1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/mmu_notifier.h> 8 #include <linux/rmap.h> 9 #include <linux/swap.h> 10 #include <linux/mm_inline.h> 11 #include <linux/kthread.h> 12 #include <linux/khugepaged.h> 13 #include <linux/freezer.h> 14 #include <linux/mman.h> 15 #include <linux/hashtable.h> 16 #include <linux/userfaultfd_k.h> 17 #include <linux/page_idle.h> 18 #include <linux/page_table_check.h> 19 #include <linux/rcupdate_wait.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/dax.h> 23 #include <linux/ksm.h> 24 25 #include <asm/tlb.h> 26 #include <asm/pgalloc.h> 27 #include "internal.h" 28 #include "mm_slot.h" 29 30 enum scan_result { 31 SCAN_FAIL, 32 SCAN_SUCCEED, 33 SCAN_PMD_NULL, 34 SCAN_PMD_NONE, 35 SCAN_PMD_MAPPED, 36 SCAN_EXCEED_NONE_PTE, 37 SCAN_EXCEED_SWAP_PTE, 38 SCAN_EXCEED_SHARED_PTE, 39 SCAN_PTE_NON_PRESENT, 40 SCAN_PTE_UFFD_WP, 41 SCAN_PTE_MAPPED_HUGEPAGE, 42 SCAN_PAGE_RO, 43 SCAN_LACK_REFERENCED_PAGE, 44 SCAN_PAGE_NULL, 45 SCAN_SCAN_ABORT, 46 SCAN_PAGE_COUNT, 47 SCAN_PAGE_LRU, 48 SCAN_PAGE_LOCK, 49 SCAN_PAGE_ANON, 50 SCAN_PAGE_COMPOUND, 51 SCAN_ANY_PROCESS, 52 SCAN_VMA_NULL, 53 SCAN_VMA_CHECK, 54 SCAN_ADDRESS_RANGE, 55 SCAN_DEL_PAGE_LRU, 56 SCAN_ALLOC_HUGE_PAGE_FAIL, 57 SCAN_CGROUP_CHARGE_FAIL, 58 SCAN_TRUNCATED, 59 SCAN_PAGE_HAS_PRIVATE, 60 SCAN_STORE_FAILED, 61 SCAN_COPY_MC, 62 SCAN_PAGE_FILLED, 63 }; 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/huge_memory.h> 67 68 static struct task_struct *khugepaged_thread __read_mostly; 69 static DEFINE_MUTEX(khugepaged_mutex); 70 71 /* default scan 8*512 pte (or vmas) every 30 second */ 72 static unsigned int khugepaged_pages_to_scan __read_mostly; 73 static unsigned int khugepaged_pages_collapsed; 74 static unsigned int khugepaged_full_scans; 75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 76 /* during fragmentation poll the hugepage allocator once every minute */ 77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 78 static unsigned long khugepaged_sleep_expire; 79 static DEFINE_SPINLOCK(khugepaged_mm_lock); 80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 81 /* 82 * default collapse hugepages if there is at least one pte mapped like 83 * it would have happened if the vma was large enough during page 84 * fault. 85 * 86 * Note that these are only respected if collapse was initiated by khugepaged. 87 */ 88 unsigned int khugepaged_max_ptes_none __read_mostly; 89 static unsigned int khugepaged_max_ptes_swap __read_mostly; 90 static unsigned int khugepaged_max_ptes_shared __read_mostly; 91 92 #define MM_SLOTS_HASH_BITS 10 93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 94 95 static struct kmem_cache *mm_slot_cache __ro_after_init; 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 109 * @slot: hash lookup from mm to mm_slot 110 */ 111 struct khugepaged_mm_slot { 112 struct mm_slot slot; 113 }; 114 115 /** 116 * struct khugepaged_scan - cursor for scanning 117 * @mm_head: the head of the mm list to scan 118 * @mm_slot: the current mm_slot we are scanning 119 * @address: the next address inside that to be scanned 120 * 121 * There is only the one khugepaged_scan instance of this cursor structure. 122 */ 123 struct khugepaged_scan { 124 struct list_head mm_head; 125 struct khugepaged_mm_slot *mm_slot; 126 unsigned long address; 127 }; 128 129 static struct khugepaged_scan khugepaged_scan = { 130 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 131 }; 132 133 #ifdef CONFIG_SYSFS 134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 135 struct kobj_attribute *attr, 136 char *buf) 137 { 138 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 139 } 140 141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 142 struct kobj_attribute *attr, 143 const char *buf, size_t count) 144 { 145 unsigned int msecs; 146 int err; 147 148 err = kstrtouint(buf, 10, &msecs); 149 if (err) 150 return -EINVAL; 151 152 khugepaged_scan_sleep_millisecs = msecs; 153 khugepaged_sleep_expire = 0; 154 wake_up_interruptible(&khugepaged_wait); 155 156 return count; 157 } 158 static struct kobj_attribute scan_sleep_millisecs_attr = 159 __ATTR_RW(scan_sleep_millisecs); 160 161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 162 struct kobj_attribute *attr, 163 char *buf) 164 { 165 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 166 } 167 168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 169 struct kobj_attribute *attr, 170 const char *buf, size_t count) 171 { 172 unsigned int msecs; 173 int err; 174 175 err = kstrtouint(buf, 10, &msecs); 176 if (err) 177 return -EINVAL; 178 179 khugepaged_alloc_sleep_millisecs = msecs; 180 khugepaged_sleep_expire = 0; 181 wake_up_interruptible(&khugepaged_wait); 182 183 return count; 184 } 185 static struct kobj_attribute alloc_sleep_millisecs_attr = 186 __ATTR_RW(alloc_sleep_millisecs); 187 188 static ssize_t pages_to_scan_show(struct kobject *kobj, 189 struct kobj_attribute *attr, 190 char *buf) 191 { 192 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 193 } 194 static ssize_t pages_to_scan_store(struct kobject *kobj, 195 struct kobj_attribute *attr, 196 const char *buf, size_t count) 197 { 198 unsigned int pages; 199 int err; 200 201 err = kstrtouint(buf, 10, &pages); 202 if (err || !pages) 203 return -EINVAL; 204 205 khugepaged_pages_to_scan = pages; 206 207 return count; 208 } 209 static struct kobj_attribute pages_to_scan_attr = 210 __ATTR_RW(pages_to_scan); 211 212 static ssize_t pages_collapsed_show(struct kobject *kobj, 213 struct kobj_attribute *attr, 214 char *buf) 215 { 216 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 217 } 218 static struct kobj_attribute pages_collapsed_attr = 219 __ATTR_RO(pages_collapsed); 220 221 static ssize_t full_scans_show(struct kobject *kobj, 222 struct kobj_attribute *attr, 223 char *buf) 224 { 225 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 226 } 227 static struct kobj_attribute full_scans_attr = 228 __ATTR_RO(full_scans); 229 230 static ssize_t defrag_show(struct kobject *kobj, 231 struct kobj_attribute *attr, char *buf) 232 { 233 return single_hugepage_flag_show(kobj, attr, buf, 234 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 235 } 236 static ssize_t defrag_store(struct kobject *kobj, 237 struct kobj_attribute *attr, 238 const char *buf, size_t count) 239 { 240 return single_hugepage_flag_store(kobj, attr, buf, count, 241 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 242 } 243 static struct kobj_attribute khugepaged_defrag_attr = 244 __ATTR_RW(defrag); 245 246 /* 247 * max_ptes_none controls if khugepaged should collapse hugepages over 248 * any unmapped ptes in turn potentially increasing the memory 249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 250 * reduce the available free memory in the system as it 251 * runs. Increasing max_ptes_none will instead potentially reduce the 252 * free memory in the system during the khugepaged scan. 253 */ 254 static ssize_t max_ptes_none_show(struct kobject *kobj, 255 struct kobj_attribute *attr, 256 char *buf) 257 { 258 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 259 } 260 static ssize_t max_ptes_none_store(struct kobject *kobj, 261 struct kobj_attribute *attr, 262 const char *buf, size_t count) 263 { 264 int err; 265 unsigned long max_ptes_none; 266 267 err = kstrtoul(buf, 10, &max_ptes_none); 268 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 269 return -EINVAL; 270 271 khugepaged_max_ptes_none = max_ptes_none; 272 273 return count; 274 } 275 static struct kobj_attribute khugepaged_max_ptes_none_attr = 276 __ATTR_RW(max_ptes_none); 277 278 static ssize_t max_ptes_swap_show(struct kobject *kobj, 279 struct kobj_attribute *attr, 280 char *buf) 281 { 282 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 283 } 284 285 static ssize_t max_ptes_swap_store(struct kobject *kobj, 286 struct kobj_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int err; 290 unsigned long max_ptes_swap; 291 292 err = kstrtoul(buf, 10, &max_ptes_swap); 293 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 294 return -EINVAL; 295 296 khugepaged_max_ptes_swap = max_ptes_swap; 297 298 return count; 299 } 300 301 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 302 __ATTR_RW(max_ptes_swap); 303 304 static ssize_t max_ptes_shared_show(struct kobject *kobj, 305 struct kobj_attribute *attr, 306 char *buf) 307 { 308 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 309 } 310 311 static ssize_t max_ptes_shared_store(struct kobject *kobj, 312 struct kobj_attribute *attr, 313 const char *buf, size_t count) 314 { 315 int err; 316 unsigned long max_ptes_shared; 317 318 err = kstrtoul(buf, 10, &max_ptes_shared); 319 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 320 return -EINVAL; 321 322 khugepaged_max_ptes_shared = max_ptes_shared; 323 324 return count; 325 } 326 327 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 328 __ATTR_RW(max_ptes_shared); 329 330 static struct attribute *khugepaged_attr[] = { 331 &khugepaged_defrag_attr.attr, 332 &khugepaged_max_ptes_none_attr.attr, 333 &khugepaged_max_ptes_swap_attr.attr, 334 &khugepaged_max_ptes_shared_attr.attr, 335 &pages_to_scan_attr.attr, 336 &pages_collapsed_attr.attr, 337 &full_scans_attr.attr, 338 &scan_sleep_millisecs_attr.attr, 339 &alloc_sleep_millisecs_attr.attr, 340 NULL, 341 }; 342 343 struct attribute_group khugepaged_attr_group = { 344 .attrs = khugepaged_attr, 345 .name = "khugepaged", 346 }; 347 #endif /* CONFIG_SYSFS */ 348 349 int hugepage_madvise(struct vm_area_struct *vma, 350 vm_flags_t *vm_flags, int advice) 351 { 352 switch (advice) { 353 case MADV_HUGEPAGE: 354 #ifdef CONFIG_S390 355 /* 356 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 357 * can't handle this properly after s390_enable_sie, so we simply 358 * ignore the madvise to prevent qemu from causing a SIGSEGV. 359 */ 360 if (mm_has_pgste(vma->vm_mm)) 361 return 0; 362 #endif 363 *vm_flags &= ~VM_NOHUGEPAGE; 364 *vm_flags |= VM_HUGEPAGE; 365 /* 366 * If the vma become good for khugepaged to scan, 367 * register it here without waiting a page fault that 368 * may not happen any time soon. 369 */ 370 khugepaged_enter_vma(vma, *vm_flags); 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0); 389 if (!mm_slot_cache) 390 return -ENOMEM; 391 392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 396 397 return 0; 398 } 399 400 void __init khugepaged_destroy(void) 401 { 402 kmem_cache_destroy(mm_slot_cache); 403 } 404 405 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 406 { 407 return atomic_read(&mm->mm_users) == 0; 408 } 409 410 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 411 { 412 return hpage_collapse_test_exit(mm) || 413 test_bit(MMF_DISABLE_THP, &mm->flags); 414 } 415 416 static bool hugepage_pmd_enabled(void) 417 { 418 /* 419 * We cover the anon, shmem and the file-backed case here; file-backed 420 * hugepages, when configured in, are determined by the global control. 421 * Anon pmd-sized hugepages are determined by the pmd-size control. 422 * Shmem pmd-sized hugepages are also determined by its pmd-size control, 423 * except when the global shmem_huge is set to SHMEM_HUGE_DENY. 424 */ 425 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 426 hugepage_global_enabled()) 427 return true; 428 if (test_bit(PMD_ORDER, &huge_anon_orders_always)) 429 return true; 430 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) 431 return true; 432 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && 433 hugepage_global_enabled()) 434 return true; 435 if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled()) 436 return true; 437 return false; 438 } 439 440 void __khugepaged_enter(struct mm_struct *mm) 441 { 442 struct khugepaged_mm_slot *mm_slot; 443 struct mm_slot *slot; 444 int wakeup; 445 446 /* __khugepaged_exit() must not run from under us */ 447 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 448 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 449 return; 450 451 mm_slot = mm_slot_alloc(mm_slot_cache); 452 if (!mm_slot) 453 return; 454 455 slot = &mm_slot->slot; 456 457 spin_lock(&khugepaged_mm_lock); 458 mm_slot_insert(mm_slots_hash, mm, slot); 459 /* 460 * Insert just behind the scanning cursor, to let the area settle 461 * down a little. 462 */ 463 wakeup = list_empty(&khugepaged_scan.mm_head); 464 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 465 spin_unlock(&khugepaged_mm_lock); 466 467 mmgrab(mm); 468 if (wakeup) 469 wake_up_interruptible(&khugepaged_wait); 470 } 471 472 void khugepaged_enter_vma(struct vm_area_struct *vma, 473 vm_flags_t vm_flags) 474 { 475 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 476 hugepage_pmd_enabled()) { 477 if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS, 478 PMD_ORDER)) 479 __khugepaged_enter(vma->vm_mm); 480 } 481 } 482 483 void __khugepaged_exit(struct mm_struct *mm) 484 { 485 struct khugepaged_mm_slot *mm_slot; 486 struct mm_slot *slot; 487 int free = 0; 488 489 spin_lock(&khugepaged_mm_lock); 490 slot = mm_slot_lookup(mm_slots_hash, mm); 491 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 492 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 493 hash_del(&slot->hash); 494 list_del(&slot->mm_node); 495 free = 1; 496 } 497 spin_unlock(&khugepaged_mm_lock); 498 499 if (free) { 500 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 501 mm_slot_free(mm_slot_cache, mm_slot); 502 mmdrop(mm); 503 } else if (mm_slot) { 504 /* 505 * This is required to serialize against 506 * hpage_collapse_test_exit() (which is guaranteed to run 507 * under mmap sem read mode). Stop here (after we return all 508 * pagetables will be destroyed) until khugepaged has finished 509 * working on the pagetables under the mmap_lock. 510 */ 511 mmap_write_lock(mm); 512 mmap_write_unlock(mm); 513 } 514 } 515 516 static void release_pte_folio(struct folio *folio) 517 { 518 node_stat_mod_folio(folio, 519 NR_ISOLATED_ANON + folio_is_file_lru(folio), 520 -folio_nr_pages(folio)); 521 folio_unlock(folio); 522 folio_putback_lru(folio); 523 } 524 525 static void release_pte_pages(pte_t *pte, pte_t *_pte, 526 struct list_head *compound_pagelist) 527 { 528 struct folio *folio, *tmp; 529 530 while (--_pte >= pte) { 531 pte_t pteval = ptep_get(_pte); 532 unsigned long pfn; 533 534 if (pte_none(pteval)) 535 continue; 536 pfn = pte_pfn(pteval); 537 if (is_zero_pfn(pfn)) 538 continue; 539 folio = pfn_folio(pfn); 540 if (folio_test_large(folio)) 541 continue; 542 release_pte_folio(folio); 543 } 544 545 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 546 list_del(&folio->lru); 547 release_pte_folio(folio); 548 } 549 } 550 551 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 552 unsigned long address, 553 pte_t *pte, 554 struct collapse_control *cc, 555 struct list_head *compound_pagelist) 556 { 557 struct page *page = NULL; 558 struct folio *folio = NULL; 559 pte_t *_pte; 560 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 561 bool writable = false; 562 563 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 564 _pte++, address += PAGE_SIZE) { 565 pte_t pteval = ptep_get(_pte); 566 if (pte_none(pteval) || (pte_present(pteval) && 567 is_zero_pfn(pte_pfn(pteval)))) { 568 ++none_or_zero; 569 if (!userfaultfd_armed(vma) && 570 (!cc->is_khugepaged || 571 none_or_zero <= khugepaged_max_ptes_none)) { 572 continue; 573 } else { 574 result = SCAN_EXCEED_NONE_PTE; 575 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 576 goto out; 577 } 578 } 579 if (!pte_present(pteval)) { 580 result = SCAN_PTE_NON_PRESENT; 581 goto out; 582 } 583 if (pte_uffd_wp(pteval)) { 584 result = SCAN_PTE_UFFD_WP; 585 goto out; 586 } 587 page = vm_normal_page(vma, address, pteval); 588 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 589 result = SCAN_PAGE_NULL; 590 goto out; 591 } 592 593 folio = page_folio(page); 594 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 595 596 /* See hpage_collapse_scan_pmd(). */ 597 if (folio_maybe_mapped_shared(folio)) { 598 ++shared; 599 if (cc->is_khugepaged && 600 shared > khugepaged_max_ptes_shared) { 601 result = SCAN_EXCEED_SHARED_PTE; 602 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 603 goto out; 604 } 605 } 606 607 if (folio_test_large(folio)) { 608 struct folio *f; 609 610 /* 611 * Check if we have dealt with the compound page 612 * already 613 */ 614 list_for_each_entry(f, compound_pagelist, lru) { 615 if (folio == f) 616 goto next; 617 } 618 } 619 620 /* 621 * We can do it before folio_isolate_lru because the 622 * folio can't be freed from under us. NOTE: PG_lock 623 * is needed to serialize against split_huge_page 624 * when invoked from the VM. 625 */ 626 if (!folio_trylock(folio)) { 627 result = SCAN_PAGE_LOCK; 628 goto out; 629 } 630 631 /* 632 * Check if the page has any GUP (or other external) pins. 633 * 634 * The page table that maps the page has been already unlinked 635 * from the page table tree and this process cannot get 636 * an additional pin on the page. 637 * 638 * New pins can come later if the page is shared across fork, 639 * but not from this process. The other process cannot write to 640 * the page, only trigger CoW. 641 */ 642 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 643 folio_unlock(folio); 644 result = SCAN_PAGE_COUNT; 645 goto out; 646 } 647 648 /* 649 * Isolate the page to avoid collapsing an hugepage 650 * currently in use by the VM. 651 */ 652 if (!folio_isolate_lru(folio)) { 653 folio_unlock(folio); 654 result = SCAN_DEL_PAGE_LRU; 655 goto out; 656 } 657 node_stat_mod_folio(folio, 658 NR_ISOLATED_ANON + folio_is_file_lru(folio), 659 folio_nr_pages(folio)); 660 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 661 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 662 663 if (folio_test_large(folio)) 664 list_add_tail(&folio->lru, compound_pagelist); 665 next: 666 /* 667 * If collapse was initiated by khugepaged, check that there is 668 * enough young pte to justify collapsing the page 669 */ 670 if (cc->is_khugepaged && 671 (pte_young(pteval) || folio_test_young(folio) || 672 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 673 address))) 674 referenced++; 675 676 if (pte_write(pteval)) 677 writable = true; 678 } 679 680 if (unlikely(!writable)) { 681 result = SCAN_PAGE_RO; 682 } else if (unlikely(cc->is_khugepaged && !referenced)) { 683 result = SCAN_LACK_REFERENCED_PAGE; 684 } else { 685 result = SCAN_SUCCEED; 686 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 687 referenced, writable, result); 688 return result; 689 } 690 out: 691 release_pte_pages(pte, _pte, compound_pagelist); 692 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 693 referenced, writable, result); 694 return result; 695 } 696 697 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 698 struct vm_area_struct *vma, 699 unsigned long address, 700 spinlock_t *ptl, 701 struct list_head *compound_pagelist) 702 { 703 unsigned long end = address + HPAGE_PMD_SIZE; 704 struct folio *src, *tmp; 705 pte_t pteval; 706 pte_t *_pte; 707 unsigned int nr_ptes; 708 709 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte += nr_ptes, 710 address += nr_ptes * PAGE_SIZE) { 711 nr_ptes = 1; 712 pteval = ptep_get(_pte); 713 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 714 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 715 if (is_zero_pfn(pte_pfn(pteval))) { 716 /* 717 * ptl mostly unnecessary. 718 */ 719 spin_lock(ptl); 720 ptep_clear(vma->vm_mm, address, _pte); 721 spin_unlock(ptl); 722 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 723 } 724 } else { 725 struct page *src_page = pte_page(pteval); 726 727 src = page_folio(src_page); 728 729 if (folio_test_large(src)) { 730 unsigned int max_nr_ptes = (end - address) >> PAGE_SHIFT; 731 732 nr_ptes = folio_pte_batch(src, _pte, pteval, max_nr_ptes); 733 } else { 734 release_pte_folio(src); 735 } 736 737 /* 738 * ptl mostly unnecessary, but preempt has to 739 * be disabled to update the per-cpu stats 740 * inside folio_remove_rmap_pte(). 741 */ 742 spin_lock(ptl); 743 clear_ptes(vma->vm_mm, address, _pte, nr_ptes); 744 folio_remove_rmap_ptes(src, src_page, nr_ptes, vma); 745 spin_unlock(ptl); 746 free_swap_cache(src); 747 folio_put_refs(src, nr_ptes); 748 } 749 } 750 751 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 752 list_del(&src->lru); 753 node_stat_sub_folio(src, NR_ISOLATED_ANON + 754 folio_is_file_lru(src)); 755 folio_unlock(src); 756 free_swap_cache(src); 757 folio_putback_lru(src); 758 } 759 } 760 761 static void __collapse_huge_page_copy_failed(pte_t *pte, 762 pmd_t *pmd, 763 pmd_t orig_pmd, 764 struct vm_area_struct *vma, 765 struct list_head *compound_pagelist) 766 { 767 spinlock_t *pmd_ptl; 768 769 /* 770 * Re-establish the PMD to point to the original page table 771 * entry. Restoring PMD needs to be done prior to releasing 772 * pages. Since pages are still isolated and locked here, 773 * acquiring anon_vma_lock_write is unnecessary. 774 */ 775 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 776 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 777 spin_unlock(pmd_ptl); 778 /* 779 * Release both raw and compound pages isolated 780 * in __collapse_huge_page_isolate. 781 */ 782 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 783 } 784 785 /* 786 * __collapse_huge_page_copy - attempts to copy memory contents from raw 787 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 788 * otherwise restores the original page table and releases isolated raw pages. 789 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 790 * 791 * @pte: starting of the PTEs to copy from 792 * @folio: the new hugepage to copy contents to 793 * @pmd: pointer to the new hugepage's PMD 794 * @orig_pmd: the original raw pages' PMD 795 * @vma: the original raw pages' virtual memory area 796 * @address: starting address to copy 797 * @ptl: lock on raw pages' PTEs 798 * @compound_pagelist: list that stores compound pages 799 */ 800 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 801 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 802 unsigned long address, spinlock_t *ptl, 803 struct list_head *compound_pagelist) 804 { 805 unsigned int i; 806 int result = SCAN_SUCCEED; 807 808 /* 809 * Copying pages' contents is subject to memory poison at any iteration. 810 */ 811 for (i = 0; i < HPAGE_PMD_NR; i++) { 812 pte_t pteval = ptep_get(pte + i); 813 struct page *page = folio_page(folio, i); 814 unsigned long src_addr = address + i * PAGE_SIZE; 815 struct page *src_page; 816 817 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 818 clear_user_highpage(page, src_addr); 819 continue; 820 } 821 src_page = pte_page(pteval); 822 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 823 result = SCAN_COPY_MC; 824 break; 825 } 826 } 827 828 if (likely(result == SCAN_SUCCEED)) 829 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 830 compound_pagelist); 831 else 832 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 833 compound_pagelist); 834 835 return result; 836 } 837 838 static void khugepaged_alloc_sleep(void) 839 { 840 DEFINE_WAIT(wait); 841 842 add_wait_queue(&khugepaged_wait, &wait); 843 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 844 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 845 remove_wait_queue(&khugepaged_wait, &wait); 846 } 847 848 struct collapse_control khugepaged_collapse_control = { 849 .is_khugepaged = true, 850 }; 851 852 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 853 { 854 int i; 855 856 /* 857 * If node_reclaim_mode is disabled, then no extra effort is made to 858 * allocate memory locally. 859 */ 860 if (!node_reclaim_enabled()) 861 return false; 862 863 /* If there is a count for this node already, it must be acceptable */ 864 if (cc->node_load[nid]) 865 return false; 866 867 for (i = 0; i < MAX_NUMNODES; i++) { 868 if (!cc->node_load[i]) 869 continue; 870 if (node_distance(nid, i) > node_reclaim_distance) 871 return true; 872 } 873 return false; 874 } 875 876 #define khugepaged_defrag() \ 877 (transparent_hugepage_flags & \ 878 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 879 880 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 881 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 882 { 883 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 884 } 885 886 #ifdef CONFIG_NUMA 887 static int hpage_collapse_find_target_node(struct collapse_control *cc) 888 { 889 int nid, target_node = 0, max_value = 0; 890 891 /* find first node with max normal pages hit */ 892 for (nid = 0; nid < MAX_NUMNODES; nid++) 893 if (cc->node_load[nid] > max_value) { 894 max_value = cc->node_load[nid]; 895 target_node = nid; 896 } 897 898 for_each_online_node(nid) { 899 if (max_value == cc->node_load[nid]) 900 node_set(nid, cc->alloc_nmask); 901 } 902 903 return target_node; 904 } 905 #else 906 static int hpage_collapse_find_target_node(struct collapse_control *cc) 907 { 908 return 0; 909 } 910 #endif 911 912 /* 913 * If mmap_lock temporarily dropped, revalidate vma 914 * before taking mmap_lock. 915 * Returns enum scan_result value. 916 */ 917 918 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 919 bool expect_anon, 920 struct vm_area_struct **vmap, 921 struct collapse_control *cc) 922 { 923 struct vm_area_struct *vma; 924 unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0; 925 926 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 927 return SCAN_ANY_PROCESS; 928 929 *vmap = vma = find_vma(mm, address); 930 if (!vma) 931 return SCAN_VMA_NULL; 932 933 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 934 return SCAN_ADDRESS_RANGE; 935 if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER)) 936 return SCAN_VMA_CHECK; 937 /* 938 * Anon VMA expected, the address may be unmapped then 939 * remapped to file after khugepaged reaquired the mmap_lock. 940 * 941 * thp_vma_allowable_order may return true for qualified file 942 * vmas. 943 */ 944 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 945 return SCAN_PAGE_ANON; 946 return SCAN_SUCCEED; 947 } 948 949 static inline int check_pmd_state(pmd_t *pmd) 950 { 951 pmd_t pmde = pmdp_get_lockless(pmd); 952 953 if (pmd_none(pmde)) 954 return SCAN_PMD_NONE; 955 956 /* 957 * The folio may be under migration when khugepaged is trying to 958 * collapse it. Migration success or failure will eventually end 959 * up with a present PMD mapping a folio again. 960 */ 961 if (is_pmd_migration_entry(pmde)) 962 return SCAN_PMD_MAPPED; 963 if (!pmd_present(pmde)) 964 return SCAN_PMD_NULL; 965 if (pmd_trans_huge(pmde)) 966 return SCAN_PMD_MAPPED; 967 if (pmd_bad(pmde)) 968 return SCAN_PMD_NULL; 969 return SCAN_SUCCEED; 970 } 971 972 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 973 unsigned long address, 974 pmd_t **pmd) 975 { 976 *pmd = mm_find_pmd(mm, address); 977 if (!*pmd) 978 return SCAN_PMD_NULL; 979 980 return check_pmd_state(*pmd); 981 } 982 983 static int check_pmd_still_valid(struct mm_struct *mm, 984 unsigned long address, 985 pmd_t *pmd) 986 { 987 pmd_t *new_pmd; 988 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 989 990 if (result != SCAN_SUCCEED) 991 return result; 992 if (new_pmd != pmd) 993 return SCAN_FAIL; 994 return SCAN_SUCCEED; 995 } 996 997 /* 998 * Bring missing pages in from swap, to complete THP collapse. 999 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 1000 * 1001 * Called and returns without pte mapped or spinlocks held. 1002 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 1003 */ 1004 static int __collapse_huge_page_swapin(struct mm_struct *mm, 1005 struct vm_area_struct *vma, 1006 unsigned long haddr, pmd_t *pmd, 1007 int referenced) 1008 { 1009 int swapped_in = 0; 1010 vm_fault_t ret = 0; 1011 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 1012 int result; 1013 pte_t *pte = NULL; 1014 spinlock_t *ptl; 1015 1016 for (address = haddr; address < end; address += PAGE_SIZE) { 1017 struct vm_fault vmf = { 1018 .vma = vma, 1019 .address = address, 1020 .pgoff = linear_page_index(vma, address), 1021 .flags = FAULT_FLAG_ALLOW_RETRY, 1022 .pmd = pmd, 1023 }; 1024 1025 if (!pte++) { 1026 /* 1027 * Here the ptl is only used to check pte_same() in 1028 * do_swap_page(), so readonly version is enough. 1029 */ 1030 pte = pte_offset_map_ro_nolock(mm, pmd, address, &ptl); 1031 if (!pte) { 1032 mmap_read_unlock(mm); 1033 result = SCAN_PMD_NULL; 1034 goto out; 1035 } 1036 } 1037 1038 vmf.orig_pte = ptep_get_lockless(pte); 1039 if (!is_swap_pte(vmf.orig_pte)) 1040 continue; 1041 1042 vmf.pte = pte; 1043 vmf.ptl = ptl; 1044 ret = do_swap_page(&vmf); 1045 /* Which unmaps pte (after perhaps re-checking the entry) */ 1046 pte = NULL; 1047 1048 /* 1049 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1050 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1051 * we do not retry here and swap entry will remain in pagetable 1052 * resulting in later failure. 1053 */ 1054 if (ret & VM_FAULT_RETRY) { 1055 /* Likely, but not guaranteed, that page lock failed */ 1056 result = SCAN_PAGE_LOCK; 1057 goto out; 1058 } 1059 if (ret & VM_FAULT_ERROR) { 1060 mmap_read_unlock(mm); 1061 result = SCAN_FAIL; 1062 goto out; 1063 } 1064 swapped_in++; 1065 } 1066 1067 if (pte) 1068 pte_unmap(pte); 1069 1070 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1071 if (swapped_in) 1072 lru_add_drain(); 1073 1074 result = SCAN_SUCCEED; 1075 out: 1076 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1077 return result; 1078 } 1079 1080 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1081 struct collapse_control *cc) 1082 { 1083 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1084 GFP_TRANSHUGE); 1085 int node = hpage_collapse_find_target_node(cc); 1086 struct folio *folio; 1087 1088 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1089 if (!folio) { 1090 *foliop = NULL; 1091 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1092 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1093 } 1094 1095 count_vm_event(THP_COLLAPSE_ALLOC); 1096 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1097 folio_put(folio); 1098 *foliop = NULL; 1099 return SCAN_CGROUP_CHARGE_FAIL; 1100 } 1101 1102 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1103 1104 *foliop = folio; 1105 return SCAN_SUCCEED; 1106 } 1107 1108 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1109 int referenced, int unmapped, 1110 struct collapse_control *cc) 1111 { 1112 LIST_HEAD(compound_pagelist); 1113 pmd_t *pmd, _pmd; 1114 pte_t *pte; 1115 pgtable_t pgtable; 1116 struct folio *folio; 1117 spinlock_t *pmd_ptl, *pte_ptl; 1118 int result = SCAN_FAIL; 1119 struct vm_area_struct *vma; 1120 struct mmu_notifier_range range; 1121 1122 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1123 1124 /* 1125 * Before allocating the hugepage, release the mmap_lock read lock. 1126 * The allocation can take potentially a long time if it involves 1127 * sync compaction, and we do not need to hold the mmap_lock during 1128 * that. We will recheck the vma after taking it again in write mode. 1129 */ 1130 mmap_read_unlock(mm); 1131 1132 result = alloc_charge_folio(&folio, mm, cc); 1133 if (result != SCAN_SUCCEED) 1134 goto out_nolock; 1135 1136 mmap_read_lock(mm); 1137 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1138 if (result != SCAN_SUCCEED) { 1139 mmap_read_unlock(mm); 1140 goto out_nolock; 1141 } 1142 1143 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1144 if (result != SCAN_SUCCEED) { 1145 mmap_read_unlock(mm); 1146 goto out_nolock; 1147 } 1148 1149 if (unmapped) { 1150 /* 1151 * __collapse_huge_page_swapin will return with mmap_lock 1152 * released when it fails. So we jump out_nolock directly in 1153 * that case. Continuing to collapse causes inconsistency. 1154 */ 1155 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1156 referenced); 1157 if (result != SCAN_SUCCEED) 1158 goto out_nolock; 1159 } 1160 1161 mmap_read_unlock(mm); 1162 /* 1163 * Prevent all access to pagetables with the exception of 1164 * gup_fast later handled by the ptep_clear_flush and the VM 1165 * handled by the anon_vma lock + PG_lock. 1166 * 1167 * UFFDIO_MOVE is prevented to race as well thanks to the 1168 * mmap_lock. 1169 */ 1170 mmap_write_lock(mm); 1171 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1172 if (result != SCAN_SUCCEED) 1173 goto out_up_write; 1174 /* check if the pmd is still valid */ 1175 result = check_pmd_still_valid(mm, address, pmd); 1176 if (result != SCAN_SUCCEED) 1177 goto out_up_write; 1178 1179 vma_start_write(vma); 1180 anon_vma_lock_write(vma->anon_vma); 1181 1182 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1183 address + HPAGE_PMD_SIZE); 1184 mmu_notifier_invalidate_range_start(&range); 1185 1186 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1187 /* 1188 * This removes any huge TLB entry from the CPU so we won't allow 1189 * huge and small TLB entries for the same virtual address to 1190 * avoid the risk of CPU bugs in that area. 1191 * 1192 * Parallel GUP-fast is fine since GUP-fast will back off when 1193 * it detects PMD is changed. 1194 */ 1195 _pmd = pmdp_collapse_flush(vma, address, pmd); 1196 spin_unlock(pmd_ptl); 1197 mmu_notifier_invalidate_range_end(&range); 1198 tlb_remove_table_sync_one(); 1199 1200 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1201 if (pte) { 1202 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1203 &compound_pagelist); 1204 spin_unlock(pte_ptl); 1205 } else { 1206 result = SCAN_PMD_NULL; 1207 } 1208 1209 if (unlikely(result != SCAN_SUCCEED)) { 1210 if (pte) 1211 pte_unmap(pte); 1212 spin_lock(pmd_ptl); 1213 BUG_ON(!pmd_none(*pmd)); 1214 /* 1215 * We can only use set_pmd_at when establishing 1216 * hugepmds and never for establishing regular pmds that 1217 * points to regular pagetables. Use pmd_populate for that 1218 */ 1219 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1220 spin_unlock(pmd_ptl); 1221 anon_vma_unlock_write(vma->anon_vma); 1222 goto out_up_write; 1223 } 1224 1225 /* 1226 * All pages are isolated and locked so anon_vma rmap 1227 * can't run anymore. 1228 */ 1229 anon_vma_unlock_write(vma->anon_vma); 1230 1231 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1232 vma, address, pte_ptl, 1233 &compound_pagelist); 1234 pte_unmap(pte); 1235 if (unlikely(result != SCAN_SUCCEED)) 1236 goto out_up_write; 1237 1238 /* 1239 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1240 * copy_huge_page writes become visible before the set_pmd_at() 1241 * write. 1242 */ 1243 __folio_mark_uptodate(folio); 1244 pgtable = pmd_pgtable(_pmd); 1245 1246 _pmd = folio_mk_pmd(folio, vma->vm_page_prot); 1247 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1248 1249 spin_lock(pmd_ptl); 1250 BUG_ON(!pmd_none(*pmd)); 1251 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 1252 folio_add_lru_vma(folio, vma); 1253 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1254 set_pmd_at(mm, address, pmd, _pmd); 1255 update_mmu_cache_pmd(vma, address, pmd); 1256 deferred_split_folio(folio, false); 1257 spin_unlock(pmd_ptl); 1258 1259 folio = NULL; 1260 1261 result = SCAN_SUCCEED; 1262 out_up_write: 1263 mmap_write_unlock(mm); 1264 out_nolock: 1265 if (folio) 1266 folio_put(folio); 1267 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1268 return result; 1269 } 1270 1271 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1272 struct vm_area_struct *vma, 1273 unsigned long address, bool *mmap_locked, 1274 struct collapse_control *cc) 1275 { 1276 pmd_t *pmd; 1277 pte_t *pte, *_pte; 1278 int result = SCAN_FAIL, referenced = 0; 1279 int none_or_zero = 0, shared = 0; 1280 struct page *page = NULL; 1281 struct folio *folio = NULL; 1282 unsigned long _address; 1283 spinlock_t *ptl; 1284 int node = NUMA_NO_NODE, unmapped = 0; 1285 bool writable = false; 1286 1287 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1288 1289 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1290 if (result != SCAN_SUCCEED) 1291 goto out; 1292 1293 memset(cc->node_load, 0, sizeof(cc->node_load)); 1294 nodes_clear(cc->alloc_nmask); 1295 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1296 if (!pte) { 1297 result = SCAN_PMD_NULL; 1298 goto out; 1299 } 1300 1301 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1302 _pte++, _address += PAGE_SIZE) { 1303 pte_t pteval = ptep_get(_pte); 1304 if (is_swap_pte(pteval)) { 1305 ++unmapped; 1306 if (!cc->is_khugepaged || 1307 unmapped <= khugepaged_max_ptes_swap) { 1308 /* 1309 * Always be strict with uffd-wp 1310 * enabled swap entries. Please see 1311 * comment below for pte_uffd_wp(). 1312 */ 1313 if (pte_swp_uffd_wp_any(pteval)) { 1314 result = SCAN_PTE_UFFD_WP; 1315 goto out_unmap; 1316 } 1317 continue; 1318 } else { 1319 result = SCAN_EXCEED_SWAP_PTE; 1320 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1321 goto out_unmap; 1322 } 1323 } 1324 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1325 ++none_or_zero; 1326 if (!userfaultfd_armed(vma) && 1327 (!cc->is_khugepaged || 1328 none_or_zero <= khugepaged_max_ptes_none)) { 1329 continue; 1330 } else { 1331 result = SCAN_EXCEED_NONE_PTE; 1332 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1333 goto out_unmap; 1334 } 1335 } 1336 if (pte_uffd_wp(pteval)) { 1337 /* 1338 * Don't collapse the page if any of the small 1339 * PTEs are armed with uffd write protection. 1340 * Here we can also mark the new huge pmd as 1341 * write protected if any of the small ones is 1342 * marked but that could bring unknown 1343 * userfault messages that falls outside of 1344 * the registered range. So, just be simple. 1345 */ 1346 result = SCAN_PTE_UFFD_WP; 1347 goto out_unmap; 1348 } 1349 if (pte_write(pteval)) 1350 writable = true; 1351 1352 page = vm_normal_page(vma, _address, pteval); 1353 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1354 result = SCAN_PAGE_NULL; 1355 goto out_unmap; 1356 } 1357 folio = page_folio(page); 1358 1359 if (!folio_test_anon(folio)) { 1360 result = SCAN_PAGE_ANON; 1361 goto out_unmap; 1362 } 1363 1364 /* 1365 * We treat a single page as shared if any part of the THP 1366 * is shared. 1367 */ 1368 if (folio_maybe_mapped_shared(folio)) { 1369 ++shared; 1370 if (cc->is_khugepaged && 1371 shared > khugepaged_max_ptes_shared) { 1372 result = SCAN_EXCEED_SHARED_PTE; 1373 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1374 goto out_unmap; 1375 } 1376 } 1377 1378 /* 1379 * Record which node the original page is from and save this 1380 * information to cc->node_load[]. 1381 * Khugepaged will allocate hugepage from the node has the max 1382 * hit record. 1383 */ 1384 node = folio_nid(folio); 1385 if (hpage_collapse_scan_abort(node, cc)) { 1386 result = SCAN_SCAN_ABORT; 1387 goto out_unmap; 1388 } 1389 cc->node_load[node]++; 1390 if (!folio_test_lru(folio)) { 1391 result = SCAN_PAGE_LRU; 1392 goto out_unmap; 1393 } 1394 if (folio_test_locked(folio)) { 1395 result = SCAN_PAGE_LOCK; 1396 goto out_unmap; 1397 } 1398 1399 /* 1400 * Check if the page has any GUP (or other external) pins. 1401 * 1402 * Here the check may be racy: 1403 * it may see folio_mapcount() > folio_ref_count(). 1404 * But such case is ephemeral we could always retry collapse 1405 * later. However it may report false positive if the page 1406 * has excessive GUP pins (i.e. 512). Anyway the same check 1407 * will be done again later the risk seems low. 1408 */ 1409 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 1410 result = SCAN_PAGE_COUNT; 1411 goto out_unmap; 1412 } 1413 1414 /* 1415 * If collapse was initiated by khugepaged, check that there is 1416 * enough young pte to justify collapsing the page 1417 */ 1418 if (cc->is_khugepaged && 1419 (pte_young(pteval) || folio_test_young(folio) || 1420 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 1421 address))) 1422 referenced++; 1423 } 1424 if (!writable) { 1425 result = SCAN_PAGE_RO; 1426 } else if (cc->is_khugepaged && 1427 (!referenced || 1428 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1429 result = SCAN_LACK_REFERENCED_PAGE; 1430 } else { 1431 result = SCAN_SUCCEED; 1432 } 1433 out_unmap: 1434 pte_unmap_unlock(pte, ptl); 1435 if (result == SCAN_SUCCEED) { 1436 result = collapse_huge_page(mm, address, referenced, 1437 unmapped, cc); 1438 /* collapse_huge_page will return with the mmap_lock released */ 1439 *mmap_locked = false; 1440 } 1441 out: 1442 trace_mm_khugepaged_scan_pmd(mm, folio, writable, referenced, 1443 none_or_zero, result, unmapped); 1444 return result; 1445 } 1446 1447 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1448 { 1449 struct mm_slot *slot = &mm_slot->slot; 1450 struct mm_struct *mm = slot->mm; 1451 1452 lockdep_assert_held(&khugepaged_mm_lock); 1453 1454 if (hpage_collapse_test_exit(mm)) { 1455 /* free mm_slot */ 1456 hash_del(&slot->hash); 1457 list_del(&slot->mm_node); 1458 1459 /* 1460 * Not strictly needed because the mm exited already. 1461 * 1462 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1463 */ 1464 1465 /* khugepaged_mm_lock actually not necessary for the below */ 1466 mm_slot_free(mm_slot_cache, mm_slot); 1467 mmdrop(mm); 1468 } 1469 } 1470 1471 /* folio must be locked, and mmap_lock must be held */ 1472 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1473 pmd_t *pmdp, struct folio *folio, struct page *page) 1474 { 1475 struct vm_fault vmf = { 1476 .vma = vma, 1477 .address = addr, 1478 .flags = 0, 1479 .pmd = pmdp, 1480 }; 1481 1482 mmap_assert_locked(vma->vm_mm); 1483 1484 if (do_set_pmd(&vmf, folio, page)) 1485 return SCAN_FAIL; 1486 1487 folio_get(folio); 1488 return SCAN_SUCCEED; 1489 } 1490 1491 /** 1492 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1493 * address haddr. 1494 * 1495 * @mm: process address space where collapse happens 1496 * @addr: THP collapse address 1497 * @install_pmd: If a huge PMD should be installed 1498 * 1499 * This function checks whether all the PTEs in the PMD are pointing to the 1500 * right THP. If so, retract the page table so the THP can refault in with 1501 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1502 */ 1503 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1504 bool install_pmd) 1505 { 1506 int nr_mapped_ptes = 0, result = SCAN_FAIL; 1507 unsigned int nr_batch_ptes; 1508 struct mmu_notifier_range range; 1509 bool notified = false; 1510 unsigned long haddr = addr & HPAGE_PMD_MASK; 1511 unsigned long end = haddr + HPAGE_PMD_SIZE; 1512 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1513 struct folio *folio; 1514 pte_t *start_pte, *pte; 1515 pmd_t *pmd, pgt_pmd; 1516 spinlock_t *pml = NULL, *ptl; 1517 int i; 1518 1519 mmap_assert_locked(mm); 1520 1521 /* First check VMA found, in case page tables are being torn down */ 1522 if (!vma || !vma->vm_file || 1523 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1524 return SCAN_VMA_CHECK; 1525 1526 /* Fast check before locking page if already PMD-mapped */ 1527 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1528 if (result == SCAN_PMD_MAPPED) 1529 return result; 1530 1531 /* 1532 * If we are here, we've succeeded in replacing all the native pages 1533 * in the page cache with a single hugepage. If a mm were to fault-in 1534 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1535 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1536 * analogously elide sysfs THP settings here. 1537 */ 1538 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 1539 return SCAN_VMA_CHECK; 1540 1541 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1542 if (userfaultfd_wp(vma)) 1543 return SCAN_PTE_UFFD_WP; 1544 1545 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1546 linear_page_index(vma, haddr)); 1547 if (IS_ERR(folio)) 1548 return SCAN_PAGE_NULL; 1549 1550 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1551 result = SCAN_PAGE_COMPOUND; 1552 goto drop_folio; 1553 } 1554 1555 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1556 switch (result) { 1557 case SCAN_SUCCEED: 1558 break; 1559 case SCAN_PMD_NONE: 1560 /* 1561 * All pte entries have been removed and pmd cleared. 1562 * Skip all the pte checks and just update the pmd mapping. 1563 */ 1564 goto maybe_install_pmd; 1565 default: 1566 goto drop_folio; 1567 } 1568 1569 result = SCAN_FAIL; 1570 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1571 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1572 goto drop_folio; 1573 1574 /* step 1: check all mapped PTEs are to the right huge page */ 1575 for (i = 0, addr = haddr, pte = start_pte; 1576 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1577 struct page *page; 1578 pte_t ptent = ptep_get(pte); 1579 1580 /* empty pte, skip */ 1581 if (pte_none(ptent)) 1582 continue; 1583 1584 /* page swapped out, abort */ 1585 if (!pte_present(ptent)) { 1586 result = SCAN_PTE_NON_PRESENT; 1587 goto abort; 1588 } 1589 1590 page = vm_normal_page(vma, addr, ptent); 1591 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1592 page = NULL; 1593 /* 1594 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1595 * page table, but the new page will not be a subpage of hpage. 1596 */ 1597 if (folio_page(folio, i) != page) 1598 goto abort; 1599 } 1600 1601 pte_unmap_unlock(start_pte, ptl); 1602 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1603 haddr, haddr + HPAGE_PMD_SIZE); 1604 mmu_notifier_invalidate_range_start(&range); 1605 notified = true; 1606 1607 /* 1608 * pmd_lock covers a wider range than ptl, and (if split from mm's 1609 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1610 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1611 * inserts a valid as-if-COWed PTE without even looking up page cache. 1612 * So page lock of folio does not protect from it, so we must not drop 1613 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1614 */ 1615 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1616 pml = pmd_lock(mm, pmd); 1617 1618 start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl); 1619 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1620 goto abort; 1621 if (!pml) 1622 spin_lock(ptl); 1623 else if (ptl != pml) 1624 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1625 1626 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) 1627 goto abort; 1628 1629 /* step 2: clear page table and adjust rmap */ 1630 for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR; 1631 i += nr_batch_ptes, addr += nr_batch_ptes * PAGE_SIZE, 1632 pte += nr_batch_ptes) { 1633 unsigned int max_nr_batch_ptes = (end - addr) >> PAGE_SHIFT; 1634 struct page *page; 1635 pte_t ptent = ptep_get(pte); 1636 1637 nr_batch_ptes = 1; 1638 1639 if (pte_none(ptent)) 1640 continue; 1641 /* 1642 * We dropped ptl after the first scan, to do the mmu_notifier: 1643 * page lock stops more PTEs of the folio being faulted in, but 1644 * does not stop write faults COWing anon copies from existing 1645 * PTEs; and does not stop those being swapped out or migrated. 1646 */ 1647 if (!pte_present(ptent)) { 1648 result = SCAN_PTE_NON_PRESENT; 1649 goto abort; 1650 } 1651 page = vm_normal_page(vma, addr, ptent); 1652 1653 if (folio_page(folio, i) != page) 1654 goto abort; 1655 1656 nr_batch_ptes = folio_pte_batch(folio, pte, ptent, max_nr_batch_ptes); 1657 1658 /* 1659 * Must clear entry, or a racing truncate may re-remove it. 1660 * TLB flush can be left until pmdp_collapse_flush() does it. 1661 * PTE dirty? Shmem page is already dirty; file is read-only. 1662 */ 1663 clear_ptes(mm, addr, pte, nr_batch_ptes); 1664 folio_remove_rmap_ptes(folio, page, nr_batch_ptes, vma); 1665 nr_mapped_ptes += nr_batch_ptes; 1666 } 1667 1668 if (!pml) 1669 spin_unlock(ptl); 1670 1671 /* step 3: set proper refcount and mm_counters. */ 1672 if (nr_mapped_ptes) { 1673 folio_ref_sub(folio, nr_mapped_ptes); 1674 add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes); 1675 } 1676 1677 /* step 4: remove empty page table */ 1678 if (!pml) { 1679 pml = pmd_lock(mm, pmd); 1680 if (ptl != pml) { 1681 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1682 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) { 1683 flush_tlb_mm(mm); 1684 goto unlock; 1685 } 1686 } 1687 } 1688 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1689 pmdp_get_lockless_sync(); 1690 pte_unmap_unlock(start_pte, ptl); 1691 if (ptl != pml) 1692 spin_unlock(pml); 1693 1694 mmu_notifier_invalidate_range_end(&range); 1695 1696 mm_dec_nr_ptes(mm); 1697 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1698 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1699 1700 maybe_install_pmd: 1701 /* step 5: install pmd entry */ 1702 result = install_pmd 1703 ? set_huge_pmd(vma, haddr, pmd, folio, &folio->page) 1704 : SCAN_SUCCEED; 1705 goto drop_folio; 1706 abort: 1707 if (nr_mapped_ptes) { 1708 flush_tlb_mm(mm); 1709 folio_ref_sub(folio, nr_mapped_ptes); 1710 add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes); 1711 } 1712 unlock: 1713 if (start_pte) 1714 pte_unmap_unlock(start_pte, ptl); 1715 if (pml && pml != ptl) 1716 spin_unlock(pml); 1717 if (notified) 1718 mmu_notifier_invalidate_range_end(&range); 1719 drop_folio: 1720 folio_unlock(folio); 1721 folio_put(folio); 1722 return result; 1723 } 1724 1725 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1726 { 1727 struct vm_area_struct *vma; 1728 1729 i_mmap_lock_read(mapping); 1730 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1731 struct mmu_notifier_range range; 1732 struct mm_struct *mm; 1733 unsigned long addr; 1734 pmd_t *pmd, pgt_pmd; 1735 spinlock_t *pml; 1736 spinlock_t *ptl; 1737 bool success = false; 1738 1739 /* 1740 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1741 * got written to. These VMAs are likely not worth removing 1742 * page tables from, as PMD-mapping is likely to be split later. 1743 */ 1744 if (READ_ONCE(vma->anon_vma)) 1745 continue; 1746 1747 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1748 if (addr & ~HPAGE_PMD_MASK || 1749 vma->vm_end < addr + HPAGE_PMD_SIZE) 1750 continue; 1751 1752 mm = vma->vm_mm; 1753 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1754 continue; 1755 1756 if (hpage_collapse_test_exit(mm)) 1757 continue; 1758 /* 1759 * When a vma is registered with uffd-wp, we cannot recycle 1760 * the page table because there may be pte markers installed. 1761 * Other vmas can still have the same file mapped hugely, but 1762 * skip this one: it will always be mapped in small page size 1763 * for uffd-wp registered ranges. 1764 */ 1765 if (userfaultfd_wp(vma)) 1766 continue; 1767 1768 /* PTEs were notified when unmapped; but now for the PMD? */ 1769 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1770 addr, addr + HPAGE_PMD_SIZE); 1771 mmu_notifier_invalidate_range_start(&range); 1772 1773 pml = pmd_lock(mm, pmd); 1774 /* 1775 * The lock of new_folio is still held, we will be blocked in 1776 * the page fault path, which prevents the pte entries from 1777 * being set again. So even though the old empty PTE page may be 1778 * concurrently freed and a new PTE page is filled into the pmd 1779 * entry, it is still empty and can be removed. 1780 * 1781 * So here we only need to recheck if the state of pmd entry 1782 * still meets our requirements, rather than checking pmd_same() 1783 * like elsewhere. 1784 */ 1785 if (check_pmd_state(pmd) != SCAN_SUCCEED) 1786 goto drop_pml; 1787 ptl = pte_lockptr(mm, pmd); 1788 if (ptl != pml) 1789 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1790 1791 /* 1792 * Huge page lock is still held, so normally the page table 1793 * must remain empty; and we have already skipped anon_vma 1794 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1795 * held, it is still possible for a racing userfaultfd_ioctl() 1796 * to have inserted ptes or markers. Now that we hold ptlock, 1797 * repeating the anon_vma check protects from one category, 1798 * and repeating the userfaultfd_wp() check from another. 1799 */ 1800 if (likely(!vma->anon_vma && !userfaultfd_wp(vma))) { 1801 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1802 pmdp_get_lockless_sync(); 1803 success = true; 1804 } 1805 1806 if (ptl != pml) 1807 spin_unlock(ptl); 1808 drop_pml: 1809 spin_unlock(pml); 1810 1811 mmu_notifier_invalidate_range_end(&range); 1812 1813 if (success) { 1814 mm_dec_nr_ptes(mm); 1815 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1816 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1817 } 1818 } 1819 i_mmap_unlock_read(mapping); 1820 } 1821 1822 /** 1823 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1824 * 1825 * @mm: process address space where collapse happens 1826 * @addr: virtual collapse start address 1827 * @file: file that collapse on 1828 * @start: collapse start address 1829 * @cc: collapse context and scratchpad 1830 * 1831 * Basic scheme is simple, details are more complex: 1832 * - allocate and lock a new huge page; 1833 * - scan page cache, locking old pages 1834 * + swap/gup in pages if necessary; 1835 * - copy data to new page 1836 * - handle shmem holes 1837 * + re-validate that holes weren't filled by someone else 1838 * + check for userfaultfd 1839 * - finalize updates to the page cache; 1840 * - if replacing succeeds: 1841 * + unlock huge page; 1842 * + free old pages; 1843 * - if replacing failed; 1844 * + unlock old pages 1845 * + unlock and free huge page; 1846 */ 1847 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1848 struct file *file, pgoff_t start, 1849 struct collapse_control *cc) 1850 { 1851 struct address_space *mapping = file->f_mapping; 1852 struct page *dst; 1853 struct folio *folio, *tmp, *new_folio; 1854 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1855 LIST_HEAD(pagelist); 1856 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1857 int nr_none = 0, result = SCAN_SUCCEED; 1858 bool is_shmem = shmem_file(file); 1859 1860 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1861 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1862 1863 result = alloc_charge_folio(&new_folio, mm, cc); 1864 if (result != SCAN_SUCCEED) 1865 goto out; 1866 1867 mapping_set_update(&xas, mapping); 1868 1869 __folio_set_locked(new_folio); 1870 if (is_shmem) 1871 __folio_set_swapbacked(new_folio); 1872 new_folio->index = start; 1873 new_folio->mapping = mapping; 1874 1875 /* 1876 * Ensure we have slots for all the pages in the range. This is 1877 * almost certainly a no-op because most of the pages must be present 1878 */ 1879 do { 1880 xas_lock_irq(&xas); 1881 xas_create_range(&xas); 1882 if (!xas_error(&xas)) 1883 break; 1884 xas_unlock_irq(&xas); 1885 if (!xas_nomem(&xas, GFP_KERNEL)) { 1886 result = SCAN_FAIL; 1887 goto rollback; 1888 } 1889 } while (1); 1890 1891 for (index = start; index < end;) { 1892 xas_set(&xas, index); 1893 folio = xas_load(&xas); 1894 1895 VM_BUG_ON(index != xas.xa_index); 1896 if (is_shmem) { 1897 if (!folio) { 1898 /* 1899 * Stop if extent has been truncated or 1900 * hole-punched, and is now completely 1901 * empty. 1902 */ 1903 if (index == start) { 1904 if (!xas_next_entry(&xas, end - 1)) { 1905 result = SCAN_TRUNCATED; 1906 goto xa_locked; 1907 } 1908 } 1909 nr_none++; 1910 index++; 1911 continue; 1912 } 1913 1914 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1915 xas_unlock_irq(&xas); 1916 /* swap in or instantiate fallocated page */ 1917 if (shmem_get_folio(mapping->host, index, 0, 1918 &folio, SGP_NOALLOC)) { 1919 result = SCAN_FAIL; 1920 goto xa_unlocked; 1921 } 1922 /* drain lru cache to help folio_isolate_lru() */ 1923 lru_add_drain(); 1924 } else if (folio_trylock(folio)) { 1925 folio_get(folio); 1926 xas_unlock_irq(&xas); 1927 } else { 1928 result = SCAN_PAGE_LOCK; 1929 goto xa_locked; 1930 } 1931 } else { /* !is_shmem */ 1932 if (!folio || xa_is_value(folio)) { 1933 xas_unlock_irq(&xas); 1934 page_cache_sync_readahead(mapping, &file->f_ra, 1935 file, index, 1936 end - index); 1937 /* drain lru cache to help folio_isolate_lru() */ 1938 lru_add_drain(); 1939 folio = filemap_lock_folio(mapping, index); 1940 if (IS_ERR(folio)) { 1941 result = SCAN_FAIL; 1942 goto xa_unlocked; 1943 } 1944 } else if (folio_test_dirty(folio)) { 1945 /* 1946 * khugepaged only works on read-only fd, 1947 * so this page is dirty because it hasn't 1948 * been flushed since first write. There 1949 * won't be new dirty pages. 1950 * 1951 * Trigger async flush here and hope the 1952 * writeback is done when khugepaged 1953 * revisits this page. 1954 * 1955 * This is a one-off situation. We are not 1956 * forcing writeback in loop. 1957 */ 1958 xas_unlock_irq(&xas); 1959 filemap_flush(mapping); 1960 result = SCAN_FAIL; 1961 goto xa_unlocked; 1962 } else if (folio_test_writeback(folio)) { 1963 xas_unlock_irq(&xas); 1964 result = SCAN_FAIL; 1965 goto xa_unlocked; 1966 } else if (folio_trylock(folio)) { 1967 folio_get(folio); 1968 xas_unlock_irq(&xas); 1969 } else { 1970 result = SCAN_PAGE_LOCK; 1971 goto xa_locked; 1972 } 1973 } 1974 1975 /* 1976 * The folio must be locked, so we can drop the i_pages lock 1977 * without racing with truncate. 1978 */ 1979 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1980 1981 /* make sure the folio is up to date */ 1982 if (unlikely(!folio_test_uptodate(folio))) { 1983 result = SCAN_FAIL; 1984 goto out_unlock; 1985 } 1986 1987 /* 1988 * If file was truncated then extended, or hole-punched, before 1989 * we locked the first folio, then a THP might be there already. 1990 * This will be discovered on the first iteration. 1991 */ 1992 if (folio_order(folio) == HPAGE_PMD_ORDER && 1993 folio->index == start) { 1994 /* Maybe PMD-mapped */ 1995 result = SCAN_PTE_MAPPED_HUGEPAGE; 1996 goto out_unlock; 1997 } 1998 1999 if (folio_mapping(folio) != mapping) { 2000 result = SCAN_TRUNCATED; 2001 goto out_unlock; 2002 } 2003 2004 if (!is_shmem && (folio_test_dirty(folio) || 2005 folio_test_writeback(folio))) { 2006 /* 2007 * khugepaged only works on read-only fd, so this 2008 * folio is dirty because it hasn't been flushed 2009 * since first write. 2010 */ 2011 result = SCAN_FAIL; 2012 goto out_unlock; 2013 } 2014 2015 if (!folio_isolate_lru(folio)) { 2016 result = SCAN_DEL_PAGE_LRU; 2017 goto out_unlock; 2018 } 2019 2020 if (!filemap_release_folio(folio, GFP_KERNEL)) { 2021 result = SCAN_PAGE_HAS_PRIVATE; 2022 folio_putback_lru(folio); 2023 goto out_unlock; 2024 } 2025 2026 if (folio_mapped(folio)) 2027 try_to_unmap(folio, 2028 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 2029 2030 xas_lock_irq(&xas); 2031 2032 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 2033 2034 /* 2035 * We control 2 + nr_pages references to the folio: 2036 * - we hold a pin on it; 2037 * - nr_pages reference from page cache; 2038 * - one from lru_isolate_folio; 2039 * If those are the only references, then any new usage 2040 * of the folio will have to fetch it from the page 2041 * cache. That requires locking the folio to handle 2042 * truncate, so any new usage will be blocked until we 2043 * unlock folio after collapse/during rollback. 2044 */ 2045 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) { 2046 result = SCAN_PAGE_COUNT; 2047 xas_unlock_irq(&xas); 2048 folio_putback_lru(folio); 2049 goto out_unlock; 2050 } 2051 2052 /* 2053 * Accumulate the folios that are being collapsed. 2054 */ 2055 list_add_tail(&folio->lru, &pagelist); 2056 index += folio_nr_pages(folio); 2057 continue; 2058 out_unlock: 2059 folio_unlock(folio); 2060 folio_put(folio); 2061 goto xa_unlocked; 2062 } 2063 2064 if (!is_shmem) { 2065 filemap_nr_thps_inc(mapping); 2066 /* 2067 * Paired with the fence in do_dentry_open() -> get_write_access() 2068 * to ensure i_writecount is up to date and the update to nr_thps 2069 * is visible. Ensures the page cache will be truncated if the 2070 * file is opened writable. 2071 */ 2072 smp_mb(); 2073 if (inode_is_open_for_write(mapping->host)) { 2074 result = SCAN_FAIL; 2075 filemap_nr_thps_dec(mapping); 2076 } 2077 } 2078 2079 xa_locked: 2080 xas_unlock_irq(&xas); 2081 xa_unlocked: 2082 2083 /* 2084 * If collapse is successful, flush must be done now before copying. 2085 * If collapse is unsuccessful, does flush actually need to be done? 2086 * Do it anyway, to clear the state. 2087 */ 2088 try_to_unmap_flush(); 2089 2090 if (result == SCAN_SUCCEED && nr_none && 2091 !shmem_charge(mapping->host, nr_none)) 2092 result = SCAN_FAIL; 2093 if (result != SCAN_SUCCEED) { 2094 nr_none = 0; 2095 goto rollback; 2096 } 2097 2098 /* 2099 * The old folios are locked, so they won't change anymore. 2100 */ 2101 index = start; 2102 dst = folio_page(new_folio, 0); 2103 list_for_each_entry(folio, &pagelist, lru) { 2104 int i, nr_pages = folio_nr_pages(folio); 2105 2106 while (index < folio->index) { 2107 clear_highpage(dst); 2108 index++; 2109 dst++; 2110 } 2111 2112 for (i = 0; i < nr_pages; i++) { 2113 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) { 2114 result = SCAN_COPY_MC; 2115 goto rollback; 2116 } 2117 index++; 2118 dst++; 2119 } 2120 } 2121 while (index < end) { 2122 clear_highpage(dst); 2123 index++; 2124 dst++; 2125 } 2126 2127 if (nr_none) { 2128 struct vm_area_struct *vma; 2129 int nr_none_check = 0; 2130 2131 i_mmap_lock_read(mapping); 2132 xas_lock_irq(&xas); 2133 2134 xas_set(&xas, start); 2135 for (index = start; index < end; index++) { 2136 if (!xas_next(&xas)) { 2137 xas_store(&xas, XA_RETRY_ENTRY); 2138 if (xas_error(&xas)) { 2139 result = SCAN_STORE_FAILED; 2140 goto immap_locked; 2141 } 2142 nr_none_check++; 2143 } 2144 } 2145 2146 if (nr_none != nr_none_check) { 2147 result = SCAN_PAGE_FILLED; 2148 goto immap_locked; 2149 } 2150 2151 /* 2152 * If userspace observed a missing page in a VMA with 2153 * a MODE_MISSING userfaultfd, then it might expect a 2154 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2155 * roll back to avoid suppressing such an event. Since 2156 * wp/minor userfaultfds don't give userspace any 2157 * guarantees that the kernel doesn't fill a missing 2158 * page with a zero page, so they don't matter here. 2159 * 2160 * Any userfaultfds registered after this point will 2161 * not be able to observe any missing pages due to the 2162 * previously inserted retry entries. 2163 */ 2164 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2165 if (userfaultfd_missing(vma)) { 2166 result = SCAN_EXCEED_NONE_PTE; 2167 goto immap_locked; 2168 } 2169 } 2170 2171 immap_locked: 2172 i_mmap_unlock_read(mapping); 2173 if (result != SCAN_SUCCEED) { 2174 xas_set(&xas, start); 2175 for (index = start; index < end; index++) { 2176 if (xas_next(&xas) == XA_RETRY_ENTRY) 2177 xas_store(&xas, NULL); 2178 } 2179 2180 xas_unlock_irq(&xas); 2181 goto rollback; 2182 } 2183 } else { 2184 xas_lock_irq(&xas); 2185 } 2186 2187 if (is_shmem) 2188 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2189 else 2190 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2191 2192 if (nr_none) { 2193 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none); 2194 /* nr_none is always 0 for non-shmem. */ 2195 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none); 2196 } 2197 2198 /* 2199 * Mark new_folio as uptodate before inserting it into the 2200 * page cache so that it isn't mistaken for an fallocated but 2201 * unwritten page. 2202 */ 2203 folio_mark_uptodate(new_folio); 2204 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2205 2206 if (is_shmem) 2207 folio_mark_dirty(new_folio); 2208 folio_add_lru(new_folio); 2209 2210 /* Join all the small entries into a single multi-index entry. */ 2211 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2212 xas_store(&xas, new_folio); 2213 WARN_ON_ONCE(xas_error(&xas)); 2214 xas_unlock_irq(&xas); 2215 2216 /* 2217 * Remove pte page tables, so we can re-fault the page as huge. 2218 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2219 */ 2220 retract_page_tables(mapping, start); 2221 if (cc && !cc->is_khugepaged) 2222 result = SCAN_PTE_MAPPED_HUGEPAGE; 2223 folio_unlock(new_folio); 2224 2225 /* 2226 * The collapse has succeeded, so free the old folios. 2227 */ 2228 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2229 list_del(&folio->lru); 2230 folio->mapping = NULL; 2231 folio_clear_active(folio); 2232 folio_clear_unevictable(folio); 2233 folio_unlock(folio); 2234 folio_put_refs(folio, 2 + folio_nr_pages(folio)); 2235 } 2236 2237 goto out; 2238 2239 rollback: 2240 /* Something went wrong: roll back page cache changes */ 2241 if (nr_none) { 2242 xas_lock_irq(&xas); 2243 mapping->nrpages -= nr_none; 2244 xas_unlock_irq(&xas); 2245 shmem_uncharge(mapping->host, nr_none); 2246 } 2247 2248 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2249 list_del(&folio->lru); 2250 folio_unlock(folio); 2251 folio_putback_lru(folio); 2252 folio_put(folio); 2253 } 2254 /* 2255 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2256 * file only. This undo is not needed unless failure is 2257 * due to SCAN_COPY_MC. 2258 */ 2259 if (!is_shmem && result == SCAN_COPY_MC) { 2260 filemap_nr_thps_dec(mapping); 2261 /* 2262 * Paired with the fence in do_dentry_open() -> get_write_access() 2263 * to ensure the update to nr_thps is visible. 2264 */ 2265 smp_mb(); 2266 } 2267 2268 new_folio->mapping = NULL; 2269 2270 folio_unlock(new_folio); 2271 folio_put(new_folio); 2272 out: 2273 VM_BUG_ON(!list_empty(&pagelist)); 2274 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result); 2275 return result; 2276 } 2277 2278 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2279 struct file *file, pgoff_t start, 2280 struct collapse_control *cc) 2281 { 2282 struct folio *folio = NULL; 2283 struct address_space *mapping = file->f_mapping; 2284 XA_STATE(xas, &mapping->i_pages, start); 2285 int present, swap; 2286 int node = NUMA_NO_NODE; 2287 int result = SCAN_SUCCEED; 2288 2289 present = 0; 2290 swap = 0; 2291 memset(cc->node_load, 0, sizeof(cc->node_load)); 2292 nodes_clear(cc->alloc_nmask); 2293 rcu_read_lock(); 2294 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2295 if (xas_retry(&xas, folio)) 2296 continue; 2297 2298 if (xa_is_value(folio)) { 2299 swap += 1 << xas_get_order(&xas); 2300 if (cc->is_khugepaged && 2301 swap > khugepaged_max_ptes_swap) { 2302 result = SCAN_EXCEED_SWAP_PTE; 2303 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2304 break; 2305 } 2306 continue; 2307 } 2308 2309 if (!folio_try_get(folio)) { 2310 xas_reset(&xas); 2311 continue; 2312 } 2313 2314 if (unlikely(folio != xas_reload(&xas))) { 2315 folio_put(folio); 2316 xas_reset(&xas); 2317 continue; 2318 } 2319 2320 if (folio_order(folio) == HPAGE_PMD_ORDER && 2321 folio->index == start) { 2322 /* Maybe PMD-mapped */ 2323 result = SCAN_PTE_MAPPED_HUGEPAGE; 2324 /* 2325 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2326 * by the caller won't touch the page cache, and so 2327 * it's safe to skip LRU and refcount checks before 2328 * returning. 2329 */ 2330 folio_put(folio); 2331 break; 2332 } 2333 2334 node = folio_nid(folio); 2335 if (hpage_collapse_scan_abort(node, cc)) { 2336 result = SCAN_SCAN_ABORT; 2337 folio_put(folio); 2338 break; 2339 } 2340 cc->node_load[node]++; 2341 2342 if (!folio_test_lru(folio)) { 2343 result = SCAN_PAGE_LRU; 2344 folio_put(folio); 2345 break; 2346 } 2347 2348 if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) { 2349 result = SCAN_PAGE_COUNT; 2350 folio_put(folio); 2351 break; 2352 } 2353 2354 /* 2355 * We probably should check if the folio is referenced 2356 * here, but nobody would transfer pte_young() to 2357 * folio_test_referenced() for us. And rmap walk here 2358 * is just too costly... 2359 */ 2360 2361 present += folio_nr_pages(folio); 2362 folio_put(folio); 2363 2364 if (need_resched()) { 2365 xas_pause(&xas); 2366 cond_resched_rcu(); 2367 } 2368 } 2369 rcu_read_unlock(); 2370 2371 if (result == SCAN_SUCCEED) { 2372 if (cc->is_khugepaged && 2373 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2374 result = SCAN_EXCEED_NONE_PTE; 2375 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2376 } else { 2377 result = collapse_file(mm, addr, file, start, cc); 2378 } 2379 } 2380 2381 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2382 return result; 2383 } 2384 2385 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2386 struct collapse_control *cc) 2387 __releases(&khugepaged_mm_lock) 2388 __acquires(&khugepaged_mm_lock) 2389 { 2390 struct vma_iterator vmi; 2391 struct khugepaged_mm_slot *mm_slot; 2392 struct mm_slot *slot; 2393 struct mm_struct *mm; 2394 struct vm_area_struct *vma; 2395 int progress = 0; 2396 2397 VM_BUG_ON(!pages); 2398 lockdep_assert_held(&khugepaged_mm_lock); 2399 *result = SCAN_FAIL; 2400 2401 if (khugepaged_scan.mm_slot) { 2402 mm_slot = khugepaged_scan.mm_slot; 2403 slot = &mm_slot->slot; 2404 } else { 2405 slot = list_entry(khugepaged_scan.mm_head.next, 2406 struct mm_slot, mm_node); 2407 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2408 khugepaged_scan.address = 0; 2409 khugepaged_scan.mm_slot = mm_slot; 2410 } 2411 spin_unlock(&khugepaged_mm_lock); 2412 2413 mm = slot->mm; 2414 /* 2415 * Don't wait for semaphore (to avoid long wait times). Just move to 2416 * the next mm on the list. 2417 */ 2418 vma = NULL; 2419 if (unlikely(!mmap_read_trylock(mm))) 2420 goto breakouterloop_mmap_lock; 2421 2422 progress++; 2423 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2424 goto breakouterloop; 2425 2426 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2427 for_each_vma(vmi, vma) { 2428 unsigned long hstart, hend; 2429 2430 cond_resched(); 2431 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2432 progress++; 2433 break; 2434 } 2435 if (!thp_vma_allowable_order(vma, vma->vm_flags, 2436 TVA_ENFORCE_SYSFS, PMD_ORDER)) { 2437 skip: 2438 progress++; 2439 continue; 2440 } 2441 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2442 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2443 if (khugepaged_scan.address > hend) 2444 goto skip; 2445 if (khugepaged_scan.address < hstart) 2446 khugepaged_scan.address = hstart; 2447 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2448 2449 while (khugepaged_scan.address < hend) { 2450 bool mmap_locked = true; 2451 2452 cond_resched(); 2453 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2454 goto breakouterloop; 2455 2456 VM_BUG_ON(khugepaged_scan.address < hstart || 2457 khugepaged_scan.address + HPAGE_PMD_SIZE > 2458 hend); 2459 if (!vma_is_anonymous(vma)) { 2460 struct file *file = get_file(vma->vm_file); 2461 pgoff_t pgoff = linear_page_index(vma, 2462 khugepaged_scan.address); 2463 2464 mmap_read_unlock(mm); 2465 mmap_locked = false; 2466 *result = hpage_collapse_scan_file(mm, 2467 khugepaged_scan.address, file, pgoff, cc); 2468 fput(file); 2469 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2470 mmap_read_lock(mm); 2471 if (hpage_collapse_test_exit_or_disable(mm)) 2472 goto breakouterloop; 2473 *result = collapse_pte_mapped_thp(mm, 2474 khugepaged_scan.address, false); 2475 if (*result == SCAN_PMD_MAPPED) 2476 *result = SCAN_SUCCEED; 2477 mmap_read_unlock(mm); 2478 } 2479 } else { 2480 *result = hpage_collapse_scan_pmd(mm, vma, 2481 khugepaged_scan.address, &mmap_locked, cc); 2482 } 2483 2484 if (*result == SCAN_SUCCEED) 2485 ++khugepaged_pages_collapsed; 2486 2487 /* move to next address */ 2488 khugepaged_scan.address += HPAGE_PMD_SIZE; 2489 progress += HPAGE_PMD_NR; 2490 if (!mmap_locked) 2491 /* 2492 * We released mmap_lock so break loop. Note 2493 * that we drop mmap_lock before all hugepage 2494 * allocations, so if allocation fails, we are 2495 * guaranteed to break here and report the 2496 * correct result back to caller. 2497 */ 2498 goto breakouterloop_mmap_lock; 2499 if (progress >= pages) 2500 goto breakouterloop; 2501 } 2502 } 2503 breakouterloop: 2504 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2505 breakouterloop_mmap_lock: 2506 2507 spin_lock(&khugepaged_mm_lock); 2508 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2509 /* 2510 * Release the current mm_slot if this mm is about to die, or 2511 * if we scanned all vmas of this mm. 2512 */ 2513 if (hpage_collapse_test_exit(mm) || !vma) { 2514 /* 2515 * Make sure that if mm_users is reaching zero while 2516 * khugepaged runs here, khugepaged_exit will find 2517 * mm_slot not pointing to the exiting mm. 2518 */ 2519 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2520 slot = list_entry(slot->mm_node.next, 2521 struct mm_slot, mm_node); 2522 khugepaged_scan.mm_slot = 2523 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2524 khugepaged_scan.address = 0; 2525 } else { 2526 khugepaged_scan.mm_slot = NULL; 2527 khugepaged_full_scans++; 2528 } 2529 2530 collect_mm_slot(mm_slot); 2531 } 2532 2533 return progress; 2534 } 2535 2536 static int khugepaged_has_work(void) 2537 { 2538 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); 2539 } 2540 2541 static int khugepaged_wait_event(void) 2542 { 2543 return !list_empty(&khugepaged_scan.mm_head) || 2544 kthread_should_stop(); 2545 } 2546 2547 static void khugepaged_do_scan(struct collapse_control *cc) 2548 { 2549 unsigned int progress = 0, pass_through_head = 0; 2550 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2551 bool wait = true; 2552 int result = SCAN_SUCCEED; 2553 2554 lru_add_drain_all(); 2555 2556 while (true) { 2557 cond_resched(); 2558 2559 if (unlikely(kthread_should_stop())) 2560 break; 2561 2562 spin_lock(&khugepaged_mm_lock); 2563 if (!khugepaged_scan.mm_slot) 2564 pass_through_head++; 2565 if (khugepaged_has_work() && 2566 pass_through_head < 2) 2567 progress += khugepaged_scan_mm_slot(pages - progress, 2568 &result, cc); 2569 else 2570 progress = pages; 2571 spin_unlock(&khugepaged_mm_lock); 2572 2573 if (progress >= pages) 2574 break; 2575 2576 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2577 /* 2578 * If fail to allocate the first time, try to sleep for 2579 * a while. When hit again, cancel the scan. 2580 */ 2581 if (!wait) 2582 break; 2583 wait = false; 2584 khugepaged_alloc_sleep(); 2585 } 2586 } 2587 } 2588 2589 static bool khugepaged_should_wakeup(void) 2590 { 2591 return kthread_should_stop() || 2592 time_after_eq(jiffies, khugepaged_sleep_expire); 2593 } 2594 2595 static void khugepaged_wait_work(void) 2596 { 2597 if (khugepaged_has_work()) { 2598 const unsigned long scan_sleep_jiffies = 2599 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2600 2601 if (!scan_sleep_jiffies) 2602 return; 2603 2604 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2605 wait_event_freezable_timeout(khugepaged_wait, 2606 khugepaged_should_wakeup(), 2607 scan_sleep_jiffies); 2608 return; 2609 } 2610 2611 if (hugepage_pmd_enabled()) 2612 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2613 } 2614 2615 static int khugepaged(void *none) 2616 { 2617 struct khugepaged_mm_slot *mm_slot; 2618 2619 set_freezable(); 2620 set_user_nice(current, MAX_NICE); 2621 2622 while (!kthread_should_stop()) { 2623 khugepaged_do_scan(&khugepaged_collapse_control); 2624 khugepaged_wait_work(); 2625 } 2626 2627 spin_lock(&khugepaged_mm_lock); 2628 mm_slot = khugepaged_scan.mm_slot; 2629 khugepaged_scan.mm_slot = NULL; 2630 if (mm_slot) 2631 collect_mm_slot(mm_slot); 2632 spin_unlock(&khugepaged_mm_lock); 2633 return 0; 2634 } 2635 2636 static void set_recommended_min_free_kbytes(void) 2637 { 2638 struct zone *zone; 2639 int nr_zones = 0; 2640 unsigned long recommended_min; 2641 2642 if (!hugepage_pmd_enabled()) { 2643 calculate_min_free_kbytes(); 2644 goto update_wmarks; 2645 } 2646 2647 for_each_populated_zone(zone) { 2648 /* 2649 * We don't need to worry about fragmentation of 2650 * ZONE_MOVABLE since it only has movable pages. 2651 */ 2652 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2653 continue; 2654 2655 nr_zones++; 2656 } 2657 2658 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2659 recommended_min = pageblock_nr_pages * nr_zones * 2; 2660 2661 /* 2662 * Make sure that on average at least two pageblocks are almost free 2663 * of another type, one for a migratetype to fall back to and a 2664 * second to avoid subsequent fallbacks of other types There are 3 2665 * MIGRATE_TYPES we care about. 2666 */ 2667 recommended_min += pageblock_nr_pages * nr_zones * 2668 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2669 2670 /* don't ever allow to reserve more than 5% of the lowmem */ 2671 recommended_min = min(recommended_min, 2672 (unsigned long) nr_free_buffer_pages() / 20); 2673 recommended_min <<= (PAGE_SHIFT-10); 2674 2675 if (recommended_min > min_free_kbytes) { 2676 if (user_min_free_kbytes >= 0) 2677 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2678 min_free_kbytes, recommended_min); 2679 2680 min_free_kbytes = recommended_min; 2681 } 2682 2683 update_wmarks: 2684 setup_per_zone_wmarks(); 2685 } 2686 2687 int start_stop_khugepaged(void) 2688 { 2689 int err = 0; 2690 2691 mutex_lock(&khugepaged_mutex); 2692 if (hugepage_pmd_enabled()) { 2693 if (!khugepaged_thread) 2694 khugepaged_thread = kthread_run(khugepaged, NULL, 2695 "khugepaged"); 2696 if (IS_ERR(khugepaged_thread)) { 2697 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2698 err = PTR_ERR(khugepaged_thread); 2699 khugepaged_thread = NULL; 2700 goto fail; 2701 } 2702 2703 if (!list_empty(&khugepaged_scan.mm_head)) 2704 wake_up_interruptible(&khugepaged_wait); 2705 } else if (khugepaged_thread) { 2706 kthread_stop(khugepaged_thread); 2707 khugepaged_thread = NULL; 2708 } 2709 set_recommended_min_free_kbytes(); 2710 fail: 2711 mutex_unlock(&khugepaged_mutex); 2712 return err; 2713 } 2714 2715 void khugepaged_min_free_kbytes_update(void) 2716 { 2717 mutex_lock(&khugepaged_mutex); 2718 if (hugepage_pmd_enabled() && khugepaged_thread) 2719 set_recommended_min_free_kbytes(); 2720 mutex_unlock(&khugepaged_mutex); 2721 } 2722 2723 bool current_is_khugepaged(void) 2724 { 2725 return kthread_func(current) == khugepaged; 2726 } 2727 2728 static int madvise_collapse_errno(enum scan_result r) 2729 { 2730 /* 2731 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2732 * actionable feedback to caller, so they may take an appropriate 2733 * fallback measure depending on the nature of the failure. 2734 */ 2735 switch (r) { 2736 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2737 return -ENOMEM; 2738 case SCAN_CGROUP_CHARGE_FAIL: 2739 case SCAN_EXCEED_NONE_PTE: 2740 return -EBUSY; 2741 /* Resource temporary unavailable - trying again might succeed */ 2742 case SCAN_PAGE_COUNT: 2743 case SCAN_PAGE_LOCK: 2744 case SCAN_PAGE_LRU: 2745 case SCAN_DEL_PAGE_LRU: 2746 case SCAN_PAGE_FILLED: 2747 return -EAGAIN; 2748 /* 2749 * Other: Trying again likely not to succeed / error intrinsic to 2750 * specified memory range. khugepaged likely won't be able to collapse 2751 * either. 2752 */ 2753 default: 2754 return -EINVAL; 2755 } 2756 } 2757 2758 int madvise_collapse(struct vm_area_struct *vma, unsigned long start, 2759 unsigned long end, bool *lock_dropped) 2760 { 2761 struct collapse_control *cc; 2762 struct mm_struct *mm = vma->vm_mm; 2763 unsigned long hstart, hend, addr; 2764 int thps = 0, last_fail = SCAN_FAIL; 2765 bool mmap_locked = true; 2766 2767 BUG_ON(vma->vm_start > start); 2768 BUG_ON(vma->vm_end < end); 2769 2770 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 2771 return -EINVAL; 2772 2773 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2774 if (!cc) 2775 return -ENOMEM; 2776 cc->is_khugepaged = false; 2777 2778 mmgrab(mm); 2779 lru_add_drain_all(); 2780 2781 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2782 hend = end & HPAGE_PMD_MASK; 2783 2784 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2785 int result = SCAN_FAIL; 2786 2787 if (!mmap_locked) { 2788 cond_resched(); 2789 mmap_read_lock(mm); 2790 mmap_locked = true; 2791 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2792 cc); 2793 if (result != SCAN_SUCCEED) { 2794 last_fail = result; 2795 goto out_nolock; 2796 } 2797 2798 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2799 } 2800 mmap_assert_locked(mm); 2801 memset(cc->node_load, 0, sizeof(cc->node_load)); 2802 nodes_clear(cc->alloc_nmask); 2803 if (!vma_is_anonymous(vma)) { 2804 struct file *file = get_file(vma->vm_file); 2805 pgoff_t pgoff = linear_page_index(vma, addr); 2806 2807 mmap_read_unlock(mm); 2808 mmap_locked = false; 2809 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2810 cc); 2811 fput(file); 2812 } else { 2813 result = hpage_collapse_scan_pmd(mm, vma, addr, 2814 &mmap_locked, cc); 2815 } 2816 if (!mmap_locked) 2817 *lock_dropped = true; 2818 2819 handle_result: 2820 switch (result) { 2821 case SCAN_SUCCEED: 2822 case SCAN_PMD_MAPPED: 2823 ++thps; 2824 break; 2825 case SCAN_PTE_MAPPED_HUGEPAGE: 2826 BUG_ON(mmap_locked); 2827 mmap_read_lock(mm); 2828 result = collapse_pte_mapped_thp(mm, addr, true); 2829 mmap_read_unlock(mm); 2830 goto handle_result; 2831 /* Whitelisted set of results where continuing OK */ 2832 case SCAN_PMD_NULL: 2833 case SCAN_PTE_NON_PRESENT: 2834 case SCAN_PTE_UFFD_WP: 2835 case SCAN_PAGE_RO: 2836 case SCAN_LACK_REFERENCED_PAGE: 2837 case SCAN_PAGE_NULL: 2838 case SCAN_PAGE_COUNT: 2839 case SCAN_PAGE_LOCK: 2840 case SCAN_PAGE_COMPOUND: 2841 case SCAN_PAGE_LRU: 2842 case SCAN_DEL_PAGE_LRU: 2843 last_fail = result; 2844 break; 2845 default: 2846 last_fail = result; 2847 /* Other error, exit */ 2848 goto out_maybelock; 2849 } 2850 } 2851 2852 out_maybelock: 2853 /* Caller expects us to hold mmap_lock on return */ 2854 if (!mmap_locked) 2855 mmap_read_lock(mm); 2856 out_nolock: 2857 mmap_assert_locked(mm); 2858 mmdrop(mm); 2859 kfree(cc); 2860 2861 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2862 : madvise_collapse_errno(last_fail); 2863 } 2864