1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/mmu_notifier.h> 8 #include <linux/rmap.h> 9 #include <linux/swap.h> 10 #include <linux/mm_inline.h> 11 #include <linux/kthread.h> 12 #include <linux/khugepaged.h> 13 #include <linux/freezer.h> 14 #include <linux/mman.h> 15 #include <linux/hashtable.h> 16 #include <linux/userfaultfd_k.h> 17 #include <linux/page_idle.h> 18 #include <linux/page_table_check.h> 19 #include <linux/rcupdate_wait.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/ksm.h> 23 24 #include <asm/tlb.h> 25 #include <asm/pgalloc.h> 26 #include "internal.h" 27 #include "mm_slot.h" 28 29 enum scan_result { 30 SCAN_FAIL, 31 SCAN_SUCCEED, 32 SCAN_PMD_NULL, 33 SCAN_PMD_NONE, 34 SCAN_PMD_MAPPED, 35 SCAN_EXCEED_NONE_PTE, 36 SCAN_EXCEED_SWAP_PTE, 37 SCAN_EXCEED_SHARED_PTE, 38 SCAN_PTE_NON_PRESENT, 39 SCAN_PTE_UFFD_WP, 40 SCAN_PTE_MAPPED_HUGEPAGE, 41 SCAN_PAGE_RO, 42 SCAN_LACK_REFERENCED_PAGE, 43 SCAN_PAGE_NULL, 44 SCAN_SCAN_ABORT, 45 SCAN_PAGE_COUNT, 46 SCAN_PAGE_LRU, 47 SCAN_PAGE_LOCK, 48 SCAN_PAGE_ANON, 49 SCAN_PAGE_COMPOUND, 50 SCAN_ANY_PROCESS, 51 SCAN_VMA_NULL, 52 SCAN_VMA_CHECK, 53 SCAN_ADDRESS_RANGE, 54 SCAN_DEL_PAGE_LRU, 55 SCAN_ALLOC_HUGE_PAGE_FAIL, 56 SCAN_CGROUP_CHARGE_FAIL, 57 SCAN_TRUNCATED, 58 SCAN_PAGE_HAS_PRIVATE, 59 SCAN_STORE_FAILED, 60 SCAN_COPY_MC, 61 SCAN_PAGE_FILLED, 62 }; 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/huge_memory.h> 66 67 static struct task_struct *khugepaged_thread __read_mostly; 68 static DEFINE_MUTEX(khugepaged_mutex); 69 70 /* default scan 8*512 pte (or vmas) every 30 second */ 71 static unsigned int khugepaged_pages_to_scan __read_mostly; 72 static unsigned int khugepaged_pages_collapsed; 73 static unsigned int khugepaged_full_scans; 74 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 75 /* during fragmentation poll the hugepage allocator once every minute */ 76 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 77 static unsigned long khugepaged_sleep_expire; 78 static DEFINE_SPINLOCK(khugepaged_mm_lock); 79 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 80 /* 81 * default collapse hugepages if there is at least one pte mapped like 82 * it would have happened if the vma was large enough during page 83 * fault. 84 * 85 * Note that these are only respected if collapse was initiated by khugepaged. 86 */ 87 unsigned int khugepaged_max_ptes_none __read_mostly; 88 static unsigned int khugepaged_max_ptes_swap __read_mostly; 89 static unsigned int khugepaged_max_ptes_shared __read_mostly; 90 91 #define MM_SLOTS_HASH_BITS 10 92 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 93 94 static struct kmem_cache *mm_slot_cache __ro_after_init; 95 96 struct collapse_control { 97 bool is_khugepaged; 98 99 /* Num pages scanned per node */ 100 u32 node_load[MAX_NUMNODES]; 101 102 /* nodemask for allocation fallback */ 103 nodemask_t alloc_nmask; 104 }; 105 106 /** 107 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 108 * @slot: hash lookup from mm to mm_slot 109 */ 110 struct khugepaged_mm_slot { 111 struct mm_slot slot; 112 }; 113 114 /** 115 * struct khugepaged_scan - cursor for scanning 116 * @mm_head: the head of the mm list to scan 117 * @mm_slot: the current mm_slot we are scanning 118 * @address: the next address inside that to be scanned 119 * 120 * There is only the one khugepaged_scan instance of this cursor structure. 121 */ 122 struct khugepaged_scan { 123 struct list_head mm_head; 124 struct khugepaged_mm_slot *mm_slot; 125 unsigned long address; 126 }; 127 128 static struct khugepaged_scan khugepaged_scan = { 129 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 130 }; 131 132 #ifdef CONFIG_SYSFS 133 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 134 struct kobj_attribute *attr, 135 char *buf) 136 { 137 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 138 } 139 140 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 141 struct kobj_attribute *attr, 142 const char *buf, size_t count) 143 { 144 unsigned int msecs; 145 int err; 146 147 err = kstrtouint(buf, 10, &msecs); 148 if (err) 149 return -EINVAL; 150 151 khugepaged_scan_sleep_millisecs = msecs; 152 khugepaged_sleep_expire = 0; 153 wake_up_interruptible(&khugepaged_wait); 154 155 return count; 156 } 157 static struct kobj_attribute scan_sleep_millisecs_attr = 158 __ATTR_RW(scan_sleep_millisecs); 159 160 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 161 struct kobj_attribute *attr, 162 char *buf) 163 { 164 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 165 } 166 167 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 168 struct kobj_attribute *attr, 169 const char *buf, size_t count) 170 { 171 unsigned int msecs; 172 int err; 173 174 err = kstrtouint(buf, 10, &msecs); 175 if (err) 176 return -EINVAL; 177 178 khugepaged_alloc_sleep_millisecs = msecs; 179 khugepaged_sleep_expire = 0; 180 wake_up_interruptible(&khugepaged_wait); 181 182 return count; 183 } 184 static struct kobj_attribute alloc_sleep_millisecs_attr = 185 __ATTR_RW(alloc_sleep_millisecs); 186 187 static ssize_t pages_to_scan_show(struct kobject *kobj, 188 struct kobj_attribute *attr, 189 char *buf) 190 { 191 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 192 } 193 static ssize_t pages_to_scan_store(struct kobject *kobj, 194 struct kobj_attribute *attr, 195 const char *buf, size_t count) 196 { 197 unsigned int pages; 198 int err; 199 200 err = kstrtouint(buf, 10, &pages); 201 if (err || !pages) 202 return -EINVAL; 203 204 khugepaged_pages_to_scan = pages; 205 206 return count; 207 } 208 static struct kobj_attribute pages_to_scan_attr = 209 __ATTR_RW(pages_to_scan); 210 211 static ssize_t pages_collapsed_show(struct kobject *kobj, 212 struct kobj_attribute *attr, 213 char *buf) 214 { 215 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 216 } 217 static struct kobj_attribute pages_collapsed_attr = 218 __ATTR_RO(pages_collapsed); 219 220 static ssize_t full_scans_show(struct kobject *kobj, 221 struct kobj_attribute *attr, 222 char *buf) 223 { 224 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 225 } 226 static struct kobj_attribute full_scans_attr = 227 __ATTR_RO(full_scans); 228 229 static ssize_t defrag_show(struct kobject *kobj, 230 struct kobj_attribute *attr, char *buf) 231 { 232 return single_hugepage_flag_show(kobj, attr, buf, 233 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 234 } 235 static ssize_t defrag_store(struct kobject *kobj, 236 struct kobj_attribute *attr, 237 const char *buf, size_t count) 238 { 239 return single_hugepage_flag_store(kobj, attr, buf, count, 240 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 241 } 242 static struct kobj_attribute khugepaged_defrag_attr = 243 __ATTR_RW(defrag); 244 245 /* 246 * max_ptes_none controls if khugepaged should collapse hugepages over 247 * any unmapped ptes in turn potentially increasing the memory 248 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 249 * reduce the available free memory in the system as it 250 * runs. Increasing max_ptes_none will instead potentially reduce the 251 * free memory in the system during the khugepaged scan. 252 */ 253 static ssize_t max_ptes_none_show(struct kobject *kobj, 254 struct kobj_attribute *attr, 255 char *buf) 256 { 257 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 258 } 259 static ssize_t max_ptes_none_store(struct kobject *kobj, 260 struct kobj_attribute *attr, 261 const char *buf, size_t count) 262 { 263 int err; 264 unsigned long max_ptes_none; 265 266 err = kstrtoul(buf, 10, &max_ptes_none); 267 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 268 return -EINVAL; 269 270 khugepaged_max_ptes_none = max_ptes_none; 271 272 return count; 273 } 274 static struct kobj_attribute khugepaged_max_ptes_none_attr = 275 __ATTR_RW(max_ptes_none); 276 277 static ssize_t max_ptes_swap_show(struct kobject *kobj, 278 struct kobj_attribute *attr, 279 char *buf) 280 { 281 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 282 } 283 284 static ssize_t max_ptes_swap_store(struct kobject *kobj, 285 struct kobj_attribute *attr, 286 const char *buf, size_t count) 287 { 288 int err; 289 unsigned long max_ptes_swap; 290 291 err = kstrtoul(buf, 10, &max_ptes_swap); 292 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 293 return -EINVAL; 294 295 khugepaged_max_ptes_swap = max_ptes_swap; 296 297 return count; 298 } 299 300 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 301 __ATTR_RW(max_ptes_swap); 302 303 static ssize_t max_ptes_shared_show(struct kobject *kobj, 304 struct kobj_attribute *attr, 305 char *buf) 306 { 307 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 308 } 309 310 static ssize_t max_ptes_shared_store(struct kobject *kobj, 311 struct kobj_attribute *attr, 312 const char *buf, size_t count) 313 { 314 int err; 315 unsigned long max_ptes_shared; 316 317 err = kstrtoul(buf, 10, &max_ptes_shared); 318 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 319 return -EINVAL; 320 321 khugepaged_max_ptes_shared = max_ptes_shared; 322 323 return count; 324 } 325 326 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 327 __ATTR_RW(max_ptes_shared); 328 329 static struct attribute *khugepaged_attr[] = { 330 &khugepaged_defrag_attr.attr, 331 &khugepaged_max_ptes_none_attr.attr, 332 &khugepaged_max_ptes_swap_attr.attr, 333 &khugepaged_max_ptes_shared_attr.attr, 334 &pages_to_scan_attr.attr, 335 &pages_collapsed_attr.attr, 336 &full_scans_attr.attr, 337 &scan_sleep_millisecs_attr.attr, 338 &alloc_sleep_millisecs_attr.attr, 339 NULL, 340 }; 341 342 struct attribute_group khugepaged_attr_group = { 343 .attrs = khugepaged_attr, 344 .name = "khugepaged", 345 }; 346 #endif /* CONFIG_SYSFS */ 347 348 int hugepage_madvise(struct vm_area_struct *vma, 349 unsigned long *vm_flags, int advice) 350 { 351 switch (advice) { 352 case MADV_HUGEPAGE: 353 #ifdef CONFIG_S390 354 /* 355 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 356 * can't handle this properly after s390_enable_sie, so we simply 357 * ignore the madvise to prevent qemu from causing a SIGSEGV. 358 */ 359 if (mm_has_pgste(vma->vm_mm)) 360 return 0; 361 #endif 362 *vm_flags &= ~VM_NOHUGEPAGE; 363 *vm_flags |= VM_HUGEPAGE; 364 /* 365 * If the vma become good for khugepaged to scan, 366 * register it here without waiting a page fault that 367 * may not happen any time soon. 368 */ 369 khugepaged_enter_vma(vma, *vm_flags); 370 break; 371 case MADV_NOHUGEPAGE: 372 *vm_flags &= ~VM_HUGEPAGE; 373 *vm_flags |= VM_NOHUGEPAGE; 374 /* 375 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 376 * this vma even if we leave the mm registered in khugepaged if 377 * it got registered before VM_NOHUGEPAGE was set. 378 */ 379 break; 380 } 381 382 return 0; 383 } 384 385 int __init khugepaged_init(void) 386 { 387 mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0); 388 if (!mm_slot_cache) 389 return -ENOMEM; 390 391 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 392 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 393 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 394 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 395 396 return 0; 397 } 398 399 void __init khugepaged_destroy(void) 400 { 401 kmem_cache_destroy(mm_slot_cache); 402 } 403 404 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 405 { 406 return atomic_read(&mm->mm_users) == 0; 407 } 408 409 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 410 { 411 return hpage_collapse_test_exit(mm) || 412 test_bit(MMF_DISABLE_THP, &mm->flags); 413 } 414 415 static bool hugepage_pmd_enabled(void) 416 { 417 /* 418 * We cover the anon, shmem and the file-backed case here; file-backed 419 * hugepages, when configured in, are determined by the global control. 420 * Anon pmd-sized hugepages are determined by the pmd-size control. 421 * Shmem pmd-sized hugepages are also determined by its pmd-size control, 422 * except when the global shmem_huge is set to SHMEM_HUGE_DENY. 423 */ 424 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 425 hugepage_global_enabled()) 426 return true; 427 if (test_bit(PMD_ORDER, &huge_anon_orders_always)) 428 return true; 429 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) 430 return true; 431 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && 432 hugepage_global_enabled()) 433 return true; 434 if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled()) 435 return true; 436 return false; 437 } 438 439 void __khugepaged_enter(struct mm_struct *mm) 440 { 441 struct khugepaged_mm_slot *mm_slot; 442 struct mm_slot *slot; 443 int wakeup; 444 445 /* __khugepaged_exit() must not run from under us */ 446 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 447 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 448 return; 449 450 mm_slot = mm_slot_alloc(mm_slot_cache); 451 if (!mm_slot) 452 return; 453 454 slot = &mm_slot->slot; 455 456 spin_lock(&khugepaged_mm_lock); 457 mm_slot_insert(mm_slots_hash, mm, slot); 458 /* 459 * Insert just behind the scanning cursor, to let the area settle 460 * down a little. 461 */ 462 wakeup = list_empty(&khugepaged_scan.mm_head); 463 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 464 spin_unlock(&khugepaged_mm_lock); 465 466 mmgrab(mm); 467 if (wakeup) 468 wake_up_interruptible(&khugepaged_wait); 469 } 470 471 void khugepaged_enter_vma(struct vm_area_struct *vma, 472 unsigned long vm_flags) 473 { 474 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 475 hugepage_pmd_enabled()) { 476 if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS, 477 PMD_ORDER)) 478 __khugepaged_enter(vma->vm_mm); 479 } 480 } 481 482 void __khugepaged_exit(struct mm_struct *mm) 483 { 484 struct khugepaged_mm_slot *mm_slot; 485 struct mm_slot *slot; 486 int free = 0; 487 488 spin_lock(&khugepaged_mm_lock); 489 slot = mm_slot_lookup(mm_slots_hash, mm); 490 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 491 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 492 hash_del(&slot->hash); 493 list_del(&slot->mm_node); 494 free = 1; 495 } 496 spin_unlock(&khugepaged_mm_lock); 497 498 if (free) { 499 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 500 mm_slot_free(mm_slot_cache, mm_slot); 501 mmdrop(mm); 502 } else if (mm_slot) { 503 /* 504 * This is required to serialize against 505 * hpage_collapse_test_exit() (which is guaranteed to run 506 * under mmap sem read mode). Stop here (after we return all 507 * pagetables will be destroyed) until khugepaged has finished 508 * working on the pagetables under the mmap_lock. 509 */ 510 mmap_write_lock(mm); 511 mmap_write_unlock(mm); 512 } 513 } 514 515 static void release_pte_folio(struct folio *folio) 516 { 517 node_stat_mod_folio(folio, 518 NR_ISOLATED_ANON + folio_is_file_lru(folio), 519 -folio_nr_pages(folio)); 520 folio_unlock(folio); 521 folio_putback_lru(folio); 522 } 523 524 static void release_pte_pages(pte_t *pte, pte_t *_pte, 525 struct list_head *compound_pagelist) 526 { 527 struct folio *folio, *tmp; 528 529 while (--_pte >= pte) { 530 pte_t pteval = ptep_get(_pte); 531 unsigned long pfn; 532 533 if (pte_none(pteval)) 534 continue; 535 pfn = pte_pfn(pteval); 536 if (is_zero_pfn(pfn)) 537 continue; 538 folio = pfn_folio(pfn); 539 if (folio_test_large(folio)) 540 continue; 541 release_pte_folio(folio); 542 } 543 544 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 545 list_del(&folio->lru); 546 release_pte_folio(folio); 547 } 548 } 549 550 static bool is_refcount_suitable(struct folio *folio) 551 { 552 int expected_refcount = folio_mapcount(folio); 553 554 if (!folio_test_anon(folio) || folio_test_swapcache(folio)) 555 expected_refcount += folio_nr_pages(folio); 556 557 if (folio_test_private(folio)) 558 expected_refcount++; 559 560 return folio_ref_count(folio) == expected_refcount; 561 } 562 563 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 564 unsigned long address, 565 pte_t *pte, 566 struct collapse_control *cc, 567 struct list_head *compound_pagelist) 568 { 569 struct page *page = NULL; 570 struct folio *folio = NULL; 571 pte_t *_pte; 572 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 573 bool writable = false; 574 575 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 576 _pte++, address += PAGE_SIZE) { 577 pte_t pteval = ptep_get(_pte); 578 if (pte_none(pteval) || (pte_present(pteval) && 579 is_zero_pfn(pte_pfn(pteval)))) { 580 ++none_or_zero; 581 if (!userfaultfd_armed(vma) && 582 (!cc->is_khugepaged || 583 none_or_zero <= khugepaged_max_ptes_none)) { 584 continue; 585 } else { 586 result = SCAN_EXCEED_NONE_PTE; 587 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 588 goto out; 589 } 590 } 591 if (!pte_present(pteval)) { 592 result = SCAN_PTE_NON_PRESENT; 593 goto out; 594 } 595 if (pte_uffd_wp(pteval)) { 596 result = SCAN_PTE_UFFD_WP; 597 goto out; 598 } 599 page = vm_normal_page(vma, address, pteval); 600 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 601 result = SCAN_PAGE_NULL; 602 goto out; 603 } 604 605 folio = page_folio(page); 606 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 607 608 /* See hpage_collapse_scan_pmd(). */ 609 if (folio_likely_mapped_shared(folio)) { 610 ++shared; 611 if (cc->is_khugepaged && 612 shared > khugepaged_max_ptes_shared) { 613 result = SCAN_EXCEED_SHARED_PTE; 614 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 615 goto out; 616 } 617 } 618 619 if (folio_test_large(folio)) { 620 struct folio *f; 621 622 /* 623 * Check if we have dealt with the compound page 624 * already 625 */ 626 list_for_each_entry(f, compound_pagelist, lru) { 627 if (folio == f) 628 goto next; 629 } 630 } 631 632 /* 633 * We can do it before folio_isolate_lru because the 634 * folio can't be freed from under us. NOTE: PG_lock 635 * is needed to serialize against split_huge_page 636 * when invoked from the VM. 637 */ 638 if (!folio_trylock(folio)) { 639 result = SCAN_PAGE_LOCK; 640 goto out; 641 } 642 643 /* 644 * Check if the page has any GUP (or other external) pins. 645 * 646 * The page table that maps the page has been already unlinked 647 * from the page table tree and this process cannot get 648 * an additional pin on the page. 649 * 650 * New pins can come later if the page is shared across fork, 651 * but not from this process. The other process cannot write to 652 * the page, only trigger CoW. 653 */ 654 if (!is_refcount_suitable(folio)) { 655 folio_unlock(folio); 656 result = SCAN_PAGE_COUNT; 657 goto out; 658 } 659 660 /* 661 * Isolate the page to avoid collapsing an hugepage 662 * currently in use by the VM. 663 */ 664 if (!folio_isolate_lru(folio)) { 665 folio_unlock(folio); 666 result = SCAN_DEL_PAGE_LRU; 667 goto out; 668 } 669 node_stat_mod_folio(folio, 670 NR_ISOLATED_ANON + folio_is_file_lru(folio), 671 folio_nr_pages(folio)); 672 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 673 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 674 675 if (folio_test_large(folio)) 676 list_add_tail(&folio->lru, compound_pagelist); 677 next: 678 /* 679 * If collapse was initiated by khugepaged, check that there is 680 * enough young pte to justify collapsing the page 681 */ 682 if (cc->is_khugepaged && 683 (pte_young(pteval) || folio_test_young(folio) || 684 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 685 address))) 686 referenced++; 687 688 if (pte_write(pteval)) 689 writable = true; 690 } 691 692 if (unlikely(!writable)) { 693 result = SCAN_PAGE_RO; 694 } else if (unlikely(cc->is_khugepaged && !referenced)) { 695 result = SCAN_LACK_REFERENCED_PAGE; 696 } else { 697 result = SCAN_SUCCEED; 698 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 699 referenced, writable, result); 700 return result; 701 } 702 out: 703 release_pte_pages(pte, _pte, compound_pagelist); 704 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 705 referenced, writable, result); 706 return result; 707 } 708 709 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 710 struct vm_area_struct *vma, 711 unsigned long address, 712 spinlock_t *ptl, 713 struct list_head *compound_pagelist) 714 { 715 struct folio *src, *tmp; 716 pte_t *_pte; 717 pte_t pteval; 718 719 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 720 _pte++, address += PAGE_SIZE) { 721 pteval = ptep_get(_pte); 722 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 723 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 724 if (is_zero_pfn(pte_pfn(pteval))) { 725 /* 726 * ptl mostly unnecessary. 727 */ 728 spin_lock(ptl); 729 ptep_clear(vma->vm_mm, address, _pte); 730 spin_unlock(ptl); 731 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 732 } 733 } else { 734 struct page *src_page = pte_page(pteval); 735 736 src = page_folio(src_page); 737 if (!folio_test_large(src)) 738 release_pte_folio(src); 739 /* 740 * ptl mostly unnecessary, but preempt has to 741 * be disabled to update the per-cpu stats 742 * inside folio_remove_rmap_pte(). 743 */ 744 spin_lock(ptl); 745 ptep_clear(vma->vm_mm, address, _pte); 746 folio_remove_rmap_pte(src, src_page, vma); 747 spin_unlock(ptl); 748 free_page_and_swap_cache(src_page); 749 } 750 } 751 752 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 753 list_del(&src->lru); 754 node_stat_sub_folio(src, NR_ISOLATED_ANON + 755 folio_is_file_lru(src)); 756 folio_unlock(src); 757 free_swap_cache(src); 758 folio_putback_lru(src); 759 } 760 } 761 762 static void __collapse_huge_page_copy_failed(pte_t *pte, 763 pmd_t *pmd, 764 pmd_t orig_pmd, 765 struct vm_area_struct *vma, 766 struct list_head *compound_pagelist) 767 { 768 spinlock_t *pmd_ptl; 769 770 /* 771 * Re-establish the PMD to point to the original page table 772 * entry. Restoring PMD needs to be done prior to releasing 773 * pages. Since pages are still isolated and locked here, 774 * acquiring anon_vma_lock_write is unnecessary. 775 */ 776 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 777 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 778 spin_unlock(pmd_ptl); 779 /* 780 * Release both raw and compound pages isolated 781 * in __collapse_huge_page_isolate. 782 */ 783 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 784 } 785 786 /* 787 * __collapse_huge_page_copy - attempts to copy memory contents from raw 788 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 789 * otherwise restores the original page table and releases isolated raw pages. 790 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 791 * 792 * @pte: starting of the PTEs to copy from 793 * @folio: the new hugepage to copy contents to 794 * @pmd: pointer to the new hugepage's PMD 795 * @orig_pmd: the original raw pages' PMD 796 * @vma: the original raw pages' virtual memory area 797 * @address: starting address to copy 798 * @ptl: lock on raw pages' PTEs 799 * @compound_pagelist: list that stores compound pages 800 */ 801 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 802 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 803 unsigned long address, spinlock_t *ptl, 804 struct list_head *compound_pagelist) 805 { 806 unsigned int i; 807 int result = SCAN_SUCCEED; 808 809 /* 810 * Copying pages' contents is subject to memory poison at any iteration. 811 */ 812 for (i = 0; i < HPAGE_PMD_NR; i++) { 813 pte_t pteval = ptep_get(pte + i); 814 struct page *page = folio_page(folio, i); 815 unsigned long src_addr = address + i * PAGE_SIZE; 816 struct page *src_page; 817 818 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 819 clear_user_highpage(page, src_addr); 820 continue; 821 } 822 src_page = pte_page(pteval); 823 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 824 result = SCAN_COPY_MC; 825 break; 826 } 827 } 828 829 if (likely(result == SCAN_SUCCEED)) 830 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 831 compound_pagelist); 832 else 833 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 834 compound_pagelist); 835 836 return result; 837 } 838 839 static void khugepaged_alloc_sleep(void) 840 { 841 DEFINE_WAIT(wait); 842 843 add_wait_queue(&khugepaged_wait, &wait); 844 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 845 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 846 remove_wait_queue(&khugepaged_wait, &wait); 847 } 848 849 struct collapse_control khugepaged_collapse_control = { 850 .is_khugepaged = true, 851 }; 852 853 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 854 { 855 int i; 856 857 /* 858 * If node_reclaim_mode is disabled, then no extra effort is made to 859 * allocate memory locally. 860 */ 861 if (!node_reclaim_enabled()) 862 return false; 863 864 /* If there is a count for this node already, it must be acceptable */ 865 if (cc->node_load[nid]) 866 return false; 867 868 for (i = 0; i < MAX_NUMNODES; i++) { 869 if (!cc->node_load[i]) 870 continue; 871 if (node_distance(nid, i) > node_reclaim_distance) 872 return true; 873 } 874 return false; 875 } 876 877 #define khugepaged_defrag() \ 878 (transparent_hugepage_flags & \ 879 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 880 881 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 882 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 883 { 884 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 885 } 886 887 #ifdef CONFIG_NUMA 888 static int hpage_collapse_find_target_node(struct collapse_control *cc) 889 { 890 int nid, target_node = 0, max_value = 0; 891 892 /* find first node with max normal pages hit */ 893 for (nid = 0; nid < MAX_NUMNODES; nid++) 894 if (cc->node_load[nid] > max_value) { 895 max_value = cc->node_load[nid]; 896 target_node = nid; 897 } 898 899 for_each_online_node(nid) { 900 if (max_value == cc->node_load[nid]) 901 node_set(nid, cc->alloc_nmask); 902 } 903 904 return target_node; 905 } 906 #else 907 static int hpage_collapse_find_target_node(struct collapse_control *cc) 908 { 909 return 0; 910 } 911 #endif 912 913 /* 914 * If mmap_lock temporarily dropped, revalidate vma 915 * before taking mmap_lock. 916 * Returns enum scan_result value. 917 */ 918 919 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 920 bool expect_anon, 921 struct vm_area_struct **vmap, 922 struct collapse_control *cc) 923 { 924 struct vm_area_struct *vma; 925 unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0; 926 927 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 928 return SCAN_ANY_PROCESS; 929 930 *vmap = vma = find_vma(mm, address); 931 if (!vma) 932 return SCAN_VMA_NULL; 933 934 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 935 return SCAN_ADDRESS_RANGE; 936 if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER)) 937 return SCAN_VMA_CHECK; 938 /* 939 * Anon VMA expected, the address may be unmapped then 940 * remapped to file after khugepaged reaquired the mmap_lock. 941 * 942 * thp_vma_allowable_order may return true for qualified file 943 * vmas. 944 */ 945 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 946 return SCAN_PAGE_ANON; 947 return SCAN_SUCCEED; 948 } 949 950 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 951 unsigned long address, 952 pmd_t **pmd) 953 { 954 pmd_t pmde; 955 956 *pmd = mm_find_pmd(mm, address); 957 if (!*pmd) 958 return SCAN_PMD_NULL; 959 960 pmde = pmdp_get_lockless(*pmd); 961 if (pmd_none(pmde)) 962 return SCAN_PMD_NONE; 963 if (!pmd_present(pmde)) 964 return SCAN_PMD_NULL; 965 if (pmd_trans_huge(pmde)) 966 return SCAN_PMD_MAPPED; 967 if (pmd_devmap(pmde)) 968 return SCAN_PMD_NULL; 969 if (pmd_bad(pmde)) 970 return SCAN_PMD_NULL; 971 return SCAN_SUCCEED; 972 } 973 974 static int check_pmd_still_valid(struct mm_struct *mm, 975 unsigned long address, 976 pmd_t *pmd) 977 { 978 pmd_t *new_pmd; 979 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 980 981 if (result != SCAN_SUCCEED) 982 return result; 983 if (new_pmd != pmd) 984 return SCAN_FAIL; 985 return SCAN_SUCCEED; 986 } 987 988 /* 989 * Bring missing pages in from swap, to complete THP collapse. 990 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 991 * 992 * Called and returns without pte mapped or spinlocks held. 993 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 994 */ 995 static int __collapse_huge_page_swapin(struct mm_struct *mm, 996 struct vm_area_struct *vma, 997 unsigned long haddr, pmd_t *pmd, 998 int referenced) 999 { 1000 int swapped_in = 0; 1001 vm_fault_t ret = 0; 1002 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 1003 int result; 1004 pte_t *pte = NULL; 1005 spinlock_t *ptl; 1006 1007 for (address = haddr; address < end; address += PAGE_SIZE) { 1008 struct vm_fault vmf = { 1009 .vma = vma, 1010 .address = address, 1011 .pgoff = linear_page_index(vma, address), 1012 .flags = FAULT_FLAG_ALLOW_RETRY, 1013 .pmd = pmd, 1014 }; 1015 1016 if (!pte++) { 1017 /* 1018 * Here the ptl is only used to check pte_same() in 1019 * do_swap_page(), so readonly version is enough. 1020 */ 1021 pte = pte_offset_map_ro_nolock(mm, pmd, address, &ptl); 1022 if (!pte) { 1023 mmap_read_unlock(mm); 1024 result = SCAN_PMD_NULL; 1025 goto out; 1026 } 1027 } 1028 1029 vmf.orig_pte = ptep_get_lockless(pte); 1030 if (!is_swap_pte(vmf.orig_pte)) 1031 continue; 1032 1033 vmf.pte = pte; 1034 vmf.ptl = ptl; 1035 ret = do_swap_page(&vmf); 1036 /* Which unmaps pte (after perhaps re-checking the entry) */ 1037 pte = NULL; 1038 1039 /* 1040 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1041 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1042 * we do not retry here and swap entry will remain in pagetable 1043 * resulting in later failure. 1044 */ 1045 if (ret & VM_FAULT_RETRY) { 1046 /* Likely, but not guaranteed, that page lock failed */ 1047 result = SCAN_PAGE_LOCK; 1048 goto out; 1049 } 1050 if (ret & VM_FAULT_ERROR) { 1051 mmap_read_unlock(mm); 1052 result = SCAN_FAIL; 1053 goto out; 1054 } 1055 swapped_in++; 1056 } 1057 1058 if (pte) 1059 pte_unmap(pte); 1060 1061 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1062 if (swapped_in) 1063 lru_add_drain(); 1064 1065 result = SCAN_SUCCEED; 1066 out: 1067 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1068 return result; 1069 } 1070 1071 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1072 struct collapse_control *cc) 1073 { 1074 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1075 GFP_TRANSHUGE); 1076 int node = hpage_collapse_find_target_node(cc); 1077 struct folio *folio; 1078 1079 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1080 if (!folio) { 1081 *foliop = NULL; 1082 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1083 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1084 } 1085 1086 count_vm_event(THP_COLLAPSE_ALLOC); 1087 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1088 folio_put(folio); 1089 *foliop = NULL; 1090 return SCAN_CGROUP_CHARGE_FAIL; 1091 } 1092 1093 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1094 1095 *foliop = folio; 1096 return SCAN_SUCCEED; 1097 } 1098 1099 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1100 int referenced, int unmapped, 1101 struct collapse_control *cc) 1102 { 1103 LIST_HEAD(compound_pagelist); 1104 pmd_t *pmd, _pmd; 1105 pte_t *pte; 1106 pgtable_t pgtable; 1107 struct folio *folio; 1108 spinlock_t *pmd_ptl, *pte_ptl; 1109 int result = SCAN_FAIL; 1110 struct vm_area_struct *vma; 1111 struct mmu_notifier_range range; 1112 1113 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1114 1115 /* 1116 * Before allocating the hugepage, release the mmap_lock read lock. 1117 * The allocation can take potentially a long time if it involves 1118 * sync compaction, and we do not need to hold the mmap_lock during 1119 * that. We will recheck the vma after taking it again in write mode. 1120 */ 1121 mmap_read_unlock(mm); 1122 1123 result = alloc_charge_folio(&folio, mm, cc); 1124 if (result != SCAN_SUCCEED) 1125 goto out_nolock; 1126 1127 mmap_read_lock(mm); 1128 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1129 if (result != SCAN_SUCCEED) { 1130 mmap_read_unlock(mm); 1131 goto out_nolock; 1132 } 1133 1134 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1135 if (result != SCAN_SUCCEED) { 1136 mmap_read_unlock(mm); 1137 goto out_nolock; 1138 } 1139 1140 if (unmapped) { 1141 /* 1142 * __collapse_huge_page_swapin will return with mmap_lock 1143 * released when it fails. So we jump out_nolock directly in 1144 * that case. Continuing to collapse causes inconsistency. 1145 */ 1146 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1147 referenced); 1148 if (result != SCAN_SUCCEED) 1149 goto out_nolock; 1150 } 1151 1152 mmap_read_unlock(mm); 1153 /* 1154 * Prevent all access to pagetables with the exception of 1155 * gup_fast later handled by the ptep_clear_flush and the VM 1156 * handled by the anon_vma lock + PG_lock. 1157 * 1158 * UFFDIO_MOVE is prevented to race as well thanks to the 1159 * mmap_lock. 1160 */ 1161 mmap_write_lock(mm); 1162 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1163 if (result != SCAN_SUCCEED) 1164 goto out_up_write; 1165 /* check if the pmd is still valid */ 1166 result = check_pmd_still_valid(mm, address, pmd); 1167 if (result != SCAN_SUCCEED) 1168 goto out_up_write; 1169 1170 vma_start_write(vma); 1171 anon_vma_lock_write(vma->anon_vma); 1172 1173 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1174 address + HPAGE_PMD_SIZE); 1175 mmu_notifier_invalidate_range_start(&range); 1176 1177 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1178 /* 1179 * This removes any huge TLB entry from the CPU so we won't allow 1180 * huge and small TLB entries for the same virtual address to 1181 * avoid the risk of CPU bugs in that area. 1182 * 1183 * Parallel GUP-fast is fine since GUP-fast will back off when 1184 * it detects PMD is changed. 1185 */ 1186 _pmd = pmdp_collapse_flush(vma, address, pmd); 1187 spin_unlock(pmd_ptl); 1188 mmu_notifier_invalidate_range_end(&range); 1189 tlb_remove_table_sync_one(); 1190 1191 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1192 if (pte) { 1193 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1194 &compound_pagelist); 1195 spin_unlock(pte_ptl); 1196 } else { 1197 result = SCAN_PMD_NULL; 1198 } 1199 1200 if (unlikely(result != SCAN_SUCCEED)) { 1201 if (pte) 1202 pte_unmap(pte); 1203 spin_lock(pmd_ptl); 1204 BUG_ON(!pmd_none(*pmd)); 1205 /* 1206 * We can only use set_pmd_at when establishing 1207 * hugepmds and never for establishing regular pmds that 1208 * points to regular pagetables. Use pmd_populate for that 1209 */ 1210 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1211 spin_unlock(pmd_ptl); 1212 anon_vma_unlock_write(vma->anon_vma); 1213 goto out_up_write; 1214 } 1215 1216 /* 1217 * All pages are isolated and locked so anon_vma rmap 1218 * can't run anymore. 1219 */ 1220 anon_vma_unlock_write(vma->anon_vma); 1221 1222 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1223 vma, address, pte_ptl, 1224 &compound_pagelist); 1225 pte_unmap(pte); 1226 if (unlikely(result != SCAN_SUCCEED)) 1227 goto out_up_write; 1228 1229 /* 1230 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1231 * copy_huge_page writes become visible before the set_pmd_at() 1232 * write. 1233 */ 1234 __folio_mark_uptodate(folio); 1235 pgtable = pmd_pgtable(_pmd); 1236 1237 _pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot); 1238 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1239 1240 spin_lock(pmd_ptl); 1241 BUG_ON(!pmd_none(*pmd)); 1242 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 1243 folio_add_lru_vma(folio, vma); 1244 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1245 set_pmd_at(mm, address, pmd, _pmd); 1246 update_mmu_cache_pmd(vma, address, pmd); 1247 deferred_split_folio(folio, false); 1248 spin_unlock(pmd_ptl); 1249 1250 folio = NULL; 1251 1252 result = SCAN_SUCCEED; 1253 out_up_write: 1254 mmap_write_unlock(mm); 1255 out_nolock: 1256 if (folio) 1257 folio_put(folio); 1258 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1259 return result; 1260 } 1261 1262 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1263 struct vm_area_struct *vma, 1264 unsigned long address, bool *mmap_locked, 1265 struct collapse_control *cc) 1266 { 1267 pmd_t *pmd; 1268 pte_t *pte, *_pte; 1269 int result = SCAN_FAIL, referenced = 0; 1270 int none_or_zero = 0, shared = 0; 1271 struct page *page = NULL; 1272 struct folio *folio = NULL; 1273 unsigned long _address; 1274 spinlock_t *ptl; 1275 int node = NUMA_NO_NODE, unmapped = 0; 1276 bool writable = false; 1277 1278 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1279 1280 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1281 if (result != SCAN_SUCCEED) 1282 goto out; 1283 1284 memset(cc->node_load, 0, sizeof(cc->node_load)); 1285 nodes_clear(cc->alloc_nmask); 1286 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1287 if (!pte) { 1288 result = SCAN_PMD_NULL; 1289 goto out; 1290 } 1291 1292 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1293 _pte++, _address += PAGE_SIZE) { 1294 pte_t pteval = ptep_get(_pte); 1295 if (is_swap_pte(pteval)) { 1296 ++unmapped; 1297 if (!cc->is_khugepaged || 1298 unmapped <= khugepaged_max_ptes_swap) { 1299 /* 1300 * Always be strict with uffd-wp 1301 * enabled swap entries. Please see 1302 * comment below for pte_uffd_wp(). 1303 */ 1304 if (pte_swp_uffd_wp_any(pteval)) { 1305 result = SCAN_PTE_UFFD_WP; 1306 goto out_unmap; 1307 } 1308 continue; 1309 } else { 1310 result = SCAN_EXCEED_SWAP_PTE; 1311 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1312 goto out_unmap; 1313 } 1314 } 1315 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1316 ++none_or_zero; 1317 if (!userfaultfd_armed(vma) && 1318 (!cc->is_khugepaged || 1319 none_or_zero <= khugepaged_max_ptes_none)) { 1320 continue; 1321 } else { 1322 result = SCAN_EXCEED_NONE_PTE; 1323 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1324 goto out_unmap; 1325 } 1326 } 1327 if (pte_uffd_wp(pteval)) { 1328 /* 1329 * Don't collapse the page if any of the small 1330 * PTEs are armed with uffd write protection. 1331 * Here we can also mark the new huge pmd as 1332 * write protected if any of the small ones is 1333 * marked but that could bring unknown 1334 * userfault messages that falls outside of 1335 * the registered range. So, just be simple. 1336 */ 1337 result = SCAN_PTE_UFFD_WP; 1338 goto out_unmap; 1339 } 1340 if (pte_write(pteval)) 1341 writable = true; 1342 1343 page = vm_normal_page(vma, _address, pteval); 1344 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1345 result = SCAN_PAGE_NULL; 1346 goto out_unmap; 1347 } 1348 folio = page_folio(page); 1349 1350 if (!folio_test_anon(folio)) { 1351 result = SCAN_PAGE_ANON; 1352 goto out_unmap; 1353 } 1354 1355 /* 1356 * We treat a single page as shared if any part of the THP 1357 * is shared. "False negatives" from 1358 * folio_likely_mapped_shared() are not expected to matter 1359 * much in practice. 1360 */ 1361 if (folio_likely_mapped_shared(folio)) { 1362 ++shared; 1363 if (cc->is_khugepaged && 1364 shared > khugepaged_max_ptes_shared) { 1365 result = SCAN_EXCEED_SHARED_PTE; 1366 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1367 goto out_unmap; 1368 } 1369 } 1370 1371 /* 1372 * Record which node the original page is from and save this 1373 * information to cc->node_load[]. 1374 * Khugepaged will allocate hugepage from the node has the max 1375 * hit record. 1376 */ 1377 node = folio_nid(folio); 1378 if (hpage_collapse_scan_abort(node, cc)) { 1379 result = SCAN_SCAN_ABORT; 1380 goto out_unmap; 1381 } 1382 cc->node_load[node]++; 1383 if (!folio_test_lru(folio)) { 1384 result = SCAN_PAGE_LRU; 1385 goto out_unmap; 1386 } 1387 if (folio_test_locked(folio)) { 1388 result = SCAN_PAGE_LOCK; 1389 goto out_unmap; 1390 } 1391 1392 /* 1393 * Check if the page has any GUP (or other external) pins. 1394 * 1395 * Here the check may be racy: 1396 * it may see folio_mapcount() > folio_ref_count(). 1397 * But such case is ephemeral we could always retry collapse 1398 * later. However it may report false positive if the page 1399 * has excessive GUP pins (i.e. 512). Anyway the same check 1400 * will be done again later the risk seems low. 1401 */ 1402 if (!is_refcount_suitable(folio)) { 1403 result = SCAN_PAGE_COUNT; 1404 goto out_unmap; 1405 } 1406 1407 /* 1408 * If collapse was initiated by khugepaged, check that there is 1409 * enough young pte to justify collapsing the page 1410 */ 1411 if (cc->is_khugepaged && 1412 (pte_young(pteval) || folio_test_young(folio) || 1413 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 1414 address))) 1415 referenced++; 1416 } 1417 if (!writable) { 1418 result = SCAN_PAGE_RO; 1419 } else if (cc->is_khugepaged && 1420 (!referenced || 1421 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1422 result = SCAN_LACK_REFERENCED_PAGE; 1423 } else { 1424 result = SCAN_SUCCEED; 1425 } 1426 out_unmap: 1427 pte_unmap_unlock(pte, ptl); 1428 if (result == SCAN_SUCCEED) { 1429 result = collapse_huge_page(mm, address, referenced, 1430 unmapped, cc); 1431 /* collapse_huge_page will return with the mmap_lock released */ 1432 *mmap_locked = false; 1433 } 1434 out: 1435 trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced, 1436 none_or_zero, result, unmapped); 1437 return result; 1438 } 1439 1440 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1441 { 1442 struct mm_slot *slot = &mm_slot->slot; 1443 struct mm_struct *mm = slot->mm; 1444 1445 lockdep_assert_held(&khugepaged_mm_lock); 1446 1447 if (hpage_collapse_test_exit(mm)) { 1448 /* free mm_slot */ 1449 hash_del(&slot->hash); 1450 list_del(&slot->mm_node); 1451 1452 /* 1453 * Not strictly needed because the mm exited already. 1454 * 1455 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1456 */ 1457 1458 /* khugepaged_mm_lock actually not necessary for the below */ 1459 mm_slot_free(mm_slot_cache, mm_slot); 1460 mmdrop(mm); 1461 } 1462 } 1463 1464 #ifdef CONFIG_SHMEM 1465 /* hpage must be locked, and mmap_lock must be held */ 1466 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1467 pmd_t *pmdp, struct page *hpage) 1468 { 1469 struct vm_fault vmf = { 1470 .vma = vma, 1471 .address = addr, 1472 .flags = 0, 1473 .pmd = pmdp, 1474 }; 1475 1476 VM_BUG_ON(!PageTransHuge(hpage)); 1477 mmap_assert_locked(vma->vm_mm); 1478 1479 if (do_set_pmd(&vmf, hpage)) 1480 return SCAN_FAIL; 1481 1482 get_page(hpage); 1483 return SCAN_SUCCEED; 1484 } 1485 1486 /** 1487 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1488 * address haddr. 1489 * 1490 * @mm: process address space where collapse happens 1491 * @addr: THP collapse address 1492 * @install_pmd: If a huge PMD should be installed 1493 * 1494 * This function checks whether all the PTEs in the PMD are pointing to the 1495 * right THP. If so, retract the page table so the THP can refault in with 1496 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1497 */ 1498 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1499 bool install_pmd) 1500 { 1501 struct mmu_notifier_range range; 1502 bool notified = false; 1503 unsigned long haddr = addr & HPAGE_PMD_MASK; 1504 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1505 struct folio *folio; 1506 pte_t *start_pte, *pte; 1507 pmd_t *pmd, pgt_pmd; 1508 spinlock_t *pml = NULL, *ptl; 1509 int nr_ptes = 0, result = SCAN_FAIL; 1510 int i; 1511 1512 mmap_assert_locked(mm); 1513 1514 /* First check VMA found, in case page tables are being torn down */ 1515 if (!vma || !vma->vm_file || 1516 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1517 return SCAN_VMA_CHECK; 1518 1519 /* Fast check before locking page if already PMD-mapped */ 1520 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1521 if (result == SCAN_PMD_MAPPED) 1522 return result; 1523 1524 /* 1525 * If we are here, we've succeeded in replacing all the native pages 1526 * in the page cache with a single hugepage. If a mm were to fault-in 1527 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1528 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1529 * analogously elide sysfs THP settings here. 1530 */ 1531 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 1532 return SCAN_VMA_CHECK; 1533 1534 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1535 if (userfaultfd_wp(vma)) 1536 return SCAN_PTE_UFFD_WP; 1537 1538 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1539 linear_page_index(vma, haddr)); 1540 if (IS_ERR(folio)) 1541 return SCAN_PAGE_NULL; 1542 1543 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1544 result = SCAN_PAGE_COMPOUND; 1545 goto drop_folio; 1546 } 1547 1548 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1549 switch (result) { 1550 case SCAN_SUCCEED: 1551 break; 1552 case SCAN_PMD_NONE: 1553 /* 1554 * All pte entries have been removed and pmd cleared. 1555 * Skip all the pte checks and just update the pmd mapping. 1556 */ 1557 goto maybe_install_pmd; 1558 default: 1559 goto drop_folio; 1560 } 1561 1562 result = SCAN_FAIL; 1563 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1564 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1565 goto drop_folio; 1566 1567 /* step 1: check all mapped PTEs are to the right huge page */ 1568 for (i = 0, addr = haddr, pte = start_pte; 1569 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1570 struct page *page; 1571 pte_t ptent = ptep_get(pte); 1572 1573 /* empty pte, skip */ 1574 if (pte_none(ptent)) 1575 continue; 1576 1577 /* page swapped out, abort */ 1578 if (!pte_present(ptent)) { 1579 result = SCAN_PTE_NON_PRESENT; 1580 goto abort; 1581 } 1582 1583 page = vm_normal_page(vma, addr, ptent); 1584 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1585 page = NULL; 1586 /* 1587 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1588 * page table, but the new page will not be a subpage of hpage. 1589 */ 1590 if (folio_page(folio, i) != page) 1591 goto abort; 1592 } 1593 1594 pte_unmap_unlock(start_pte, ptl); 1595 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1596 haddr, haddr + HPAGE_PMD_SIZE); 1597 mmu_notifier_invalidate_range_start(&range); 1598 notified = true; 1599 1600 /* 1601 * pmd_lock covers a wider range than ptl, and (if split from mm's 1602 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1603 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1604 * inserts a valid as-if-COWed PTE without even looking up page cache. 1605 * So page lock of folio does not protect from it, so we must not drop 1606 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1607 */ 1608 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1609 pml = pmd_lock(mm, pmd); 1610 1611 start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl); 1612 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1613 goto abort; 1614 if (!pml) 1615 spin_lock(ptl); 1616 else if (ptl != pml) 1617 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1618 1619 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) 1620 goto abort; 1621 1622 /* step 2: clear page table and adjust rmap */ 1623 for (i = 0, addr = haddr, pte = start_pte; 1624 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1625 struct page *page; 1626 pte_t ptent = ptep_get(pte); 1627 1628 if (pte_none(ptent)) 1629 continue; 1630 /* 1631 * We dropped ptl after the first scan, to do the mmu_notifier: 1632 * page lock stops more PTEs of the folio being faulted in, but 1633 * does not stop write faults COWing anon copies from existing 1634 * PTEs; and does not stop those being swapped out or migrated. 1635 */ 1636 if (!pte_present(ptent)) { 1637 result = SCAN_PTE_NON_PRESENT; 1638 goto abort; 1639 } 1640 page = vm_normal_page(vma, addr, ptent); 1641 if (folio_page(folio, i) != page) 1642 goto abort; 1643 1644 /* 1645 * Must clear entry, or a racing truncate may re-remove it. 1646 * TLB flush can be left until pmdp_collapse_flush() does it. 1647 * PTE dirty? Shmem page is already dirty; file is read-only. 1648 */ 1649 ptep_clear(mm, addr, pte); 1650 folio_remove_rmap_pte(folio, page, vma); 1651 nr_ptes++; 1652 } 1653 1654 if (!pml) 1655 spin_unlock(ptl); 1656 1657 /* step 3: set proper refcount and mm_counters. */ 1658 if (nr_ptes) { 1659 folio_ref_sub(folio, nr_ptes); 1660 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1661 } 1662 1663 /* step 4: remove empty page table */ 1664 if (!pml) { 1665 pml = pmd_lock(mm, pmd); 1666 if (ptl != pml) { 1667 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1668 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) { 1669 flush_tlb_mm(mm); 1670 goto unlock; 1671 } 1672 } 1673 } 1674 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1675 pmdp_get_lockless_sync(); 1676 pte_unmap_unlock(start_pte, ptl); 1677 if (ptl != pml) 1678 spin_unlock(pml); 1679 1680 mmu_notifier_invalidate_range_end(&range); 1681 1682 mm_dec_nr_ptes(mm); 1683 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1684 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1685 1686 maybe_install_pmd: 1687 /* step 5: install pmd entry */ 1688 result = install_pmd 1689 ? set_huge_pmd(vma, haddr, pmd, &folio->page) 1690 : SCAN_SUCCEED; 1691 goto drop_folio; 1692 abort: 1693 if (nr_ptes) { 1694 flush_tlb_mm(mm); 1695 folio_ref_sub(folio, nr_ptes); 1696 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1697 } 1698 unlock: 1699 if (start_pte) 1700 pte_unmap_unlock(start_pte, ptl); 1701 if (pml && pml != ptl) 1702 spin_unlock(pml); 1703 if (notified) 1704 mmu_notifier_invalidate_range_end(&range); 1705 drop_folio: 1706 folio_unlock(folio); 1707 folio_put(folio); 1708 return result; 1709 } 1710 1711 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1712 { 1713 struct vm_area_struct *vma; 1714 1715 i_mmap_lock_read(mapping); 1716 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1717 struct mmu_notifier_range range; 1718 struct mm_struct *mm; 1719 unsigned long addr; 1720 pmd_t *pmd, pgt_pmd; 1721 spinlock_t *pml; 1722 spinlock_t *ptl; 1723 bool skipped_uffd = false; 1724 1725 /* 1726 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1727 * got written to. These VMAs are likely not worth removing 1728 * page tables from, as PMD-mapping is likely to be split later. 1729 */ 1730 if (READ_ONCE(vma->anon_vma)) 1731 continue; 1732 1733 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1734 if (addr & ~HPAGE_PMD_MASK || 1735 vma->vm_end < addr + HPAGE_PMD_SIZE) 1736 continue; 1737 1738 mm = vma->vm_mm; 1739 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1740 continue; 1741 1742 if (hpage_collapse_test_exit(mm)) 1743 continue; 1744 /* 1745 * When a vma is registered with uffd-wp, we cannot recycle 1746 * the page table because there may be pte markers installed. 1747 * Other vmas can still have the same file mapped hugely, but 1748 * skip this one: it will always be mapped in small page size 1749 * for uffd-wp registered ranges. 1750 */ 1751 if (userfaultfd_wp(vma)) 1752 continue; 1753 1754 /* PTEs were notified when unmapped; but now for the PMD? */ 1755 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1756 addr, addr + HPAGE_PMD_SIZE); 1757 mmu_notifier_invalidate_range_start(&range); 1758 1759 pml = pmd_lock(mm, pmd); 1760 ptl = pte_lockptr(mm, pmd); 1761 if (ptl != pml) 1762 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1763 1764 /* 1765 * Huge page lock is still held, so normally the page table 1766 * must remain empty; and we have already skipped anon_vma 1767 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1768 * held, it is still possible for a racing userfaultfd_ioctl() 1769 * to have inserted ptes or markers. Now that we hold ptlock, 1770 * repeating the anon_vma check protects from one category, 1771 * and repeating the userfaultfd_wp() check from another. 1772 */ 1773 if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) { 1774 skipped_uffd = true; 1775 } else { 1776 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1777 pmdp_get_lockless_sync(); 1778 } 1779 1780 if (ptl != pml) 1781 spin_unlock(ptl); 1782 spin_unlock(pml); 1783 1784 mmu_notifier_invalidate_range_end(&range); 1785 1786 if (!skipped_uffd) { 1787 mm_dec_nr_ptes(mm); 1788 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1789 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1790 } 1791 } 1792 i_mmap_unlock_read(mapping); 1793 } 1794 1795 /** 1796 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1797 * 1798 * @mm: process address space where collapse happens 1799 * @addr: virtual collapse start address 1800 * @file: file that collapse on 1801 * @start: collapse start address 1802 * @cc: collapse context and scratchpad 1803 * 1804 * Basic scheme is simple, details are more complex: 1805 * - allocate and lock a new huge page; 1806 * - scan page cache, locking old pages 1807 * + swap/gup in pages if necessary; 1808 * - copy data to new page 1809 * - handle shmem holes 1810 * + re-validate that holes weren't filled by someone else 1811 * + check for userfaultfd 1812 * - finalize updates to the page cache; 1813 * - if replacing succeeds: 1814 * + unlock huge page; 1815 * + free old pages; 1816 * - if replacing failed; 1817 * + unlock old pages 1818 * + unlock and free huge page; 1819 */ 1820 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1821 struct file *file, pgoff_t start, 1822 struct collapse_control *cc) 1823 { 1824 struct address_space *mapping = file->f_mapping; 1825 struct page *dst; 1826 struct folio *folio, *tmp, *new_folio; 1827 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1828 LIST_HEAD(pagelist); 1829 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1830 int nr_none = 0, result = SCAN_SUCCEED; 1831 bool is_shmem = shmem_file(file); 1832 1833 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1834 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1835 1836 result = alloc_charge_folio(&new_folio, mm, cc); 1837 if (result != SCAN_SUCCEED) 1838 goto out; 1839 1840 __folio_set_locked(new_folio); 1841 if (is_shmem) 1842 __folio_set_swapbacked(new_folio); 1843 new_folio->index = start; 1844 new_folio->mapping = mapping; 1845 1846 /* 1847 * Ensure we have slots for all the pages in the range. This is 1848 * almost certainly a no-op because most of the pages must be present 1849 */ 1850 do { 1851 xas_lock_irq(&xas); 1852 xas_create_range(&xas); 1853 if (!xas_error(&xas)) 1854 break; 1855 xas_unlock_irq(&xas); 1856 if (!xas_nomem(&xas, GFP_KERNEL)) { 1857 result = SCAN_FAIL; 1858 goto rollback; 1859 } 1860 } while (1); 1861 1862 for (index = start; index < end;) { 1863 xas_set(&xas, index); 1864 folio = xas_load(&xas); 1865 1866 VM_BUG_ON(index != xas.xa_index); 1867 if (is_shmem) { 1868 if (!folio) { 1869 /* 1870 * Stop if extent has been truncated or 1871 * hole-punched, and is now completely 1872 * empty. 1873 */ 1874 if (index == start) { 1875 if (!xas_next_entry(&xas, end - 1)) { 1876 result = SCAN_TRUNCATED; 1877 goto xa_locked; 1878 } 1879 } 1880 nr_none++; 1881 index++; 1882 continue; 1883 } 1884 1885 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1886 xas_unlock_irq(&xas); 1887 /* swap in or instantiate fallocated page */ 1888 if (shmem_get_folio(mapping->host, index, 0, 1889 &folio, SGP_NOALLOC)) { 1890 result = SCAN_FAIL; 1891 goto xa_unlocked; 1892 } 1893 /* drain lru cache to help folio_isolate_lru() */ 1894 lru_add_drain(); 1895 } else if (folio_trylock(folio)) { 1896 folio_get(folio); 1897 xas_unlock_irq(&xas); 1898 } else { 1899 result = SCAN_PAGE_LOCK; 1900 goto xa_locked; 1901 } 1902 } else { /* !is_shmem */ 1903 if (!folio || xa_is_value(folio)) { 1904 xas_unlock_irq(&xas); 1905 page_cache_sync_readahead(mapping, &file->f_ra, 1906 file, index, 1907 end - index); 1908 /* drain lru cache to help folio_isolate_lru() */ 1909 lru_add_drain(); 1910 folio = filemap_lock_folio(mapping, index); 1911 if (IS_ERR(folio)) { 1912 result = SCAN_FAIL; 1913 goto xa_unlocked; 1914 } 1915 } else if (folio_test_dirty(folio)) { 1916 /* 1917 * khugepaged only works on read-only fd, 1918 * so this page is dirty because it hasn't 1919 * been flushed since first write. There 1920 * won't be new dirty pages. 1921 * 1922 * Trigger async flush here and hope the 1923 * writeback is done when khugepaged 1924 * revisits this page. 1925 * 1926 * This is a one-off situation. We are not 1927 * forcing writeback in loop. 1928 */ 1929 xas_unlock_irq(&xas); 1930 filemap_flush(mapping); 1931 result = SCAN_FAIL; 1932 goto xa_unlocked; 1933 } else if (folio_test_writeback(folio)) { 1934 xas_unlock_irq(&xas); 1935 result = SCAN_FAIL; 1936 goto xa_unlocked; 1937 } else if (folio_trylock(folio)) { 1938 folio_get(folio); 1939 xas_unlock_irq(&xas); 1940 } else { 1941 result = SCAN_PAGE_LOCK; 1942 goto xa_locked; 1943 } 1944 } 1945 1946 /* 1947 * The folio must be locked, so we can drop the i_pages lock 1948 * without racing with truncate. 1949 */ 1950 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1951 1952 /* make sure the folio is up to date */ 1953 if (unlikely(!folio_test_uptodate(folio))) { 1954 result = SCAN_FAIL; 1955 goto out_unlock; 1956 } 1957 1958 /* 1959 * If file was truncated then extended, or hole-punched, before 1960 * we locked the first folio, then a THP might be there already. 1961 * This will be discovered on the first iteration. 1962 */ 1963 if (folio_order(folio) == HPAGE_PMD_ORDER && 1964 folio->index == start) { 1965 /* Maybe PMD-mapped */ 1966 result = SCAN_PTE_MAPPED_HUGEPAGE; 1967 goto out_unlock; 1968 } 1969 1970 if (folio_mapping(folio) != mapping) { 1971 result = SCAN_TRUNCATED; 1972 goto out_unlock; 1973 } 1974 1975 if (!is_shmem && (folio_test_dirty(folio) || 1976 folio_test_writeback(folio))) { 1977 /* 1978 * khugepaged only works on read-only fd, so this 1979 * folio is dirty because it hasn't been flushed 1980 * since first write. 1981 */ 1982 result = SCAN_FAIL; 1983 goto out_unlock; 1984 } 1985 1986 if (!folio_isolate_lru(folio)) { 1987 result = SCAN_DEL_PAGE_LRU; 1988 goto out_unlock; 1989 } 1990 1991 if (!filemap_release_folio(folio, GFP_KERNEL)) { 1992 result = SCAN_PAGE_HAS_PRIVATE; 1993 folio_putback_lru(folio); 1994 goto out_unlock; 1995 } 1996 1997 if (folio_mapped(folio)) 1998 try_to_unmap(folio, 1999 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 2000 2001 xas_lock_irq(&xas); 2002 2003 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 2004 2005 /* 2006 * We control 2 + nr_pages references to the folio: 2007 * - we hold a pin on it; 2008 * - nr_pages reference from page cache; 2009 * - one from lru_isolate_folio; 2010 * If those are the only references, then any new usage 2011 * of the folio will have to fetch it from the page 2012 * cache. That requires locking the folio to handle 2013 * truncate, so any new usage will be blocked until we 2014 * unlock folio after collapse/during rollback. 2015 */ 2016 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) { 2017 result = SCAN_PAGE_COUNT; 2018 xas_unlock_irq(&xas); 2019 folio_putback_lru(folio); 2020 goto out_unlock; 2021 } 2022 2023 /* 2024 * Accumulate the folios that are being collapsed. 2025 */ 2026 list_add_tail(&folio->lru, &pagelist); 2027 index += folio_nr_pages(folio); 2028 continue; 2029 out_unlock: 2030 folio_unlock(folio); 2031 folio_put(folio); 2032 goto xa_unlocked; 2033 } 2034 2035 if (!is_shmem) { 2036 filemap_nr_thps_inc(mapping); 2037 /* 2038 * Paired with the fence in do_dentry_open() -> get_write_access() 2039 * to ensure i_writecount is up to date and the update to nr_thps 2040 * is visible. Ensures the page cache will be truncated if the 2041 * file is opened writable. 2042 */ 2043 smp_mb(); 2044 if (inode_is_open_for_write(mapping->host)) { 2045 result = SCAN_FAIL; 2046 filemap_nr_thps_dec(mapping); 2047 } 2048 } 2049 2050 xa_locked: 2051 xas_unlock_irq(&xas); 2052 xa_unlocked: 2053 2054 /* 2055 * If collapse is successful, flush must be done now before copying. 2056 * If collapse is unsuccessful, does flush actually need to be done? 2057 * Do it anyway, to clear the state. 2058 */ 2059 try_to_unmap_flush(); 2060 2061 if (result == SCAN_SUCCEED && nr_none && 2062 !shmem_charge(mapping->host, nr_none)) 2063 result = SCAN_FAIL; 2064 if (result != SCAN_SUCCEED) { 2065 nr_none = 0; 2066 goto rollback; 2067 } 2068 2069 /* 2070 * The old folios are locked, so they won't change anymore. 2071 */ 2072 index = start; 2073 dst = folio_page(new_folio, 0); 2074 list_for_each_entry(folio, &pagelist, lru) { 2075 int i, nr_pages = folio_nr_pages(folio); 2076 2077 while (index < folio->index) { 2078 clear_highpage(dst); 2079 index++; 2080 dst++; 2081 } 2082 2083 for (i = 0; i < nr_pages; i++) { 2084 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) { 2085 result = SCAN_COPY_MC; 2086 goto rollback; 2087 } 2088 index++; 2089 dst++; 2090 } 2091 } 2092 while (index < end) { 2093 clear_highpage(dst); 2094 index++; 2095 dst++; 2096 } 2097 2098 if (nr_none) { 2099 struct vm_area_struct *vma; 2100 int nr_none_check = 0; 2101 2102 i_mmap_lock_read(mapping); 2103 xas_lock_irq(&xas); 2104 2105 xas_set(&xas, start); 2106 for (index = start; index < end; index++) { 2107 if (!xas_next(&xas)) { 2108 xas_store(&xas, XA_RETRY_ENTRY); 2109 if (xas_error(&xas)) { 2110 result = SCAN_STORE_FAILED; 2111 goto immap_locked; 2112 } 2113 nr_none_check++; 2114 } 2115 } 2116 2117 if (nr_none != nr_none_check) { 2118 result = SCAN_PAGE_FILLED; 2119 goto immap_locked; 2120 } 2121 2122 /* 2123 * If userspace observed a missing page in a VMA with 2124 * a MODE_MISSING userfaultfd, then it might expect a 2125 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2126 * roll back to avoid suppressing such an event. Since 2127 * wp/minor userfaultfds don't give userspace any 2128 * guarantees that the kernel doesn't fill a missing 2129 * page with a zero page, so they don't matter here. 2130 * 2131 * Any userfaultfds registered after this point will 2132 * not be able to observe any missing pages due to the 2133 * previously inserted retry entries. 2134 */ 2135 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2136 if (userfaultfd_missing(vma)) { 2137 result = SCAN_EXCEED_NONE_PTE; 2138 goto immap_locked; 2139 } 2140 } 2141 2142 immap_locked: 2143 i_mmap_unlock_read(mapping); 2144 if (result != SCAN_SUCCEED) { 2145 xas_set(&xas, start); 2146 for (index = start; index < end; index++) { 2147 if (xas_next(&xas) == XA_RETRY_ENTRY) 2148 xas_store(&xas, NULL); 2149 } 2150 2151 xas_unlock_irq(&xas); 2152 goto rollback; 2153 } 2154 } else { 2155 xas_lock_irq(&xas); 2156 } 2157 2158 if (is_shmem) 2159 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2160 else 2161 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2162 2163 if (nr_none) { 2164 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none); 2165 /* nr_none is always 0 for non-shmem. */ 2166 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none); 2167 } 2168 2169 /* 2170 * Mark new_folio as uptodate before inserting it into the 2171 * page cache so that it isn't mistaken for an fallocated but 2172 * unwritten page. 2173 */ 2174 folio_mark_uptodate(new_folio); 2175 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2176 2177 if (is_shmem) 2178 folio_mark_dirty(new_folio); 2179 folio_add_lru(new_folio); 2180 2181 /* Join all the small entries into a single multi-index entry. */ 2182 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2183 xas_store(&xas, new_folio); 2184 WARN_ON_ONCE(xas_error(&xas)); 2185 xas_unlock_irq(&xas); 2186 2187 /* 2188 * Remove pte page tables, so we can re-fault the page as huge. 2189 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2190 */ 2191 retract_page_tables(mapping, start); 2192 if (cc && !cc->is_khugepaged) 2193 result = SCAN_PTE_MAPPED_HUGEPAGE; 2194 folio_unlock(new_folio); 2195 2196 /* 2197 * The collapse has succeeded, so free the old folios. 2198 */ 2199 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2200 list_del(&folio->lru); 2201 folio->mapping = NULL; 2202 folio_clear_active(folio); 2203 folio_clear_unevictable(folio); 2204 folio_unlock(folio); 2205 folio_put_refs(folio, 2 + folio_nr_pages(folio)); 2206 } 2207 2208 goto out; 2209 2210 rollback: 2211 /* Something went wrong: roll back page cache changes */ 2212 if (nr_none) { 2213 xas_lock_irq(&xas); 2214 mapping->nrpages -= nr_none; 2215 xas_unlock_irq(&xas); 2216 shmem_uncharge(mapping->host, nr_none); 2217 } 2218 2219 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2220 list_del(&folio->lru); 2221 folio_unlock(folio); 2222 folio_putback_lru(folio); 2223 folio_put(folio); 2224 } 2225 /* 2226 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2227 * file only. This undo is not needed unless failure is 2228 * due to SCAN_COPY_MC. 2229 */ 2230 if (!is_shmem && result == SCAN_COPY_MC) { 2231 filemap_nr_thps_dec(mapping); 2232 /* 2233 * Paired with the fence in do_dentry_open() -> get_write_access() 2234 * to ensure the update to nr_thps is visible. 2235 */ 2236 smp_mb(); 2237 } 2238 2239 new_folio->mapping = NULL; 2240 2241 folio_unlock(new_folio); 2242 folio_put(new_folio); 2243 out: 2244 VM_BUG_ON(!list_empty(&pagelist)); 2245 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result); 2246 return result; 2247 } 2248 2249 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2250 struct file *file, pgoff_t start, 2251 struct collapse_control *cc) 2252 { 2253 struct folio *folio = NULL; 2254 struct address_space *mapping = file->f_mapping; 2255 XA_STATE(xas, &mapping->i_pages, start); 2256 int present, swap; 2257 int node = NUMA_NO_NODE; 2258 int result = SCAN_SUCCEED; 2259 2260 present = 0; 2261 swap = 0; 2262 memset(cc->node_load, 0, sizeof(cc->node_load)); 2263 nodes_clear(cc->alloc_nmask); 2264 rcu_read_lock(); 2265 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2266 if (xas_retry(&xas, folio)) 2267 continue; 2268 2269 if (xa_is_value(folio)) { 2270 swap += 1 << xas_get_order(&xas); 2271 if (cc->is_khugepaged && 2272 swap > khugepaged_max_ptes_swap) { 2273 result = SCAN_EXCEED_SWAP_PTE; 2274 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2275 break; 2276 } 2277 continue; 2278 } 2279 2280 if (folio_order(folio) == HPAGE_PMD_ORDER && 2281 folio->index == start) { 2282 /* Maybe PMD-mapped */ 2283 result = SCAN_PTE_MAPPED_HUGEPAGE; 2284 /* 2285 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2286 * by the caller won't touch the page cache, and so 2287 * it's safe to skip LRU and refcount checks before 2288 * returning. 2289 */ 2290 break; 2291 } 2292 2293 node = folio_nid(folio); 2294 if (hpage_collapse_scan_abort(node, cc)) { 2295 result = SCAN_SCAN_ABORT; 2296 break; 2297 } 2298 cc->node_load[node]++; 2299 2300 if (!folio_test_lru(folio)) { 2301 result = SCAN_PAGE_LRU; 2302 break; 2303 } 2304 2305 if (!is_refcount_suitable(folio)) { 2306 result = SCAN_PAGE_COUNT; 2307 break; 2308 } 2309 2310 /* 2311 * We probably should check if the folio is referenced 2312 * here, but nobody would transfer pte_young() to 2313 * folio_test_referenced() for us. And rmap walk here 2314 * is just too costly... 2315 */ 2316 2317 present += folio_nr_pages(folio); 2318 2319 if (need_resched()) { 2320 xas_pause(&xas); 2321 cond_resched_rcu(); 2322 } 2323 } 2324 rcu_read_unlock(); 2325 2326 if (result == SCAN_SUCCEED) { 2327 if (cc->is_khugepaged && 2328 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2329 result = SCAN_EXCEED_NONE_PTE; 2330 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2331 } else { 2332 result = collapse_file(mm, addr, file, start, cc); 2333 } 2334 } 2335 2336 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2337 return result; 2338 } 2339 #else 2340 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2341 struct file *file, pgoff_t start, 2342 struct collapse_control *cc) 2343 { 2344 BUILD_BUG(); 2345 } 2346 #endif 2347 2348 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2349 struct collapse_control *cc) 2350 __releases(&khugepaged_mm_lock) 2351 __acquires(&khugepaged_mm_lock) 2352 { 2353 struct vma_iterator vmi; 2354 struct khugepaged_mm_slot *mm_slot; 2355 struct mm_slot *slot; 2356 struct mm_struct *mm; 2357 struct vm_area_struct *vma; 2358 int progress = 0; 2359 2360 VM_BUG_ON(!pages); 2361 lockdep_assert_held(&khugepaged_mm_lock); 2362 *result = SCAN_FAIL; 2363 2364 if (khugepaged_scan.mm_slot) { 2365 mm_slot = khugepaged_scan.mm_slot; 2366 slot = &mm_slot->slot; 2367 } else { 2368 slot = list_entry(khugepaged_scan.mm_head.next, 2369 struct mm_slot, mm_node); 2370 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2371 khugepaged_scan.address = 0; 2372 khugepaged_scan.mm_slot = mm_slot; 2373 } 2374 spin_unlock(&khugepaged_mm_lock); 2375 2376 mm = slot->mm; 2377 /* 2378 * Don't wait for semaphore (to avoid long wait times). Just move to 2379 * the next mm on the list. 2380 */ 2381 vma = NULL; 2382 if (unlikely(!mmap_read_trylock(mm))) 2383 goto breakouterloop_mmap_lock; 2384 2385 progress++; 2386 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2387 goto breakouterloop; 2388 2389 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2390 for_each_vma(vmi, vma) { 2391 unsigned long hstart, hend; 2392 2393 cond_resched(); 2394 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2395 progress++; 2396 break; 2397 } 2398 if (!thp_vma_allowable_order(vma, vma->vm_flags, 2399 TVA_ENFORCE_SYSFS, PMD_ORDER)) { 2400 skip: 2401 progress++; 2402 continue; 2403 } 2404 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2405 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2406 if (khugepaged_scan.address > hend) 2407 goto skip; 2408 if (khugepaged_scan.address < hstart) 2409 khugepaged_scan.address = hstart; 2410 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2411 2412 while (khugepaged_scan.address < hend) { 2413 bool mmap_locked = true; 2414 2415 cond_resched(); 2416 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2417 goto breakouterloop; 2418 2419 VM_BUG_ON(khugepaged_scan.address < hstart || 2420 khugepaged_scan.address + HPAGE_PMD_SIZE > 2421 hend); 2422 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2423 struct file *file = get_file(vma->vm_file); 2424 pgoff_t pgoff = linear_page_index(vma, 2425 khugepaged_scan.address); 2426 2427 mmap_read_unlock(mm); 2428 mmap_locked = false; 2429 *result = hpage_collapse_scan_file(mm, 2430 khugepaged_scan.address, file, pgoff, cc); 2431 fput(file); 2432 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2433 mmap_read_lock(mm); 2434 if (hpage_collapse_test_exit_or_disable(mm)) 2435 goto breakouterloop; 2436 *result = collapse_pte_mapped_thp(mm, 2437 khugepaged_scan.address, false); 2438 if (*result == SCAN_PMD_MAPPED) 2439 *result = SCAN_SUCCEED; 2440 mmap_read_unlock(mm); 2441 } 2442 } else { 2443 *result = hpage_collapse_scan_pmd(mm, vma, 2444 khugepaged_scan.address, &mmap_locked, cc); 2445 } 2446 2447 if (*result == SCAN_SUCCEED) 2448 ++khugepaged_pages_collapsed; 2449 2450 /* move to next address */ 2451 khugepaged_scan.address += HPAGE_PMD_SIZE; 2452 progress += HPAGE_PMD_NR; 2453 if (!mmap_locked) 2454 /* 2455 * We released mmap_lock so break loop. Note 2456 * that we drop mmap_lock before all hugepage 2457 * allocations, so if allocation fails, we are 2458 * guaranteed to break here and report the 2459 * correct result back to caller. 2460 */ 2461 goto breakouterloop_mmap_lock; 2462 if (progress >= pages) 2463 goto breakouterloop; 2464 } 2465 } 2466 breakouterloop: 2467 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2468 breakouterloop_mmap_lock: 2469 2470 spin_lock(&khugepaged_mm_lock); 2471 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2472 /* 2473 * Release the current mm_slot if this mm is about to die, or 2474 * if we scanned all vmas of this mm. 2475 */ 2476 if (hpage_collapse_test_exit(mm) || !vma) { 2477 /* 2478 * Make sure that if mm_users is reaching zero while 2479 * khugepaged runs here, khugepaged_exit will find 2480 * mm_slot not pointing to the exiting mm. 2481 */ 2482 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2483 slot = list_entry(slot->mm_node.next, 2484 struct mm_slot, mm_node); 2485 khugepaged_scan.mm_slot = 2486 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2487 khugepaged_scan.address = 0; 2488 } else { 2489 khugepaged_scan.mm_slot = NULL; 2490 khugepaged_full_scans++; 2491 } 2492 2493 collect_mm_slot(mm_slot); 2494 } 2495 2496 return progress; 2497 } 2498 2499 static int khugepaged_has_work(void) 2500 { 2501 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); 2502 } 2503 2504 static int khugepaged_wait_event(void) 2505 { 2506 return !list_empty(&khugepaged_scan.mm_head) || 2507 kthread_should_stop(); 2508 } 2509 2510 static void khugepaged_do_scan(struct collapse_control *cc) 2511 { 2512 unsigned int progress = 0, pass_through_head = 0; 2513 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2514 bool wait = true; 2515 int result = SCAN_SUCCEED; 2516 2517 lru_add_drain_all(); 2518 2519 while (true) { 2520 cond_resched(); 2521 2522 if (unlikely(kthread_should_stop())) 2523 break; 2524 2525 spin_lock(&khugepaged_mm_lock); 2526 if (!khugepaged_scan.mm_slot) 2527 pass_through_head++; 2528 if (khugepaged_has_work() && 2529 pass_through_head < 2) 2530 progress += khugepaged_scan_mm_slot(pages - progress, 2531 &result, cc); 2532 else 2533 progress = pages; 2534 spin_unlock(&khugepaged_mm_lock); 2535 2536 if (progress >= pages) 2537 break; 2538 2539 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2540 /* 2541 * If fail to allocate the first time, try to sleep for 2542 * a while. When hit again, cancel the scan. 2543 */ 2544 if (!wait) 2545 break; 2546 wait = false; 2547 khugepaged_alloc_sleep(); 2548 } 2549 } 2550 } 2551 2552 static bool khugepaged_should_wakeup(void) 2553 { 2554 return kthread_should_stop() || 2555 time_after_eq(jiffies, khugepaged_sleep_expire); 2556 } 2557 2558 static void khugepaged_wait_work(void) 2559 { 2560 if (khugepaged_has_work()) { 2561 const unsigned long scan_sleep_jiffies = 2562 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2563 2564 if (!scan_sleep_jiffies) 2565 return; 2566 2567 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2568 wait_event_freezable_timeout(khugepaged_wait, 2569 khugepaged_should_wakeup(), 2570 scan_sleep_jiffies); 2571 return; 2572 } 2573 2574 if (hugepage_pmd_enabled()) 2575 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2576 } 2577 2578 static int khugepaged(void *none) 2579 { 2580 struct khugepaged_mm_slot *mm_slot; 2581 2582 set_freezable(); 2583 set_user_nice(current, MAX_NICE); 2584 2585 while (!kthread_should_stop()) { 2586 khugepaged_do_scan(&khugepaged_collapse_control); 2587 khugepaged_wait_work(); 2588 } 2589 2590 spin_lock(&khugepaged_mm_lock); 2591 mm_slot = khugepaged_scan.mm_slot; 2592 khugepaged_scan.mm_slot = NULL; 2593 if (mm_slot) 2594 collect_mm_slot(mm_slot); 2595 spin_unlock(&khugepaged_mm_lock); 2596 return 0; 2597 } 2598 2599 static void set_recommended_min_free_kbytes(void) 2600 { 2601 struct zone *zone; 2602 int nr_zones = 0; 2603 unsigned long recommended_min; 2604 2605 if (!hugepage_pmd_enabled()) { 2606 calculate_min_free_kbytes(); 2607 goto update_wmarks; 2608 } 2609 2610 for_each_populated_zone(zone) { 2611 /* 2612 * We don't need to worry about fragmentation of 2613 * ZONE_MOVABLE since it only has movable pages. 2614 */ 2615 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2616 continue; 2617 2618 nr_zones++; 2619 } 2620 2621 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2622 recommended_min = pageblock_nr_pages * nr_zones * 2; 2623 2624 /* 2625 * Make sure that on average at least two pageblocks are almost free 2626 * of another type, one for a migratetype to fall back to and a 2627 * second to avoid subsequent fallbacks of other types There are 3 2628 * MIGRATE_TYPES we care about. 2629 */ 2630 recommended_min += pageblock_nr_pages * nr_zones * 2631 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2632 2633 /* don't ever allow to reserve more than 5% of the lowmem */ 2634 recommended_min = min(recommended_min, 2635 (unsigned long) nr_free_buffer_pages() / 20); 2636 recommended_min <<= (PAGE_SHIFT-10); 2637 2638 if (recommended_min > min_free_kbytes) { 2639 if (user_min_free_kbytes >= 0) 2640 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2641 min_free_kbytes, recommended_min); 2642 2643 min_free_kbytes = recommended_min; 2644 } 2645 2646 update_wmarks: 2647 setup_per_zone_wmarks(); 2648 } 2649 2650 int start_stop_khugepaged(void) 2651 { 2652 int err = 0; 2653 2654 mutex_lock(&khugepaged_mutex); 2655 if (hugepage_pmd_enabled()) { 2656 if (!khugepaged_thread) 2657 khugepaged_thread = kthread_run(khugepaged, NULL, 2658 "khugepaged"); 2659 if (IS_ERR(khugepaged_thread)) { 2660 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2661 err = PTR_ERR(khugepaged_thread); 2662 khugepaged_thread = NULL; 2663 goto fail; 2664 } 2665 2666 if (!list_empty(&khugepaged_scan.mm_head)) 2667 wake_up_interruptible(&khugepaged_wait); 2668 } else if (khugepaged_thread) { 2669 kthread_stop(khugepaged_thread); 2670 khugepaged_thread = NULL; 2671 } 2672 set_recommended_min_free_kbytes(); 2673 fail: 2674 mutex_unlock(&khugepaged_mutex); 2675 return err; 2676 } 2677 2678 void khugepaged_min_free_kbytes_update(void) 2679 { 2680 mutex_lock(&khugepaged_mutex); 2681 if (hugepage_pmd_enabled() && khugepaged_thread) 2682 set_recommended_min_free_kbytes(); 2683 mutex_unlock(&khugepaged_mutex); 2684 } 2685 2686 bool current_is_khugepaged(void) 2687 { 2688 return kthread_func(current) == khugepaged; 2689 } 2690 2691 static int madvise_collapse_errno(enum scan_result r) 2692 { 2693 /* 2694 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2695 * actionable feedback to caller, so they may take an appropriate 2696 * fallback measure depending on the nature of the failure. 2697 */ 2698 switch (r) { 2699 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2700 return -ENOMEM; 2701 case SCAN_CGROUP_CHARGE_FAIL: 2702 case SCAN_EXCEED_NONE_PTE: 2703 return -EBUSY; 2704 /* Resource temporary unavailable - trying again might succeed */ 2705 case SCAN_PAGE_COUNT: 2706 case SCAN_PAGE_LOCK: 2707 case SCAN_PAGE_LRU: 2708 case SCAN_DEL_PAGE_LRU: 2709 case SCAN_PAGE_FILLED: 2710 return -EAGAIN; 2711 /* 2712 * Other: Trying again likely not to succeed / error intrinsic to 2713 * specified memory range. khugepaged likely won't be able to collapse 2714 * either. 2715 */ 2716 default: 2717 return -EINVAL; 2718 } 2719 } 2720 2721 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2722 unsigned long start, unsigned long end) 2723 { 2724 struct collapse_control *cc; 2725 struct mm_struct *mm = vma->vm_mm; 2726 unsigned long hstart, hend, addr; 2727 int thps = 0, last_fail = SCAN_FAIL; 2728 bool mmap_locked = true; 2729 2730 BUG_ON(vma->vm_start > start); 2731 BUG_ON(vma->vm_end < end); 2732 2733 *prev = vma; 2734 2735 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 2736 return -EINVAL; 2737 2738 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2739 if (!cc) 2740 return -ENOMEM; 2741 cc->is_khugepaged = false; 2742 2743 mmgrab(mm); 2744 lru_add_drain_all(); 2745 2746 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2747 hend = end & HPAGE_PMD_MASK; 2748 2749 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2750 int result = SCAN_FAIL; 2751 2752 if (!mmap_locked) { 2753 cond_resched(); 2754 mmap_read_lock(mm); 2755 mmap_locked = true; 2756 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2757 cc); 2758 if (result != SCAN_SUCCEED) { 2759 last_fail = result; 2760 goto out_nolock; 2761 } 2762 2763 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2764 } 2765 mmap_assert_locked(mm); 2766 memset(cc->node_load, 0, sizeof(cc->node_load)); 2767 nodes_clear(cc->alloc_nmask); 2768 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2769 struct file *file = get_file(vma->vm_file); 2770 pgoff_t pgoff = linear_page_index(vma, addr); 2771 2772 mmap_read_unlock(mm); 2773 mmap_locked = false; 2774 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2775 cc); 2776 fput(file); 2777 } else { 2778 result = hpage_collapse_scan_pmd(mm, vma, addr, 2779 &mmap_locked, cc); 2780 } 2781 if (!mmap_locked) 2782 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2783 2784 handle_result: 2785 switch (result) { 2786 case SCAN_SUCCEED: 2787 case SCAN_PMD_MAPPED: 2788 ++thps; 2789 break; 2790 case SCAN_PTE_MAPPED_HUGEPAGE: 2791 BUG_ON(mmap_locked); 2792 BUG_ON(*prev); 2793 mmap_read_lock(mm); 2794 result = collapse_pte_mapped_thp(mm, addr, true); 2795 mmap_read_unlock(mm); 2796 goto handle_result; 2797 /* Whitelisted set of results where continuing OK */ 2798 case SCAN_PMD_NULL: 2799 case SCAN_PTE_NON_PRESENT: 2800 case SCAN_PTE_UFFD_WP: 2801 case SCAN_PAGE_RO: 2802 case SCAN_LACK_REFERENCED_PAGE: 2803 case SCAN_PAGE_NULL: 2804 case SCAN_PAGE_COUNT: 2805 case SCAN_PAGE_LOCK: 2806 case SCAN_PAGE_COMPOUND: 2807 case SCAN_PAGE_LRU: 2808 case SCAN_DEL_PAGE_LRU: 2809 last_fail = result; 2810 break; 2811 default: 2812 last_fail = result; 2813 /* Other error, exit */ 2814 goto out_maybelock; 2815 } 2816 } 2817 2818 out_maybelock: 2819 /* Caller expects us to hold mmap_lock on return */ 2820 if (!mmap_locked) 2821 mmap_read_lock(mm); 2822 out_nolock: 2823 mmap_assert_locked(mm); 2824 mmdrop(mm); 2825 kfree(cc); 2826 2827 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2828 : madvise_collapse_errno(last_fail); 2829 } 2830