1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/mmu_notifier.h> 8 #include <linux/rmap.h> 9 #include <linux/swap.h> 10 #include <linux/mm_inline.h> 11 #include <linux/kthread.h> 12 #include <linux/khugepaged.h> 13 #include <linux/freezer.h> 14 #include <linux/mman.h> 15 #include <linux/hashtable.h> 16 #include <linux/userfaultfd_k.h> 17 #include <linux/page_idle.h> 18 #include <linux/page_table_check.h> 19 #include <linux/rcupdate_wait.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/dax.h> 23 #include <linux/ksm.h> 24 25 #include <asm/tlb.h> 26 #include <asm/pgalloc.h> 27 #include "internal.h" 28 #include "mm_slot.h" 29 30 enum scan_result { 31 SCAN_FAIL, 32 SCAN_SUCCEED, 33 SCAN_PMD_NULL, 34 SCAN_PMD_NONE, 35 SCAN_PMD_MAPPED, 36 SCAN_EXCEED_NONE_PTE, 37 SCAN_EXCEED_SWAP_PTE, 38 SCAN_EXCEED_SHARED_PTE, 39 SCAN_PTE_NON_PRESENT, 40 SCAN_PTE_UFFD_WP, 41 SCAN_PTE_MAPPED_HUGEPAGE, 42 SCAN_PAGE_RO, 43 SCAN_LACK_REFERENCED_PAGE, 44 SCAN_PAGE_NULL, 45 SCAN_SCAN_ABORT, 46 SCAN_PAGE_COUNT, 47 SCAN_PAGE_LRU, 48 SCAN_PAGE_LOCK, 49 SCAN_PAGE_ANON, 50 SCAN_PAGE_COMPOUND, 51 SCAN_ANY_PROCESS, 52 SCAN_VMA_NULL, 53 SCAN_VMA_CHECK, 54 SCAN_ADDRESS_RANGE, 55 SCAN_DEL_PAGE_LRU, 56 SCAN_ALLOC_HUGE_PAGE_FAIL, 57 SCAN_CGROUP_CHARGE_FAIL, 58 SCAN_TRUNCATED, 59 SCAN_PAGE_HAS_PRIVATE, 60 SCAN_STORE_FAILED, 61 SCAN_COPY_MC, 62 SCAN_PAGE_FILLED, 63 }; 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/huge_memory.h> 67 68 static struct task_struct *khugepaged_thread __read_mostly; 69 static DEFINE_MUTEX(khugepaged_mutex); 70 71 /* default scan 8*512 pte (or vmas) every 30 second */ 72 static unsigned int khugepaged_pages_to_scan __read_mostly; 73 static unsigned int khugepaged_pages_collapsed; 74 static unsigned int khugepaged_full_scans; 75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 76 /* during fragmentation poll the hugepage allocator once every minute */ 77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 78 static unsigned long khugepaged_sleep_expire; 79 static DEFINE_SPINLOCK(khugepaged_mm_lock); 80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 81 /* 82 * default collapse hugepages if there is at least one pte mapped like 83 * it would have happened if the vma was large enough during page 84 * fault. 85 * 86 * Note that these are only respected if collapse was initiated by khugepaged. 87 */ 88 unsigned int khugepaged_max_ptes_none __read_mostly; 89 static unsigned int khugepaged_max_ptes_swap __read_mostly; 90 static unsigned int khugepaged_max_ptes_shared __read_mostly; 91 92 #define MM_SLOTS_HASH_BITS 10 93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 94 95 static struct kmem_cache *mm_slot_cache __ro_after_init; 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 109 * @slot: hash lookup from mm to mm_slot 110 */ 111 struct khugepaged_mm_slot { 112 struct mm_slot slot; 113 }; 114 115 /** 116 * struct khugepaged_scan - cursor for scanning 117 * @mm_head: the head of the mm list to scan 118 * @mm_slot: the current mm_slot we are scanning 119 * @address: the next address inside that to be scanned 120 * 121 * There is only the one khugepaged_scan instance of this cursor structure. 122 */ 123 struct khugepaged_scan { 124 struct list_head mm_head; 125 struct khugepaged_mm_slot *mm_slot; 126 unsigned long address; 127 }; 128 129 static struct khugepaged_scan khugepaged_scan = { 130 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 131 }; 132 133 #ifdef CONFIG_SYSFS 134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 135 struct kobj_attribute *attr, 136 char *buf) 137 { 138 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 139 } 140 141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 142 struct kobj_attribute *attr, 143 const char *buf, size_t count) 144 { 145 unsigned int msecs; 146 int err; 147 148 err = kstrtouint(buf, 10, &msecs); 149 if (err) 150 return -EINVAL; 151 152 khugepaged_scan_sleep_millisecs = msecs; 153 khugepaged_sleep_expire = 0; 154 wake_up_interruptible(&khugepaged_wait); 155 156 return count; 157 } 158 static struct kobj_attribute scan_sleep_millisecs_attr = 159 __ATTR_RW(scan_sleep_millisecs); 160 161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 162 struct kobj_attribute *attr, 163 char *buf) 164 { 165 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 166 } 167 168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 169 struct kobj_attribute *attr, 170 const char *buf, size_t count) 171 { 172 unsigned int msecs; 173 int err; 174 175 err = kstrtouint(buf, 10, &msecs); 176 if (err) 177 return -EINVAL; 178 179 khugepaged_alloc_sleep_millisecs = msecs; 180 khugepaged_sleep_expire = 0; 181 wake_up_interruptible(&khugepaged_wait); 182 183 return count; 184 } 185 static struct kobj_attribute alloc_sleep_millisecs_attr = 186 __ATTR_RW(alloc_sleep_millisecs); 187 188 static ssize_t pages_to_scan_show(struct kobject *kobj, 189 struct kobj_attribute *attr, 190 char *buf) 191 { 192 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 193 } 194 static ssize_t pages_to_scan_store(struct kobject *kobj, 195 struct kobj_attribute *attr, 196 const char *buf, size_t count) 197 { 198 unsigned int pages; 199 int err; 200 201 err = kstrtouint(buf, 10, &pages); 202 if (err || !pages) 203 return -EINVAL; 204 205 khugepaged_pages_to_scan = pages; 206 207 return count; 208 } 209 static struct kobj_attribute pages_to_scan_attr = 210 __ATTR_RW(pages_to_scan); 211 212 static ssize_t pages_collapsed_show(struct kobject *kobj, 213 struct kobj_attribute *attr, 214 char *buf) 215 { 216 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 217 } 218 static struct kobj_attribute pages_collapsed_attr = 219 __ATTR_RO(pages_collapsed); 220 221 static ssize_t full_scans_show(struct kobject *kobj, 222 struct kobj_attribute *attr, 223 char *buf) 224 { 225 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 226 } 227 static struct kobj_attribute full_scans_attr = 228 __ATTR_RO(full_scans); 229 230 static ssize_t defrag_show(struct kobject *kobj, 231 struct kobj_attribute *attr, char *buf) 232 { 233 return single_hugepage_flag_show(kobj, attr, buf, 234 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 235 } 236 static ssize_t defrag_store(struct kobject *kobj, 237 struct kobj_attribute *attr, 238 const char *buf, size_t count) 239 { 240 return single_hugepage_flag_store(kobj, attr, buf, count, 241 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 242 } 243 static struct kobj_attribute khugepaged_defrag_attr = 244 __ATTR_RW(defrag); 245 246 /* 247 * max_ptes_none controls if khugepaged should collapse hugepages over 248 * any unmapped ptes in turn potentially increasing the memory 249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 250 * reduce the available free memory in the system as it 251 * runs. Increasing max_ptes_none will instead potentially reduce the 252 * free memory in the system during the khugepaged scan. 253 */ 254 static ssize_t max_ptes_none_show(struct kobject *kobj, 255 struct kobj_attribute *attr, 256 char *buf) 257 { 258 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 259 } 260 static ssize_t max_ptes_none_store(struct kobject *kobj, 261 struct kobj_attribute *attr, 262 const char *buf, size_t count) 263 { 264 int err; 265 unsigned long max_ptes_none; 266 267 err = kstrtoul(buf, 10, &max_ptes_none); 268 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 269 return -EINVAL; 270 271 khugepaged_max_ptes_none = max_ptes_none; 272 273 return count; 274 } 275 static struct kobj_attribute khugepaged_max_ptes_none_attr = 276 __ATTR_RW(max_ptes_none); 277 278 static ssize_t max_ptes_swap_show(struct kobject *kobj, 279 struct kobj_attribute *attr, 280 char *buf) 281 { 282 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 283 } 284 285 static ssize_t max_ptes_swap_store(struct kobject *kobj, 286 struct kobj_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int err; 290 unsigned long max_ptes_swap; 291 292 err = kstrtoul(buf, 10, &max_ptes_swap); 293 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 294 return -EINVAL; 295 296 khugepaged_max_ptes_swap = max_ptes_swap; 297 298 return count; 299 } 300 301 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 302 __ATTR_RW(max_ptes_swap); 303 304 static ssize_t max_ptes_shared_show(struct kobject *kobj, 305 struct kobj_attribute *attr, 306 char *buf) 307 { 308 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 309 } 310 311 static ssize_t max_ptes_shared_store(struct kobject *kobj, 312 struct kobj_attribute *attr, 313 const char *buf, size_t count) 314 { 315 int err; 316 unsigned long max_ptes_shared; 317 318 err = kstrtoul(buf, 10, &max_ptes_shared); 319 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 320 return -EINVAL; 321 322 khugepaged_max_ptes_shared = max_ptes_shared; 323 324 return count; 325 } 326 327 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 328 __ATTR_RW(max_ptes_shared); 329 330 static struct attribute *khugepaged_attr[] = { 331 &khugepaged_defrag_attr.attr, 332 &khugepaged_max_ptes_none_attr.attr, 333 &khugepaged_max_ptes_swap_attr.attr, 334 &khugepaged_max_ptes_shared_attr.attr, 335 &pages_to_scan_attr.attr, 336 &pages_collapsed_attr.attr, 337 &full_scans_attr.attr, 338 &scan_sleep_millisecs_attr.attr, 339 &alloc_sleep_millisecs_attr.attr, 340 NULL, 341 }; 342 343 struct attribute_group khugepaged_attr_group = { 344 .attrs = khugepaged_attr, 345 .name = "khugepaged", 346 }; 347 #endif /* CONFIG_SYSFS */ 348 349 int hugepage_madvise(struct vm_area_struct *vma, 350 unsigned long *vm_flags, int advice) 351 { 352 switch (advice) { 353 case MADV_HUGEPAGE: 354 #ifdef CONFIG_S390 355 /* 356 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 357 * can't handle this properly after s390_enable_sie, so we simply 358 * ignore the madvise to prevent qemu from causing a SIGSEGV. 359 */ 360 if (mm_has_pgste(vma->vm_mm)) 361 return 0; 362 #endif 363 *vm_flags &= ~VM_NOHUGEPAGE; 364 *vm_flags |= VM_HUGEPAGE; 365 /* 366 * If the vma become good for khugepaged to scan, 367 * register it here without waiting a page fault that 368 * may not happen any time soon. 369 */ 370 khugepaged_enter_vma(vma, *vm_flags); 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0); 389 if (!mm_slot_cache) 390 return -ENOMEM; 391 392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 396 397 return 0; 398 } 399 400 void __init khugepaged_destroy(void) 401 { 402 kmem_cache_destroy(mm_slot_cache); 403 } 404 405 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 406 { 407 return atomic_read(&mm->mm_users) == 0; 408 } 409 410 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 411 { 412 return hpage_collapse_test_exit(mm) || 413 test_bit(MMF_DISABLE_THP, &mm->flags); 414 } 415 416 static bool hugepage_pmd_enabled(void) 417 { 418 /* 419 * We cover the anon, shmem and the file-backed case here; file-backed 420 * hugepages, when configured in, are determined by the global control. 421 * Anon pmd-sized hugepages are determined by the pmd-size control. 422 * Shmem pmd-sized hugepages are also determined by its pmd-size control, 423 * except when the global shmem_huge is set to SHMEM_HUGE_DENY. 424 */ 425 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 426 hugepage_global_enabled()) 427 return true; 428 if (test_bit(PMD_ORDER, &huge_anon_orders_always)) 429 return true; 430 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) 431 return true; 432 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && 433 hugepage_global_enabled()) 434 return true; 435 if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled()) 436 return true; 437 return false; 438 } 439 440 void __khugepaged_enter(struct mm_struct *mm) 441 { 442 struct khugepaged_mm_slot *mm_slot; 443 struct mm_slot *slot; 444 int wakeup; 445 446 /* __khugepaged_exit() must not run from under us */ 447 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 448 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 449 return; 450 451 mm_slot = mm_slot_alloc(mm_slot_cache); 452 if (!mm_slot) 453 return; 454 455 slot = &mm_slot->slot; 456 457 spin_lock(&khugepaged_mm_lock); 458 mm_slot_insert(mm_slots_hash, mm, slot); 459 /* 460 * Insert just behind the scanning cursor, to let the area settle 461 * down a little. 462 */ 463 wakeup = list_empty(&khugepaged_scan.mm_head); 464 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 465 spin_unlock(&khugepaged_mm_lock); 466 467 mmgrab(mm); 468 if (wakeup) 469 wake_up_interruptible(&khugepaged_wait); 470 } 471 472 void khugepaged_enter_vma(struct vm_area_struct *vma, 473 unsigned long vm_flags) 474 { 475 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 476 hugepage_pmd_enabled()) { 477 if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS, 478 PMD_ORDER)) 479 __khugepaged_enter(vma->vm_mm); 480 } 481 } 482 483 void __khugepaged_exit(struct mm_struct *mm) 484 { 485 struct khugepaged_mm_slot *mm_slot; 486 struct mm_slot *slot; 487 int free = 0; 488 489 spin_lock(&khugepaged_mm_lock); 490 slot = mm_slot_lookup(mm_slots_hash, mm); 491 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 492 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 493 hash_del(&slot->hash); 494 list_del(&slot->mm_node); 495 free = 1; 496 } 497 spin_unlock(&khugepaged_mm_lock); 498 499 if (free) { 500 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 501 mm_slot_free(mm_slot_cache, mm_slot); 502 mmdrop(mm); 503 } else if (mm_slot) { 504 /* 505 * This is required to serialize against 506 * hpage_collapse_test_exit() (which is guaranteed to run 507 * under mmap sem read mode). Stop here (after we return all 508 * pagetables will be destroyed) until khugepaged has finished 509 * working on the pagetables under the mmap_lock. 510 */ 511 mmap_write_lock(mm); 512 mmap_write_unlock(mm); 513 } 514 } 515 516 static void release_pte_folio(struct folio *folio) 517 { 518 node_stat_mod_folio(folio, 519 NR_ISOLATED_ANON + folio_is_file_lru(folio), 520 -folio_nr_pages(folio)); 521 folio_unlock(folio); 522 folio_putback_lru(folio); 523 } 524 525 static void release_pte_pages(pte_t *pte, pte_t *_pte, 526 struct list_head *compound_pagelist) 527 { 528 struct folio *folio, *tmp; 529 530 while (--_pte >= pte) { 531 pte_t pteval = ptep_get(_pte); 532 unsigned long pfn; 533 534 if (pte_none(pteval)) 535 continue; 536 pfn = pte_pfn(pteval); 537 if (is_zero_pfn(pfn)) 538 continue; 539 folio = pfn_folio(pfn); 540 if (folio_test_large(folio)) 541 continue; 542 release_pte_folio(folio); 543 } 544 545 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 546 list_del(&folio->lru); 547 release_pte_folio(folio); 548 } 549 } 550 551 static bool is_refcount_suitable(struct folio *folio) 552 { 553 int expected_refcount = folio_mapcount(folio); 554 555 if (!folio_test_anon(folio) || folio_test_swapcache(folio)) 556 expected_refcount += folio_nr_pages(folio); 557 558 if (folio_test_private(folio)) 559 expected_refcount++; 560 561 return folio_ref_count(folio) == expected_refcount; 562 } 563 564 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 565 unsigned long address, 566 pte_t *pte, 567 struct collapse_control *cc, 568 struct list_head *compound_pagelist) 569 { 570 struct page *page = NULL; 571 struct folio *folio = NULL; 572 pte_t *_pte; 573 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 574 bool writable = false; 575 576 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 577 _pte++, address += PAGE_SIZE) { 578 pte_t pteval = ptep_get(_pte); 579 if (pte_none(pteval) || (pte_present(pteval) && 580 is_zero_pfn(pte_pfn(pteval)))) { 581 ++none_or_zero; 582 if (!userfaultfd_armed(vma) && 583 (!cc->is_khugepaged || 584 none_or_zero <= khugepaged_max_ptes_none)) { 585 continue; 586 } else { 587 result = SCAN_EXCEED_NONE_PTE; 588 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 589 goto out; 590 } 591 } 592 if (!pte_present(pteval)) { 593 result = SCAN_PTE_NON_PRESENT; 594 goto out; 595 } 596 if (pte_uffd_wp(pteval)) { 597 result = SCAN_PTE_UFFD_WP; 598 goto out; 599 } 600 page = vm_normal_page(vma, address, pteval); 601 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 602 result = SCAN_PAGE_NULL; 603 goto out; 604 } 605 606 folio = page_folio(page); 607 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 608 609 /* See hpage_collapse_scan_pmd(). */ 610 if (folio_maybe_mapped_shared(folio)) { 611 ++shared; 612 if (cc->is_khugepaged && 613 shared > khugepaged_max_ptes_shared) { 614 result = SCAN_EXCEED_SHARED_PTE; 615 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 616 goto out; 617 } 618 } 619 620 if (folio_test_large(folio)) { 621 struct folio *f; 622 623 /* 624 * Check if we have dealt with the compound page 625 * already 626 */ 627 list_for_each_entry(f, compound_pagelist, lru) { 628 if (folio == f) 629 goto next; 630 } 631 } 632 633 /* 634 * We can do it before folio_isolate_lru because the 635 * folio can't be freed from under us. NOTE: PG_lock 636 * is needed to serialize against split_huge_page 637 * when invoked from the VM. 638 */ 639 if (!folio_trylock(folio)) { 640 result = SCAN_PAGE_LOCK; 641 goto out; 642 } 643 644 /* 645 * Check if the page has any GUP (or other external) pins. 646 * 647 * The page table that maps the page has been already unlinked 648 * from the page table tree and this process cannot get 649 * an additional pin on the page. 650 * 651 * New pins can come later if the page is shared across fork, 652 * but not from this process. The other process cannot write to 653 * the page, only trigger CoW. 654 */ 655 if (!is_refcount_suitable(folio)) { 656 folio_unlock(folio); 657 result = SCAN_PAGE_COUNT; 658 goto out; 659 } 660 661 /* 662 * Isolate the page to avoid collapsing an hugepage 663 * currently in use by the VM. 664 */ 665 if (!folio_isolate_lru(folio)) { 666 folio_unlock(folio); 667 result = SCAN_DEL_PAGE_LRU; 668 goto out; 669 } 670 node_stat_mod_folio(folio, 671 NR_ISOLATED_ANON + folio_is_file_lru(folio), 672 folio_nr_pages(folio)); 673 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 674 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 675 676 if (folio_test_large(folio)) 677 list_add_tail(&folio->lru, compound_pagelist); 678 next: 679 /* 680 * If collapse was initiated by khugepaged, check that there is 681 * enough young pte to justify collapsing the page 682 */ 683 if (cc->is_khugepaged && 684 (pte_young(pteval) || folio_test_young(folio) || 685 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 686 address))) 687 referenced++; 688 689 if (pte_write(pteval)) 690 writable = true; 691 } 692 693 if (unlikely(!writable)) { 694 result = SCAN_PAGE_RO; 695 } else if (unlikely(cc->is_khugepaged && !referenced)) { 696 result = SCAN_LACK_REFERENCED_PAGE; 697 } else { 698 result = SCAN_SUCCEED; 699 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 700 referenced, writable, result); 701 return result; 702 } 703 out: 704 release_pte_pages(pte, _pte, compound_pagelist); 705 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 706 referenced, writable, result); 707 return result; 708 } 709 710 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 711 struct vm_area_struct *vma, 712 unsigned long address, 713 spinlock_t *ptl, 714 struct list_head *compound_pagelist) 715 { 716 struct folio *src, *tmp; 717 pte_t *_pte; 718 pte_t pteval; 719 720 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 721 _pte++, address += PAGE_SIZE) { 722 pteval = ptep_get(_pte); 723 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 724 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 725 if (is_zero_pfn(pte_pfn(pteval))) { 726 /* 727 * ptl mostly unnecessary. 728 */ 729 spin_lock(ptl); 730 ptep_clear(vma->vm_mm, address, _pte); 731 spin_unlock(ptl); 732 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 733 } 734 } else { 735 struct page *src_page = pte_page(pteval); 736 737 src = page_folio(src_page); 738 if (!folio_test_large(src)) 739 release_pte_folio(src); 740 /* 741 * ptl mostly unnecessary, but preempt has to 742 * be disabled to update the per-cpu stats 743 * inside folio_remove_rmap_pte(). 744 */ 745 spin_lock(ptl); 746 ptep_clear(vma->vm_mm, address, _pte); 747 folio_remove_rmap_pte(src, src_page, vma); 748 spin_unlock(ptl); 749 free_page_and_swap_cache(src_page); 750 } 751 } 752 753 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 754 list_del(&src->lru); 755 node_stat_sub_folio(src, NR_ISOLATED_ANON + 756 folio_is_file_lru(src)); 757 folio_unlock(src); 758 free_swap_cache(src); 759 folio_putback_lru(src); 760 } 761 } 762 763 static void __collapse_huge_page_copy_failed(pte_t *pte, 764 pmd_t *pmd, 765 pmd_t orig_pmd, 766 struct vm_area_struct *vma, 767 struct list_head *compound_pagelist) 768 { 769 spinlock_t *pmd_ptl; 770 771 /* 772 * Re-establish the PMD to point to the original page table 773 * entry. Restoring PMD needs to be done prior to releasing 774 * pages. Since pages are still isolated and locked here, 775 * acquiring anon_vma_lock_write is unnecessary. 776 */ 777 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 778 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 779 spin_unlock(pmd_ptl); 780 /* 781 * Release both raw and compound pages isolated 782 * in __collapse_huge_page_isolate. 783 */ 784 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 785 } 786 787 /* 788 * __collapse_huge_page_copy - attempts to copy memory contents from raw 789 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 790 * otherwise restores the original page table and releases isolated raw pages. 791 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 792 * 793 * @pte: starting of the PTEs to copy from 794 * @folio: the new hugepage to copy contents to 795 * @pmd: pointer to the new hugepage's PMD 796 * @orig_pmd: the original raw pages' PMD 797 * @vma: the original raw pages' virtual memory area 798 * @address: starting address to copy 799 * @ptl: lock on raw pages' PTEs 800 * @compound_pagelist: list that stores compound pages 801 */ 802 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 803 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 804 unsigned long address, spinlock_t *ptl, 805 struct list_head *compound_pagelist) 806 { 807 unsigned int i; 808 int result = SCAN_SUCCEED; 809 810 /* 811 * Copying pages' contents is subject to memory poison at any iteration. 812 */ 813 for (i = 0; i < HPAGE_PMD_NR; i++) { 814 pte_t pteval = ptep_get(pte + i); 815 struct page *page = folio_page(folio, i); 816 unsigned long src_addr = address + i * PAGE_SIZE; 817 struct page *src_page; 818 819 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 820 clear_user_highpage(page, src_addr); 821 continue; 822 } 823 src_page = pte_page(pteval); 824 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 825 result = SCAN_COPY_MC; 826 break; 827 } 828 } 829 830 if (likely(result == SCAN_SUCCEED)) 831 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 832 compound_pagelist); 833 else 834 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 835 compound_pagelist); 836 837 return result; 838 } 839 840 static void khugepaged_alloc_sleep(void) 841 { 842 DEFINE_WAIT(wait); 843 844 add_wait_queue(&khugepaged_wait, &wait); 845 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 846 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 847 remove_wait_queue(&khugepaged_wait, &wait); 848 } 849 850 struct collapse_control khugepaged_collapse_control = { 851 .is_khugepaged = true, 852 }; 853 854 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 855 { 856 int i; 857 858 /* 859 * If node_reclaim_mode is disabled, then no extra effort is made to 860 * allocate memory locally. 861 */ 862 if (!node_reclaim_enabled()) 863 return false; 864 865 /* If there is a count for this node already, it must be acceptable */ 866 if (cc->node_load[nid]) 867 return false; 868 869 for (i = 0; i < MAX_NUMNODES; i++) { 870 if (!cc->node_load[i]) 871 continue; 872 if (node_distance(nid, i) > node_reclaim_distance) 873 return true; 874 } 875 return false; 876 } 877 878 #define khugepaged_defrag() \ 879 (transparent_hugepage_flags & \ 880 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 881 882 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 883 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 884 { 885 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 886 } 887 888 #ifdef CONFIG_NUMA 889 static int hpage_collapse_find_target_node(struct collapse_control *cc) 890 { 891 int nid, target_node = 0, max_value = 0; 892 893 /* find first node with max normal pages hit */ 894 for (nid = 0; nid < MAX_NUMNODES; nid++) 895 if (cc->node_load[nid] > max_value) { 896 max_value = cc->node_load[nid]; 897 target_node = nid; 898 } 899 900 for_each_online_node(nid) { 901 if (max_value == cc->node_load[nid]) 902 node_set(nid, cc->alloc_nmask); 903 } 904 905 return target_node; 906 } 907 #else 908 static int hpage_collapse_find_target_node(struct collapse_control *cc) 909 { 910 return 0; 911 } 912 #endif 913 914 /* 915 * If mmap_lock temporarily dropped, revalidate vma 916 * before taking mmap_lock. 917 * Returns enum scan_result value. 918 */ 919 920 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 921 bool expect_anon, 922 struct vm_area_struct **vmap, 923 struct collapse_control *cc) 924 { 925 struct vm_area_struct *vma; 926 unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0; 927 928 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 929 return SCAN_ANY_PROCESS; 930 931 *vmap = vma = find_vma(mm, address); 932 if (!vma) 933 return SCAN_VMA_NULL; 934 935 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 936 return SCAN_ADDRESS_RANGE; 937 if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER)) 938 return SCAN_VMA_CHECK; 939 /* 940 * Anon VMA expected, the address may be unmapped then 941 * remapped to file after khugepaged reaquired the mmap_lock. 942 * 943 * thp_vma_allowable_order may return true for qualified file 944 * vmas. 945 */ 946 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 947 return SCAN_PAGE_ANON; 948 return SCAN_SUCCEED; 949 } 950 951 static inline int check_pmd_state(pmd_t *pmd) 952 { 953 pmd_t pmde = pmdp_get_lockless(pmd); 954 955 if (pmd_none(pmde)) 956 return SCAN_PMD_NONE; 957 if (!pmd_present(pmde)) 958 return SCAN_PMD_NULL; 959 if (pmd_trans_huge(pmde)) 960 return SCAN_PMD_MAPPED; 961 if (pmd_devmap(pmde)) 962 return SCAN_PMD_NULL; 963 if (pmd_bad(pmde)) 964 return SCAN_PMD_NULL; 965 return SCAN_SUCCEED; 966 } 967 968 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 969 unsigned long address, 970 pmd_t **pmd) 971 { 972 *pmd = mm_find_pmd(mm, address); 973 if (!*pmd) 974 return SCAN_PMD_NULL; 975 976 return check_pmd_state(*pmd); 977 } 978 979 static int check_pmd_still_valid(struct mm_struct *mm, 980 unsigned long address, 981 pmd_t *pmd) 982 { 983 pmd_t *new_pmd; 984 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 985 986 if (result != SCAN_SUCCEED) 987 return result; 988 if (new_pmd != pmd) 989 return SCAN_FAIL; 990 return SCAN_SUCCEED; 991 } 992 993 /* 994 * Bring missing pages in from swap, to complete THP collapse. 995 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 996 * 997 * Called and returns without pte mapped or spinlocks held. 998 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 999 */ 1000 static int __collapse_huge_page_swapin(struct mm_struct *mm, 1001 struct vm_area_struct *vma, 1002 unsigned long haddr, pmd_t *pmd, 1003 int referenced) 1004 { 1005 int swapped_in = 0; 1006 vm_fault_t ret = 0; 1007 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 1008 int result; 1009 pte_t *pte = NULL; 1010 spinlock_t *ptl; 1011 1012 for (address = haddr; address < end; address += PAGE_SIZE) { 1013 struct vm_fault vmf = { 1014 .vma = vma, 1015 .address = address, 1016 .pgoff = linear_page_index(vma, address), 1017 .flags = FAULT_FLAG_ALLOW_RETRY, 1018 .pmd = pmd, 1019 }; 1020 1021 if (!pte++) { 1022 /* 1023 * Here the ptl is only used to check pte_same() in 1024 * do_swap_page(), so readonly version is enough. 1025 */ 1026 pte = pte_offset_map_ro_nolock(mm, pmd, address, &ptl); 1027 if (!pte) { 1028 mmap_read_unlock(mm); 1029 result = SCAN_PMD_NULL; 1030 goto out; 1031 } 1032 } 1033 1034 vmf.orig_pte = ptep_get_lockless(pte); 1035 if (!is_swap_pte(vmf.orig_pte)) 1036 continue; 1037 1038 vmf.pte = pte; 1039 vmf.ptl = ptl; 1040 ret = do_swap_page(&vmf); 1041 /* Which unmaps pte (after perhaps re-checking the entry) */ 1042 pte = NULL; 1043 1044 /* 1045 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1046 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1047 * we do not retry here and swap entry will remain in pagetable 1048 * resulting in later failure. 1049 */ 1050 if (ret & VM_FAULT_RETRY) { 1051 /* Likely, but not guaranteed, that page lock failed */ 1052 result = SCAN_PAGE_LOCK; 1053 goto out; 1054 } 1055 if (ret & VM_FAULT_ERROR) { 1056 mmap_read_unlock(mm); 1057 result = SCAN_FAIL; 1058 goto out; 1059 } 1060 swapped_in++; 1061 } 1062 1063 if (pte) 1064 pte_unmap(pte); 1065 1066 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1067 if (swapped_in) 1068 lru_add_drain(); 1069 1070 result = SCAN_SUCCEED; 1071 out: 1072 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1073 return result; 1074 } 1075 1076 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1077 struct collapse_control *cc) 1078 { 1079 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1080 GFP_TRANSHUGE); 1081 int node = hpage_collapse_find_target_node(cc); 1082 struct folio *folio; 1083 1084 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1085 if (!folio) { 1086 *foliop = NULL; 1087 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1088 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1089 } 1090 1091 count_vm_event(THP_COLLAPSE_ALLOC); 1092 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1093 folio_put(folio); 1094 *foliop = NULL; 1095 return SCAN_CGROUP_CHARGE_FAIL; 1096 } 1097 1098 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1099 1100 *foliop = folio; 1101 return SCAN_SUCCEED; 1102 } 1103 1104 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1105 int referenced, int unmapped, 1106 struct collapse_control *cc) 1107 { 1108 LIST_HEAD(compound_pagelist); 1109 pmd_t *pmd, _pmd; 1110 pte_t *pte; 1111 pgtable_t pgtable; 1112 struct folio *folio; 1113 spinlock_t *pmd_ptl, *pte_ptl; 1114 int result = SCAN_FAIL; 1115 struct vm_area_struct *vma; 1116 struct mmu_notifier_range range; 1117 1118 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1119 1120 /* 1121 * Before allocating the hugepage, release the mmap_lock read lock. 1122 * The allocation can take potentially a long time if it involves 1123 * sync compaction, and we do not need to hold the mmap_lock during 1124 * that. We will recheck the vma after taking it again in write mode. 1125 */ 1126 mmap_read_unlock(mm); 1127 1128 result = alloc_charge_folio(&folio, mm, cc); 1129 if (result != SCAN_SUCCEED) 1130 goto out_nolock; 1131 1132 mmap_read_lock(mm); 1133 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1134 if (result != SCAN_SUCCEED) { 1135 mmap_read_unlock(mm); 1136 goto out_nolock; 1137 } 1138 1139 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1140 if (result != SCAN_SUCCEED) { 1141 mmap_read_unlock(mm); 1142 goto out_nolock; 1143 } 1144 1145 if (unmapped) { 1146 /* 1147 * __collapse_huge_page_swapin will return with mmap_lock 1148 * released when it fails. So we jump out_nolock directly in 1149 * that case. Continuing to collapse causes inconsistency. 1150 */ 1151 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1152 referenced); 1153 if (result != SCAN_SUCCEED) 1154 goto out_nolock; 1155 } 1156 1157 mmap_read_unlock(mm); 1158 /* 1159 * Prevent all access to pagetables with the exception of 1160 * gup_fast later handled by the ptep_clear_flush and the VM 1161 * handled by the anon_vma lock + PG_lock. 1162 * 1163 * UFFDIO_MOVE is prevented to race as well thanks to the 1164 * mmap_lock. 1165 */ 1166 mmap_write_lock(mm); 1167 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1168 if (result != SCAN_SUCCEED) 1169 goto out_up_write; 1170 /* check if the pmd is still valid */ 1171 result = check_pmd_still_valid(mm, address, pmd); 1172 if (result != SCAN_SUCCEED) 1173 goto out_up_write; 1174 1175 vma_start_write(vma); 1176 anon_vma_lock_write(vma->anon_vma); 1177 1178 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1179 address + HPAGE_PMD_SIZE); 1180 mmu_notifier_invalidate_range_start(&range); 1181 1182 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1183 /* 1184 * This removes any huge TLB entry from the CPU so we won't allow 1185 * huge and small TLB entries for the same virtual address to 1186 * avoid the risk of CPU bugs in that area. 1187 * 1188 * Parallel GUP-fast is fine since GUP-fast will back off when 1189 * it detects PMD is changed. 1190 */ 1191 _pmd = pmdp_collapse_flush(vma, address, pmd); 1192 spin_unlock(pmd_ptl); 1193 mmu_notifier_invalidate_range_end(&range); 1194 tlb_remove_table_sync_one(); 1195 1196 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1197 if (pte) { 1198 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1199 &compound_pagelist); 1200 spin_unlock(pte_ptl); 1201 } else { 1202 result = SCAN_PMD_NULL; 1203 } 1204 1205 if (unlikely(result != SCAN_SUCCEED)) { 1206 if (pte) 1207 pte_unmap(pte); 1208 spin_lock(pmd_ptl); 1209 BUG_ON(!pmd_none(*pmd)); 1210 /* 1211 * We can only use set_pmd_at when establishing 1212 * hugepmds and never for establishing regular pmds that 1213 * points to regular pagetables. Use pmd_populate for that 1214 */ 1215 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1216 spin_unlock(pmd_ptl); 1217 anon_vma_unlock_write(vma->anon_vma); 1218 goto out_up_write; 1219 } 1220 1221 /* 1222 * All pages are isolated and locked so anon_vma rmap 1223 * can't run anymore. 1224 */ 1225 anon_vma_unlock_write(vma->anon_vma); 1226 1227 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1228 vma, address, pte_ptl, 1229 &compound_pagelist); 1230 pte_unmap(pte); 1231 if (unlikely(result != SCAN_SUCCEED)) 1232 goto out_up_write; 1233 1234 /* 1235 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1236 * copy_huge_page writes become visible before the set_pmd_at() 1237 * write. 1238 */ 1239 __folio_mark_uptodate(folio); 1240 pgtable = pmd_pgtable(_pmd); 1241 1242 _pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot); 1243 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1244 1245 spin_lock(pmd_ptl); 1246 BUG_ON(!pmd_none(*pmd)); 1247 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 1248 folio_add_lru_vma(folio, vma); 1249 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1250 set_pmd_at(mm, address, pmd, _pmd); 1251 update_mmu_cache_pmd(vma, address, pmd); 1252 deferred_split_folio(folio, false); 1253 spin_unlock(pmd_ptl); 1254 1255 folio = NULL; 1256 1257 result = SCAN_SUCCEED; 1258 out_up_write: 1259 mmap_write_unlock(mm); 1260 out_nolock: 1261 if (folio) 1262 folio_put(folio); 1263 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1264 return result; 1265 } 1266 1267 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1268 struct vm_area_struct *vma, 1269 unsigned long address, bool *mmap_locked, 1270 struct collapse_control *cc) 1271 { 1272 pmd_t *pmd; 1273 pte_t *pte, *_pte; 1274 int result = SCAN_FAIL, referenced = 0; 1275 int none_or_zero = 0, shared = 0; 1276 struct page *page = NULL; 1277 struct folio *folio = NULL; 1278 unsigned long _address; 1279 spinlock_t *ptl; 1280 int node = NUMA_NO_NODE, unmapped = 0; 1281 bool writable = false; 1282 1283 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1284 1285 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1286 if (result != SCAN_SUCCEED) 1287 goto out; 1288 1289 memset(cc->node_load, 0, sizeof(cc->node_load)); 1290 nodes_clear(cc->alloc_nmask); 1291 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1292 if (!pte) { 1293 result = SCAN_PMD_NULL; 1294 goto out; 1295 } 1296 1297 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1298 _pte++, _address += PAGE_SIZE) { 1299 pte_t pteval = ptep_get(_pte); 1300 if (is_swap_pte(pteval)) { 1301 ++unmapped; 1302 if (!cc->is_khugepaged || 1303 unmapped <= khugepaged_max_ptes_swap) { 1304 /* 1305 * Always be strict with uffd-wp 1306 * enabled swap entries. Please see 1307 * comment below for pte_uffd_wp(). 1308 */ 1309 if (pte_swp_uffd_wp_any(pteval)) { 1310 result = SCAN_PTE_UFFD_WP; 1311 goto out_unmap; 1312 } 1313 continue; 1314 } else { 1315 result = SCAN_EXCEED_SWAP_PTE; 1316 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1317 goto out_unmap; 1318 } 1319 } 1320 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1321 ++none_or_zero; 1322 if (!userfaultfd_armed(vma) && 1323 (!cc->is_khugepaged || 1324 none_or_zero <= khugepaged_max_ptes_none)) { 1325 continue; 1326 } else { 1327 result = SCAN_EXCEED_NONE_PTE; 1328 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1329 goto out_unmap; 1330 } 1331 } 1332 if (pte_uffd_wp(pteval)) { 1333 /* 1334 * Don't collapse the page if any of the small 1335 * PTEs are armed with uffd write protection. 1336 * Here we can also mark the new huge pmd as 1337 * write protected if any of the small ones is 1338 * marked but that could bring unknown 1339 * userfault messages that falls outside of 1340 * the registered range. So, just be simple. 1341 */ 1342 result = SCAN_PTE_UFFD_WP; 1343 goto out_unmap; 1344 } 1345 if (pte_write(pteval)) 1346 writable = true; 1347 1348 page = vm_normal_page(vma, _address, pteval); 1349 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1350 result = SCAN_PAGE_NULL; 1351 goto out_unmap; 1352 } 1353 folio = page_folio(page); 1354 1355 if (!folio_test_anon(folio)) { 1356 result = SCAN_PAGE_ANON; 1357 goto out_unmap; 1358 } 1359 1360 /* 1361 * We treat a single page as shared if any part of the THP 1362 * is shared. 1363 */ 1364 if (folio_maybe_mapped_shared(folio)) { 1365 ++shared; 1366 if (cc->is_khugepaged && 1367 shared > khugepaged_max_ptes_shared) { 1368 result = SCAN_EXCEED_SHARED_PTE; 1369 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1370 goto out_unmap; 1371 } 1372 } 1373 1374 /* 1375 * Record which node the original page is from and save this 1376 * information to cc->node_load[]. 1377 * Khugepaged will allocate hugepage from the node has the max 1378 * hit record. 1379 */ 1380 node = folio_nid(folio); 1381 if (hpage_collapse_scan_abort(node, cc)) { 1382 result = SCAN_SCAN_ABORT; 1383 goto out_unmap; 1384 } 1385 cc->node_load[node]++; 1386 if (!folio_test_lru(folio)) { 1387 result = SCAN_PAGE_LRU; 1388 goto out_unmap; 1389 } 1390 if (folio_test_locked(folio)) { 1391 result = SCAN_PAGE_LOCK; 1392 goto out_unmap; 1393 } 1394 1395 /* 1396 * Check if the page has any GUP (or other external) pins. 1397 * 1398 * Here the check may be racy: 1399 * it may see folio_mapcount() > folio_ref_count(). 1400 * But such case is ephemeral we could always retry collapse 1401 * later. However it may report false positive if the page 1402 * has excessive GUP pins (i.e. 512). Anyway the same check 1403 * will be done again later the risk seems low. 1404 */ 1405 if (!is_refcount_suitable(folio)) { 1406 result = SCAN_PAGE_COUNT; 1407 goto out_unmap; 1408 } 1409 1410 /* 1411 * If collapse was initiated by khugepaged, check that there is 1412 * enough young pte to justify collapsing the page 1413 */ 1414 if (cc->is_khugepaged && 1415 (pte_young(pteval) || folio_test_young(folio) || 1416 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 1417 address))) 1418 referenced++; 1419 } 1420 if (!writable) { 1421 result = SCAN_PAGE_RO; 1422 } else if (cc->is_khugepaged && 1423 (!referenced || 1424 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1425 result = SCAN_LACK_REFERENCED_PAGE; 1426 } else { 1427 result = SCAN_SUCCEED; 1428 } 1429 out_unmap: 1430 pte_unmap_unlock(pte, ptl); 1431 if (result == SCAN_SUCCEED) { 1432 result = collapse_huge_page(mm, address, referenced, 1433 unmapped, cc); 1434 /* collapse_huge_page will return with the mmap_lock released */ 1435 *mmap_locked = false; 1436 } 1437 out: 1438 trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced, 1439 none_or_zero, result, unmapped); 1440 return result; 1441 } 1442 1443 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1444 { 1445 struct mm_slot *slot = &mm_slot->slot; 1446 struct mm_struct *mm = slot->mm; 1447 1448 lockdep_assert_held(&khugepaged_mm_lock); 1449 1450 if (hpage_collapse_test_exit(mm)) { 1451 /* free mm_slot */ 1452 hash_del(&slot->hash); 1453 list_del(&slot->mm_node); 1454 1455 /* 1456 * Not strictly needed because the mm exited already. 1457 * 1458 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1459 */ 1460 1461 /* khugepaged_mm_lock actually not necessary for the below */ 1462 mm_slot_free(mm_slot_cache, mm_slot); 1463 mmdrop(mm); 1464 } 1465 } 1466 1467 #ifdef CONFIG_SHMEM 1468 /* hpage must be locked, and mmap_lock must be held */ 1469 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1470 pmd_t *pmdp, struct page *hpage) 1471 { 1472 struct vm_fault vmf = { 1473 .vma = vma, 1474 .address = addr, 1475 .flags = 0, 1476 .pmd = pmdp, 1477 }; 1478 1479 VM_BUG_ON(!PageTransHuge(hpage)); 1480 mmap_assert_locked(vma->vm_mm); 1481 1482 if (do_set_pmd(&vmf, hpage)) 1483 return SCAN_FAIL; 1484 1485 get_page(hpage); 1486 return SCAN_SUCCEED; 1487 } 1488 1489 /** 1490 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1491 * address haddr. 1492 * 1493 * @mm: process address space where collapse happens 1494 * @addr: THP collapse address 1495 * @install_pmd: If a huge PMD should be installed 1496 * 1497 * This function checks whether all the PTEs in the PMD are pointing to the 1498 * right THP. If so, retract the page table so the THP can refault in with 1499 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1500 */ 1501 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1502 bool install_pmd) 1503 { 1504 struct mmu_notifier_range range; 1505 bool notified = false; 1506 unsigned long haddr = addr & HPAGE_PMD_MASK; 1507 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1508 struct folio *folio; 1509 pte_t *start_pte, *pte; 1510 pmd_t *pmd, pgt_pmd; 1511 spinlock_t *pml = NULL, *ptl; 1512 int nr_ptes = 0, result = SCAN_FAIL; 1513 int i; 1514 1515 mmap_assert_locked(mm); 1516 1517 /* First check VMA found, in case page tables are being torn down */ 1518 if (!vma || !vma->vm_file || 1519 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1520 return SCAN_VMA_CHECK; 1521 1522 /* Fast check before locking page if already PMD-mapped */ 1523 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1524 if (result == SCAN_PMD_MAPPED) 1525 return result; 1526 1527 /* 1528 * If we are here, we've succeeded in replacing all the native pages 1529 * in the page cache with a single hugepage. If a mm were to fault-in 1530 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1531 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1532 * analogously elide sysfs THP settings here. 1533 */ 1534 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 1535 return SCAN_VMA_CHECK; 1536 1537 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1538 if (userfaultfd_wp(vma)) 1539 return SCAN_PTE_UFFD_WP; 1540 1541 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1542 linear_page_index(vma, haddr)); 1543 if (IS_ERR(folio)) 1544 return SCAN_PAGE_NULL; 1545 1546 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1547 result = SCAN_PAGE_COMPOUND; 1548 goto drop_folio; 1549 } 1550 1551 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1552 switch (result) { 1553 case SCAN_SUCCEED: 1554 break; 1555 case SCAN_PMD_NONE: 1556 /* 1557 * All pte entries have been removed and pmd cleared. 1558 * Skip all the pte checks and just update the pmd mapping. 1559 */ 1560 goto maybe_install_pmd; 1561 default: 1562 goto drop_folio; 1563 } 1564 1565 result = SCAN_FAIL; 1566 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1567 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1568 goto drop_folio; 1569 1570 /* step 1: check all mapped PTEs are to the right huge page */ 1571 for (i = 0, addr = haddr, pte = start_pte; 1572 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1573 struct page *page; 1574 pte_t ptent = ptep_get(pte); 1575 1576 /* empty pte, skip */ 1577 if (pte_none(ptent)) 1578 continue; 1579 1580 /* page swapped out, abort */ 1581 if (!pte_present(ptent)) { 1582 result = SCAN_PTE_NON_PRESENT; 1583 goto abort; 1584 } 1585 1586 page = vm_normal_page(vma, addr, ptent); 1587 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1588 page = NULL; 1589 /* 1590 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1591 * page table, but the new page will not be a subpage of hpage. 1592 */ 1593 if (folio_page(folio, i) != page) 1594 goto abort; 1595 } 1596 1597 pte_unmap_unlock(start_pte, ptl); 1598 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1599 haddr, haddr + HPAGE_PMD_SIZE); 1600 mmu_notifier_invalidate_range_start(&range); 1601 notified = true; 1602 1603 /* 1604 * pmd_lock covers a wider range than ptl, and (if split from mm's 1605 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1606 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1607 * inserts a valid as-if-COWed PTE without even looking up page cache. 1608 * So page lock of folio does not protect from it, so we must not drop 1609 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1610 */ 1611 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1612 pml = pmd_lock(mm, pmd); 1613 1614 start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl); 1615 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1616 goto abort; 1617 if (!pml) 1618 spin_lock(ptl); 1619 else if (ptl != pml) 1620 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1621 1622 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) 1623 goto abort; 1624 1625 /* step 2: clear page table and adjust rmap */ 1626 for (i = 0, addr = haddr, pte = start_pte; 1627 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1628 struct page *page; 1629 pte_t ptent = ptep_get(pte); 1630 1631 if (pte_none(ptent)) 1632 continue; 1633 /* 1634 * We dropped ptl after the first scan, to do the mmu_notifier: 1635 * page lock stops more PTEs of the folio being faulted in, but 1636 * does not stop write faults COWing anon copies from existing 1637 * PTEs; and does not stop those being swapped out or migrated. 1638 */ 1639 if (!pte_present(ptent)) { 1640 result = SCAN_PTE_NON_PRESENT; 1641 goto abort; 1642 } 1643 page = vm_normal_page(vma, addr, ptent); 1644 if (folio_page(folio, i) != page) 1645 goto abort; 1646 1647 /* 1648 * Must clear entry, or a racing truncate may re-remove it. 1649 * TLB flush can be left until pmdp_collapse_flush() does it. 1650 * PTE dirty? Shmem page is already dirty; file is read-only. 1651 */ 1652 ptep_clear(mm, addr, pte); 1653 folio_remove_rmap_pte(folio, page, vma); 1654 nr_ptes++; 1655 } 1656 1657 if (!pml) 1658 spin_unlock(ptl); 1659 1660 /* step 3: set proper refcount and mm_counters. */ 1661 if (nr_ptes) { 1662 folio_ref_sub(folio, nr_ptes); 1663 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1664 } 1665 1666 /* step 4: remove empty page table */ 1667 if (!pml) { 1668 pml = pmd_lock(mm, pmd); 1669 if (ptl != pml) { 1670 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1671 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) { 1672 flush_tlb_mm(mm); 1673 goto unlock; 1674 } 1675 } 1676 } 1677 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1678 pmdp_get_lockless_sync(); 1679 pte_unmap_unlock(start_pte, ptl); 1680 if (ptl != pml) 1681 spin_unlock(pml); 1682 1683 mmu_notifier_invalidate_range_end(&range); 1684 1685 mm_dec_nr_ptes(mm); 1686 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1687 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1688 1689 maybe_install_pmd: 1690 /* step 5: install pmd entry */ 1691 result = install_pmd 1692 ? set_huge_pmd(vma, haddr, pmd, &folio->page) 1693 : SCAN_SUCCEED; 1694 goto drop_folio; 1695 abort: 1696 if (nr_ptes) { 1697 flush_tlb_mm(mm); 1698 folio_ref_sub(folio, nr_ptes); 1699 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1700 } 1701 unlock: 1702 if (start_pte) 1703 pte_unmap_unlock(start_pte, ptl); 1704 if (pml && pml != ptl) 1705 spin_unlock(pml); 1706 if (notified) 1707 mmu_notifier_invalidate_range_end(&range); 1708 drop_folio: 1709 folio_unlock(folio); 1710 folio_put(folio); 1711 return result; 1712 } 1713 1714 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1715 { 1716 struct vm_area_struct *vma; 1717 1718 i_mmap_lock_read(mapping); 1719 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1720 struct mmu_notifier_range range; 1721 struct mm_struct *mm; 1722 unsigned long addr; 1723 pmd_t *pmd, pgt_pmd; 1724 spinlock_t *pml; 1725 spinlock_t *ptl; 1726 bool success = false; 1727 1728 /* 1729 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1730 * got written to. These VMAs are likely not worth removing 1731 * page tables from, as PMD-mapping is likely to be split later. 1732 */ 1733 if (READ_ONCE(vma->anon_vma)) 1734 continue; 1735 1736 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1737 if (addr & ~HPAGE_PMD_MASK || 1738 vma->vm_end < addr + HPAGE_PMD_SIZE) 1739 continue; 1740 1741 mm = vma->vm_mm; 1742 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1743 continue; 1744 1745 if (hpage_collapse_test_exit(mm)) 1746 continue; 1747 /* 1748 * When a vma is registered with uffd-wp, we cannot recycle 1749 * the page table because there may be pte markers installed. 1750 * Other vmas can still have the same file mapped hugely, but 1751 * skip this one: it will always be mapped in small page size 1752 * for uffd-wp registered ranges. 1753 */ 1754 if (userfaultfd_wp(vma)) 1755 continue; 1756 1757 /* PTEs were notified when unmapped; but now for the PMD? */ 1758 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1759 addr, addr + HPAGE_PMD_SIZE); 1760 mmu_notifier_invalidate_range_start(&range); 1761 1762 pml = pmd_lock(mm, pmd); 1763 /* 1764 * The lock of new_folio is still held, we will be blocked in 1765 * the page fault path, which prevents the pte entries from 1766 * being set again. So even though the old empty PTE page may be 1767 * concurrently freed and a new PTE page is filled into the pmd 1768 * entry, it is still empty and can be removed. 1769 * 1770 * So here we only need to recheck if the state of pmd entry 1771 * still meets our requirements, rather than checking pmd_same() 1772 * like elsewhere. 1773 */ 1774 if (check_pmd_state(pmd) != SCAN_SUCCEED) 1775 goto drop_pml; 1776 ptl = pte_lockptr(mm, pmd); 1777 if (ptl != pml) 1778 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1779 1780 /* 1781 * Huge page lock is still held, so normally the page table 1782 * must remain empty; and we have already skipped anon_vma 1783 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1784 * held, it is still possible for a racing userfaultfd_ioctl() 1785 * to have inserted ptes or markers. Now that we hold ptlock, 1786 * repeating the anon_vma check protects from one category, 1787 * and repeating the userfaultfd_wp() check from another. 1788 */ 1789 if (likely(!vma->anon_vma && !userfaultfd_wp(vma))) { 1790 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1791 pmdp_get_lockless_sync(); 1792 success = true; 1793 } 1794 1795 if (ptl != pml) 1796 spin_unlock(ptl); 1797 drop_pml: 1798 spin_unlock(pml); 1799 1800 mmu_notifier_invalidate_range_end(&range); 1801 1802 if (success) { 1803 mm_dec_nr_ptes(mm); 1804 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1805 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1806 } 1807 } 1808 i_mmap_unlock_read(mapping); 1809 } 1810 1811 /** 1812 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1813 * 1814 * @mm: process address space where collapse happens 1815 * @addr: virtual collapse start address 1816 * @file: file that collapse on 1817 * @start: collapse start address 1818 * @cc: collapse context and scratchpad 1819 * 1820 * Basic scheme is simple, details are more complex: 1821 * - allocate and lock a new huge page; 1822 * - scan page cache, locking old pages 1823 * + swap/gup in pages if necessary; 1824 * - copy data to new page 1825 * - handle shmem holes 1826 * + re-validate that holes weren't filled by someone else 1827 * + check for userfaultfd 1828 * - finalize updates to the page cache; 1829 * - if replacing succeeds: 1830 * + unlock huge page; 1831 * + free old pages; 1832 * - if replacing failed; 1833 * + unlock old pages 1834 * + unlock and free huge page; 1835 */ 1836 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1837 struct file *file, pgoff_t start, 1838 struct collapse_control *cc) 1839 { 1840 struct address_space *mapping = file->f_mapping; 1841 struct page *dst; 1842 struct folio *folio, *tmp, *new_folio; 1843 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1844 LIST_HEAD(pagelist); 1845 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1846 int nr_none = 0, result = SCAN_SUCCEED; 1847 bool is_shmem = shmem_file(file); 1848 1849 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1850 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1851 1852 result = alloc_charge_folio(&new_folio, mm, cc); 1853 if (result != SCAN_SUCCEED) 1854 goto out; 1855 1856 mapping_set_update(&xas, mapping); 1857 1858 __folio_set_locked(new_folio); 1859 if (is_shmem) 1860 __folio_set_swapbacked(new_folio); 1861 new_folio->index = start; 1862 new_folio->mapping = mapping; 1863 1864 /* 1865 * Ensure we have slots for all the pages in the range. This is 1866 * almost certainly a no-op because most of the pages must be present 1867 */ 1868 do { 1869 xas_lock_irq(&xas); 1870 xas_create_range(&xas); 1871 if (!xas_error(&xas)) 1872 break; 1873 xas_unlock_irq(&xas); 1874 if (!xas_nomem(&xas, GFP_KERNEL)) { 1875 result = SCAN_FAIL; 1876 goto rollback; 1877 } 1878 } while (1); 1879 1880 for (index = start; index < end;) { 1881 xas_set(&xas, index); 1882 folio = xas_load(&xas); 1883 1884 VM_BUG_ON(index != xas.xa_index); 1885 if (is_shmem) { 1886 if (!folio) { 1887 /* 1888 * Stop if extent has been truncated or 1889 * hole-punched, and is now completely 1890 * empty. 1891 */ 1892 if (index == start) { 1893 if (!xas_next_entry(&xas, end - 1)) { 1894 result = SCAN_TRUNCATED; 1895 goto xa_locked; 1896 } 1897 } 1898 nr_none++; 1899 index++; 1900 continue; 1901 } 1902 1903 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1904 xas_unlock_irq(&xas); 1905 /* swap in or instantiate fallocated page */ 1906 if (shmem_get_folio(mapping->host, index, 0, 1907 &folio, SGP_NOALLOC)) { 1908 result = SCAN_FAIL; 1909 goto xa_unlocked; 1910 } 1911 /* drain lru cache to help folio_isolate_lru() */ 1912 lru_add_drain(); 1913 } else if (folio_trylock(folio)) { 1914 folio_get(folio); 1915 xas_unlock_irq(&xas); 1916 } else { 1917 result = SCAN_PAGE_LOCK; 1918 goto xa_locked; 1919 } 1920 } else { /* !is_shmem */ 1921 if (!folio || xa_is_value(folio)) { 1922 xas_unlock_irq(&xas); 1923 page_cache_sync_readahead(mapping, &file->f_ra, 1924 file, index, 1925 end - index); 1926 /* drain lru cache to help folio_isolate_lru() */ 1927 lru_add_drain(); 1928 folio = filemap_lock_folio(mapping, index); 1929 if (IS_ERR(folio)) { 1930 result = SCAN_FAIL; 1931 goto xa_unlocked; 1932 } 1933 } else if (folio_test_dirty(folio)) { 1934 /* 1935 * khugepaged only works on read-only fd, 1936 * so this page is dirty because it hasn't 1937 * been flushed since first write. There 1938 * won't be new dirty pages. 1939 * 1940 * Trigger async flush here and hope the 1941 * writeback is done when khugepaged 1942 * revisits this page. 1943 * 1944 * This is a one-off situation. We are not 1945 * forcing writeback in loop. 1946 */ 1947 xas_unlock_irq(&xas); 1948 filemap_flush(mapping); 1949 result = SCAN_FAIL; 1950 goto xa_unlocked; 1951 } else if (folio_test_writeback(folio)) { 1952 xas_unlock_irq(&xas); 1953 result = SCAN_FAIL; 1954 goto xa_unlocked; 1955 } else if (folio_trylock(folio)) { 1956 folio_get(folio); 1957 xas_unlock_irq(&xas); 1958 } else { 1959 result = SCAN_PAGE_LOCK; 1960 goto xa_locked; 1961 } 1962 } 1963 1964 /* 1965 * The folio must be locked, so we can drop the i_pages lock 1966 * without racing with truncate. 1967 */ 1968 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1969 1970 /* make sure the folio is up to date */ 1971 if (unlikely(!folio_test_uptodate(folio))) { 1972 result = SCAN_FAIL; 1973 goto out_unlock; 1974 } 1975 1976 /* 1977 * If file was truncated then extended, or hole-punched, before 1978 * we locked the first folio, then a THP might be there already. 1979 * This will be discovered on the first iteration. 1980 */ 1981 if (folio_order(folio) == HPAGE_PMD_ORDER && 1982 folio->index == start) { 1983 /* Maybe PMD-mapped */ 1984 result = SCAN_PTE_MAPPED_HUGEPAGE; 1985 goto out_unlock; 1986 } 1987 1988 if (folio_mapping(folio) != mapping) { 1989 result = SCAN_TRUNCATED; 1990 goto out_unlock; 1991 } 1992 1993 if (!is_shmem && (folio_test_dirty(folio) || 1994 folio_test_writeback(folio))) { 1995 /* 1996 * khugepaged only works on read-only fd, so this 1997 * folio is dirty because it hasn't been flushed 1998 * since first write. 1999 */ 2000 result = SCAN_FAIL; 2001 goto out_unlock; 2002 } 2003 2004 if (!folio_isolate_lru(folio)) { 2005 result = SCAN_DEL_PAGE_LRU; 2006 goto out_unlock; 2007 } 2008 2009 if (!filemap_release_folio(folio, GFP_KERNEL)) { 2010 result = SCAN_PAGE_HAS_PRIVATE; 2011 folio_putback_lru(folio); 2012 goto out_unlock; 2013 } 2014 2015 if (folio_mapped(folio)) 2016 try_to_unmap(folio, 2017 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 2018 2019 xas_lock_irq(&xas); 2020 2021 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 2022 2023 /* 2024 * We control 2 + nr_pages references to the folio: 2025 * - we hold a pin on it; 2026 * - nr_pages reference from page cache; 2027 * - one from lru_isolate_folio; 2028 * If those are the only references, then any new usage 2029 * of the folio will have to fetch it from the page 2030 * cache. That requires locking the folio to handle 2031 * truncate, so any new usage will be blocked until we 2032 * unlock folio after collapse/during rollback. 2033 */ 2034 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) { 2035 result = SCAN_PAGE_COUNT; 2036 xas_unlock_irq(&xas); 2037 folio_putback_lru(folio); 2038 goto out_unlock; 2039 } 2040 2041 /* 2042 * Accumulate the folios that are being collapsed. 2043 */ 2044 list_add_tail(&folio->lru, &pagelist); 2045 index += folio_nr_pages(folio); 2046 continue; 2047 out_unlock: 2048 folio_unlock(folio); 2049 folio_put(folio); 2050 goto xa_unlocked; 2051 } 2052 2053 if (!is_shmem) { 2054 filemap_nr_thps_inc(mapping); 2055 /* 2056 * Paired with the fence in do_dentry_open() -> get_write_access() 2057 * to ensure i_writecount is up to date and the update to nr_thps 2058 * is visible. Ensures the page cache will be truncated if the 2059 * file is opened writable. 2060 */ 2061 smp_mb(); 2062 if (inode_is_open_for_write(mapping->host)) { 2063 result = SCAN_FAIL; 2064 filemap_nr_thps_dec(mapping); 2065 } 2066 } 2067 2068 xa_locked: 2069 xas_unlock_irq(&xas); 2070 xa_unlocked: 2071 2072 /* 2073 * If collapse is successful, flush must be done now before copying. 2074 * If collapse is unsuccessful, does flush actually need to be done? 2075 * Do it anyway, to clear the state. 2076 */ 2077 try_to_unmap_flush(); 2078 2079 if (result == SCAN_SUCCEED && nr_none && 2080 !shmem_charge(mapping->host, nr_none)) 2081 result = SCAN_FAIL; 2082 if (result != SCAN_SUCCEED) { 2083 nr_none = 0; 2084 goto rollback; 2085 } 2086 2087 /* 2088 * The old folios are locked, so they won't change anymore. 2089 */ 2090 index = start; 2091 dst = folio_page(new_folio, 0); 2092 list_for_each_entry(folio, &pagelist, lru) { 2093 int i, nr_pages = folio_nr_pages(folio); 2094 2095 while (index < folio->index) { 2096 clear_highpage(dst); 2097 index++; 2098 dst++; 2099 } 2100 2101 for (i = 0; i < nr_pages; i++) { 2102 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) { 2103 result = SCAN_COPY_MC; 2104 goto rollback; 2105 } 2106 index++; 2107 dst++; 2108 } 2109 } 2110 while (index < end) { 2111 clear_highpage(dst); 2112 index++; 2113 dst++; 2114 } 2115 2116 if (nr_none) { 2117 struct vm_area_struct *vma; 2118 int nr_none_check = 0; 2119 2120 i_mmap_lock_read(mapping); 2121 xas_lock_irq(&xas); 2122 2123 xas_set(&xas, start); 2124 for (index = start; index < end; index++) { 2125 if (!xas_next(&xas)) { 2126 xas_store(&xas, XA_RETRY_ENTRY); 2127 if (xas_error(&xas)) { 2128 result = SCAN_STORE_FAILED; 2129 goto immap_locked; 2130 } 2131 nr_none_check++; 2132 } 2133 } 2134 2135 if (nr_none != nr_none_check) { 2136 result = SCAN_PAGE_FILLED; 2137 goto immap_locked; 2138 } 2139 2140 /* 2141 * If userspace observed a missing page in a VMA with 2142 * a MODE_MISSING userfaultfd, then it might expect a 2143 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2144 * roll back to avoid suppressing such an event. Since 2145 * wp/minor userfaultfds don't give userspace any 2146 * guarantees that the kernel doesn't fill a missing 2147 * page with a zero page, so they don't matter here. 2148 * 2149 * Any userfaultfds registered after this point will 2150 * not be able to observe any missing pages due to the 2151 * previously inserted retry entries. 2152 */ 2153 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2154 if (userfaultfd_missing(vma)) { 2155 result = SCAN_EXCEED_NONE_PTE; 2156 goto immap_locked; 2157 } 2158 } 2159 2160 immap_locked: 2161 i_mmap_unlock_read(mapping); 2162 if (result != SCAN_SUCCEED) { 2163 xas_set(&xas, start); 2164 for (index = start; index < end; index++) { 2165 if (xas_next(&xas) == XA_RETRY_ENTRY) 2166 xas_store(&xas, NULL); 2167 } 2168 2169 xas_unlock_irq(&xas); 2170 goto rollback; 2171 } 2172 } else { 2173 xas_lock_irq(&xas); 2174 } 2175 2176 if (is_shmem) 2177 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2178 else 2179 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2180 2181 if (nr_none) { 2182 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none); 2183 /* nr_none is always 0 for non-shmem. */ 2184 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none); 2185 } 2186 2187 /* 2188 * Mark new_folio as uptodate before inserting it into the 2189 * page cache so that it isn't mistaken for an fallocated but 2190 * unwritten page. 2191 */ 2192 folio_mark_uptodate(new_folio); 2193 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2194 2195 if (is_shmem) 2196 folio_mark_dirty(new_folio); 2197 folio_add_lru(new_folio); 2198 2199 /* Join all the small entries into a single multi-index entry. */ 2200 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2201 xas_store(&xas, new_folio); 2202 WARN_ON_ONCE(xas_error(&xas)); 2203 xas_unlock_irq(&xas); 2204 2205 /* 2206 * Remove pte page tables, so we can re-fault the page as huge. 2207 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2208 */ 2209 retract_page_tables(mapping, start); 2210 if (cc && !cc->is_khugepaged) 2211 result = SCAN_PTE_MAPPED_HUGEPAGE; 2212 folio_unlock(new_folio); 2213 2214 /* 2215 * The collapse has succeeded, so free the old folios. 2216 */ 2217 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2218 list_del(&folio->lru); 2219 folio->mapping = NULL; 2220 folio_clear_active(folio); 2221 folio_clear_unevictable(folio); 2222 folio_unlock(folio); 2223 folio_put_refs(folio, 2 + folio_nr_pages(folio)); 2224 } 2225 2226 goto out; 2227 2228 rollback: 2229 /* Something went wrong: roll back page cache changes */ 2230 if (nr_none) { 2231 xas_lock_irq(&xas); 2232 mapping->nrpages -= nr_none; 2233 xas_unlock_irq(&xas); 2234 shmem_uncharge(mapping->host, nr_none); 2235 } 2236 2237 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2238 list_del(&folio->lru); 2239 folio_unlock(folio); 2240 folio_putback_lru(folio); 2241 folio_put(folio); 2242 } 2243 /* 2244 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2245 * file only. This undo is not needed unless failure is 2246 * due to SCAN_COPY_MC. 2247 */ 2248 if (!is_shmem && result == SCAN_COPY_MC) { 2249 filemap_nr_thps_dec(mapping); 2250 /* 2251 * Paired with the fence in do_dentry_open() -> get_write_access() 2252 * to ensure the update to nr_thps is visible. 2253 */ 2254 smp_mb(); 2255 } 2256 2257 new_folio->mapping = NULL; 2258 2259 folio_unlock(new_folio); 2260 folio_put(new_folio); 2261 out: 2262 VM_BUG_ON(!list_empty(&pagelist)); 2263 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result); 2264 return result; 2265 } 2266 2267 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2268 struct file *file, pgoff_t start, 2269 struct collapse_control *cc) 2270 { 2271 struct folio *folio = NULL; 2272 struct address_space *mapping = file->f_mapping; 2273 XA_STATE(xas, &mapping->i_pages, start); 2274 int present, swap; 2275 int node = NUMA_NO_NODE; 2276 int result = SCAN_SUCCEED; 2277 2278 present = 0; 2279 swap = 0; 2280 memset(cc->node_load, 0, sizeof(cc->node_load)); 2281 nodes_clear(cc->alloc_nmask); 2282 rcu_read_lock(); 2283 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2284 if (xas_retry(&xas, folio)) 2285 continue; 2286 2287 if (xa_is_value(folio)) { 2288 swap += 1 << xas_get_order(&xas); 2289 if (cc->is_khugepaged && 2290 swap > khugepaged_max_ptes_swap) { 2291 result = SCAN_EXCEED_SWAP_PTE; 2292 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2293 break; 2294 } 2295 continue; 2296 } 2297 2298 if (folio_order(folio) == HPAGE_PMD_ORDER && 2299 folio->index == start) { 2300 /* Maybe PMD-mapped */ 2301 result = SCAN_PTE_MAPPED_HUGEPAGE; 2302 /* 2303 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2304 * by the caller won't touch the page cache, and so 2305 * it's safe to skip LRU and refcount checks before 2306 * returning. 2307 */ 2308 break; 2309 } 2310 2311 node = folio_nid(folio); 2312 if (hpage_collapse_scan_abort(node, cc)) { 2313 result = SCAN_SCAN_ABORT; 2314 break; 2315 } 2316 cc->node_load[node]++; 2317 2318 if (!folio_test_lru(folio)) { 2319 result = SCAN_PAGE_LRU; 2320 break; 2321 } 2322 2323 if (!is_refcount_suitable(folio)) { 2324 result = SCAN_PAGE_COUNT; 2325 break; 2326 } 2327 2328 /* 2329 * We probably should check if the folio is referenced 2330 * here, but nobody would transfer pte_young() to 2331 * folio_test_referenced() for us. And rmap walk here 2332 * is just too costly... 2333 */ 2334 2335 present += folio_nr_pages(folio); 2336 2337 if (need_resched()) { 2338 xas_pause(&xas); 2339 cond_resched_rcu(); 2340 } 2341 } 2342 rcu_read_unlock(); 2343 2344 if (result == SCAN_SUCCEED) { 2345 if (cc->is_khugepaged && 2346 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2347 result = SCAN_EXCEED_NONE_PTE; 2348 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2349 } else { 2350 result = collapse_file(mm, addr, file, start, cc); 2351 } 2352 } 2353 2354 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2355 return result; 2356 } 2357 #else 2358 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2359 struct file *file, pgoff_t start, 2360 struct collapse_control *cc) 2361 { 2362 BUILD_BUG(); 2363 } 2364 #endif 2365 2366 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2367 struct collapse_control *cc) 2368 __releases(&khugepaged_mm_lock) 2369 __acquires(&khugepaged_mm_lock) 2370 { 2371 struct vma_iterator vmi; 2372 struct khugepaged_mm_slot *mm_slot; 2373 struct mm_slot *slot; 2374 struct mm_struct *mm; 2375 struct vm_area_struct *vma; 2376 int progress = 0; 2377 2378 VM_BUG_ON(!pages); 2379 lockdep_assert_held(&khugepaged_mm_lock); 2380 *result = SCAN_FAIL; 2381 2382 if (khugepaged_scan.mm_slot) { 2383 mm_slot = khugepaged_scan.mm_slot; 2384 slot = &mm_slot->slot; 2385 } else { 2386 slot = list_entry(khugepaged_scan.mm_head.next, 2387 struct mm_slot, mm_node); 2388 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2389 khugepaged_scan.address = 0; 2390 khugepaged_scan.mm_slot = mm_slot; 2391 } 2392 spin_unlock(&khugepaged_mm_lock); 2393 2394 mm = slot->mm; 2395 /* 2396 * Don't wait for semaphore (to avoid long wait times). Just move to 2397 * the next mm on the list. 2398 */ 2399 vma = NULL; 2400 if (unlikely(!mmap_read_trylock(mm))) 2401 goto breakouterloop_mmap_lock; 2402 2403 progress++; 2404 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2405 goto breakouterloop; 2406 2407 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2408 for_each_vma(vmi, vma) { 2409 unsigned long hstart, hend; 2410 2411 cond_resched(); 2412 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2413 progress++; 2414 break; 2415 } 2416 if (!thp_vma_allowable_order(vma, vma->vm_flags, 2417 TVA_ENFORCE_SYSFS, PMD_ORDER)) { 2418 skip: 2419 progress++; 2420 continue; 2421 } 2422 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2423 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2424 if (khugepaged_scan.address > hend) 2425 goto skip; 2426 if (khugepaged_scan.address < hstart) 2427 khugepaged_scan.address = hstart; 2428 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2429 2430 while (khugepaged_scan.address < hend) { 2431 bool mmap_locked = true; 2432 2433 cond_resched(); 2434 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2435 goto breakouterloop; 2436 2437 VM_BUG_ON(khugepaged_scan.address < hstart || 2438 khugepaged_scan.address + HPAGE_PMD_SIZE > 2439 hend); 2440 if (IS_ENABLED(CONFIG_SHMEM) && !vma_is_anonymous(vma)) { 2441 struct file *file = get_file(vma->vm_file); 2442 pgoff_t pgoff = linear_page_index(vma, 2443 khugepaged_scan.address); 2444 2445 mmap_read_unlock(mm); 2446 mmap_locked = false; 2447 *result = hpage_collapse_scan_file(mm, 2448 khugepaged_scan.address, file, pgoff, cc); 2449 fput(file); 2450 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2451 mmap_read_lock(mm); 2452 if (hpage_collapse_test_exit_or_disable(mm)) 2453 goto breakouterloop; 2454 *result = collapse_pte_mapped_thp(mm, 2455 khugepaged_scan.address, false); 2456 if (*result == SCAN_PMD_MAPPED) 2457 *result = SCAN_SUCCEED; 2458 mmap_read_unlock(mm); 2459 } 2460 } else { 2461 *result = hpage_collapse_scan_pmd(mm, vma, 2462 khugepaged_scan.address, &mmap_locked, cc); 2463 } 2464 2465 if (*result == SCAN_SUCCEED) 2466 ++khugepaged_pages_collapsed; 2467 2468 /* move to next address */ 2469 khugepaged_scan.address += HPAGE_PMD_SIZE; 2470 progress += HPAGE_PMD_NR; 2471 if (!mmap_locked) 2472 /* 2473 * We released mmap_lock so break loop. Note 2474 * that we drop mmap_lock before all hugepage 2475 * allocations, so if allocation fails, we are 2476 * guaranteed to break here and report the 2477 * correct result back to caller. 2478 */ 2479 goto breakouterloop_mmap_lock; 2480 if (progress >= pages) 2481 goto breakouterloop; 2482 } 2483 } 2484 breakouterloop: 2485 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2486 breakouterloop_mmap_lock: 2487 2488 spin_lock(&khugepaged_mm_lock); 2489 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2490 /* 2491 * Release the current mm_slot if this mm is about to die, or 2492 * if we scanned all vmas of this mm. 2493 */ 2494 if (hpage_collapse_test_exit(mm) || !vma) { 2495 /* 2496 * Make sure that if mm_users is reaching zero while 2497 * khugepaged runs here, khugepaged_exit will find 2498 * mm_slot not pointing to the exiting mm. 2499 */ 2500 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2501 slot = list_entry(slot->mm_node.next, 2502 struct mm_slot, mm_node); 2503 khugepaged_scan.mm_slot = 2504 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2505 khugepaged_scan.address = 0; 2506 } else { 2507 khugepaged_scan.mm_slot = NULL; 2508 khugepaged_full_scans++; 2509 } 2510 2511 collect_mm_slot(mm_slot); 2512 } 2513 2514 return progress; 2515 } 2516 2517 static int khugepaged_has_work(void) 2518 { 2519 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); 2520 } 2521 2522 static int khugepaged_wait_event(void) 2523 { 2524 return !list_empty(&khugepaged_scan.mm_head) || 2525 kthread_should_stop(); 2526 } 2527 2528 static void khugepaged_do_scan(struct collapse_control *cc) 2529 { 2530 unsigned int progress = 0, pass_through_head = 0; 2531 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2532 bool wait = true; 2533 int result = SCAN_SUCCEED; 2534 2535 lru_add_drain_all(); 2536 2537 while (true) { 2538 cond_resched(); 2539 2540 if (unlikely(kthread_should_stop())) 2541 break; 2542 2543 spin_lock(&khugepaged_mm_lock); 2544 if (!khugepaged_scan.mm_slot) 2545 pass_through_head++; 2546 if (khugepaged_has_work() && 2547 pass_through_head < 2) 2548 progress += khugepaged_scan_mm_slot(pages - progress, 2549 &result, cc); 2550 else 2551 progress = pages; 2552 spin_unlock(&khugepaged_mm_lock); 2553 2554 if (progress >= pages) 2555 break; 2556 2557 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2558 /* 2559 * If fail to allocate the first time, try to sleep for 2560 * a while. When hit again, cancel the scan. 2561 */ 2562 if (!wait) 2563 break; 2564 wait = false; 2565 khugepaged_alloc_sleep(); 2566 } 2567 } 2568 } 2569 2570 static bool khugepaged_should_wakeup(void) 2571 { 2572 return kthread_should_stop() || 2573 time_after_eq(jiffies, khugepaged_sleep_expire); 2574 } 2575 2576 static void khugepaged_wait_work(void) 2577 { 2578 if (khugepaged_has_work()) { 2579 const unsigned long scan_sleep_jiffies = 2580 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2581 2582 if (!scan_sleep_jiffies) 2583 return; 2584 2585 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2586 wait_event_freezable_timeout(khugepaged_wait, 2587 khugepaged_should_wakeup(), 2588 scan_sleep_jiffies); 2589 return; 2590 } 2591 2592 if (hugepage_pmd_enabled()) 2593 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2594 } 2595 2596 static int khugepaged(void *none) 2597 { 2598 struct khugepaged_mm_slot *mm_slot; 2599 2600 set_freezable(); 2601 set_user_nice(current, MAX_NICE); 2602 2603 while (!kthread_should_stop()) { 2604 khugepaged_do_scan(&khugepaged_collapse_control); 2605 khugepaged_wait_work(); 2606 } 2607 2608 spin_lock(&khugepaged_mm_lock); 2609 mm_slot = khugepaged_scan.mm_slot; 2610 khugepaged_scan.mm_slot = NULL; 2611 if (mm_slot) 2612 collect_mm_slot(mm_slot); 2613 spin_unlock(&khugepaged_mm_lock); 2614 return 0; 2615 } 2616 2617 static void set_recommended_min_free_kbytes(void) 2618 { 2619 struct zone *zone; 2620 int nr_zones = 0; 2621 unsigned long recommended_min; 2622 2623 if (!hugepage_pmd_enabled()) { 2624 calculate_min_free_kbytes(); 2625 goto update_wmarks; 2626 } 2627 2628 for_each_populated_zone(zone) { 2629 /* 2630 * We don't need to worry about fragmentation of 2631 * ZONE_MOVABLE since it only has movable pages. 2632 */ 2633 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2634 continue; 2635 2636 nr_zones++; 2637 } 2638 2639 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2640 recommended_min = pageblock_nr_pages * nr_zones * 2; 2641 2642 /* 2643 * Make sure that on average at least two pageblocks are almost free 2644 * of another type, one for a migratetype to fall back to and a 2645 * second to avoid subsequent fallbacks of other types There are 3 2646 * MIGRATE_TYPES we care about. 2647 */ 2648 recommended_min += pageblock_nr_pages * nr_zones * 2649 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2650 2651 /* don't ever allow to reserve more than 5% of the lowmem */ 2652 recommended_min = min(recommended_min, 2653 (unsigned long) nr_free_buffer_pages() / 20); 2654 recommended_min <<= (PAGE_SHIFT-10); 2655 2656 if (recommended_min > min_free_kbytes) { 2657 if (user_min_free_kbytes >= 0) 2658 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2659 min_free_kbytes, recommended_min); 2660 2661 min_free_kbytes = recommended_min; 2662 } 2663 2664 update_wmarks: 2665 setup_per_zone_wmarks(); 2666 } 2667 2668 int start_stop_khugepaged(void) 2669 { 2670 int err = 0; 2671 2672 mutex_lock(&khugepaged_mutex); 2673 if (hugepage_pmd_enabled()) { 2674 if (!khugepaged_thread) 2675 khugepaged_thread = kthread_run(khugepaged, NULL, 2676 "khugepaged"); 2677 if (IS_ERR(khugepaged_thread)) { 2678 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2679 err = PTR_ERR(khugepaged_thread); 2680 khugepaged_thread = NULL; 2681 goto fail; 2682 } 2683 2684 if (!list_empty(&khugepaged_scan.mm_head)) 2685 wake_up_interruptible(&khugepaged_wait); 2686 } else if (khugepaged_thread) { 2687 kthread_stop(khugepaged_thread); 2688 khugepaged_thread = NULL; 2689 } 2690 set_recommended_min_free_kbytes(); 2691 fail: 2692 mutex_unlock(&khugepaged_mutex); 2693 return err; 2694 } 2695 2696 void khugepaged_min_free_kbytes_update(void) 2697 { 2698 mutex_lock(&khugepaged_mutex); 2699 if (hugepage_pmd_enabled() && khugepaged_thread) 2700 set_recommended_min_free_kbytes(); 2701 mutex_unlock(&khugepaged_mutex); 2702 } 2703 2704 bool current_is_khugepaged(void) 2705 { 2706 return kthread_func(current) == khugepaged; 2707 } 2708 2709 static int madvise_collapse_errno(enum scan_result r) 2710 { 2711 /* 2712 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2713 * actionable feedback to caller, so they may take an appropriate 2714 * fallback measure depending on the nature of the failure. 2715 */ 2716 switch (r) { 2717 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2718 return -ENOMEM; 2719 case SCAN_CGROUP_CHARGE_FAIL: 2720 case SCAN_EXCEED_NONE_PTE: 2721 return -EBUSY; 2722 /* Resource temporary unavailable - trying again might succeed */ 2723 case SCAN_PAGE_COUNT: 2724 case SCAN_PAGE_LOCK: 2725 case SCAN_PAGE_LRU: 2726 case SCAN_DEL_PAGE_LRU: 2727 case SCAN_PAGE_FILLED: 2728 return -EAGAIN; 2729 /* 2730 * Other: Trying again likely not to succeed / error intrinsic to 2731 * specified memory range. khugepaged likely won't be able to collapse 2732 * either. 2733 */ 2734 default: 2735 return -EINVAL; 2736 } 2737 } 2738 2739 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2740 unsigned long start, unsigned long end) 2741 { 2742 struct collapse_control *cc; 2743 struct mm_struct *mm = vma->vm_mm; 2744 unsigned long hstart, hend, addr; 2745 int thps = 0, last_fail = SCAN_FAIL; 2746 bool mmap_locked = true; 2747 2748 BUG_ON(vma->vm_start > start); 2749 BUG_ON(vma->vm_end < end); 2750 2751 *prev = vma; 2752 2753 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 2754 return -EINVAL; 2755 2756 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2757 if (!cc) 2758 return -ENOMEM; 2759 cc->is_khugepaged = false; 2760 2761 mmgrab(mm); 2762 lru_add_drain_all(); 2763 2764 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2765 hend = end & HPAGE_PMD_MASK; 2766 2767 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2768 int result = SCAN_FAIL; 2769 2770 if (!mmap_locked) { 2771 cond_resched(); 2772 mmap_read_lock(mm); 2773 mmap_locked = true; 2774 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2775 cc); 2776 if (result != SCAN_SUCCEED) { 2777 last_fail = result; 2778 goto out_nolock; 2779 } 2780 2781 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2782 } 2783 mmap_assert_locked(mm); 2784 memset(cc->node_load, 0, sizeof(cc->node_load)); 2785 nodes_clear(cc->alloc_nmask); 2786 if (IS_ENABLED(CONFIG_SHMEM) && !vma_is_anonymous(vma)) { 2787 struct file *file = get_file(vma->vm_file); 2788 pgoff_t pgoff = linear_page_index(vma, addr); 2789 2790 mmap_read_unlock(mm); 2791 mmap_locked = false; 2792 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2793 cc); 2794 fput(file); 2795 } else { 2796 result = hpage_collapse_scan_pmd(mm, vma, addr, 2797 &mmap_locked, cc); 2798 } 2799 if (!mmap_locked) 2800 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2801 2802 handle_result: 2803 switch (result) { 2804 case SCAN_SUCCEED: 2805 case SCAN_PMD_MAPPED: 2806 ++thps; 2807 break; 2808 case SCAN_PTE_MAPPED_HUGEPAGE: 2809 BUG_ON(mmap_locked); 2810 BUG_ON(*prev); 2811 mmap_read_lock(mm); 2812 result = collapse_pte_mapped_thp(mm, addr, true); 2813 mmap_read_unlock(mm); 2814 goto handle_result; 2815 /* Whitelisted set of results where continuing OK */ 2816 case SCAN_PMD_NULL: 2817 case SCAN_PTE_NON_PRESENT: 2818 case SCAN_PTE_UFFD_WP: 2819 case SCAN_PAGE_RO: 2820 case SCAN_LACK_REFERENCED_PAGE: 2821 case SCAN_PAGE_NULL: 2822 case SCAN_PAGE_COUNT: 2823 case SCAN_PAGE_LOCK: 2824 case SCAN_PAGE_COMPOUND: 2825 case SCAN_PAGE_LRU: 2826 case SCAN_DEL_PAGE_LRU: 2827 last_fail = result; 2828 break; 2829 default: 2830 last_fail = result; 2831 /* Other error, exit */ 2832 goto out_maybelock; 2833 } 2834 } 2835 2836 out_maybelock: 2837 /* Caller expects us to hold mmap_lock on return */ 2838 if (!mmap_locked) 2839 mmap_read_lock(mm); 2840 out_nolock: 2841 mmap_assert_locked(mm); 2842 mmdrop(mm); 2843 kfree(cc); 2844 2845 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2846 : madvise_collapse_errno(last_fail); 2847 } 2848