 8*512 pte (or vmas) every 30 second */ 72 static unsigned int khugepaged_pages_to_scan __read_mostly; 73 static unsigned int khugepaged_pages_collapsed; 74 static unsigned int khugepaged_full_scans; 75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 76 /* during fragmentation poll the hugepage allocator once every minute */ 77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 78 static unsigned long khugepaged_sleep_expire; 79 static DEFINE_SPINLOCK(khugepaged_mm_lock); 80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 81 /* 82 * default collapse hugepages if there is at least one pte mapped like 83 * it would have happened if the vma was large enough during page 84 * fault. 85 * 86 * Note that these are only respected if collapse was initiated by khugepaged. 87 */ 88 static unsigned int khugepaged_max_ptes_none __read_mostly; 89 static unsigned int khugepaged_max_ptes_swap __read_mostly; 90 static unsigned int khugepaged_max_ptes_shared __read_mostly; 91 92 #define MM_SLOTS_HASH_BITS 10 93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 94 95 static struct kmem_cache *mm_slot_cache __ro_after_init; 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 109 * @slot: hash lookup from mm to mm_slot 110 */ 111 struct khugepaged_mm_slot { 112 struct mm_slot slot; 113 }; 114 115 /** 116 * struct khugepaged_scan - cursor for scanning 117 * @mm_head: the head of the mm list to scan 118 * @mm_slot: the current mm_slot we are scanning 119 * @address: the next address inside that to be scanned 120 * 121 * There is only the one khugepaged_scan instance of this cursor structure. 122 */ 123 struct khugepaged_scan { 124 struct list_head mm_head; 125 struct khugepaged_mm_slot *mm_slot; 126 unsigned long address; 127 }; 128 129 static struct khugepaged_scan khugepaged_scan = { 130 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 131 }; 132 133 #ifdef CONFIG_SYSFS 134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 135 struct kobj_attribute *attr, 136 char *buf) 137 { 138 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 139 } 140 141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 142 struct kobj_attribute *attr, 143 const char *buf, size_t count) 144 { 145 unsigned int msecs; 146 int err; 147 148 err = kstrtouint(buf, 10, &msecs); 149 if (err) 150 return -EINVAL; 151 152 khugepaged_scan_sleep_millisecs = msecs; 153 khugepaged_sleep_expire = 0; 154 wake_up_interruptible(&khugepaged_wait); 155 156 return count; 157 } 158 static struct kobj_attribute scan_sleep_millisecs_attr = 159 __ATTR_RW(scan_sleep_millisecs); 160 161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 162 struct kobj_attribute *attr, 163 char *buf) 164 { 165 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 166 } 167 168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 169 struct kobj_attribute *attr, 170 const char *buf, size_t count) 171 { 172 unsigned int msecs; 173 int err; 174 175 err = kstrtouint(buf, 10, &msecs); 176 if (err) 177 return -EINVAL; 178 179 khugepaged_alloc_sleep_millisecs = msecs; 180 khugepaged_sleep_expire = 0; 181 wake_up_interruptible(&khugepaged_wait); 182 183 return count; 184 } 185 static struct kobj_attribute alloc_sleep_millisecs_attr = 186 __ATTR_RW(alloc_sleep_millisecs); 187 188 static ssize_t pages_to_scan_show(struct kobject *kobj, 189 struct kobj_attribute *attr, 190 char *buf) 191 { 192 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 193 } 194 static ssize_t pages_to_scan_store(struct kobject *kobj, 195 struct kobj_attribute *attr, 196 const char *buf, size_t count) 197 { 198 unsigned int pages; 199 int err; 200 201 err = kstrtouint(buf, 10, &pages); 202 if (err || !pages) 203 return -EINVAL; 204 205 khugepaged_pages_to_scan = pages; 206 207 return count; 208 } 209 static struct kobj_attribute pages_to_scan_attr = 210 __ATTR_RW(pages_to_scan); 211 212 static ssize_t pages_collapsed_show(struct kobject *kobj, 213 struct kobj_attribute *attr, 214 char *buf) 215 { 216 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 217 } 218 static struct kobj_attribute pages_collapsed_attr = 219 __ATTR_RO(pages_collapsed); 220 221 static ssize_t full_scans_show(struct kobject *kobj, 222 struct kobj_attribute *attr, 223 char *buf) 224 { 225 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 226 } 227 static struct kobj_attribute full_scans_attr = 228 __ATTR_RO(full_scans); 229 230 static ssize_t defrag_show(struct kobject *kobj, 231 struct kobj_attribute *attr, char *buf) 232 { 233 return single_hugepage_flag_show(kobj, attr, buf, 234 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 235 } 236 static ssize_t defrag_store(struct kobject *kobj, 237 struct kobj_attribute *attr, 238 const char *buf, size_t count) 239 { 240 return single_hugepage_flag_store(kobj, attr, buf, count, 241 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 242 } 243 static struct kobj_attribute khugepaged_defrag_attr = 244 __ATTR_RW(defrag); 245 246 /* 247 * max_ptes_none controls if khugepaged should collapse hugepages over 248 * any unmapped ptes in turn potentially increasing the memory 249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 250 * reduce the available free memory in the system as it 251 * runs. Increasing max_ptes_none will instead potentially reduce the 252 * free memory in the system during the khugepaged scan. 253 */ 254 static ssize_t max_ptes_none_show(struct kobject *kobj, 255 struct kobj_attribute *attr, 256 char *buf) 257 { 258 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 259 } 260 static ssize_t max_ptes_none_store(struct kobject *kobj, 261 struct kobj_attribute *attr, 262 const char *buf, size_t count) 263 { 264 int err; 265 unsigned long max_ptes_none; 266 267 err = kstrtoul(buf, 10, &max_ptes_none); 268 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 269 return -EINVAL; 270 271 khugepaged_max_ptes_none = max_ptes_none; 272 273 return count; 274 } 275 static struct kobj_attribute khugepaged_max_ptes_none_attr = 276 __ATTR_RW(max_ptes_none); 277 278 static ssize_t max_ptes_swap_show(struct kobject *kobj, 279 struct kobj_attribute *attr, 280 char *buf) 281 { 282 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 283 } 284 285 static ssize_t max_ptes_swap_store(struct kobject *kobj, 286 struct kobj_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int err; 290 unsigned long max_ptes_swap; 291 292 err = kstrtoul(buf, 10, &max_ptes_swap); 293 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 294 return -EINVAL; 295 296 khugepaged_max_ptes_swap = max_ptes_swap; 297 298 return count; 299 } 300 301 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 302 __ATTR_RW(max_ptes_swap); 303 304 static ssize_t max_ptes_shared_show(struct kobject *kobj, 305 struct kobj_attribute *attr, 306 char *buf) 307 { 308 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 309 } 310 311 static ssize_t max_ptes_shared_store(struct kobject *kobj, 312 struct kobj_attribute *attr, 313 const char *buf, size_t count) 314 { 315 int err; 316 unsigned long max_ptes_shared; 317 318 err = kstrtoul(buf, 10, &max_ptes_shared); 319 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 320 return -EINVAL; 321 322 khugepaged_max_ptes_shared = max_ptes_shared; 323 324 return count; 325 } 326 327 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 328 __ATTR_RW(max_ptes_shared); 329 330 static struct attribute *khugepaged_attr[] = { 331 &khugepaged_defrag_attr.attr, 332 &khugepaged_max_ptes_none_attr.attr, 333 &khugepaged_max_ptes_swap_attr.attr, 334 &khugepaged_max_ptes_shared_attr.attr, 335 &pages_to_scan_attr.attr, 336 &pages_collapsed_attr.attr, 337 &full_scans_attr.attr, 338 &scan_sleep_millisecs_attr.attr, 339 &alloc_sleep_millisecs_attr.attr, 340 NULL, 341 }; 342 343 struct attribute_group khugepaged_attr_group = { 344 .attrs = khugepaged_attr, 345 .name = "khugepaged", 346 }; 347 #endif /* CONFIG_SYSFS */ 348 349 int hugepage_madvise(struct vm_area_struct *vma, 350 unsigned long *vm_flags, int advice) 351 { 352 switch (advice) { 353 case MADV_HUGEPAGE: 354 #ifdef CONFIG_S390 355 /* 356 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 357 * can't handle this properly after s390_enable_sie, so we simply 358 * ignore the madvise to prevent qemu from causing a SIGSEGV. 359 */ 360 if (mm_has_pgste(vma->vm_mm)) 361 return 0; 362 #endif 363 *vm_flags &= ~VM_NOHUGEPAGE; 364 *vm_flags |= VM_HUGEPAGE; 365 /* 366 * If the vma become good for khugepaged to scan, 367 * register it here without waiting a page fault that 368 * may not happen any time soon. 369 */ 370 khugepaged_enter_vma(vma, *vm_flags); 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 389 sizeof(struct khugepaged_mm_slot), 390 __alignof__(struct khugepaged_mm_slot), 391 0, NULL); 392 if (!mm_slot_cache) 393 return -ENOMEM; 394 395 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 396 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 397 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 398 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 399 400 return 0; 401 } 402 403 void __init khugepaged_destroy(void) 404 { 405 kmem_cache_destroy(mm_slot_cache); 406 } 407 408 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 409 { 410 return atomic_read(&mm->mm_users) == 0; 411 } 412 413 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 414 { 415 return hpage_collapse_test_exit(mm) || 416 test_bit(MMF_DISABLE_THP, &mm->flags); 417 } 418 419 void __khugepaged_enter(struct mm_struct *mm) 420 { 421 struct khugepaged_mm_slot *mm_slot; 422 struct mm_slot *slot; 423 int wakeup; 424 425 /* __khugepaged_exit() must not run from under us */ 426 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 427 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 428 return; 429 430 mm_slot = mm_slot_alloc(mm_slot_cache); 431 if (!mm_slot) 432 return; 433 434 slot = &mm_slot->slot; 435 436 spin_lock(&khugepaged_mm_lock); 437 mm_slot_insert(mm_slots_hash, mm, slot); 438 /* 439 * Insert just behind the scanning cursor, to let the area settle 440 * down a little. 441 */ 442 wakeup = list_empty(&khugepaged_scan.mm_head); 443 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 444 spin_unlock(&khugepaged_mm_lock); 445 446 mmgrab(mm); 447 if (wakeup) 448 wake_up_interruptible(&khugepaged_wait); 449 } 450 451 void khugepaged_enter_vma(struct vm_area_struct *vma, 452 unsigned long vm_flags) 453 { 454 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 455 hugepage_flags_enabled()) { 456 if (thp_vma_allowable_order(vma, vm_flags, false, false, true, 457 PMD_ORDER)) 458 __khugepaged_enter(vma->vm_mm); 459 } 460 } 461 462 void __khugepaged_exit(struct mm_struct *mm) 463 { 464 struct khugepaged_mm_slot *mm_slot; 465 struct mm_slot *slot; 466 int free = 0; 467 468 spin_lock(&khugepaged_mm_lock); 469 slot = mm_slot_lookup(mm_slots_hash, mm); 470 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 471 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 472 hash_del(&slot->hash); 473 list_del(&slot->mm_node); 474 free = 1; 475 } 476 spin_unlock(&khugepaged_mm_lock); 477 478 if (free) { 479 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 480 mm_slot_free(mm_slot_cache, mm_slot); 481 mmdrop(mm); 482 } else if (mm_slot) { 483 /* 484 * This is required to serialize against 485 * hpage_collapse_test_exit() (which is guaranteed to run 486 * under mmap sem read mode). Stop here (after we return all 487 * pagetables will be destroyed) until khugepaged has finished 488 * working on the pagetables under the mmap_lock. 489 */ 490 mmap_write_lock(mm); 491 mmap_write_unlock(mm); 492 } 493 } 494 495 static void release_pte_folio(struct folio *folio) 496 { 497 node_stat_mod_folio(folio, 498 NR_ISOLATED_ANON + folio_is_file_lru(folio), 499 -folio_nr_pages(folio)); 500 folio_unlock(folio); 501 folio_putback_lru(folio); 502 } 503 504 static void release_pte_pages(pte_t *pte, pte_t *_pte, 505 struct list_head *compound_pagelist) 506 { 507 struct folio *folio, *tmp; 508 509 while (--_pte >= pte) { 510 pte_t pteval = ptep_get(_pte); 511 unsigned long pfn; 512 513 if (pte_none(pteval)) 514 continue; 515 pfn = pte_pfn(pteval); 516 if (is_zero_pfn(pfn)) 517 continue; 518 folio = pfn_folio(pfn); 519 if (folio_test_large(folio)) 520 continue; 521 release_pte_folio(folio); 522 } 523 524 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 525 list_del(&folio->lru); 526 release_pte_folio(folio); 527 } 528 } 529 530 static bool is_refcount_suitable(struct folio *folio) 531 { 532 int expected_refcount; 533 534 expected_refcount = folio_mapcount(folio); 535 if (folio_test_swapcache(folio)) 536 expected_refcount += folio_nr_pages(folio); 537 538 return folio_ref_count(folio) == expected_refcount; 539 } 540 541 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 542 unsigned long address, 543 pte_t *pte, 544 struct collapse_control *cc, 545 struct list_head *compound_pagelist) 546 { 547 struct page *page = NULL; 548 struct folio *folio = NULL; 549 pte_t *_pte; 550 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 551 bool writable = false; 552 553 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 554 _pte++, address += PAGE_SIZE) { 555 pte_t pteval = ptep_get(_pte); 556 if (pte_none(pteval) || (pte_present(pteval) && 557 is_zero_pfn(pte_pfn(pteval)))) { 558 ++none_or_zero; 559 if (!userfaultfd_armed(vma) && 560 (!cc->is_khugepaged || 561 none_or_zero <= khugepaged_max_ptes_none)) { 562 continue; 563 } else { 564 result = SCAN_EXCEED_NONE_PTE; 565 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 566 goto out; 567 } 568 } 569 if (!pte_present(pteval)) { 570 result = SCAN_PTE_NON_PRESENT; 571 goto out; 572 } 573 if (pte_uffd_wp(pteval)) { 574 result = SCAN_PTE_UFFD_WP; 575 goto out; 576 } 577 page = vm_normal_page(vma, address, pteval); 578 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 579 result = SCAN_PAGE_NULL; 580 goto out; 581 } 582 583 folio = page_folio(page); 584 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 585 586 /* See hpage_collapse_scan_pmd(). */ 587 if (folio_likely_mapped_shared(folio)) { 588 ++shared; 589 if (cc->is_khugepaged && 590 shared > khugepaged_max_ptes_shared) { 591 result = SCAN_EXCEED_SHARED_PTE; 592 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 593 goto out; 594 } 595 } 596 597 if (folio_test_large(folio)) { 598 struct folio *f; 599 600 /* 601 * Check if we have dealt with the compound page 602 * already 603 */ 604 list_for_each_entry(f, compound_pagelist, lru) { 605 if (folio == f) 606 goto next; 607 } 608 } 609 610 /* 611 * We can do it before isolate_lru_page because the 612 * page can't be freed from under us. NOTE: PG_lock 613 * is needed to serialize against split_huge_page 614 * when invoked from the VM. 615 */ 616 if (!folio_trylock(folio)) { 617 result = SCAN_PAGE_LOCK; 618 goto out; 619 } 620 621 /* 622 * Check if the page has any GUP (or other external) pins. 623 * 624 * The page table that maps the page has been already unlinked 625 * from the page table tree and this process cannot get 626 * an additional pin on the page. 627 * 628 * New pins can come later if the page is shared across fork, 629 * but not from this process. The other process cannot write to 630 * the page, only trigger CoW. 631 */ 632 if (!is_refcount_suitable(folio)) { 633 folio_unlock(folio); 634 result = SCAN_PAGE_COUNT; 635 goto out; 636 } 637 638 /* 639 * Isolate the page to avoid collapsing an hugepage 640 * currently in use by the VM. 641 */ 642 if (!folio_isolate_lru(folio)) { 643 folio_unlock(folio); 644 result = SCAN_DEL_PAGE_LRU; 645 goto out; 646 } 647 node_stat_mod_folio(folio, 648 NR_ISOLATED_ANON + folio_is_file_lru(folio), 649 folio_nr_pages(folio)); 650 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 651 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 652 653 if (folio_test_large(folio)) 654 list_add_tail(&folio->lru, compound_pagelist); 655 next: 656 /* 657 * If collapse was initiated by khugepaged, check that there is 658 * enough young pte to justify collapsing the page 659 */ 660 if (cc->is_khugepaged && 661 (pte_young(pteval) || folio_test_young(folio) || 662 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 663 address))) 664 referenced++; 665 666 if (pte_write(pteval)) 667 writable = true; 668 } 669 670 if (unlikely(!writable)) { 671 result = SCAN_PAGE_RO; 672 } else if (unlikely(cc->is_khugepaged && !referenced)) { 673 result = SCAN_LACK_REFERENCED_PAGE; 674 } else { 675 result = SCAN_SUCCEED; 676 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 677 referenced, writable, result); 678 return result; 679 } 680 out: 681 release_pte_pages(pte, _pte, compound_pagelist); 682 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 683 referenced, writable, result); 684 return result; 685 } 686 687 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 688 struct vm_area_struct *vma, 689 unsigned long address, 690 spinlock_t *ptl, 691 struct list_head *compound_pagelist) 692 { 693 struct folio *src, *tmp; 694 pte_t *_pte; 695 pte_t pteval; 696 697 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 698 _pte++, address += PAGE_SIZE) { 699 pteval = ptep_get(_pte); 700 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 701 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 702 if (is_zero_pfn(pte_pfn(pteval))) { 703 /* 704 * ptl mostly unnecessary. 705 */ 706 spin_lock(ptl); 707 ptep_clear(vma->vm_mm, address, _pte); 708 spin_unlock(ptl); 709 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 710 } 711 } else { 712 struct page *src_page = pte_page(pteval); 713 714 src = page_folio(src_page); 715 if (!folio_test_large(src)) 716 release_pte_folio(src); 717 /* 718 * ptl mostly unnecessary, but preempt has to 719 * be disabled to update the per-cpu stats 720 * inside folio_remove_rmap_pte(). 721 */ 722 spin_lock(ptl); 723 ptep_clear(vma->vm_mm, address, _pte); 724 folio_remove_rmap_pte(src, src_page, vma); 725 spin_unlock(ptl); 726 free_page_and_swap_cache(src_page); 727 } 728 } 729 730 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 731 list_del(&src->lru); 732 node_stat_sub_folio(src, NR_ISOLATED_ANON + 733 folio_is_file_lru(src)); 734 folio_unlock(src); 735 free_swap_cache(src); 736 folio_putback_lru(src); 737 } 738 } 739 740 static void __collapse_huge_page_copy_failed(pte_t *pte, 741 pmd_t *pmd, 742 pmd_t orig_pmd, 743 struct vm_area_struct *vma, 744 struct list_head *compound_pagelist) 745 { 746 spinlock_t *pmd_ptl; 747 748 /* 749 * Re-establish the PMD to point to the original page table 750 * entry. Restoring PMD needs to be done prior to releasing 751 * pages. Since pages are still isolated and locked here, 752 * acquiring anon_vma_lock_write is unnecessary. 753 */ 754 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 755 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 756 spin_unlock(pmd_ptl); 757 /* 758 * Release both raw and compound pages isolated 759 * in __collapse_huge_page_isolate. 760 */ 761 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 762 } 763 764 /* 765 * __collapse_huge_page_copy - attempts to copy memory contents from raw 766 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 767 * otherwise restores the original page table and releases isolated raw pages. 768 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 769 * 770 * @pte: starting of the PTEs to copy from 771 * @folio: the new hugepage to copy contents to 772 * @pmd: pointer to the new hugepage's PMD 773 * @orig_pmd: the original raw pages' PMD 774 * @vma: the original raw pages' virtual memory area 775 * @address: starting address to copy 776 * @ptl: lock on raw pages' PTEs 777 * @compound_pagelist: list that stores compound pages 778 */ 779 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 780 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 781 unsigned long address, spinlock_t *ptl, 782 struct list_head *compound_pagelist) 783 { 784 unsigned int i; 785 int result = SCAN_SUCCEED; 786 787 /* 788 * Copying pages' contents is subject to memory poison at any iteration. 789 */ 790 for (i = 0; i < HPAGE_PMD_NR; i++) { 791 pte_t pteval = ptep_get(pte + i); 792 struct page *page = folio_page(folio, i); 793 unsigned long src_addr = address + i * PAGE_SIZE; 794 struct page *src_page; 795 796 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 797 clear_user_highpage(page, src_addr); 798 continue; 799 } 800 src_page = pte_page(pteval); 801 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 802 result = SCAN_COPY_MC; 803 break; 804 } 805 } 806 807 if (likely(result == SCAN_SUCCEED)) 808 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 809 compound_pagelist); 810 else 811 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 812 compound_pagelist); 813 814 return result; 815 } 816 817 static void khugepaged_alloc_sleep(void) 818 { 819 DEFINE_WAIT(wait); 820 821 add_wait_queue(&khugepaged_wait, &wait); 822 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 823 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 824 remove_wait_queue(&khugepaged_wait, &wait); 825 } 826 827 struct collapse_control khugepaged_collapse_control = { 828 .is_khugepaged = true, 829 }; 830 831 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 832 { 833 int i; 834 835 /* 836 * If node_reclaim_mode is disabled, then no extra effort is made to 837 * allocate memory locally. 838 */ 839 if (!node_reclaim_enabled()) 840 return false; 841 842 /* If there is a count for this node already, it must be acceptable */ 843 if (cc->node_load[nid]) 844 return false; 845 846 for (i = 0; i < MAX_NUMNODES; i++) { 847 if (!cc->node_load[i]) 848 continue; 849 if (node_distance(nid, i) > node_reclaim_distance) 850 return true; 851 } 852 return false; 853 } 854 855 #define khugepaged_defrag() \ 856 (transparent_hugepage_flags & \ 857 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 858 859 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 860 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 861 { 862 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 863 } 864 865 #ifdef CONFIG_NUMA 866 static int hpage_collapse_find_target_node(struct collapse_control *cc) 867 { 868 int nid, target_node = 0, max_value = 0; 869 870 /* find first node with max normal pages hit */ 871 for (nid = 0; nid < MAX_NUMNODES; nid++) 872 if (cc->node_load[nid] > max_value) { 873 max_value = cc->node_load[nid]; 874 target_node = nid; 875 } 876 877 for_each_online_node(nid) { 878 if (max_value == cc->node_load[nid]) 879 node_set(nid, cc->alloc_nmask); 880 } 881 882 return target_node; 883 } 884 #else 885 static int hpage_collapse_find_target_node(struct collapse_control *cc) 886 { 887 return 0; 888 } 889 #endif 890 891 /* 892 * If mmap_lock temporarily dropped, revalidate vma 893 * before taking mmap_lock. 894 * Returns enum scan_result value. 895 */ 896 897 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 898 bool expect_anon, 899 struct vm_area_struct **vmap, 900 struct collapse_control *cc) 901 { 902 struct vm_area_struct *vma; 903 904 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 905 return SCAN_ANY_PROCESS; 906 907 *vmap = vma = find_vma(mm, address); 908 if (!vma) 909 return SCAN_VMA_NULL; 910 911 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 912 return SCAN_ADDRESS_RANGE; 913 if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, 914 cc->is_khugepaged, PMD_ORDER)) 915 return SCAN_VMA_CHECK; 916 /* 917 * Anon VMA expected, the address may be unmapped then 918 * remapped to file after khugepaged reaquired the mmap_lock. 919 * 920 * thp_vma_allowable_order may return true for qualified file 921 * vmas. 922 */ 923 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 924 return SCAN_PAGE_ANON; 925 return SCAN_SUCCEED; 926 } 927 928 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 929 unsigned long address, 930 pmd_t **pmd) 931 { 932 pmd_t pmde; 933 934 *pmd = mm_find_pmd(mm, address); 935 if (!*pmd) 936 return SCAN_PMD_NULL; 937 938 pmde = pmdp_get_lockless(*pmd); 939 if (pmd_none(pmde)) 940 return SCAN_PMD_NONE; 941 if (!pmd_present(pmde)) 942 return SCAN_PMD_NULL; 943 if (pmd_trans_huge(pmde)) 944 return SCAN_PMD_MAPPED; 945 if (pmd_devmap(pmde)) 946 return SCAN_PMD_NULL; 947 if (pmd_bad(pmde)) 948 return SCAN_PMD_NULL; 949 return SCAN_SUCCEED; 950 } 951 952 static int check_pmd_still_valid(struct mm_struct *mm, 953 unsigned long address, 954 pmd_t *pmd) 955 { 956 pmd_t *new_pmd; 957 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 958 959 if (result != SCAN_SUCCEED) 960 return result; 961 if (new_pmd != pmd) 962 return SCAN_FAIL; 963 return SCAN_SUCCEED; 964 } 965 966 /* 967 * Bring missing pages in from swap, to complete THP collapse. 968 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 969 * 970 * Called and returns without pte mapped or spinlocks held. 971 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 972 */ 973 static int __collapse_huge_page_swapin(struct mm_struct *mm, 974 struct vm_area_struct *vma, 975 unsigned long haddr, pmd_t *pmd, 976 int referenced) 977 { 978 int swapped_in = 0; 979 vm_fault_t ret = 0; 980 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 981 int result; 982 pte_t *pte = NULL; 983 spinlock_t *ptl; 984 985 for (address = haddr; address < end; address += PAGE_SIZE) { 986 struct vm_fault vmf = { 987 .vma = vma, 988 .address = address, 989 .pgoff = linear_page_index(vma, address), 990 .flags = FAULT_FLAG_ALLOW_RETRY, 991 .pmd = pmd, 992 }; 993 994 if (!pte++) { 995 pte = pte_offset_map_nolock(mm, pmd, address, &ptl); 996 if (!pte) { 997 mmap_read_unlock(mm); 998 result = SCAN_PMD_NULL; 999 goto out; 1000 } 1001 } 1002 1003 vmf.orig_pte = ptep_get_lockless(pte); 1004 if (!is_swap_pte(vmf.orig_pte)) 1005 continue; 1006 1007 vmf.pte = pte; 1008 vmf.ptl = ptl; 1009 ret = do_swap_page(&vmf); 1010 /* Which unmaps pte (after perhaps re-checking the entry) */ 1011 pte = NULL; 1012 1013 /* 1014 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1015 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1016 * we do not retry here and swap entry will remain in pagetable 1017 * resulting in later failure. 1018 */ 1019 if (ret & VM_FAULT_RETRY) { 1020 /* Likely, but not guaranteed, that page lock failed */ 1021 result = SCAN_PAGE_LOCK; 1022 goto out; 1023 } 1024 if (ret & VM_FAULT_ERROR) { 1025 mmap_read_unlock(mm); 1026 result = SCAN_FAIL; 1027 goto out; 1028 } 1029 swapped_in++; 1030 } 1031 1032 if (pte) 1033 pte_unmap(pte); 1034 1035 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1036 if (swapped_in) 1037 lru_add_drain(); 1038 1039 result = SCAN_SUCCEED; 1040 out: 1041 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1042 return result; 1043 } 1044 1045 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1046 struct collapse_control *cc) 1047 { 1048 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1049 GFP_TRANSHUGE); 1050 int node = hpage_collapse_find_target_node(cc); 1051 struct folio *folio; 1052 1053 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1054 if (!folio) { 1055 *foliop = NULL; 1056 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1057 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1058 } 1059 1060 count_vm_event(THP_COLLAPSE_ALLOC); 1061 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1062 folio_put(folio); 1063 *foliop = NULL; 1064 return SCAN_CGROUP_CHARGE_FAIL; 1065 } 1066 1067 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1068 1069 *foliop = folio; 1070 return SCAN_SUCCEED; 1071 } 1072 1073 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1074 int referenced, int unmapped, 1075 struct collapse_control *cc) 1076 { 1077 LIST_HEAD(compound_pagelist); 1078 pmd_t *pmd, _pmd; 1079 pte_t *pte; 1080 pgtable_t pgtable; 1081 struct folio *folio; 1082 spinlock_t *pmd_ptl, *pte_ptl; 1083 int result = SCAN_FAIL; 1084 struct vm_area_struct *vma; 1085 struct mmu_notifier_range range; 1086 1087 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1088 1089 /* 1090 * Before allocating the hugepage, release the mmap_lock read lock. 1091 * The allocation can take potentially a long time if it involves 1092 * sync compaction, and we do not need to hold the mmap_lock during 1093 * that. We will recheck the vma after taking it again in write mode. 1094 */ 1095 mmap_read_unlock(mm); 1096 1097 result = alloc_charge_folio(&folio, mm, cc); 1098 if (result != SCAN_SUCCEED) 1099 goto out_nolock; 1100 1101 mmap_read_lock(mm); 1102 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1103 if (result != SCAN_SUCCEED) { 1104 mmap_read_unlock(mm); 1105 goto out_nolock; 1106 } 1107 1108 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1109 if (result != SCAN_SUCCEED) { 1110 mmap_read_unlock(mm); 1111 goto out_nolock; 1112 } 1113 1114 if (unmapped) { 1115 /* 1116 * __collapse_huge_page_swapin will return with mmap_lock 1117 * released when it fails. So we jump out_nolock directly in 1118 * that case. Continuing to collapse causes inconsistency. 1119 */ 1120 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1121 referenced); 1122 if (result != SCAN_SUCCEED) 1123 goto out_nolock; 1124 } 1125 1126 mmap_read_unlock(mm); 1127 /* 1128 * Prevent all access to pagetables with the exception of 1129 * gup_fast later handled by the ptep_clear_flush and the VM 1130 * handled by the anon_vma lock + PG_lock. 1131 * 1132 * UFFDIO_MOVE is prevented to race as well thanks to the 1133 * mmap_lock. 1134 */ 1135 mmap_write_lock(mm); 1136 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1137 if (result != SCAN_SUCCEED) 1138 goto out_up_write; 1139 /* check if the pmd is still valid */ 1140 result = check_pmd_still_valid(mm, address, pmd); 1141 if (result != SCAN_SUCCEED) 1142 goto out_up_write; 1143 1144 vma_start_write(vma); 1145 anon_vma_lock_write(vma->anon_vma); 1146 1147 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1148 address + HPAGE_PMD_SIZE); 1149 mmu_notifier_invalidate_range_start(&range); 1150 1151 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1152 /* 1153 * This removes any huge TLB entry from the CPU so we won't allow 1154 * huge and small TLB entries for the same virtual address to 1155 * avoid the risk of CPU bugs in that area. 1156 * 1157 * Parallel GUP-fast is fine since GUP-fast will back off when 1158 * it detects PMD is changed. 1159 */ 1160 _pmd = pmdp_collapse_flush(vma, address, pmd); 1161 spin_unlock(pmd_ptl); 1162 mmu_notifier_invalidate_range_end(&range); 1163 tlb_remove_table_sync_one(); 1164 1165 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1166 if (pte) { 1167 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1168 &compound_pagelist); 1169 spin_unlock(pte_ptl); 1170 } else { 1171 result = SCAN_PMD_NULL; 1172 } 1173 1174 if (unlikely(result != SCAN_SUCCEED)) { 1175 if (pte) 1176 pte_unmap(pte); 1177 spin_lock(pmd_ptl); 1178 BUG_ON(!pmd_none(*pmd)); 1179 /* 1180 * We can only use set_pmd_at when establishing 1181 * hugepmds and never for establishing regular pmds that 1182 * points to regular pagetables. Use pmd_populate for that 1183 */ 1184 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1185 spin_unlock(pmd_ptl); 1186 anon_vma_unlock_write(vma->anon_vma); 1187 goto out_up_write; 1188 } 1189 1190 /* 1191 * All pages are isolated and locked so anon_vma rmap 1192 * can't run anymore. 1193 */ 1194 anon_vma_unlock_write(vma->anon_vma); 1195 1196 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1197 vma, address, pte_ptl, 1198 &compound_pagelist); 1199 pte_unmap(pte); 1200 if (unlikely(result != SCAN_SUCCEED)) 1201 goto out_up_write; 1202 1203 /* 1204 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1205 * copy_huge_page writes become visible before the set_pmd_at() 1206 * write. 1207 */ 1208 __folio_mark_uptodate(folio); 1209 pgtable = pmd_pgtable(_pmd); 1210 1211 _pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot); 1212 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1213 1214 spin_lock(pmd_ptl); 1215 BUG_ON(!pmd_none(*pmd)); 1216 folio_add_new_anon_rmap(folio, vma, address); 1217 folio_add_lru_vma(folio, vma); 1218 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1219 set_pmd_at(mm, address, pmd, _pmd); 1220 update_mmu_cache_pmd(vma, address, pmd); 1221 spin_unlock(pmd_ptl); 1222 1223 folio = NULL; 1224 1225 result = SCAN_SUCCEED; 1226 out_up_write: 1227 mmap_write_unlock(mm); 1228 out_nolock: 1229 if (folio) 1230 folio_put(folio); 1231 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1232 return result; 1233 } 1234 1235 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1236 struct vm_area_struct *vma, 1237 unsigned long address, bool *mmap_locked, 1238 struct collapse_control *cc) 1239 { 1240 pmd_t *pmd; 1241 pte_t *pte, *_pte; 1242 int result = SCAN_FAIL, referenced = 0; 1243 int none_or_zero = 0, shared = 0; 1244 struct page *page = NULL; 1245 struct folio *folio = NULL; 1246 unsigned long _address; 1247 spinlock_t *ptl; 1248 int node = NUMA_NO_NODE, unmapped = 0; 1249 bool writable = false; 1250 1251 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1252 1253 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1254 if (result != SCAN_SUCCEED) 1255 goto out; 1256 1257 memset(cc->node_load, 0, sizeof(cc->node_load)); 1258 nodes_clear(cc->alloc_nmask); 1259 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1260 if (!pte) { 1261 result = SCAN_PMD_NULL; 1262 goto out; 1263 } 1264 1265 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1266 _pte++, _address += PAGE_SIZE) { 1267 pte_t pteval = ptep_get(_pte); 1268 if (is_swap_pte(pteval)) { 1269 ++unmapped; 1270 if (!cc->is_khugepaged || 1271 unmapped <= khugepaged_max_ptes_swap) { 1272 /* 1273 * Always be strict with uffd-wp 1274 * enabled swap entries. Please see 1275 * comment below for pte_uffd_wp(). 1276 */ 1277 if (pte_swp_uffd_wp_any(pteval)) { 1278 result = SCAN_PTE_UFFD_WP; 1279 goto out_unmap; 1280 } 1281 continue; 1282 } else { 1283 result = SCAN_EXCEED_SWAP_PTE; 1284 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1285 goto out_unmap; 1286 } 1287 } 1288 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1289 ++none_or_zero; 1290 if (!userfaultfd_armed(vma) && 1291 (!cc->is_khugepaged || 1292 none_or_zero <= khugepaged_max_ptes_none)) { 1293 continue; 1294 } else { 1295 result = SCAN_EXCEED_NONE_PTE; 1296 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1297 goto out_unmap; 1298 } 1299 } 1300 if (pte_uffd_wp(pteval)) { 1301 /* 1302 * Don't collapse the page if any of the small 1303 * PTEs are armed with uffd write protection. 1304 * Here we can also mark the new huge pmd as 1305 * write protected if any of the small ones is 1306 * marked but that could bring unknown 1307 * userfault messages that falls outside of 1308 * the registered range. So, just be simple. 1309 */ 1310 result = SCAN_PTE_UFFD_WP; 1311 goto out_unmap; 1312 } 1313 if (pte_write(pteval)) 1314 writable = true; 1315 1316 page = vm_normal_page(vma, _address, pteval); 1317 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1318 result = SCAN_PAGE_NULL; 1319 goto out_unmap; 1320 } 1321 folio = page_folio(page); 1322 1323 if (!folio_test_anon(folio)) { 1324 result = SCAN_PAGE_ANON; 1325 goto out_unmap; 1326 } 1327 1328 /* 1329 * We treat a single page as shared if any part of the THP 1330 * is shared. "False negatives" from 1331 * folio_likely_mapped_shared() are not expected to matter 1332 * much in practice. 1333 */ 1334 if (folio_likely_mapped_shared(folio)) { 1335 ++shared; 1336 if (cc->is_khugepaged && 1337 shared > khugepaged_max_ptes_shared) { 1338 result = SCAN_EXCEED_SHARED_PTE; 1339 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1340 goto out_unmap; 1341 } 1342 } 1343 1344 /* 1345 * Record which node the original page is from and save this 1346 * information to cc->node_load[]. 1347 * Khugepaged will allocate hugepage from the node has the max 1348 * hit record. 1349 */ 1350 node = folio_nid(folio); 1351 if (hpage_collapse_scan_abort(node, cc)) { 1352 result = SCAN_SCAN_ABORT; 1353 goto out_unmap; 1354 } 1355 cc->node_load[node]++; 1356 if (!folio_test_lru(folio)) { 1357 result = SCAN_PAGE_LRU; 1358 goto out_unmap; 1359 } 1360 if (folio_test_locked(folio)) { 1361 result = SCAN_PAGE_LOCK; 1362 goto out_unmap; 1363 } 1364 1365 /* 1366 * Check if the page has any GUP (or other external) pins. 1367 * 1368 * Here the check may be racy: 1369 * it may see folio_mapcount() > folio_ref_count(). 1370 * But such case is ephemeral we could always retry collapse 1371 * later. However it may report false positive if the page 1372 * has excessive GUP pins (i.e. 512). Anyway the same check 1373 * will be done again later the risk seems low. 1374 */ 1375 if (!is_refcount_suitable(folio)) { 1376 result = SCAN_PAGE_COUNT; 1377 goto out_unmap; 1378 } 1379 1380 /* 1381 * If collapse was initiated by khugepaged, check that there is 1382 * enough young pte to justify collapsing the page 1383 */ 1384 if (cc->is_khugepaged && 1385 (pte_young(pteval) || folio_test_young(folio) || 1386 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 1387 address))) 1388 referenced++; 1389 } 1390 if (!writable) { 1391 result = SCAN_PAGE_RO; 1392 } else if (cc->is_khugepaged && 1393 (!referenced || 1394 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1395 result = SCAN_LACK_REFERENCED_PAGE; 1396 } else { 1397 result = SCAN_SUCCEED; 1398 } 1399 out_unmap: 1400 pte_unmap_unlock(pte, ptl); 1401 if (result == SCAN_SUCCEED) { 1402 result = collapse_huge_page(mm, address, referenced, 1403 unmapped, cc); 1404 /* collapse_huge_page will return with the mmap_lock released */ 1405 *mmap_locked = false; 1406 } 1407 out: 1408 trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced, 1409 none_or_zero, result, unmapped); 1410 return result; 1411 } 1412 1413 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1414 { 1415 struct mm_slot *slot = &mm_slot->slot; 1416 struct mm_struct *mm = slot->mm; 1417 1418 lockdep_assert_held(&khugepaged_mm_lock); 1419 1420 if (hpage_collapse_test_exit(mm)) { 1421 /* free mm_slot */ 1422 hash_del(&slot->hash); 1423 list_del(&slot->mm_node); 1424 1425 /* 1426 * Not strictly needed because the mm exited already. 1427 * 1428 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1429 */ 1430 1431 /* khugepaged_mm_lock actually not necessary for the below */ 1432 mm_slot_free(mm_slot_cache, mm_slot); 1433 mmdrop(mm); 1434 } 1435 } 1436 1437 #ifdef CONFIG_SHMEM 1438 /* hpage must be locked, and mmap_lock must be held */ 1439 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1440 pmd_t *pmdp, struct page *hpage) 1441 { 1442 struct vm_fault vmf = { 1443 .vma = vma, 1444 .address = addr, 1445 .flags = 0, 1446 .pmd = pmdp, 1447 }; 1448 1449 VM_BUG_ON(!PageTransHuge(hpage)); 1450 mmap_assert_locked(vma->vm_mm); 1451 1452 if (do_set_pmd(&vmf, hpage)) 1453 return SCAN_FAIL; 1454 1455 get_page(hpage); 1456 return SCAN_SUCCEED; 1457 } 1458 1459 /** 1460 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1461 * address haddr. 1462 * 1463 * @mm: process address space where collapse happens 1464 * @addr: THP collapse address 1465 * @install_pmd: If a huge PMD should be installed 1466 * 1467 * This function checks whether all the PTEs in the PMD are pointing to the 1468 * right THP. If so, retract the page table so the THP can refault in with 1469 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1470 */ 1471 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1472 bool install_pmd) 1473 { 1474 struct mmu_notifier_range range; 1475 bool notified = false; 1476 unsigned long haddr = addr & HPAGE_PMD_MASK; 1477 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1478 struct folio *folio; 1479 pte_t *start_pte, *pte; 1480 pmd_t *pmd, pgt_pmd; 1481 spinlock_t *pml = NULL, *ptl; 1482 int nr_ptes = 0, result = SCAN_FAIL; 1483 int i; 1484 1485 mmap_assert_locked(mm); 1486 1487 /* First check VMA found, in case page tables are being torn down */ 1488 if (!vma || !vma->vm_file || 1489 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1490 return SCAN_VMA_CHECK; 1491 1492 /* Fast check before locking page if already PMD-mapped */ 1493 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1494 if (result == SCAN_PMD_MAPPED) 1495 return result; 1496 1497 /* 1498 * If we are here, we've succeeded in replacing all the native pages 1499 * in the page cache with a single hugepage. If a mm were to fault-in 1500 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1501 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1502 * analogously elide sysfs THP settings here. 1503 */ 1504 if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, false, 1505 PMD_ORDER)) 1506 return SCAN_VMA_CHECK; 1507 1508 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1509 if (userfaultfd_wp(vma)) 1510 return SCAN_PTE_UFFD_WP; 1511 1512 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1513 linear_page_index(vma, haddr)); 1514 if (IS_ERR(folio)) 1515 return SCAN_PAGE_NULL; 1516 1517 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1518 result = SCAN_PAGE_COMPOUND; 1519 goto drop_folio; 1520 } 1521 1522 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1523 switch (result) { 1524 case SCAN_SUCCEED: 1525 break; 1526 case SCAN_PMD_NONE: 1527 /* 1528 * All pte entries have been removed and pmd cleared. 1529 * Skip all the pte checks and just update the pmd mapping. 1530 */ 1531 goto maybe_install_pmd; 1532 default: 1533 goto drop_folio; 1534 } 1535 1536 result = SCAN_FAIL; 1537 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1538 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1539 goto drop_folio; 1540 1541 /* step 1: check all mapped PTEs are to the right huge page */ 1542 for (i = 0, addr = haddr, pte = start_pte; 1543 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1544 struct page *page; 1545 pte_t ptent = ptep_get(pte); 1546 1547 /* empty pte, skip */ 1548 if (pte_none(ptent)) 1549 continue; 1550 1551 /* page swapped out, abort */ 1552 if (!pte_present(ptent)) { 1553 result = SCAN_PTE_NON_PRESENT; 1554 goto abort; 1555 } 1556 1557 page = vm_normal_page(vma, addr, ptent); 1558 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1559 page = NULL; 1560 /* 1561 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1562 * page table, but the new page will not be a subpage of hpage. 1563 */ 1564 if (folio_page(folio, i) != page) 1565 goto abort; 1566 } 1567 1568 pte_unmap_unlock(start_pte, ptl); 1569 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1570 haddr, haddr + HPAGE_PMD_SIZE); 1571 mmu_notifier_invalidate_range_start(&range); 1572 notified = true; 1573 1574 /* 1575 * pmd_lock covers a wider range than ptl, and (if split from mm's 1576 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1577 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1578 * inserts a valid as-if-COWed PTE without even looking up page cache. 1579 * So page lock of folio does not protect from it, so we must not drop 1580 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1581 */ 1582 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1583 pml = pmd_lock(mm, pmd); 1584 1585 start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl); 1586 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1587 goto abort; 1588 if (!pml) 1589 spin_lock(ptl); 1590 else if (ptl != pml) 1591 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1592 1593 /* step 2: clear page table and adjust rmap */ 1594 for (i = 0, addr = haddr, pte = start_pte; 1595 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1596 struct page *page; 1597 pte_t ptent = ptep_get(pte); 1598 1599 if (pte_none(ptent)) 1600 continue; 1601 /* 1602 * We dropped ptl after the first scan, to do the mmu_notifier: 1603 * page lock stops more PTEs of the folio being faulted in, but 1604 * does not stop write faults COWing anon copies from existing 1605 * PTEs; and does not stop those being swapped out or migrated. 1606 */ 1607 if (!pte_present(ptent)) { 1608 result = SCAN_PTE_NON_PRESENT; 1609 goto abort; 1610 } 1611 page = vm_normal_page(vma, addr, ptent); 1612 if (folio_page(folio, i) != page) 1613 goto abort; 1614 1615 /* 1616 * Must clear entry, or a racing truncate may re-remove it. 1617 * TLB flush can be left until pmdp_collapse_flush() does it. 1618 * PTE dirty? Shmem page is already dirty; file is read-only. 1619 */ 1620 ptep_clear(mm, addr, pte); 1621 folio_remove_rmap_pte(folio, page, vma); 1622 nr_ptes++; 1623 } 1624 1625 pte_unmap(start_pte); 1626 if (!pml) 1627 spin_unlock(ptl); 1628 1629 /* step 3: set proper refcount and mm_counters. */ 1630 if (nr_ptes) { 1631 folio_ref_sub(folio, nr_ptes); 1632 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1633 } 1634 1635 /* step 4: remove empty page table */ 1636 if (!pml) { 1637 pml = pmd_lock(mm, pmd); 1638 if (ptl != pml) 1639 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1640 } 1641 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1642 pmdp_get_lockless_sync(); 1643 if (ptl != pml) 1644 spin_unlock(ptl); 1645 spin_unlock(pml); 1646 1647 mmu_notifier_invalidate_range_end(&range); 1648 1649 mm_dec_nr_ptes(mm); 1650 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1651 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1652 1653 maybe_install_pmd: 1654 /* step 5: install pmd entry */ 1655 result = install_pmd 1656 ? set_huge_pmd(vma, haddr, pmd, &folio->page) 1657 : SCAN_SUCCEED; 1658 goto drop_folio; 1659 abort: 1660 if (nr_ptes) { 1661 flush_tlb_mm(mm); 1662 folio_ref_sub(folio, nr_ptes); 1663 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1664 } 1665 if (start_pte) 1666 pte_unmap_unlock(start_pte, ptl); 1667 if (pml && pml != ptl) 1668 spin_unlock(pml); 1669 if (notified) 1670 mmu_notifier_invalidate_range_end(&range); 1671 drop_folio: 1672 folio_unlock(folio); 1673 folio_put(folio); 1674 return result; 1675 } 1676 1677 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1678 { 1679 struct vm_area_struct *vma; 1680 1681 i_mmap_lock_read(mapping); 1682 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1683 struct mmu_notifier_range range; 1684 struct mm_struct *mm; 1685 unsigned long addr; 1686 pmd_t *pmd, pgt_pmd; 1687 spinlock_t *pml; 1688 spinlock_t *ptl; 1689 bool skipped_uffd = false; 1690 1691 /* 1692 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1693 * got written to. These VMAs are likely not worth removing 1694 * page tables from, as PMD-mapping is likely to be split later. 1695 */ 1696 if (READ_ONCE(vma->anon_vma)) 1697 continue; 1698 1699 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1700 if (addr & ~HPAGE_PMD_MASK || 1701 vma->vm_end < addr + HPAGE_PMD_SIZE) 1702 continue; 1703 1704 mm = vma->vm_mm; 1705 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1706 continue; 1707 1708 if (hpage_collapse_test_exit(mm)) 1709 continue; 1710 /* 1711 * When a vma is registered with uffd-wp, we cannot recycle 1712 * the page table because there may be pte markers installed. 1713 * Other vmas can still have the same file mapped hugely, but 1714 * skip this one: it will always be mapped in small page size 1715 * for uffd-wp registered ranges. 1716 */ 1717 if (userfaultfd_wp(vma)) 1718 continue; 1719 1720 /* PTEs were notified when unmapped; but now for the PMD? */ 1721 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1722 addr, addr + HPAGE_PMD_SIZE); 1723 mmu_notifier_invalidate_range_start(&range); 1724 1725 pml = pmd_lock(mm, pmd); 1726 ptl = pte_lockptr(mm, pmd); 1727 if (ptl != pml) 1728 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1729 1730 /* 1731 * Huge page lock is still held, so normally the page table 1732 * must remain empty; and we have already skipped anon_vma 1733 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1734 * held, it is still possible for a racing userfaultfd_ioctl() 1735 * to have inserted ptes or markers. Now that we hold ptlock, 1736 * repeating the anon_vma check protects from one category, 1737 * and repeating the userfaultfd_wp() check from another. 1738 */ 1739 if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) { 1740 skipped_uffd = true; 1741 } else { 1742 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1743 pmdp_get_lockless_sync(); 1744 } 1745 1746 if (ptl != pml) 1747 spin_unlock(ptl); 1748 spin_unlock(pml); 1749 1750 mmu_notifier_invalidate_range_end(&range); 1751 1752 if (!skipped_uffd) { 1753 mm_dec_nr_ptes(mm); 1754 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1755 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1756 } 1757 } 1758 i_mmap_unlock_read(mapping); 1759 } 1760 1761 /** 1762 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1763 * 1764 * @mm: process address space where collapse happens 1765 * @addr: virtual collapse start address 1766 * @file: file that collapse on 1767 * @start: collapse start address 1768 * @cc: collapse context and scratchpad 1769 * 1770 * Basic scheme is simple, details are more complex: 1771 * - allocate and lock a new huge page; 1772 * - scan page cache, locking old pages 1773 * + swap/gup in pages if necessary; 1774 * - copy data to new page 1775 * - handle shmem holes 1776 * + re-validate that holes weren't filled by someone else 1777 * + check for userfaultfd 1778 * - finalize updates to the page cache; 1779 * - if replacing succeeds: 1780 * + unlock huge page; 1781 * + free old pages; 1782 * - if replacing failed; 1783 * + unlock old pages 1784 * + unlock and free huge page; 1785 */ 1786 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1787 struct file *file, pgoff_t start, 1788 struct collapse_control *cc) 1789 { 1790 struct address_space *mapping = file->f_mapping; 1791 struct page *dst; 1792 struct folio *folio, *tmp, *new_folio; 1793 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1794 LIST_HEAD(pagelist); 1795 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1796 int nr_none = 0, result = SCAN_SUCCEED; 1797 bool is_shmem = shmem_file(file); 1798 1799 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1800 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1801 1802 result = alloc_charge_folio(&new_folio, mm, cc); 1803 if (result != SCAN_SUCCEED) 1804 goto out; 1805 1806 __folio_set_locked(new_folio); 1807 if (is_shmem) 1808 __folio_set_swapbacked(new_folio); 1809 new_folio->index = start; 1810 new_folio->mapping = mapping; 1811 1812 /* 1813 * Ensure we have slots for all the pages in the range. This is 1814 * almost certainly a no-op because most of the pages must be present 1815 */ 1816 do { 1817 xas_lock_irq(&xas); 1818 xas_create_range(&xas); 1819 if (!xas_error(&xas)) 1820 break; 1821 xas_unlock_irq(&xas); 1822 if (!xas_nomem(&xas, GFP_KERNEL)) { 1823 result = SCAN_FAIL; 1824 goto rollback; 1825 } 1826 } while (1); 1827 1828 for (index = start; index < end; index++) { 1829 xas_set(&xas, index); 1830 folio = xas_load(&xas); 1831 1832 VM_BUG_ON(index != xas.xa_index); 1833 if (is_shmem) { 1834 if (!folio) { 1835 /* 1836 * Stop if extent has been truncated or 1837 * hole-punched, and is now completely 1838 * empty. 1839 */ 1840 if (index == start) { 1841 if (!xas_next_entry(&xas, end - 1)) { 1842 result = SCAN_TRUNCATED; 1843 goto xa_locked; 1844 } 1845 } 1846 nr_none++; 1847 continue; 1848 } 1849 1850 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1851 xas_unlock_irq(&xas); 1852 /* swap in or instantiate fallocated page */ 1853 if (shmem_get_folio(mapping->host, index, 1854 &folio, SGP_NOALLOC)) { 1855 result = SCAN_FAIL; 1856 goto xa_unlocked; 1857 } 1858 /* drain lru cache to help isolate_lru_page() */ 1859 lru_add_drain(); 1860 } else if (folio_trylock(folio)) { 1861 folio_get(folio); 1862 xas_unlock_irq(&xas); 1863 } else { 1864 result = SCAN_PAGE_LOCK; 1865 goto xa_locked; 1866 } 1867 } else { /* !is_shmem */ 1868 if (!folio || xa_is_value(folio)) { 1869 xas_unlock_irq(&xas); 1870 page_cache_sync_readahead(mapping, &file->f_ra, 1871 file, index, 1872 end - index); 1873 /* drain lru cache to help isolate_lru_page() */ 1874 lru_add_drain(); 1875 folio = filemap_lock_folio(mapping, index); 1876 if (IS_ERR(folio)) { 1877 result = SCAN_FAIL; 1878 goto xa_unlocked; 1879 } 1880 } else if (folio_test_dirty(folio)) { 1881 /* 1882 * khugepaged only works on read-only fd, 1883 * so this page is dirty because it hasn't 1884 * been flushed since first write. There 1885 * won't be new dirty pages. 1886 * 1887 * Trigger async flush here and hope the 1888 * writeback is done when khugepaged 1889 * revisits this page. 1890 * 1891 * This is a one-off situation. We are not 1892 * forcing writeback in loop. 1893 */ 1894 xas_unlock_irq(&xas); 1895 filemap_flush(mapping); 1896 result = SCAN_FAIL; 1897 goto xa_unlocked; 1898 } else if (folio_test_writeback(folio)) { 1899 xas_unlock_irq(&xas); 1900 result = SCAN_FAIL; 1901 goto xa_unlocked; 1902 } else if (folio_trylock(folio)) { 1903 folio_get(folio); 1904 xas_unlock_irq(&xas); 1905 } else { 1906 result = SCAN_PAGE_LOCK; 1907 goto xa_locked; 1908 } 1909 } 1910 1911 /* 1912 * The folio must be locked, so we can drop the i_pages lock 1913 * without racing with truncate. 1914 */ 1915 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1916 1917 /* make sure the folio is up to date */ 1918 if (unlikely(!folio_test_uptodate(folio))) { 1919 result = SCAN_FAIL; 1920 goto out_unlock; 1921 } 1922 1923 /* 1924 * If file was truncated then extended, or hole-punched, before 1925 * we locked the first folio, then a THP might be there already. 1926 * This will be discovered on the first iteration. 1927 */ 1928 if (folio_test_large(folio)) { 1929 result = folio_order(folio) == HPAGE_PMD_ORDER && 1930 folio->index == start 1931 /* Maybe PMD-mapped */ 1932 ? SCAN_PTE_MAPPED_HUGEPAGE 1933 : SCAN_PAGE_COMPOUND; 1934 goto out_unlock; 1935 } 1936 1937 if (folio_mapping(folio) != mapping) { 1938 result = SCAN_TRUNCATED; 1939 goto out_unlock; 1940 } 1941 1942 if (!is_shmem && (folio_test_dirty(folio) || 1943 folio_test_writeback(folio))) { 1944 /* 1945 * khugepaged only works on read-only fd, so this 1946 * folio is dirty because it hasn't been flushed 1947 * since first write. 1948 */ 1949 result = SCAN_FAIL; 1950 goto out_unlock; 1951 } 1952 1953 if (!folio_isolate_lru(folio)) { 1954 result = SCAN_DEL_PAGE_LRU; 1955 goto out_unlock; 1956 } 1957 1958 if (!filemap_release_folio(folio, GFP_KERNEL)) { 1959 result = SCAN_PAGE_HAS_PRIVATE; 1960 folio_putback_lru(folio); 1961 goto out_unlock; 1962 } 1963 1964 if (folio_mapped(folio)) 1965 try_to_unmap(folio, 1966 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1967 1968 xas_lock_irq(&xas); 1969 1970 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 1971 1972 /* 1973 * We control three references to the folio: 1974 * - we hold a pin on it; 1975 * - one reference from page cache; 1976 * - one from lru_isolate_folio; 1977 * If those are the only references, then any new usage 1978 * of the folio will have to fetch it from the page 1979 * cache. That requires locking the folio to handle 1980 * truncate, so any new usage will be blocked until we 1981 * unlock folio after collapse/during rollback. 1982 */ 1983 if (folio_ref_count(folio) != 3) { 1984 result = SCAN_PAGE_COUNT; 1985 xas_unlock_irq(&xas); 1986 folio_putback_lru(folio); 1987 goto out_unlock; 1988 } 1989 1990 /* 1991 * Accumulate the folios that are being collapsed. 1992 */ 1993 list_add_tail(&folio->lru, &pagelist); 1994 continue; 1995 out_unlock: 1996 folio_unlock(folio); 1997 folio_put(folio); 1998 goto xa_unlocked; 1999 } 2000 2001 if (!is_shmem) { 2002 filemap_nr_thps_inc(mapping); 2003 /* 2004 * Paired with smp_mb() in do_dentry_open() to ensure 2005 * i_writecount is up to date and the update to nr_thps is 2006 * visible. Ensures the page cache will be truncated if the 2007 * file is opened writable. 2008 */ 2009 smp_mb(); 2010 if (inode_is_open_for_write(mapping->host)) { 2011 result = SCAN_FAIL; 2012 filemap_nr_thps_dec(mapping); 2013 } 2014 } 2015 2016 xa_locked: 2017 xas_unlock_irq(&xas); 2018 xa_unlocked: 2019 2020 /* 2021 * If collapse is successful, flush must be done now before copying. 2022 * If collapse is unsuccessful, does flush actually need to be done? 2023 * Do it anyway, to clear the state. 2024 */ 2025 try_to_unmap_flush(); 2026 2027 if (result == SCAN_SUCCEED && nr_none && 2028 !shmem_charge(mapping->host, nr_none)) 2029 result = SCAN_FAIL; 2030 if (result != SCAN_SUCCEED) { 2031 nr_none = 0; 2032 goto rollback; 2033 } 2034 2035 /* 2036 * The old folios are locked, so they won't change anymore. 2037 */ 2038 index = start; 2039 dst = folio_page(new_folio, 0); 2040 list_for_each_entry(folio, &pagelist, lru) { 2041 while (index < folio->index) { 2042 clear_highpage(dst); 2043 index++; 2044 dst++; 2045 } 2046 if (copy_mc_highpage(dst, folio_page(folio, 0)) > 0) { 2047 result = SCAN_COPY_MC; 2048 goto rollback; 2049 } 2050 index++; 2051 dst++; 2052 } 2053 while (index < end) { 2054 clear_highpage(dst); 2055 index++; 2056 dst++; 2057 } 2058 2059 if (nr_none) { 2060 struct vm_area_struct *vma; 2061 int nr_none_check = 0; 2062 2063 i_mmap_lock_read(mapping); 2064 xas_lock_irq(&xas); 2065 2066 xas_set(&xas, start); 2067 for (index = start; index < end; index++) { 2068 if (!xas_next(&xas)) { 2069 xas_store(&xas, XA_RETRY_ENTRY); 2070 if (xas_error(&xas)) { 2071 result = SCAN_STORE_FAILED; 2072 goto immap_locked; 2073 } 2074 nr_none_check++; 2075 } 2076 } 2077 2078 if (nr_none != nr_none_check) { 2079 result = SCAN_PAGE_FILLED; 2080 goto immap_locked; 2081 } 2082 2083 /* 2084 * If userspace observed a missing page in a VMA with 2085 * a MODE_MISSING userfaultfd, then it might expect a 2086 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2087 * roll back to avoid suppressing such an event. Since 2088 * wp/minor userfaultfds don't give userspace any 2089 * guarantees that the kernel doesn't fill a missing 2090 * page with a zero page, so they don't matter here. 2091 * 2092 * Any userfaultfds registered after this point will 2093 * not be able to observe any missing pages due to the 2094 * previously inserted retry entries. 2095 */ 2096 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2097 if (userfaultfd_missing(vma)) { 2098 result = SCAN_EXCEED_NONE_PTE; 2099 goto immap_locked; 2100 } 2101 } 2102 2103 immap_locked: 2104 i_mmap_unlock_read(mapping); 2105 if (result != SCAN_SUCCEED) { 2106 xas_set(&xas, start); 2107 for (index = start; index < end; index++) { 2108 if (xas_next(&xas) == XA_RETRY_ENTRY) 2109 xas_store(&xas, NULL); 2110 } 2111 2112 xas_unlock_irq(&xas); 2113 goto rollback; 2114 } 2115 } else { 2116 xas_lock_irq(&xas); 2117 } 2118 2119 if (is_shmem) 2120 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2121 else 2122 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2123 2124 if (nr_none) { 2125 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none); 2126 /* nr_none is always 0 for non-shmem. */ 2127 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none); 2128 } 2129 2130 /* 2131 * Mark new_folio as uptodate before inserting it into the 2132 * page cache so that it isn't mistaken for an fallocated but 2133 * unwritten page. 2134 */ 2135 folio_mark_uptodate(new_folio); 2136 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2137 2138 if (is_shmem) 2139 folio_mark_dirty(new_folio); 2140 folio_add_lru(new_folio); 2141 2142 /* Join all the small entries into a single multi-index entry. */ 2143 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2144 xas_store(&xas, new_folio); 2145 WARN_ON_ONCE(xas_error(&xas)); 2146 xas_unlock_irq(&xas); 2147 2148 /* 2149 * Remove pte page tables, so we can re-fault the page as huge. 2150 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2151 */ 2152 retract_page_tables(mapping, start); 2153 if (cc && !cc->is_khugepaged) 2154 result = SCAN_PTE_MAPPED_HUGEPAGE; 2155 folio_unlock(new_folio); 2156 2157 /* 2158 * The collapse has succeeded, so free the old folios. 2159 */ 2160 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2161 list_del(&folio->lru); 2162 folio->mapping = NULL; 2163 folio_clear_active(folio); 2164 folio_clear_unevictable(folio); 2165 folio_unlock(folio); 2166 folio_put_refs(folio, 3); 2167 } 2168 2169 goto out; 2170 2171 rollback: 2172 /* Something went wrong: roll back page cache changes */ 2173 if (nr_none) { 2174 xas_lock_irq(&xas); 2175 mapping->nrpages -= nr_none; 2176 xas_unlock_irq(&xas); 2177 shmem_uncharge(mapping->host, nr_none); 2178 } 2179 2180 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2181 list_del(&folio->lru); 2182 folio_unlock(folio); 2183 folio_putback_lru(folio); 2184 folio_put(folio); 2185 } 2186 /* 2187 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2188 * file only. This undo is not needed unless failure is 2189 * due to SCAN_COPY_MC. 2190 */ 2191 if (!is_shmem && result == SCAN_COPY_MC) { 2192 filemap_nr_thps_dec(mapping); 2193 /* 2194 * Paired with smp_mb() in do_dentry_open() to 2195 * ensure the update to nr_thps is visible. 2196 */ 2197 smp_mb(); 2198 } 2199 2200 new_folio->mapping = NULL; 2201 2202 folio_unlock(new_folio); 2203 folio_put(new_folio); 2204 out: 2205 VM_BUG_ON(!list_empty(&pagelist)); 2206 trace_mm_khugepaged_collapse_file(mm, new_folio, index, is_shmem, addr, file, HPAGE_PMD_NR, result); 2207 return result; 2208 } 2209 2210 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2211 struct file *file, pgoff_t start, 2212 struct collapse_control *cc) 2213 { 2214 struct folio *folio = NULL; 2215 struct address_space *mapping = file->f_mapping; 2216 XA_STATE(xas, &mapping->i_pages, start); 2217 int present, swap; 2218 int node = NUMA_NO_NODE; 2219 int result = SCAN_SUCCEED; 2220 2221 present = 0; 2222 swap = 0; 2223 memset(cc->node_load, 0, sizeof(cc->node_load)); 2224 nodes_clear(cc->alloc_nmask); 2225 rcu_read_lock(); 2226 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2227 if (xas_retry(&xas, folio)) 2228 continue; 2229 2230 if (xa_is_value(folio)) { 2231 ++swap; 2232 if (cc->is_khugepaged && 2233 swap > khugepaged_max_ptes_swap) { 2234 result = SCAN_EXCEED_SWAP_PTE; 2235 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2236 break; 2237 } 2238 continue; 2239 } 2240 2241 /* 2242 * TODO: khugepaged should compact smaller compound pages 2243 * into a PMD sized page 2244 */ 2245 if (folio_test_large(folio)) { 2246 result = folio_order(folio) == HPAGE_PMD_ORDER && 2247 folio->index == start 2248 /* Maybe PMD-mapped */ 2249 ? SCAN_PTE_MAPPED_HUGEPAGE 2250 : SCAN_PAGE_COMPOUND; 2251 /* 2252 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2253 * by the caller won't touch the page cache, and so 2254 * it's safe to skip LRU and refcount checks before 2255 * returning. 2256 */ 2257 break; 2258 } 2259 2260 node = folio_nid(folio); 2261 if (hpage_collapse_scan_abort(node, cc)) { 2262 result = SCAN_SCAN_ABORT; 2263 break; 2264 } 2265 cc->node_load[node]++; 2266 2267 if (!folio_test_lru(folio)) { 2268 result = SCAN_PAGE_LRU; 2269 break; 2270 } 2271 2272 if (folio_ref_count(folio) != 2273 1 + folio_mapcount(folio) + folio_test_private(folio)) { 2274 result = SCAN_PAGE_COUNT; 2275 break; 2276 } 2277 2278 /* 2279 * We probably should check if the folio is referenced 2280 * here, but nobody would transfer pte_young() to 2281 * folio_test_referenced() for us. And rmap walk here 2282 * is just too costly... 2283 */ 2284 2285 present++; 2286 2287 if (need_resched()) { 2288 xas_pause(&xas); 2289 cond_resched_rcu(); 2290 } 2291 } 2292 rcu_read_unlock(); 2293 2294 if (result == SCAN_SUCCEED) { 2295 if (cc->is_khugepaged && 2296 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2297 result = SCAN_EXCEED_NONE_PTE; 2298 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2299 } else { 2300 result = collapse_file(mm, addr, file, start, cc); 2301 } 2302 } 2303 2304 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2305 return result; 2306 } 2307 #else 2308 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2309 struct file *file, pgoff_t start, 2310 struct collapse_control *cc) 2311 { 2312 BUILD_BUG(); 2313 } 2314 #endif 2315 2316 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2317 struct collapse_control *cc) 2318 __releases(&khugepaged_mm_lock) 2319 __acquires(&khugepaged_mm_lock) 2320 { 2321 struct vma_iterator vmi; 2322 struct khugepaged_mm_slot *mm_slot; 2323 struct mm_slot *slot; 2324 struct mm_struct *mm; 2325 struct vm_area_struct *vma; 2326 int progress = 0; 2327 2328 VM_BUG_ON(!pages); 2329 lockdep_assert_held(&khugepaged_mm_lock); 2330 *result = SCAN_FAIL; 2331 2332 if (khugepaged_scan.mm_slot) { 2333 mm_slot = khugepaged_scan.mm_slot; 2334 slot = &mm_slot->slot; 2335 } else { 2336 slot = list_entry(khugepaged_scan.mm_head.next, 2337 struct mm_slot, mm_node); 2338 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2339 khugepaged_scan.address = 0; 2340 khugepaged_scan.mm_slot = mm_slot; 2341 } 2342 spin_unlock(&khugepaged_mm_lock); 2343 2344 mm = slot->mm; 2345 /* 2346 * Don't wait for semaphore (to avoid long wait times). Just move to 2347 * the next mm on the list. 2348 */ 2349 vma = NULL; 2350 if (unlikely(!mmap_read_trylock(mm))) 2351 goto breakouterloop_mmap_lock; 2352 2353 progress++; 2354 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2355 goto breakouterloop; 2356 2357 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2358 for_each_vma(vmi, vma) { 2359 unsigned long hstart, hend; 2360 2361 cond_resched(); 2362 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2363 progress++; 2364 break; 2365 } 2366 if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, 2367 true, PMD_ORDER)) { 2368 skip: 2369 progress++; 2370 continue; 2371 } 2372 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2373 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2374 if (khugepaged_scan.address > hend) 2375 goto skip; 2376 if (khugepaged_scan.address < hstart) 2377 khugepaged_scan.address = hstart; 2378 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2379 2380 while (khugepaged_scan.address < hend) { 2381 bool mmap_locked = true; 2382 2383 cond_resched(); 2384 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2385 goto breakouterloop; 2386 2387 VM_BUG_ON(khugepaged_scan.address < hstart || 2388 khugepaged_scan.address + HPAGE_PMD_SIZE > 2389 hend); 2390 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2391 struct file *file = get_file(vma->vm_file); 2392 pgoff_t pgoff = linear_page_index(vma, 2393 khugepaged_scan.address); 2394 2395 mmap_read_unlock(mm); 2396 mmap_locked = false; 2397 *result = hpage_collapse_scan_file(mm, 2398 khugepaged_scan.address, file, pgoff, cc); 2399 fput(file); 2400 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2401 mmap_read_lock(mm); 2402 if (hpage_collapse_test_exit_or_disable(mm)) 2403 goto breakouterloop; 2404 *result = collapse_pte_mapped_thp(mm, 2405 khugepaged_scan.address, false); 2406 if (*result == SCAN_PMD_MAPPED) 2407 *result = SCAN_SUCCEED; 2408 mmap_read_unlock(mm); 2409 } 2410 } else { 2411 *result = hpage_collapse_scan_pmd(mm, vma, 2412 khugepaged_scan.address, &mmap_locked, cc); 2413 } 2414 2415 if (*result == SCAN_SUCCEED) 2416 ++khugepaged_pages_collapsed; 2417 2418 /* move to next address */ 2419 khugepaged_scan.address += HPAGE_PMD_SIZE; 2420 progress += HPAGE_PMD_NR; 2421 if (!mmap_locked) 2422 /* 2423 * We released mmap_lock so break loop. Note 2424 * that we drop mmap_lock before all hugepage 2425 * allocations, so if allocation fails, we are 2426 * guaranteed to break here and report the 2427 * correct result back to caller. 2428 */ 2429 goto breakouterloop_mmap_lock; 2430 if (progress >= pages) 2431 goto breakouterloop; 2432 } 2433 } 2434 breakouterloop: 2435 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2436 breakouterloop_mmap_lock: 2437 2438 spin_lock(&khugepaged_mm_lock); 2439 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2440 /* 2441 * Release the current mm_slot if this mm is about to die, or 2442 * if we scanned all vmas of this mm. 2443 */ 2444 if (hpage_collapse_test_exit(mm) || !vma) { 2445 /* 2446 * Make sure that if mm_users is reaching zero while 2447 * khugepaged runs here, khugepaged_exit will find 2448 * mm_slot not pointing to the exiting mm. 2449 */ 2450 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2451 slot = list_entry(slot->mm_node.next, 2452 struct mm_slot, mm_node); 2453 khugepaged_scan.mm_slot = 2454 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2455 khugepaged_scan.address = 0; 2456 } else { 2457 khugepaged_scan.mm_slot = NULL; 2458 khugepaged_full_scans++; 2459 } 2460 2461 collect_mm_slot(mm_slot); 2462 } 2463 2464 return progress; 2465 } 2466 2467 static int khugepaged_has_work(void) 2468 { 2469 return !list_empty(&khugepaged_scan.mm_head) && 2470 hugepage_flags_enabled(); 2471 } 2472 2473 static int khugepaged_wait_event(void) 2474 { 2475 return !list_empty(&khugepaged_scan.mm_head) || 2476 kthread_should_stop(); 2477 } 2478 2479 static void khugepaged_do_scan(struct collapse_control *cc) 2480 { 2481 unsigned int progress = 0, pass_through_head = 0; 2482 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2483 bool wait = true; 2484 int result = SCAN_SUCCEED; 2485 2486 lru_add_drain_all(); 2487 2488 while (true) { 2489 cond_resched(); 2490 2491 if (unlikely(kthread_should_stop())) 2492 break; 2493 2494 spin_lock(&khugepaged_mm_lock); 2495 if (!khugepaged_scan.mm_slot) 2496 pass_through_head++; 2497 if (khugepaged_has_work() && 2498 pass_through_head < 2) 2499 progress += khugepaged_scan_mm_slot(pages - progress, 2500 &result, cc); 2501 else 2502 progress = pages; 2503 spin_unlock(&khugepaged_mm_lock); 2504 2505 if (progress >= pages) 2506 break; 2507 2508 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2509 /* 2510 * If fail to allocate the first time, try to sleep for 2511 * a while. When hit again, cancel the scan. 2512 */ 2513 if (!wait) 2514 break; 2515 wait = false; 2516 khugepaged_alloc_sleep(); 2517 } 2518 } 2519 } 2520 2521 static bool khugepaged_should_wakeup(void) 2522 { 2523 return kthread_should_stop() || 2524 time_after_eq(jiffies, khugepaged_sleep_expire); 2525 } 2526 2527 static void khugepaged_wait_work(void) 2528 { 2529 if (khugepaged_has_work()) { 2530 const unsigned long scan_sleep_jiffies = 2531 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2532 2533 if (!scan_sleep_jiffies) 2534 return; 2535 2536 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2537 wait_event_freezable_timeout(khugepaged_wait, 2538 khugepaged_should_wakeup(), 2539 scan_sleep_jiffies); 2540 return; 2541 } 2542 2543 if (hugepage_flags_enabled()) 2544 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2545 } 2546 2547 static int khugepaged(void *none) 2548 { 2549 struct khugepaged_mm_slot *mm_slot; 2550 2551 set_freezable(); 2552 set_user_nice(current, MAX_NICE); 2553 2554 while (!kthread_should_stop()) { 2555 khugepaged_do_scan(&khugepaged_collapse_control); 2556 khugepaged_wait_work(); 2557 } 2558 2559 spin_lock(&khugepaged_mm_lock); 2560 mm_slot = khugepaged_scan.mm_slot; 2561 khugepaged_scan.mm_slot = NULL; 2562 if (mm_slot) 2563 collect_mm_slot(mm_slot); 2564 spin_unlock(&khugepaged_mm_lock); 2565 return 0; 2566 } 2567 2568 static void set_recommended_min_free_kbytes(void) 2569 { 2570 struct zone *zone; 2571 int nr_zones = 0; 2572 unsigned long recommended_min; 2573 2574 if (!hugepage_flags_enabled()) { 2575 calculate_min_free_kbytes(); 2576 goto update_wmarks; 2577 } 2578 2579 for_each_populated_zone(zone) { 2580 /* 2581 * We don't need to worry about fragmentation of 2582 * ZONE_MOVABLE since it only has movable pages. 2583 */ 2584 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2585 continue; 2586 2587 nr_zones++; 2588 } 2589 2590 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2591 recommended_min = pageblock_nr_pages * nr_zones * 2; 2592 2593 /* 2594 * Make sure that on average at least two pageblocks are almost free 2595 * of another type, one for a migratetype to fall back to and a 2596 * second to avoid subsequent fallbacks of other types There are 3 2597 * MIGRATE_TYPES we care about. 2598 */ 2599 recommended_min += pageblock_nr_pages * nr_zones * 2600 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2601 2602 /* don't ever allow to reserve more than 5% of the lowmem */ 2603 recommended_min = min(recommended_min, 2604 (unsigned long) nr_free_buffer_pages() / 20); 2605 recommended_min <<= (PAGE_SHIFT-10); 2606 2607 if (recommended_min > min_free_kbytes) { 2608 if (user_min_free_kbytes >= 0) 2609 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2610 min_free_kbytes, recommended_min); 2611 2612 min_free_kbytes = recommended_min; 2613 } 2614 2615 update_wmarks: 2616 setup_per_zone_wmarks(); 2617 } 2618 2619 int start_stop_khugepaged(void) 2620 { 2621 int err = 0; 2622 2623 mutex_lock(&khugepaged_mutex); 2624 if (hugepage_flags_enabled()) { 2625 if (!khugepaged_thread) 2626 khugepaged_thread = kthread_run(khugepaged, NULL, 2627 "khugepaged"); 2628 if (IS_ERR(khugepaged_thread)) { 2629 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2630 err = PTR_ERR(khugepaged_thread); 2631 khugepaged_thread = NULL; 2632 goto fail; 2633 } 2634 2635 if (!list_empty(&khugepaged_scan.mm_head)) 2636 wake_up_interruptible(&khugepaged_wait); 2637 } else if (khugepaged_thread) { 2638 kthread_stop(khugepaged_thread); 2639 khugepaged_thread = NULL; 2640 } 2641 set_recommended_min_free_kbytes(); 2642 fail: 2643 mutex_unlock(&khugepaged_mutex); 2644 return err; 2645 } 2646 2647 void khugepaged_min_free_kbytes_update(void) 2648 { 2649 mutex_lock(&khugepaged_mutex); 2650 if (hugepage_flags_enabled() && khugepaged_thread) 2651 set_recommended_min_free_kbytes(); 2652 mutex_unlock(&khugepaged_mutex); 2653 } 2654 2655 bool current_is_khugepaged(void) 2656 { 2657 return kthread_func(current) == khugepaged; 2658 } 2659 2660 static int madvise_collapse_errno(enum scan_result r) 2661 { 2662 /* 2663 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2664 * actionable feedback to caller, so they may take an appropriate 2665 * fallback measure depending on the nature of the failure. 2666 */ 2667 switch (r) { 2668 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2669 return -ENOMEM; 2670 case SCAN_CGROUP_CHARGE_FAIL: 2671 case SCAN_EXCEED_NONE_PTE: 2672 return -EBUSY; 2673 /* Resource temporary unavailable - trying again might succeed */ 2674 case SCAN_PAGE_COUNT: 2675 case SCAN_PAGE_LOCK: 2676 case SCAN_PAGE_LRU: 2677 case SCAN_DEL_PAGE_LRU: 2678 case SCAN_PAGE_FILLED: 2679 return -EAGAIN; 2680 /* 2681 * Other: Trying again likely not to succeed / error intrinsic to 2682 * specified memory range. khugepaged likely won't be able to collapse 2683 * either. 2684 */ 2685 default: 2686 return -EINVAL; 2687 } 2688 } 2689 2690 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2691 unsigned long start, unsigned long end) 2692 { 2693 struct collapse_control *cc; 2694 struct mm_struct *mm = vma->vm_mm; 2695 unsigned long hstart, hend, addr; 2696 int thps = 0, last_fail = SCAN_FAIL; 2697 bool mmap_locked = true; 2698 2699 BUG_ON(vma->vm_start > start); 2700 BUG_ON(vma->vm_end < end); 2701 2702 *prev = vma; 2703 2704 if (!thp_vma_allowable_order(vma, vma->vm_flags, false, false, false, 2705 PMD_ORDER)) 2706 return -EINVAL; 2707 2708 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2709 if (!cc) 2710 return -ENOMEM; 2711 cc->is_khugepaged = false; 2712 2713 mmgrab(mm); 2714 lru_add_drain_all(); 2715 2716 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2717 hend = end & HPAGE_PMD_MASK; 2718 2719 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2720 int result = SCAN_FAIL; 2721 2722 if (!mmap_locked) { 2723 cond_resched(); 2724 mmap_read_lock(mm); 2725 mmap_locked = true; 2726 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2727 cc); 2728 if (result != SCAN_SUCCEED) { 2729 last_fail = result; 2730 goto out_nolock; 2731 } 2732 2733 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2734 } 2735 mmap_assert_locked(mm); 2736 memset(cc->node_load, 0, sizeof(cc->node_load)); 2737 nodes_clear(cc->alloc_nmask); 2738 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2739 struct file *file = get_file(vma->vm_file); 2740 pgoff_t pgoff = linear_page_index(vma, addr); 2741 2742 mmap_read_unlock(mm); 2743 mmap_locked = false; 2744 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2745 cc); 2746 fput(file); 2747 } else { 2748 result = hpage_collapse_scan_pmd(mm, vma, addr, 2749 &mmap_locked, cc); 2750 } 2751 if (!mmap_locked) 2752 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2753 2754 handle_result: 2755 switch (result) { 2756 case SCAN_SUCCEED: 2757 case SCAN_PMD_MAPPED: 2758 ++thps; 2759 break; 2760 case SCAN_PTE_MAPPED_HUGEPAGE: 2761 BUG_ON(mmap_locked); 2762 BUG_ON(*prev); 2763 mmap_read_lock(mm); 2764 result = collapse_pte_mapped_thp(mm, addr, true); 2765 mmap_read_unlock(mm); 2766 goto handle_result; 2767 /* Whitelisted set of results where continuing OK */ 2768 case SCAN_PMD_NULL: 2769 case SCAN_PTE_NON_PRESENT: 2770 case SCAN_PTE_UFFD_WP: 2771 case SCAN_PAGE_RO: 2772 case SCAN_LACK_REFERENCED_PAGE: 2773 case SCAN_PAGE_NULL: 2774 case SCAN_PAGE_COUNT: 2775 case SCAN_PAGE_LOCK: 2776 case SCAN_PAGE_COMPOUND: 2777 case SCAN_PAGE_LRU: 2778 case SCAN_DEL_PAGE_LRU: 2779 last_fail = result; 2780 break; 2781 default: 2782 last_fail = result; 2783 /* Other error, exit */ 2784 goto out_maybelock; 2785 } 2786 } 2787 2788 out_maybelock: 2789 /* Caller expects us to hold mmap_lock on return */ 2790 if (!mmap_locked) 2791 mmap_read_lock(mm); 2792 out_nolock: 2793 mmap_assert_locked(mm); 2794 mmdrop(mm); 2795 kfree(cc); 2796 2797 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2798 : madvise_collapse_errno(last_fail); 2799 } 2800