1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/rcupdate_wait.h> 21 #include <linux/swapops.h> 22 #include <linux/shmem_fs.h> 23 #include <linux/ksm.h> 24 25 #include <asm/tlb.h> 26 #include <asm/pgalloc.h> 27 #include "internal.h" 28 #include "mm_slot.h" 29 30 enum scan_result { 31 SCAN_FAIL, 32 SCAN_SUCCEED, 33 SCAN_PMD_NULL, 34 SCAN_PMD_NONE, 35 SCAN_PMD_MAPPED, 36 SCAN_EXCEED_NONE_PTE, 37 SCAN_EXCEED_SWAP_PTE, 38 SCAN_EXCEED_SHARED_PTE, 39 SCAN_PTE_NON_PRESENT, 40 SCAN_PTE_UFFD_WP, 41 SCAN_PTE_MAPPED_HUGEPAGE, 42 SCAN_PAGE_RO, 43 SCAN_LACK_REFERENCED_PAGE, 44 SCAN_PAGE_NULL, 45 SCAN_SCAN_ABORT, 46 SCAN_PAGE_COUNT, 47 SCAN_PAGE_LRU, 48 SCAN_PAGE_LOCK, 49 SCAN_PAGE_ANON, 50 SCAN_PAGE_COMPOUND, 51 SCAN_ANY_PROCESS, 52 SCAN_VMA_NULL, 53 SCAN_VMA_CHECK, 54 SCAN_ADDRESS_RANGE, 55 SCAN_DEL_PAGE_LRU, 56 SCAN_ALLOC_HUGE_PAGE_FAIL, 57 SCAN_CGROUP_CHARGE_FAIL, 58 SCAN_TRUNCATED, 59 SCAN_PAGE_HAS_PRIVATE, 60 SCAN_STORE_FAILED, 61 SCAN_COPY_MC, 62 SCAN_PAGE_FILLED, 63 }; 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/huge_memory.h> 67 68 static struct task_struct *khugepaged_thread __read_mostly; 69 static DEFINE_MUTEX(khugepaged_mutex); 70 71 /* default scan 8*512 pte (or vmas) every 30 second */ 72 static unsigned int khugepaged_pages_to_scan __read_mostly; 73 static unsigned int khugepaged_pages_collapsed; 74 static unsigned int khugepaged_full_scans; 75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 76 /* during fragmentation poll the hugepage allocator once every minute */ 77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 78 static unsigned long khugepaged_sleep_expire; 79 static DEFINE_SPINLOCK(khugepaged_mm_lock); 80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 81 /* 82 * default collapse hugepages if there is at least one pte mapped like 83 * it would have happened if the vma was large enough during page 84 * fault. 85 * 86 * Note that these are only respected if collapse was initiated by khugepaged. 87 */ 88 unsigned int khugepaged_max_ptes_none __read_mostly; 89 static unsigned int khugepaged_max_ptes_swap __read_mostly; 90 static unsigned int khugepaged_max_ptes_shared __read_mostly; 91 92 #define MM_SLOTS_HASH_BITS 10 93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 94 95 static struct kmem_cache *mm_slot_cache __ro_after_init; 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 109 * @slot: hash lookup from mm to mm_slot 110 */ 111 struct khugepaged_mm_slot { 112 struct mm_slot slot; 113 }; 114 115 /** 116 * struct khugepaged_scan - cursor for scanning 117 * @mm_head: the head of the mm list to scan 118 * @mm_slot: the current mm_slot we are scanning 119 * @address: the next address inside that to be scanned 120 * 121 * There is only the one khugepaged_scan instance of this cursor structure. 122 */ 123 struct khugepaged_scan { 124 struct list_head mm_head; 125 struct khugepaged_mm_slot *mm_slot; 126 unsigned long address; 127 }; 128 129 static struct khugepaged_scan khugepaged_scan = { 130 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 131 }; 132 133 #ifdef CONFIG_SYSFS 134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 135 struct kobj_attribute *attr, 136 char *buf) 137 { 138 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 139 } 140 141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 142 struct kobj_attribute *attr, 143 const char *buf, size_t count) 144 { 145 unsigned int msecs; 146 int err; 147 148 err = kstrtouint(buf, 10, &msecs); 149 if (err) 150 return -EINVAL; 151 152 khugepaged_scan_sleep_millisecs = msecs; 153 khugepaged_sleep_expire = 0; 154 wake_up_interruptible(&khugepaged_wait); 155 156 return count; 157 } 158 static struct kobj_attribute scan_sleep_millisecs_attr = 159 __ATTR_RW(scan_sleep_millisecs); 160 161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 162 struct kobj_attribute *attr, 163 char *buf) 164 { 165 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 166 } 167 168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 169 struct kobj_attribute *attr, 170 const char *buf, size_t count) 171 { 172 unsigned int msecs; 173 int err; 174 175 err = kstrtouint(buf, 10, &msecs); 176 if (err) 177 return -EINVAL; 178 179 khugepaged_alloc_sleep_millisecs = msecs; 180 khugepaged_sleep_expire = 0; 181 wake_up_interruptible(&khugepaged_wait); 182 183 return count; 184 } 185 static struct kobj_attribute alloc_sleep_millisecs_attr = 186 __ATTR_RW(alloc_sleep_millisecs); 187 188 static ssize_t pages_to_scan_show(struct kobject *kobj, 189 struct kobj_attribute *attr, 190 char *buf) 191 { 192 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 193 } 194 static ssize_t pages_to_scan_store(struct kobject *kobj, 195 struct kobj_attribute *attr, 196 const char *buf, size_t count) 197 { 198 unsigned int pages; 199 int err; 200 201 err = kstrtouint(buf, 10, &pages); 202 if (err || !pages) 203 return -EINVAL; 204 205 khugepaged_pages_to_scan = pages; 206 207 return count; 208 } 209 static struct kobj_attribute pages_to_scan_attr = 210 __ATTR_RW(pages_to_scan); 211 212 static ssize_t pages_collapsed_show(struct kobject *kobj, 213 struct kobj_attribute *attr, 214 char *buf) 215 { 216 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 217 } 218 static struct kobj_attribute pages_collapsed_attr = 219 __ATTR_RO(pages_collapsed); 220 221 static ssize_t full_scans_show(struct kobject *kobj, 222 struct kobj_attribute *attr, 223 char *buf) 224 { 225 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 226 } 227 static struct kobj_attribute full_scans_attr = 228 __ATTR_RO(full_scans); 229 230 static ssize_t defrag_show(struct kobject *kobj, 231 struct kobj_attribute *attr, char *buf) 232 { 233 return single_hugepage_flag_show(kobj, attr, buf, 234 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 235 } 236 static ssize_t defrag_store(struct kobject *kobj, 237 struct kobj_attribute *attr, 238 const char *buf, size_t count) 239 { 240 return single_hugepage_flag_store(kobj, attr, buf, count, 241 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 242 } 243 static struct kobj_attribute khugepaged_defrag_attr = 244 __ATTR_RW(defrag); 245 246 /* 247 * max_ptes_none controls if khugepaged should collapse hugepages over 248 * any unmapped ptes in turn potentially increasing the memory 249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 250 * reduce the available free memory in the system as it 251 * runs. Increasing max_ptes_none will instead potentially reduce the 252 * free memory in the system during the khugepaged scan. 253 */ 254 static ssize_t max_ptes_none_show(struct kobject *kobj, 255 struct kobj_attribute *attr, 256 char *buf) 257 { 258 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 259 } 260 static ssize_t max_ptes_none_store(struct kobject *kobj, 261 struct kobj_attribute *attr, 262 const char *buf, size_t count) 263 { 264 int err; 265 unsigned long max_ptes_none; 266 267 err = kstrtoul(buf, 10, &max_ptes_none); 268 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 269 return -EINVAL; 270 271 khugepaged_max_ptes_none = max_ptes_none; 272 273 return count; 274 } 275 static struct kobj_attribute khugepaged_max_ptes_none_attr = 276 __ATTR_RW(max_ptes_none); 277 278 static ssize_t max_ptes_swap_show(struct kobject *kobj, 279 struct kobj_attribute *attr, 280 char *buf) 281 { 282 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 283 } 284 285 static ssize_t max_ptes_swap_store(struct kobject *kobj, 286 struct kobj_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int err; 290 unsigned long max_ptes_swap; 291 292 err = kstrtoul(buf, 10, &max_ptes_swap); 293 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 294 return -EINVAL; 295 296 khugepaged_max_ptes_swap = max_ptes_swap; 297 298 return count; 299 } 300 301 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 302 __ATTR_RW(max_ptes_swap); 303 304 static ssize_t max_ptes_shared_show(struct kobject *kobj, 305 struct kobj_attribute *attr, 306 char *buf) 307 { 308 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 309 } 310 311 static ssize_t max_ptes_shared_store(struct kobject *kobj, 312 struct kobj_attribute *attr, 313 const char *buf, size_t count) 314 { 315 int err; 316 unsigned long max_ptes_shared; 317 318 err = kstrtoul(buf, 10, &max_ptes_shared); 319 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 320 return -EINVAL; 321 322 khugepaged_max_ptes_shared = max_ptes_shared; 323 324 return count; 325 } 326 327 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 328 __ATTR_RW(max_ptes_shared); 329 330 static struct attribute *khugepaged_attr[] = { 331 &khugepaged_defrag_attr.attr, 332 &khugepaged_max_ptes_none_attr.attr, 333 &khugepaged_max_ptes_swap_attr.attr, 334 &khugepaged_max_ptes_shared_attr.attr, 335 &pages_to_scan_attr.attr, 336 &pages_collapsed_attr.attr, 337 &full_scans_attr.attr, 338 &scan_sleep_millisecs_attr.attr, 339 &alloc_sleep_millisecs_attr.attr, 340 NULL, 341 }; 342 343 struct attribute_group khugepaged_attr_group = { 344 .attrs = khugepaged_attr, 345 .name = "khugepaged", 346 }; 347 #endif /* CONFIG_SYSFS */ 348 349 int hugepage_madvise(struct vm_area_struct *vma, 350 unsigned long *vm_flags, int advice) 351 { 352 switch (advice) { 353 case MADV_HUGEPAGE: 354 #ifdef CONFIG_S390 355 /* 356 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 357 * can't handle this properly after s390_enable_sie, so we simply 358 * ignore the madvise to prevent qemu from causing a SIGSEGV. 359 */ 360 if (mm_has_pgste(vma->vm_mm)) 361 return 0; 362 #endif 363 *vm_flags &= ~VM_NOHUGEPAGE; 364 *vm_flags |= VM_HUGEPAGE; 365 /* 366 * If the vma become good for khugepaged to scan, 367 * register it here without waiting a page fault that 368 * may not happen any time soon. 369 */ 370 khugepaged_enter_vma(vma, *vm_flags); 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0); 389 if (!mm_slot_cache) 390 return -ENOMEM; 391 392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 396 397 return 0; 398 } 399 400 void __init khugepaged_destroy(void) 401 { 402 kmem_cache_destroy(mm_slot_cache); 403 } 404 405 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 406 { 407 return atomic_read(&mm->mm_users) == 0; 408 } 409 410 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 411 { 412 return hpage_collapse_test_exit(mm) || 413 test_bit(MMF_DISABLE_THP, &mm->flags); 414 } 415 416 static bool hugepage_pmd_enabled(void) 417 { 418 /* 419 * We cover both the anon and the file-backed case here; file-backed 420 * hugepages, when configured in, are determined by the global control. 421 * Anon pmd-sized hugepages are determined by the pmd-size control. 422 */ 423 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 424 hugepage_global_enabled()) 425 return true; 426 if (test_bit(PMD_ORDER, &huge_anon_orders_always)) 427 return true; 428 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) 429 return true; 430 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && 431 hugepage_global_enabled()) 432 return true; 433 return false; 434 } 435 436 void __khugepaged_enter(struct mm_struct *mm) 437 { 438 struct khugepaged_mm_slot *mm_slot; 439 struct mm_slot *slot; 440 int wakeup; 441 442 /* __khugepaged_exit() must not run from under us */ 443 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 444 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 445 return; 446 447 mm_slot = mm_slot_alloc(mm_slot_cache); 448 if (!mm_slot) 449 return; 450 451 slot = &mm_slot->slot; 452 453 spin_lock(&khugepaged_mm_lock); 454 mm_slot_insert(mm_slots_hash, mm, slot); 455 /* 456 * Insert just behind the scanning cursor, to let the area settle 457 * down a little. 458 */ 459 wakeup = list_empty(&khugepaged_scan.mm_head); 460 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 461 spin_unlock(&khugepaged_mm_lock); 462 463 mmgrab(mm); 464 if (wakeup) 465 wake_up_interruptible(&khugepaged_wait); 466 } 467 468 void khugepaged_enter_vma(struct vm_area_struct *vma, 469 unsigned long vm_flags) 470 { 471 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 472 hugepage_pmd_enabled()) { 473 if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS, 474 PMD_ORDER)) 475 __khugepaged_enter(vma->vm_mm); 476 } 477 } 478 479 void __khugepaged_exit(struct mm_struct *mm) 480 { 481 struct khugepaged_mm_slot *mm_slot; 482 struct mm_slot *slot; 483 int free = 0; 484 485 spin_lock(&khugepaged_mm_lock); 486 slot = mm_slot_lookup(mm_slots_hash, mm); 487 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 488 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 489 hash_del(&slot->hash); 490 list_del(&slot->mm_node); 491 free = 1; 492 } 493 spin_unlock(&khugepaged_mm_lock); 494 495 if (free) { 496 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 497 mm_slot_free(mm_slot_cache, mm_slot); 498 mmdrop(mm); 499 } else if (mm_slot) { 500 /* 501 * This is required to serialize against 502 * hpage_collapse_test_exit() (which is guaranteed to run 503 * under mmap sem read mode). Stop here (after we return all 504 * pagetables will be destroyed) until khugepaged has finished 505 * working on the pagetables under the mmap_lock. 506 */ 507 mmap_write_lock(mm); 508 mmap_write_unlock(mm); 509 } 510 } 511 512 static void release_pte_folio(struct folio *folio) 513 { 514 node_stat_mod_folio(folio, 515 NR_ISOLATED_ANON + folio_is_file_lru(folio), 516 -folio_nr_pages(folio)); 517 folio_unlock(folio); 518 folio_putback_lru(folio); 519 } 520 521 static void release_pte_pages(pte_t *pte, pte_t *_pte, 522 struct list_head *compound_pagelist) 523 { 524 struct folio *folio, *tmp; 525 526 while (--_pte >= pte) { 527 pte_t pteval = ptep_get(_pte); 528 unsigned long pfn; 529 530 if (pte_none(pteval)) 531 continue; 532 pfn = pte_pfn(pteval); 533 if (is_zero_pfn(pfn)) 534 continue; 535 folio = pfn_folio(pfn); 536 if (folio_test_large(folio)) 537 continue; 538 release_pte_folio(folio); 539 } 540 541 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 542 list_del(&folio->lru); 543 release_pte_folio(folio); 544 } 545 } 546 547 static bool is_refcount_suitable(struct folio *folio) 548 { 549 int expected_refcount = folio_mapcount(folio); 550 551 if (!folio_test_anon(folio) || folio_test_swapcache(folio)) 552 expected_refcount += folio_nr_pages(folio); 553 554 if (folio_test_private(folio)) 555 expected_refcount++; 556 557 return folio_ref_count(folio) == expected_refcount; 558 } 559 560 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 561 unsigned long address, 562 pte_t *pte, 563 struct collapse_control *cc, 564 struct list_head *compound_pagelist) 565 { 566 struct page *page = NULL; 567 struct folio *folio = NULL; 568 pte_t *_pte; 569 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 570 bool writable = false; 571 572 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 573 _pte++, address += PAGE_SIZE) { 574 pte_t pteval = ptep_get(_pte); 575 if (pte_none(pteval) || (pte_present(pteval) && 576 is_zero_pfn(pte_pfn(pteval)))) { 577 ++none_or_zero; 578 if (!userfaultfd_armed(vma) && 579 (!cc->is_khugepaged || 580 none_or_zero <= khugepaged_max_ptes_none)) { 581 continue; 582 } else { 583 result = SCAN_EXCEED_NONE_PTE; 584 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 585 goto out; 586 } 587 } 588 if (!pte_present(pteval)) { 589 result = SCAN_PTE_NON_PRESENT; 590 goto out; 591 } 592 if (pte_uffd_wp(pteval)) { 593 result = SCAN_PTE_UFFD_WP; 594 goto out; 595 } 596 page = vm_normal_page(vma, address, pteval); 597 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 598 result = SCAN_PAGE_NULL; 599 goto out; 600 } 601 602 folio = page_folio(page); 603 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 604 605 /* See hpage_collapse_scan_pmd(). */ 606 if (folio_likely_mapped_shared(folio)) { 607 ++shared; 608 if (cc->is_khugepaged && 609 shared > khugepaged_max_ptes_shared) { 610 result = SCAN_EXCEED_SHARED_PTE; 611 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 612 goto out; 613 } 614 } 615 616 if (folio_test_large(folio)) { 617 struct folio *f; 618 619 /* 620 * Check if we have dealt with the compound page 621 * already 622 */ 623 list_for_each_entry(f, compound_pagelist, lru) { 624 if (folio == f) 625 goto next; 626 } 627 } 628 629 /* 630 * We can do it before folio_isolate_lru because the 631 * folio can't be freed from under us. NOTE: PG_lock 632 * is needed to serialize against split_huge_page 633 * when invoked from the VM. 634 */ 635 if (!folio_trylock(folio)) { 636 result = SCAN_PAGE_LOCK; 637 goto out; 638 } 639 640 /* 641 * Check if the page has any GUP (or other external) pins. 642 * 643 * The page table that maps the page has been already unlinked 644 * from the page table tree and this process cannot get 645 * an additional pin on the page. 646 * 647 * New pins can come later if the page is shared across fork, 648 * but not from this process. The other process cannot write to 649 * the page, only trigger CoW. 650 */ 651 if (!is_refcount_suitable(folio)) { 652 folio_unlock(folio); 653 result = SCAN_PAGE_COUNT; 654 goto out; 655 } 656 657 /* 658 * Isolate the page to avoid collapsing an hugepage 659 * currently in use by the VM. 660 */ 661 if (!folio_isolate_lru(folio)) { 662 folio_unlock(folio); 663 result = SCAN_DEL_PAGE_LRU; 664 goto out; 665 } 666 node_stat_mod_folio(folio, 667 NR_ISOLATED_ANON + folio_is_file_lru(folio), 668 folio_nr_pages(folio)); 669 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 670 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 671 672 if (folio_test_large(folio)) 673 list_add_tail(&folio->lru, compound_pagelist); 674 next: 675 /* 676 * If collapse was initiated by khugepaged, check that there is 677 * enough young pte to justify collapsing the page 678 */ 679 if (cc->is_khugepaged && 680 (pte_young(pteval) || folio_test_young(folio) || 681 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 682 address))) 683 referenced++; 684 685 if (pte_write(pteval)) 686 writable = true; 687 } 688 689 if (unlikely(!writable)) { 690 result = SCAN_PAGE_RO; 691 } else if (unlikely(cc->is_khugepaged && !referenced)) { 692 result = SCAN_LACK_REFERENCED_PAGE; 693 } else { 694 result = SCAN_SUCCEED; 695 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 696 referenced, writable, result); 697 return result; 698 } 699 out: 700 release_pte_pages(pte, _pte, compound_pagelist); 701 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 702 referenced, writable, result); 703 return result; 704 } 705 706 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 707 struct vm_area_struct *vma, 708 unsigned long address, 709 spinlock_t *ptl, 710 struct list_head *compound_pagelist) 711 { 712 struct folio *src, *tmp; 713 pte_t *_pte; 714 pte_t pteval; 715 716 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 717 _pte++, address += PAGE_SIZE) { 718 pteval = ptep_get(_pte); 719 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 720 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 721 if (is_zero_pfn(pte_pfn(pteval))) { 722 /* 723 * ptl mostly unnecessary. 724 */ 725 spin_lock(ptl); 726 ptep_clear(vma->vm_mm, address, _pte); 727 spin_unlock(ptl); 728 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 729 } 730 } else { 731 struct page *src_page = pte_page(pteval); 732 733 src = page_folio(src_page); 734 if (!folio_test_large(src)) 735 release_pte_folio(src); 736 /* 737 * ptl mostly unnecessary, but preempt has to 738 * be disabled to update the per-cpu stats 739 * inside folio_remove_rmap_pte(). 740 */ 741 spin_lock(ptl); 742 ptep_clear(vma->vm_mm, address, _pte); 743 folio_remove_rmap_pte(src, src_page, vma); 744 spin_unlock(ptl); 745 free_page_and_swap_cache(src_page); 746 } 747 } 748 749 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 750 list_del(&src->lru); 751 node_stat_sub_folio(src, NR_ISOLATED_ANON + 752 folio_is_file_lru(src)); 753 folio_unlock(src); 754 free_swap_cache(src); 755 folio_putback_lru(src); 756 } 757 } 758 759 static void __collapse_huge_page_copy_failed(pte_t *pte, 760 pmd_t *pmd, 761 pmd_t orig_pmd, 762 struct vm_area_struct *vma, 763 struct list_head *compound_pagelist) 764 { 765 spinlock_t *pmd_ptl; 766 767 /* 768 * Re-establish the PMD to point to the original page table 769 * entry. Restoring PMD needs to be done prior to releasing 770 * pages. Since pages are still isolated and locked here, 771 * acquiring anon_vma_lock_write is unnecessary. 772 */ 773 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 774 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 775 spin_unlock(pmd_ptl); 776 /* 777 * Release both raw and compound pages isolated 778 * in __collapse_huge_page_isolate. 779 */ 780 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 781 } 782 783 /* 784 * __collapse_huge_page_copy - attempts to copy memory contents from raw 785 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 786 * otherwise restores the original page table and releases isolated raw pages. 787 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 788 * 789 * @pte: starting of the PTEs to copy from 790 * @folio: the new hugepage to copy contents to 791 * @pmd: pointer to the new hugepage's PMD 792 * @orig_pmd: the original raw pages' PMD 793 * @vma: the original raw pages' virtual memory area 794 * @address: starting address to copy 795 * @ptl: lock on raw pages' PTEs 796 * @compound_pagelist: list that stores compound pages 797 */ 798 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 799 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 800 unsigned long address, spinlock_t *ptl, 801 struct list_head *compound_pagelist) 802 { 803 unsigned int i; 804 int result = SCAN_SUCCEED; 805 806 /* 807 * Copying pages' contents is subject to memory poison at any iteration. 808 */ 809 for (i = 0; i < HPAGE_PMD_NR; i++) { 810 pte_t pteval = ptep_get(pte + i); 811 struct page *page = folio_page(folio, i); 812 unsigned long src_addr = address + i * PAGE_SIZE; 813 struct page *src_page; 814 815 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 816 clear_user_highpage(page, src_addr); 817 continue; 818 } 819 src_page = pte_page(pteval); 820 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 821 result = SCAN_COPY_MC; 822 break; 823 } 824 } 825 826 if (likely(result == SCAN_SUCCEED)) 827 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 828 compound_pagelist); 829 else 830 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 831 compound_pagelist); 832 833 return result; 834 } 835 836 static void khugepaged_alloc_sleep(void) 837 { 838 DEFINE_WAIT(wait); 839 840 add_wait_queue(&khugepaged_wait, &wait); 841 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 842 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 843 remove_wait_queue(&khugepaged_wait, &wait); 844 } 845 846 struct collapse_control khugepaged_collapse_control = { 847 .is_khugepaged = true, 848 }; 849 850 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 851 { 852 int i; 853 854 /* 855 * If node_reclaim_mode is disabled, then no extra effort is made to 856 * allocate memory locally. 857 */ 858 if (!node_reclaim_enabled()) 859 return false; 860 861 /* If there is a count for this node already, it must be acceptable */ 862 if (cc->node_load[nid]) 863 return false; 864 865 for (i = 0; i < MAX_NUMNODES; i++) { 866 if (!cc->node_load[i]) 867 continue; 868 if (node_distance(nid, i) > node_reclaim_distance) 869 return true; 870 } 871 return false; 872 } 873 874 #define khugepaged_defrag() \ 875 (transparent_hugepage_flags & \ 876 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 877 878 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 879 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 880 { 881 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 882 } 883 884 #ifdef CONFIG_NUMA 885 static int hpage_collapse_find_target_node(struct collapse_control *cc) 886 { 887 int nid, target_node = 0, max_value = 0; 888 889 /* find first node with max normal pages hit */ 890 for (nid = 0; nid < MAX_NUMNODES; nid++) 891 if (cc->node_load[nid] > max_value) { 892 max_value = cc->node_load[nid]; 893 target_node = nid; 894 } 895 896 for_each_online_node(nid) { 897 if (max_value == cc->node_load[nid]) 898 node_set(nid, cc->alloc_nmask); 899 } 900 901 return target_node; 902 } 903 #else 904 static int hpage_collapse_find_target_node(struct collapse_control *cc) 905 { 906 return 0; 907 } 908 #endif 909 910 /* 911 * If mmap_lock temporarily dropped, revalidate vma 912 * before taking mmap_lock. 913 * Returns enum scan_result value. 914 */ 915 916 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 917 bool expect_anon, 918 struct vm_area_struct **vmap, 919 struct collapse_control *cc) 920 { 921 struct vm_area_struct *vma; 922 unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0; 923 924 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 925 return SCAN_ANY_PROCESS; 926 927 *vmap = vma = find_vma(mm, address); 928 if (!vma) 929 return SCAN_VMA_NULL; 930 931 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 932 return SCAN_ADDRESS_RANGE; 933 if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER)) 934 return SCAN_VMA_CHECK; 935 /* 936 * Anon VMA expected, the address may be unmapped then 937 * remapped to file after khugepaged reaquired the mmap_lock. 938 * 939 * thp_vma_allowable_order may return true for qualified file 940 * vmas. 941 */ 942 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 943 return SCAN_PAGE_ANON; 944 return SCAN_SUCCEED; 945 } 946 947 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 948 unsigned long address, 949 pmd_t **pmd) 950 { 951 pmd_t pmde; 952 953 *pmd = mm_find_pmd(mm, address); 954 if (!*pmd) 955 return SCAN_PMD_NULL; 956 957 pmde = pmdp_get_lockless(*pmd); 958 if (pmd_none(pmde)) 959 return SCAN_PMD_NONE; 960 if (!pmd_present(pmde)) 961 return SCAN_PMD_NULL; 962 if (pmd_trans_huge(pmde)) 963 return SCAN_PMD_MAPPED; 964 if (pmd_devmap(pmde)) 965 return SCAN_PMD_NULL; 966 if (pmd_bad(pmde)) 967 return SCAN_PMD_NULL; 968 return SCAN_SUCCEED; 969 } 970 971 static int check_pmd_still_valid(struct mm_struct *mm, 972 unsigned long address, 973 pmd_t *pmd) 974 { 975 pmd_t *new_pmd; 976 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 977 978 if (result != SCAN_SUCCEED) 979 return result; 980 if (new_pmd != pmd) 981 return SCAN_FAIL; 982 return SCAN_SUCCEED; 983 } 984 985 /* 986 * Bring missing pages in from swap, to complete THP collapse. 987 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 988 * 989 * Called and returns without pte mapped or spinlocks held. 990 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 991 */ 992 static int __collapse_huge_page_swapin(struct mm_struct *mm, 993 struct vm_area_struct *vma, 994 unsigned long haddr, pmd_t *pmd, 995 int referenced) 996 { 997 int swapped_in = 0; 998 vm_fault_t ret = 0; 999 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 1000 int result; 1001 pte_t *pte = NULL; 1002 spinlock_t *ptl; 1003 1004 for (address = haddr; address < end; address += PAGE_SIZE) { 1005 struct vm_fault vmf = { 1006 .vma = vma, 1007 .address = address, 1008 .pgoff = linear_page_index(vma, address), 1009 .flags = FAULT_FLAG_ALLOW_RETRY, 1010 .pmd = pmd, 1011 }; 1012 1013 if (!pte++) { 1014 pte = pte_offset_map_nolock(mm, pmd, address, &ptl); 1015 if (!pte) { 1016 mmap_read_unlock(mm); 1017 result = SCAN_PMD_NULL; 1018 goto out; 1019 } 1020 } 1021 1022 vmf.orig_pte = ptep_get_lockless(pte); 1023 if (!is_swap_pte(vmf.orig_pte)) 1024 continue; 1025 1026 vmf.pte = pte; 1027 vmf.ptl = ptl; 1028 ret = do_swap_page(&vmf); 1029 /* Which unmaps pte (after perhaps re-checking the entry) */ 1030 pte = NULL; 1031 1032 /* 1033 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1034 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1035 * we do not retry here and swap entry will remain in pagetable 1036 * resulting in later failure. 1037 */ 1038 if (ret & VM_FAULT_RETRY) { 1039 /* Likely, but not guaranteed, that page lock failed */ 1040 result = SCAN_PAGE_LOCK; 1041 goto out; 1042 } 1043 if (ret & VM_FAULT_ERROR) { 1044 mmap_read_unlock(mm); 1045 result = SCAN_FAIL; 1046 goto out; 1047 } 1048 swapped_in++; 1049 } 1050 1051 if (pte) 1052 pte_unmap(pte); 1053 1054 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1055 if (swapped_in) 1056 lru_add_drain(); 1057 1058 result = SCAN_SUCCEED; 1059 out: 1060 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1061 return result; 1062 } 1063 1064 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1065 struct collapse_control *cc) 1066 { 1067 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1068 GFP_TRANSHUGE); 1069 int node = hpage_collapse_find_target_node(cc); 1070 struct folio *folio; 1071 1072 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1073 if (!folio) { 1074 *foliop = NULL; 1075 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1076 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1077 } 1078 1079 count_vm_event(THP_COLLAPSE_ALLOC); 1080 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1081 folio_put(folio); 1082 *foliop = NULL; 1083 return SCAN_CGROUP_CHARGE_FAIL; 1084 } 1085 1086 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1087 1088 *foliop = folio; 1089 return SCAN_SUCCEED; 1090 } 1091 1092 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1093 int referenced, int unmapped, 1094 struct collapse_control *cc) 1095 { 1096 LIST_HEAD(compound_pagelist); 1097 pmd_t *pmd, _pmd; 1098 pte_t *pte; 1099 pgtable_t pgtable; 1100 struct folio *folio; 1101 spinlock_t *pmd_ptl, *pte_ptl; 1102 int result = SCAN_FAIL; 1103 struct vm_area_struct *vma; 1104 struct mmu_notifier_range range; 1105 1106 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1107 1108 /* 1109 * Before allocating the hugepage, release the mmap_lock read lock. 1110 * The allocation can take potentially a long time if it involves 1111 * sync compaction, and we do not need to hold the mmap_lock during 1112 * that. We will recheck the vma after taking it again in write mode. 1113 */ 1114 mmap_read_unlock(mm); 1115 1116 result = alloc_charge_folio(&folio, mm, cc); 1117 if (result != SCAN_SUCCEED) 1118 goto out_nolock; 1119 1120 mmap_read_lock(mm); 1121 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1122 if (result != SCAN_SUCCEED) { 1123 mmap_read_unlock(mm); 1124 goto out_nolock; 1125 } 1126 1127 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1128 if (result != SCAN_SUCCEED) { 1129 mmap_read_unlock(mm); 1130 goto out_nolock; 1131 } 1132 1133 if (unmapped) { 1134 /* 1135 * __collapse_huge_page_swapin will return with mmap_lock 1136 * released when it fails. So we jump out_nolock directly in 1137 * that case. Continuing to collapse causes inconsistency. 1138 */ 1139 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1140 referenced); 1141 if (result != SCAN_SUCCEED) 1142 goto out_nolock; 1143 } 1144 1145 mmap_read_unlock(mm); 1146 /* 1147 * Prevent all access to pagetables with the exception of 1148 * gup_fast later handled by the ptep_clear_flush and the VM 1149 * handled by the anon_vma lock + PG_lock. 1150 * 1151 * UFFDIO_MOVE is prevented to race as well thanks to the 1152 * mmap_lock. 1153 */ 1154 mmap_write_lock(mm); 1155 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1156 if (result != SCAN_SUCCEED) 1157 goto out_up_write; 1158 /* check if the pmd is still valid */ 1159 result = check_pmd_still_valid(mm, address, pmd); 1160 if (result != SCAN_SUCCEED) 1161 goto out_up_write; 1162 1163 vma_start_write(vma); 1164 anon_vma_lock_write(vma->anon_vma); 1165 1166 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1167 address + HPAGE_PMD_SIZE); 1168 mmu_notifier_invalidate_range_start(&range); 1169 1170 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1171 /* 1172 * This removes any huge TLB entry from the CPU so we won't allow 1173 * huge and small TLB entries for the same virtual address to 1174 * avoid the risk of CPU bugs in that area. 1175 * 1176 * Parallel GUP-fast is fine since GUP-fast will back off when 1177 * it detects PMD is changed. 1178 */ 1179 _pmd = pmdp_collapse_flush(vma, address, pmd); 1180 spin_unlock(pmd_ptl); 1181 mmu_notifier_invalidate_range_end(&range); 1182 tlb_remove_table_sync_one(); 1183 1184 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1185 if (pte) { 1186 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1187 &compound_pagelist); 1188 spin_unlock(pte_ptl); 1189 } else { 1190 result = SCAN_PMD_NULL; 1191 } 1192 1193 if (unlikely(result != SCAN_SUCCEED)) { 1194 if (pte) 1195 pte_unmap(pte); 1196 spin_lock(pmd_ptl); 1197 BUG_ON(!pmd_none(*pmd)); 1198 /* 1199 * We can only use set_pmd_at when establishing 1200 * hugepmds and never for establishing regular pmds that 1201 * points to regular pagetables. Use pmd_populate for that 1202 */ 1203 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1204 spin_unlock(pmd_ptl); 1205 anon_vma_unlock_write(vma->anon_vma); 1206 goto out_up_write; 1207 } 1208 1209 /* 1210 * All pages are isolated and locked so anon_vma rmap 1211 * can't run anymore. 1212 */ 1213 anon_vma_unlock_write(vma->anon_vma); 1214 1215 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1216 vma, address, pte_ptl, 1217 &compound_pagelist); 1218 pte_unmap(pte); 1219 if (unlikely(result != SCAN_SUCCEED)) 1220 goto out_up_write; 1221 1222 /* 1223 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1224 * copy_huge_page writes become visible before the set_pmd_at() 1225 * write. 1226 */ 1227 __folio_mark_uptodate(folio); 1228 pgtable = pmd_pgtable(_pmd); 1229 1230 _pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot); 1231 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1232 1233 spin_lock(pmd_ptl); 1234 BUG_ON(!pmd_none(*pmd)); 1235 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 1236 folio_add_lru_vma(folio, vma); 1237 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1238 set_pmd_at(mm, address, pmd, _pmd); 1239 update_mmu_cache_pmd(vma, address, pmd); 1240 deferred_split_folio(folio, false); 1241 spin_unlock(pmd_ptl); 1242 1243 folio = NULL; 1244 1245 result = SCAN_SUCCEED; 1246 out_up_write: 1247 mmap_write_unlock(mm); 1248 out_nolock: 1249 if (folio) 1250 folio_put(folio); 1251 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1252 return result; 1253 } 1254 1255 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1256 struct vm_area_struct *vma, 1257 unsigned long address, bool *mmap_locked, 1258 struct collapse_control *cc) 1259 { 1260 pmd_t *pmd; 1261 pte_t *pte, *_pte; 1262 int result = SCAN_FAIL, referenced = 0; 1263 int none_or_zero = 0, shared = 0; 1264 struct page *page = NULL; 1265 struct folio *folio = NULL; 1266 unsigned long _address; 1267 spinlock_t *ptl; 1268 int node = NUMA_NO_NODE, unmapped = 0; 1269 bool writable = false; 1270 1271 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1272 1273 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1274 if (result != SCAN_SUCCEED) 1275 goto out; 1276 1277 memset(cc->node_load, 0, sizeof(cc->node_load)); 1278 nodes_clear(cc->alloc_nmask); 1279 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1280 if (!pte) { 1281 result = SCAN_PMD_NULL; 1282 goto out; 1283 } 1284 1285 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1286 _pte++, _address += PAGE_SIZE) { 1287 pte_t pteval = ptep_get(_pte); 1288 if (is_swap_pte(pteval)) { 1289 ++unmapped; 1290 if (!cc->is_khugepaged || 1291 unmapped <= khugepaged_max_ptes_swap) { 1292 /* 1293 * Always be strict with uffd-wp 1294 * enabled swap entries. Please see 1295 * comment below for pte_uffd_wp(). 1296 */ 1297 if (pte_swp_uffd_wp_any(pteval)) { 1298 result = SCAN_PTE_UFFD_WP; 1299 goto out_unmap; 1300 } 1301 continue; 1302 } else { 1303 result = SCAN_EXCEED_SWAP_PTE; 1304 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1305 goto out_unmap; 1306 } 1307 } 1308 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1309 ++none_or_zero; 1310 if (!userfaultfd_armed(vma) && 1311 (!cc->is_khugepaged || 1312 none_or_zero <= khugepaged_max_ptes_none)) { 1313 continue; 1314 } else { 1315 result = SCAN_EXCEED_NONE_PTE; 1316 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1317 goto out_unmap; 1318 } 1319 } 1320 if (pte_uffd_wp(pteval)) { 1321 /* 1322 * Don't collapse the page if any of the small 1323 * PTEs are armed with uffd write protection. 1324 * Here we can also mark the new huge pmd as 1325 * write protected if any of the small ones is 1326 * marked but that could bring unknown 1327 * userfault messages that falls outside of 1328 * the registered range. So, just be simple. 1329 */ 1330 result = SCAN_PTE_UFFD_WP; 1331 goto out_unmap; 1332 } 1333 if (pte_write(pteval)) 1334 writable = true; 1335 1336 page = vm_normal_page(vma, _address, pteval); 1337 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1338 result = SCAN_PAGE_NULL; 1339 goto out_unmap; 1340 } 1341 folio = page_folio(page); 1342 1343 if (!folio_test_anon(folio)) { 1344 result = SCAN_PAGE_ANON; 1345 goto out_unmap; 1346 } 1347 1348 /* 1349 * We treat a single page as shared if any part of the THP 1350 * is shared. "False negatives" from 1351 * folio_likely_mapped_shared() are not expected to matter 1352 * much in practice. 1353 */ 1354 if (folio_likely_mapped_shared(folio)) { 1355 ++shared; 1356 if (cc->is_khugepaged && 1357 shared > khugepaged_max_ptes_shared) { 1358 result = SCAN_EXCEED_SHARED_PTE; 1359 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1360 goto out_unmap; 1361 } 1362 } 1363 1364 /* 1365 * Record which node the original page is from and save this 1366 * information to cc->node_load[]. 1367 * Khugepaged will allocate hugepage from the node has the max 1368 * hit record. 1369 */ 1370 node = folio_nid(folio); 1371 if (hpage_collapse_scan_abort(node, cc)) { 1372 result = SCAN_SCAN_ABORT; 1373 goto out_unmap; 1374 } 1375 cc->node_load[node]++; 1376 if (!folio_test_lru(folio)) { 1377 result = SCAN_PAGE_LRU; 1378 goto out_unmap; 1379 } 1380 if (folio_test_locked(folio)) { 1381 result = SCAN_PAGE_LOCK; 1382 goto out_unmap; 1383 } 1384 1385 /* 1386 * Check if the page has any GUP (or other external) pins. 1387 * 1388 * Here the check may be racy: 1389 * it may see folio_mapcount() > folio_ref_count(). 1390 * But such case is ephemeral we could always retry collapse 1391 * later. However it may report false positive if the page 1392 * has excessive GUP pins (i.e. 512). Anyway the same check 1393 * will be done again later the risk seems low. 1394 */ 1395 if (!is_refcount_suitable(folio)) { 1396 result = SCAN_PAGE_COUNT; 1397 goto out_unmap; 1398 } 1399 1400 /* 1401 * If collapse was initiated by khugepaged, check that there is 1402 * enough young pte to justify collapsing the page 1403 */ 1404 if (cc->is_khugepaged && 1405 (pte_young(pteval) || folio_test_young(folio) || 1406 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 1407 address))) 1408 referenced++; 1409 } 1410 if (!writable) { 1411 result = SCAN_PAGE_RO; 1412 } else if (cc->is_khugepaged && 1413 (!referenced || 1414 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1415 result = SCAN_LACK_REFERENCED_PAGE; 1416 } else { 1417 result = SCAN_SUCCEED; 1418 } 1419 out_unmap: 1420 pte_unmap_unlock(pte, ptl); 1421 if (result == SCAN_SUCCEED) { 1422 result = collapse_huge_page(mm, address, referenced, 1423 unmapped, cc); 1424 /* collapse_huge_page will return with the mmap_lock released */ 1425 *mmap_locked = false; 1426 } 1427 out: 1428 trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced, 1429 none_or_zero, result, unmapped); 1430 return result; 1431 } 1432 1433 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1434 { 1435 struct mm_slot *slot = &mm_slot->slot; 1436 struct mm_struct *mm = slot->mm; 1437 1438 lockdep_assert_held(&khugepaged_mm_lock); 1439 1440 if (hpage_collapse_test_exit(mm)) { 1441 /* free mm_slot */ 1442 hash_del(&slot->hash); 1443 list_del(&slot->mm_node); 1444 1445 /* 1446 * Not strictly needed because the mm exited already. 1447 * 1448 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1449 */ 1450 1451 /* khugepaged_mm_lock actually not necessary for the below */ 1452 mm_slot_free(mm_slot_cache, mm_slot); 1453 mmdrop(mm); 1454 } 1455 } 1456 1457 #ifdef CONFIG_SHMEM 1458 /* hpage must be locked, and mmap_lock must be held */ 1459 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1460 pmd_t *pmdp, struct page *hpage) 1461 { 1462 struct vm_fault vmf = { 1463 .vma = vma, 1464 .address = addr, 1465 .flags = 0, 1466 .pmd = pmdp, 1467 }; 1468 1469 VM_BUG_ON(!PageTransHuge(hpage)); 1470 mmap_assert_locked(vma->vm_mm); 1471 1472 if (do_set_pmd(&vmf, hpage)) 1473 return SCAN_FAIL; 1474 1475 get_page(hpage); 1476 return SCAN_SUCCEED; 1477 } 1478 1479 /** 1480 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1481 * address haddr. 1482 * 1483 * @mm: process address space where collapse happens 1484 * @addr: THP collapse address 1485 * @install_pmd: If a huge PMD should be installed 1486 * 1487 * This function checks whether all the PTEs in the PMD are pointing to the 1488 * right THP. If so, retract the page table so the THP can refault in with 1489 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1490 */ 1491 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1492 bool install_pmd) 1493 { 1494 struct mmu_notifier_range range; 1495 bool notified = false; 1496 unsigned long haddr = addr & HPAGE_PMD_MASK; 1497 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1498 struct folio *folio; 1499 pte_t *start_pte, *pte; 1500 pmd_t *pmd, pgt_pmd; 1501 spinlock_t *pml = NULL, *ptl; 1502 int nr_ptes = 0, result = SCAN_FAIL; 1503 int i; 1504 1505 mmap_assert_locked(mm); 1506 1507 /* First check VMA found, in case page tables are being torn down */ 1508 if (!vma || !vma->vm_file || 1509 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1510 return SCAN_VMA_CHECK; 1511 1512 /* Fast check before locking page if already PMD-mapped */ 1513 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1514 if (result == SCAN_PMD_MAPPED) 1515 return result; 1516 1517 /* 1518 * If we are here, we've succeeded in replacing all the native pages 1519 * in the page cache with a single hugepage. If a mm were to fault-in 1520 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1521 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1522 * analogously elide sysfs THP settings here. 1523 */ 1524 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 1525 return SCAN_VMA_CHECK; 1526 1527 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1528 if (userfaultfd_wp(vma)) 1529 return SCAN_PTE_UFFD_WP; 1530 1531 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1532 linear_page_index(vma, haddr)); 1533 if (IS_ERR(folio)) 1534 return SCAN_PAGE_NULL; 1535 1536 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1537 result = SCAN_PAGE_COMPOUND; 1538 goto drop_folio; 1539 } 1540 1541 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1542 switch (result) { 1543 case SCAN_SUCCEED: 1544 break; 1545 case SCAN_PMD_NONE: 1546 /* 1547 * All pte entries have been removed and pmd cleared. 1548 * Skip all the pte checks and just update the pmd mapping. 1549 */ 1550 goto maybe_install_pmd; 1551 default: 1552 goto drop_folio; 1553 } 1554 1555 result = SCAN_FAIL; 1556 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1557 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1558 goto drop_folio; 1559 1560 /* step 1: check all mapped PTEs are to the right huge page */ 1561 for (i = 0, addr = haddr, pte = start_pte; 1562 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1563 struct page *page; 1564 pte_t ptent = ptep_get(pte); 1565 1566 /* empty pte, skip */ 1567 if (pte_none(ptent)) 1568 continue; 1569 1570 /* page swapped out, abort */ 1571 if (!pte_present(ptent)) { 1572 result = SCAN_PTE_NON_PRESENT; 1573 goto abort; 1574 } 1575 1576 page = vm_normal_page(vma, addr, ptent); 1577 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1578 page = NULL; 1579 /* 1580 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1581 * page table, but the new page will not be a subpage of hpage. 1582 */ 1583 if (folio_page(folio, i) != page) 1584 goto abort; 1585 } 1586 1587 pte_unmap_unlock(start_pte, ptl); 1588 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1589 haddr, haddr + HPAGE_PMD_SIZE); 1590 mmu_notifier_invalidate_range_start(&range); 1591 notified = true; 1592 1593 /* 1594 * pmd_lock covers a wider range than ptl, and (if split from mm's 1595 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1596 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1597 * inserts a valid as-if-COWed PTE without even looking up page cache. 1598 * So page lock of folio does not protect from it, so we must not drop 1599 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1600 */ 1601 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1602 pml = pmd_lock(mm, pmd); 1603 1604 start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl); 1605 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1606 goto abort; 1607 if (!pml) 1608 spin_lock(ptl); 1609 else if (ptl != pml) 1610 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1611 1612 /* step 2: clear page table and adjust rmap */ 1613 for (i = 0, addr = haddr, pte = start_pte; 1614 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1615 struct page *page; 1616 pte_t ptent = ptep_get(pte); 1617 1618 if (pte_none(ptent)) 1619 continue; 1620 /* 1621 * We dropped ptl after the first scan, to do the mmu_notifier: 1622 * page lock stops more PTEs of the folio being faulted in, but 1623 * does not stop write faults COWing anon copies from existing 1624 * PTEs; and does not stop those being swapped out or migrated. 1625 */ 1626 if (!pte_present(ptent)) { 1627 result = SCAN_PTE_NON_PRESENT; 1628 goto abort; 1629 } 1630 page = vm_normal_page(vma, addr, ptent); 1631 if (folio_page(folio, i) != page) 1632 goto abort; 1633 1634 /* 1635 * Must clear entry, or a racing truncate may re-remove it. 1636 * TLB flush can be left until pmdp_collapse_flush() does it. 1637 * PTE dirty? Shmem page is already dirty; file is read-only. 1638 */ 1639 ptep_clear(mm, addr, pte); 1640 folio_remove_rmap_pte(folio, page, vma); 1641 nr_ptes++; 1642 } 1643 1644 pte_unmap(start_pte); 1645 if (!pml) 1646 spin_unlock(ptl); 1647 1648 /* step 3: set proper refcount and mm_counters. */ 1649 if (nr_ptes) { 1650 folio_ref_sub(folio, nr_ptes); 1651 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1652 } 1653 1654 /* step 4: remove empty page table */ 1655 if (!pml) { 1656 pml = pmd_lock(mm, pmd); 1657 if (ptl != pml) 1658 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1659 } 1660 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1661 pmdp_get_lockless_sync(); 1662 if (ptl != pml) 1663 spin_unlock(ptl); 1664 spin_unlock(pml); 1665 1666 mmu_notifier_invalidate_range_end(&range); 1667 1668 mm_dec_nr_ptes(mm); 1669 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1670 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1671 1672 maybe_install_pmd: 1673 /* step 5: install pmd entry */ 1674 result = install_pmd 1675 ? set_huge_pmd(vma, haddr, pmd, &folio->page) 1676 : SCAN_SUCCEED; 1677 goto drop_folio; 1678 abort: 1679 if (nr_ptes) { 1680 flush_tlb_mm(mm); 1681 folio_ref_sub(folio, nr_ptes); 1682 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1683 } 1684 if (start_pte) 1685 pte_unmap_unlock(start_pte, ptl); 1686 if (pml && pml != ptl) 1687 spin_unlock(pml); 1688 if (notified) 1689 mmu_notifier_invalidate_range_end(&range); 1690 drop_folio: 1691 folio_unlock(folio); 1692 folio_put(folio); 1693 return result; 1694 } 1695 1696 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1697 { 1698 struct vm_area_struct *vma; 1699 1700 i_mmap_lock_read(mapping); 1701 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1702 struct mmu_notifier_range range; 1703 struct mm_struct *mm; 1704 unsigned long addr; 1705 pmd_t *pmd, pgt_pmd; 1706 spinlock_t *pml; 1707 spinlock_t *ptl; 1708 bool skipped_uffd = false; 1709 1710 /* 1711 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1712 * got written to. These VMAs are likely not worth removing 1713 * page tables from, as PMD-mapping is likely to be split later. 1714 */ 1715 if (READ_ONCE(vma->anon_vma)) 1716 continue; 1717 1718 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1719 if (addr & ~HPAGE_PMD_MASK || 1720 vma->vm_end < addr + HPAGE_PMD_SIZE) 1721 continue; 1722 1723 mm = vma->vm_mm; 1724 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1725 continue; 1726 1727 if (hpage_collapse_test_exit(mm)) 1728 continue; 1729 /* 1730 * When a vma is registered with uffd-wp, we cannot recycle 1731 * the page table because there may be pte markers installed. 1732 * Other vmas can still have the same file mapped hugely, but 1733 * skip this one: it will always be mapped in small page size 1734 * for uffd-wp registered ranges. 1735 */ 1736 if (userfaultfd_wp(vma)) 1737 continue; 1738 1739 /* PTEs were notified when unmapped; but now for the PMD? */ 1740 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1741 addr, addr + HPAGE_PMD_SIZE); 1742 mmu_notifier_invalidate_range_start(&range); 1743 1744 pml = pmd_lock(mm, pmd); 1745 ptl = pte_lockptr(mm, pmd); 1746 if (ptl != pml) 1747 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1748 1749 /* 1750 * Huge page lock is still held, so normally the page table 1751 * must remain empty; and we have already skipped anon_vma 1752 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1753 * held, it is still possible for a racing userfaultfd_ioctl() 1754 * to have inserted ptes or markers. Now that we hold ptlock, 1755 * repeating the anon_vma check protects from one category, 1756 * and repeating the userfaultfd_wp() check from another. 1757 */ 1758 if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) { 1759 skipped_uffd = true; 1760 } else { 1761 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1762 pmdp_get_lockless_sync(); 1763 } 1764 1765 if (ptl != pml) 1766 spin_unlock(ptl); 1767 spin_unlock(pml); 1768 1769 mmu_notifier_invalidate_range_end(&range); 1770 1771 if (!skipped_uffd) { 1772 mm_dec_nr_ptes(mm); 1773 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1774 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1775 } 1776 } 1777 i_mmap_unlock_read(mapping); 1778 } 1779 1780 /** 1781 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1782 * 1783 * @mm: process address space where collapse happens 1784 * @addr: virtual collapse start address 1785 * @file: file that collapse on 1786 * @start: collapse start address 1787 * @cc: collapse context and scratchpad 1788 * 1789 * Basic scheme is simple, details are more complex: 1790 * - allocate and lock a new huge page; 1791 * - scan page cache, locking old pages 1792 * + swap/gup in pages if necessary; 1793 * - copy data to new page 1794 * - handle shmem holes 1795 * + re-validate that holes weren't filled by someone else 1796 * + check for userfaultfd 1797 * - finalize updates to the page cache; 1798 * - if replacing succeeds: 1799 * + unlock huge page; 1800 * + free old pages; 1801 * - if replacing failed; 1802 * + unlock old pages 1803 * + unlock and free huge page; 1804 */ 1805 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1806 struct file *file, pgoff_t start, 1807 struct collapse_control *cc) 1808 { 1809 struct address_space *mapping = file->f_mapping; 1810 struct page *dst; 1811 struct folio *folio, *tmp, *new_folio; 1812 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1813 LIST_HEAD(pagelist); 1814 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1815 int nr_none = 0, result = SCAN_SUCCEED; 1816 bool is_shmem = shmem_file(file); 1817 1818 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1819 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1820 1821 result = alloc_charge_folio(&new_folio, mm, cc); 1822 if (result != SCAN_SUCCEED) 1823 goto out; 1824 1825 __folio_set_locked(new_folio); 1826 if (is_shmem) 1827 __folio_set_swapbacked(new_folio); 1828 new_folio->index = start; 1829 new_folio->mapping = mapping; 1830 1831 /* 1832 * Ensure we have slots for all the pages in the range. This is 1833 * almost certainly a no-op because most of the pages must be present 1834 */ 1835 do { 1836 xas_lock_irq(&xas); 1837 xas_create_range(&xas); 1838 if (!xas_error(&xas)) 1839 break; 1840 xas_unlock_irq(&xas); 1841 if (!xas_nomem(&xas, GFP_KERNEL)) { 1842 result = SCAN_FAIL; 1843 goto rollback; 1844 } 1845 } while (1); 1846 1847 for (index = start; index < end;) { 1848 xas_set(&xas, index); 1849 folio = xas_load(&xas); 1850 1851 VM_BUG_ON(index != xas.xa_index); 1852 if (is_shmem) { 1853 if (!folio) { 1854 /* 1855 * Stop if extent has been truncated or 1856 * hole-punched, and is now completely 1857 * empty. 1858 */ 1859 if (index == start) { 1860 if (!xas_next_entry(&xas, end - 1)) { 1861 result = SCAN_TRUNCATED; 1862 goto xa_locked; 1863 } 1864 } 1865 nr_none++; 1866 index++; 1867 continue; 1868 } 1869 1870 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1871 xas_unlock_irq(&xas); 1872 /* swap in or instantiate fallocated page */ 1873 if (shmem_get_folio(mapping->host, index, 0, 1874 &folio, SGP_NOALLOC)) { 1875 result = SCAN_FAIL; 1876 goto xa_unlocked; 1877 } 1878 /* drain lru cache to help folio_isolate_lru() */ 1879 lru_add_drain(); 1880 } else if (folio_trylock(folio)) { 1881 folio_get(folio); 1882 xas_unlock_irq(&xas); 1883 } else { 1884 result = SCAN_PAGE_LOCK; 1885 goto xa_locked; 1886 } 1887 } else { /* !is_shmem */ 1888 if (!folio || xa_is_value(folio)) { 1889 xas_unlock_irq(&xas); 1890 page_cache_sync_readahead(mapping, &file->f_ra, 1891 file, index, 1892 end - index); 1893 /* drain lru cache to help folio_isolate_lru() */ 1894 lru_add_drain(); 1895 folio = filemap_lock_folio(mapping, index); 1896 if (IS_ERR(folio)) { 1897 result = SCAN_FAIL; 1898 goto xa_unlocked; 1899 } 1900 } else if (folio_test_dirty(folio)) { 1901 /* 1902 * khugepaged only works on read-only fd, 1903 * so this page is dirty because it hasn't 1904 * been flushed since first write. There 1905 * won't be new dirty pages. 1906 * 1907 * Trigger async flush here and hope the 1908 * writeback is done when khugepaged 1909 * revisits this page. 1910 * 1911 * This is a one-off situation. We are not 1912 * forcing writeback in loop. 1913 */ 1914 xas_unlock_irq(&xas); 1915 filemap_flush(mapping); 1916 result = SCAN_FAIL; 1917 goto xa_unlocked; 1918 } else if (folio_test_writeback(folio)) { 1919 xas_unlock_irq(&xas); 1920 result = SCAN_FAIL; 1921 goto xa_unlocked; 1922 } else if (folio_trylock(folio)) { 1923 folio_get(folio); 1924 xas_unlock_irq(&xas); 1925 } else { 1926 result = SCAN_PAGE_LOCK; 1927 goto xa_locked; 1928 } 1929 } 1930 1931 /* 1932 * The folio must be locked, so we can drop the i_pages lock 1933 * without racing with truncate. 1934 */ 1935 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1936 1937 /* make sure the folio is up to date */ 1938 if (unlikely(!folio_test_uptodate(folio))) { 1939 result = SCAN_FAIL; 1940 goto out_unlock; 1941 } 1942 1943 /* 1944 * If file was truncated then extended, or hole-punched, before 1945 * we locked the first folio, then a THP might be there already. 1946 * This will be discovered on the first iteration. 1947 */ 1948 if (folio_order(folio) == HPAGE_PMD_ORDER && 1949 folio->index == start) { 1950 /* Maybe PMD-mapped */ 1951 result = SCAN_PTE_MAPPED_HUGEPAGE; 1952 goto out_unlock; 1953 } 1954 1955 if (folio_mapping(folio) != mapping) { 1956 result = SCAN_TRUNCATED; 1957 goto out_unlock; 1958 } 1959 1960 if (!is_shmem && (folio_test_dirty(folio) || 1961 folio_test_writeback(folio))) { 1962 /* 1963 * khugepaged only works on read-only fd, so this 1964 * folio is dirty because it hasn't been flushed 1965 * since first write. 1966 */ 1967 result = SCAN_FAIL; 1968 goto out_unlock; 1969 } 1970 1971 if (!folio_isolate_lru(folio)) { 1972 result = SCAN_DEL_PAGE_LRU; 1973 goto out_unlock; 1974 } 1975 1976 if (!filemap_release_folio(folio, GFP_KERNEL)) { 1977 result = SCAN_PAGE_HAS_PRIVATE; 1978 folio_putback_lru(folio); 1979 goto out_unlock; 1980 } 1981 1982 if (folio_mapped(folio)) 1983 try_to_unmap(folio, 1984 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1985 1986 xas_lock_irq(&xas); 1987 1988 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 1989 1990 /* 1991 * We control 2 + nr_pages references to the folio: 1992 * - we hold a pin on it; 1993 * - nr_pages reference from page cache; 1994 * - one from lru_isolate_folio; 1995 * If those are the only references, then any new usage 1996 * of the folio will have to fetch it from the page 1997 * cache. That requires locking the folio to handle 1998 * truncate, so any new usage will be blocked until we 1999 * unlock folio after collapse/during rollback. 2000 */ 2001 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) { 2002 result = SCAN_PAGE_COUNT; 2003 xas_unlock_irq(&xas); 2004 folio_putback_lru(folio); 2005 goto out_unlock; 2006 } 2007 2008 /* 2009 * Accumulate the folios that are being collapsed. 2010 */ 2011 list_add_tail(&folio->lru, &pagelist); 2012 index += folio_nr_pages(folio); 2013 continue; 2014 out_unlock: 2015 folio_unlock(folio); 2016 folio_put(folio); 2017 goto xa_unlocked; 2018 } 2019 2020 if (!is_shmem) { 2021 filemap_nr_thps_inc(mapping); 2022 /* 2023 * Paired with the fence in do_dentry_open() -> get_write_access() 2024 * to ensure i_writecount is up to date and the update to nr_thps 2025 * is visible. Ensures the page cache will be truncated if the 2026 * file is opened writable. 2027 */ 2028 smp_mb(); 2029 if (inode_is_open_for_write(mapping->host)) { 2030 result = SCAN_FAIL; 2031 filemap_nr_thps_dec(mapping); 2032 } 2033 } 2034 2035 xa_locked: 2036 xas_unlock_irq(&xas); 2037 xa_unlocked: 2038 2039 /* 2040 * If collapse is successful, flush must be done now before copying. 2041 * If collapse is unsuccessful, does flush actually need to be done? 2042 * Do it anyway, to clear the state. 2043 */ 2044 try_to_unmap_flush(); 2045 2046 if (result == SCAN_SUCCEED && nr_none && 2047 !shmem_charge(mapping->host, nr_none)) 2048 result = SCAN_FAIL; 2049 if (result != SCAN_SUCCEED) { 2050 nr_none = 0; 2051 goto rollback; 2052 } 2053 2054 /* 2055 * The old folios are locked, so they won't change anymore. 2056 */ 2057 index = start; 2058 dst = folio_page(new_folio, 0); 2059 list_for_each_entry(folio, &pagelist, lru) { 2060 int i, nr_pages = folio_nr_pages(folio); 2061 2062 while (index < folio->index) { 2063 clear_highpage(dst); 2064 index++; 2065 dst++; 2066 } 2067 2068 for (i = 0; i < nr_pages; i++) { 2069 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) { 2070 result = SCAN_COPY_MC; 2071 goto rollback; 2072 } 2073 index++; 2074 dst++; 2075 } 2076 } 2077 while (index < end) { 2078 clear_highpage(dst); 2079 index++; 2080 dst++; 2081 } 2082 2083 if (nr_none) { 2084 struct vm_area_struct *vma; 2085 int nr_none_check = 0; 2086 2087 i_mmap_lock_read(mapping); 2088 xas_lock_irq(&xas); 2089 2090 xas_set(&xas, start); 2091 for (index = start; index < end; index++) { 2092 if (!xas_next(&xas)) { 2093 xas_store(&xas, XA_RETRY_ENTRY); 2094 if (xas_error(&xas)) { 2095 result = SCAN_STORE_FAILED; 2096 goto immap_locked; 2097 } 2098 nr_none_check++; 2099 } 2100 } 2101 2102 if (nr_none != nr_none_check) { 2103 result = SCAN_PAGE_FILLED; 2104 goto immap_locked; 2105 } 2106 2107 /* 2108 * If userspace observed a missing page in a VMA with 2109 * a MODE_MISSING userfaultfd, then it might expect a 2110 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2111 * roll back to avoid suppressing such an event. Since 2112 * wp/minor userfaultfds don't give userspace any 2113 * guarantees that the kernel doesn't fill a missing 2114 * page with a zero page, so they don't matter here. 2115 * 2116 * Any userfaultfds registered after this point will 2117 * not be able to observe any missing pages due to the 2118 * previously inserted retry entries. 2119 */ 2120 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2121 if (userfaultfd_missing(vma)) { 2122 result = SCAN_EXCEED_NONE_PTE; 2123 goto immap_locked; 2124 } 2125 } 2126 2127 immap_locked: 2128 i_mmap_unlock_read(mapping); 2129 if (result != SCAN_SUCCEED) { 2130 xas_set(&xas, start); 2131 for (index = start; index < end; index++) { 2132 if (xas_next(&xas) == XA_RETRY_ENTRY) 2133 xas_store(&xas, NULL); 2134 } 2135 2136 xas_unlock_irq(&xas); 2137 goto rollback; 2138 } 2139 } else { 2140 xas_lock_irq(&xas); 2141 } 2142 2143 if (is_shmem) 2144 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2145 else 2146 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2147 2148 if (nr_none) { 2149 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none); 2150 /* nr_none is always 0 for non-shmem. */ 2151 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none); 2152 } 2153 2154 /* 2155 * Mark new_folio as uptodate before inserting it into the 2156 * page cache so that it isn't mistaken for an fallocated but 2157 * unwritten page. 2158 */ 2159 folio_mark_uptodate(new_folio); 2160 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2161 2162 if (is_shmem) 2163 folio_mark_dirty(new_folio); 2164 folio_add_lru(new_folio); 2165 2166 /* Join all the small entries into a single multi-index entry. */ 2167 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2168 xas_store(&xas, new_folio); 2169 WARN_ON_ONCE(xas_error(&xas)); 2170 xas_unlock_irq(&xas); 2171 2172 /* 2173 * Remove pte page tables, so we can re-fault the page as huge. 2174 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2175 */ 2176 retract_page_tables(mapping, start); 2177 if (cc && !cc->is_khugepaged) 2178 result = SCAN_PTE_MAPPED_HUGEPAGE; 2179 folio_unlock(new_folio); 2180 2181 /* 2182 * The collapse has succeeded, so free the old folios. 2183 */ 2184 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2185 list_del(&folio->lru); 2186 folio->mapping = NULL; 2187 folio_clear_active(folio); 2188 folio_clear_unevictable(folio); 2189 folio_unlock(folio); 2190 folio_put_refs(folio, 2 + folio_nr_pages(folio)); 2191 } 2192 2193 goto out; 2194 2195 rollback: 2196 /* Something went wrong: roll back page cache changes */ 2197 if (nr_none) { 2198 xas_lock_irq(&xas); 2199 mapping->nrpages -= nr_none; 2200 xas_unlock_irq(&xas); 2201 shmem_uncharge(mapping->host, nr_none); 2202 } 2203 2204 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2205 list_del(&folio->lru); 2206 folio_unlock(folio); 2207 folio_putback_lru(folio); 2208 folio_put(folio); 2209 } 2210 /* 2211 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2212 * file only. This undo is not needed unless failure is 2213 * due to SCAN_COPY_MC. 2214 */ 2215 if (!is_shmem && result == SCAN_COPY_MC) { 2216 filemap_nr_thps_dec(mapping); 2217 /* 2218 * Paired with the fence in do_dentry_open() -> get_write_access() 2219 * to ensure the update to nr_thps is visible. 2220 */ 2221 smp_mb(); 2222 } 2223 2224 new_folio->mapping = NULL; 2225 2226 folio_unlock(new_folio); 2227 folio_put(new_folio); 2228 out: 2229 VM_BUG_ON(!list_empty(&pagelist)); 2230 trace_mm_khugepaged_collapse_file(mm, new_folio, index, is_shmem, addr, file, HPAGE_PMD_NR, result); 2231 return result; 2232 } 2233 2234 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2235 struct file *file, pgoff_t start, 2236 struct collapse_control *cc) 2237 { 2238 struct folio *folio = NULL; 2239 struct address_space *mapping = file->f_mapping; 2240 XA_STATE(xas, &mapping->i_pages, start); 2241 int present, swap; 2242 int node = NUMA_NO_NODE; 2243 int result = SCAN_SUCCEED; 2244 2245 present = 0; 2246 swap = 0; 2247 memset(cc->node_load, 0, sizeof(cc->node_load)); 2248 nodes_clear(cc->alloc_nmask); 2249 rcu_read_lock(); 2250 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2251 if (xas_retry(&xas, folio)) 2252 continue; 2253 2254 if (xa_is_value(folio)) { 2255 ++swap; 2256 if (cc->is_khugepaged && 2257 swap > khugepaged_max_ptes_swap) { 2258 result = SCAN_EXCEED_SWAP_PTE; 2259 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2260 break; 2261 } 2262 continue; 2263 } 2264 2265 if (folio_order(folio) == HPAGE_PMD_ORDER && 2266 folio->index == start) { 2267 /* Maybe PMD-mapped */ 2268 result = SCAN_PTE_MAPPED_HUGEPAGE; 2269 /* 2270 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2271 * by the caller won't touch the page cache, and so 2272 * it's safe to skip LRU and refcount checks before 2273 * returning. 2274 */ 2275 break; 2276 } 2277 2278 node = folio_nid(folio); 2279 if (hpage_collapse_scan_abort(node, cc)) { 2280 result = SCAN_SCAN_ABORT; 2281 break; 2282 } 2283 cc->node_load[node]++; 2284 2285 if (!folio_test_lru(folio)) { 2286 result = SCAN_PAGE_LRU; 2287 break; 2288 } 2289 2290 if (!is_refcount_suitable(folio)) { 2291 result = SCAN_PAGE_COUNT; 2292 break; 2293 } 2294 2295 /* 2296 * We probably should check if the folio is referenced 2297 * here, but nobody would transfer pte_young() to 2298 * folio_test_referenced() for us. And rmap walk here 2299 * is just too costly... 2300 */ 2301 2302 present++; 2303 2304 if (need_resched()) { 2305 xas_pause(&xas); 2306 cond_resched_rcu(); 2307 } 2308 } 2309 rcu_read_unlock(); 2310 2311 if (result == SCAN_SUCCEED) { 2312 if (cc->is_khugepaged && 2313 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2314 result = SCAN_EXCEED_NONE_PTE; 2315 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2316 } else { 2317 result = collapse_file(mm, addr, file, start, cc); 2318 } 2319 } 2320 2321 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2322 return result; 2323 } 2324 #else 2325 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2326 struct file *file, pgoff_t start, 2327 struct collapse_control *cc) 2328 { 2329 BUILD_BUG(); 2330 } 2331 #endif 2332 2333 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2334 struct collapse_control *cc) 2335 __releases(&khugepaged_mm_lock) 2336 __acquires(&khugepaged_mm_lock) 2337 { 2338 struct vma_iterator vmi; 2339 struct khugepaged_mm_slot *mm_slot; 2340 struct mm_slot *slot; 2341 struct mm_struct *mm; 2342 struct vm_area_struct *vma; 2343 int progress = 0; 2344 2345 VM_BUG_ON(!pages); 2346 lockdep_assert_held(&khugepaged_mm_lock); 2347 *result = SCAN_FAIL; 2348 2349 if (khugepaged_scan.mm_slot) { 2350 mm_slot = khugepaged_scan.mm_slot; 2351 slot = &mm_slot->slot; 2352 } else { 2353 slot = list_entry(khugepaged_scan.mm_head.next, 2354 struct mm_slot, mm_node); 2355 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2356 khugepaged_scan.address = 0; 2357 khugepaged_scan.mm_slot = mm_slot; 2358 } 2359 spin_unlock(&khugepaged_mm_lock); 2360 2361 mm = slot->mm; 2362 /* 2363 * Don't wait for semaphore (to avoid long wait times). Just move to 2364 * the next mm on the list. 2365 */ 2366 vma = NULL; 2367 if (unlikely(!mmap_read_trylock(mm))) 2368 goto breakouterloop_mmap_lock; 2369 2370 progress++; 2371 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2372 goto breakouterloop; 2373 2374 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2375 for_each_vma(vmi, vma) { 2376 unsigned long hstart, hend; 2377 2378 cond_resched(); 2379 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2380 progress++; 2381 break; 2382 } 2383 if (!thp_vma_allowable_order(vma, vma->vm_flags, 2384 TVA_ENFORCE_SYSFS, PMD_ORDER)) { 2385 skip: 2386 progress++; 2387 continue; 2388 } 2389 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2390 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2391 if (khugepaged_scan.address > hend) 2392 goto skip; 2393 if (khugepaged_scan.address < hstart) 2394 khugepaged_scan.address = hstart; 2395 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2396 2397 while (khugepaged_scan.address < hend) { 2398 bool mmap_locked = true; 2399 2400 cond_resched(); 2401 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2402 goto breakouterloop; 2403 2404 VM_BUG_ON(khugepaged_scan.address < hstart || 2405 khugepaged_scan.address + HPAGE_PMD_SIZE > 2406 hend); 2407 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2408 struct file *file = get_file(vma->vm_file); 2409 pgoff_t pgoff = linear_page_index(vma, 2410 khugepaged_scan.address); 2411 2412 mmap_read_unlock(mm); 2413 mmap_locked = false; 2414 *result = hpage_collapse_scan_file(mm, 2415 khugepaged_scan.address, file, pgoff, cc); 2416 fput(file); 2417 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2418 mmap_read_lock(mm); 2419 if (hpage_collapse_test_exit_or_disable(mm)) 2420 goto breakouterloop; 2421 *result = collapse_pte_mapped_thp(mm, 2422 khugepaged_scan.address, false); 2423 if (*result == SCAN_PMD_MAPPED) 2424 *result = SCAN_SUCCEED; 2425 mmap_read_unlock(mm); 2426 } 2427 } else { 2428 *result = hpage_collapse_scan_pmd(mm, vma, 2429 khugepaged_scan.address, &mmap_locked, cc); 2430 } 2431 2432 if (*result == SCAN_SUCCEED) 2433 ++khugepaged_pages_collapsed; 2434 2435 /* move to next address */ 2436 khugepaged_scan.address += HPAGE_PMD_SIZE; 2437 progress += HPAGE_PMD_NR; 2438 if (!mmap_locked) 2439 /* 2440 * We released mmap_lock so break loop. Note 2441 * that we drop mmap_lock before all hugepage 2442 * allocations, so if allocation fails, we are 2443 * guaranteed to break here and report the 2444 * correct result back to caller. 2445 */ 2446 goto breakouterloop_mmap_lock; 2447 if (progress >= pages) 2448 goto breakouterloop; 2449 } 2450 } 2451 breakouterloop: 2452 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2453 breakouterloop_mmap_lock: 2454 2455 spin_lock(&khugepaged_mm_lock); 2456 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2457 /* 2458 * Release the current mm_slot if this mm is about to die, or 2459 * if we scanned all vmas of this mm. 2460 */ 2461 if (hpage_collapse_test_exit(mm) || !vma) { 2462 /* 2463 * Make sure that if mm_users is reaching zero while 2464 * khugepaged runs here, khugepaged_exit will find 2465 * mm_slot not pointing to the exiting mm. 2466 */ 2467 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2468 slot = list_entry(slot->mm_node.next, 2469 struct mm_slot, mm_node); 2470 khugepaged_scan.mm_slot = 2471 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2472 khugepaged_scan.address = 0; 2473 } else { 2474 khugepaged_scan.mm_slot = NULL; 2475 khugepaged_full_scans++; 2476 } 2477 2478 collect_mm_slot(mm_slot); 2479 } 2480 2481 return progress; 2482 } 2483 2484 static int khugepaged_has_work(void) 2485 { 2486 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); 2487 } 2488 2489 static int khugepaged_wait_event(void) 2490 { 2491 return !list_empty(&khugepaged_scan.mm_head) || 2492 kthread_should_stop(); 2493 } 2494 2495 static void khugepaged_do_scan(struct collapse_control *cc) 2496 { 2497 unsigned int progress = 0, pass_through_head = 0; 2498 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2499 bool wait = true; 2500 int result = SCAN_SUCCEED; 2501 2502 lru_add_drain_all(); 2503 2504 while (true) { 2505 cond_resched(); 2506 2507 if (unlikely(kthread_should_stop())) 2508 break; 2509 2510 spin_lock(&khugepaged_mm_lock); 2511 if (!khugepaged_scan.mm_slot) 2512 pass_through_head++; 2513 if (khugepaged_has_work() && 2514 pass_through_head < 2) 2515 progress += khugepaged_scan_mm_slot(pages - progress, 2516 &result, cc); 2517 else 2518 progress = pages; 2519 spin_unlock(&khugepaged_mm_lock); 2520 2521 if (progress >= pages) 2522 break; 2523 2524 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2525 /* 2526 * If fail to allocate the first time, try to sleep for 2527 * a while. When hit again, cancel the scan. 2528 */ 2529 if (!wait) 2530 break; 2531 wait = false; 2532 khugepaged_alloc_sleep(); 2533 } 2534 } 2535 } 2536 2537 static bool khugepaged_should_wakeup(void) 2538 { 2539 return kthread_should_stop() || 2540 time_after_eq(jiffies, khugepaged_sleep_expire); 2541 } 2542 2543 static void khugepaged_wait_work(void) 2544 { 2545 if (khugepaged_has_work()) { 2546 const unsigned long scan_sleep_jiffies = 2547 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2548 2549 if (!scan_sleep_jiffies) 2550 return; 2551 2552 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2553 wait_event_freezable_timeout(khugepaged_wait, 2554 khugepaged_should_wakeup(), 2555 scan_sleep_jiffies); 2556 return; 2557 } 2558 2559 if (hugepage_pmd_enabled()) 2560 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2561 } 2562 2563 static int khugepaged(void *none) 2564 { 2565 struct khugepaged_mm_slot *mm_slot; 2566 2567 set_freezable(); 2568 set_user_nice(current, MAX_NICE); 2569 2570 while (!kthread_should_stop()) { 2571 khugepaged_do_scan(&khugepaged_collapse_control); 2572 khugepaged_wait_work(); 2573 } 2574 2575 spin_lock(&khugepaged_mm_lock); 2576 mm_slot = khugepaged_scan.mm_slot; 2577 khugepaged_scan.mm_slot = NULL; 2578 if (mm_slot) 2579 collect_mm_slot(mm_slot); 2580 spin_unlock(&khugepaged_mm_lock); 2581 return 0; 2582 } 2583 2584 static void set_recommended_min_free_kbytes(void) 2585 { 2586 struct zone *zone; 2587 int nr_zones = 0; 2588 unsigned long recommended_min; 2589 2590 if (!hugepage_pmd_enabled()) { 2591 calculate_min_free_kbytes(); 2592 goto update_wmarks; 2593 } 2594 2595 for_each_populated_zone(zone) { 2596 /* 2597 * We don't need to worry about fragmentation of 2598 * ZONE_MOVABLE since it only has movable pages. 2599 */ 2600 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2601 continue; 2602 2603 nr_zones++; 2604 } 2605 2606 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2607 recommended_min = pageblock_nr_pages * nr_zones * 2; 2608 2609 /* 2610 * Make sure that on average at least two pageblocks are almost free 2611 * of another type, one for a migratetype to fall back to and a 2612 * second to avoid subsequent fallbacks of other types There are 3 2613 * MIGRATE_TYPES we care about. 2614 */ 2615 recommended_min += pageblock_nr_pages * nr_zones * 2616 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2617 2618 /* don't ever allow to reserve more than 5% of the lowmem */ 2619 recommended_min = min(recommended_min, 2620 (unsigned long) nr_free_buffer_pages() / 20); 2621 recommended_min <<= (PAGE_SHIFT-10); 2622 2623 if (recommended_min > min_free_kbytes) { 2624 if (user_min_free_kbytes >= 0) 2625 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2626 min_free_kbytes, recommended_min); 2627 2628 min_free_kbytes = recommended_min; 2629 } 2630 2631 update_wmarks: 2632 setup_per_zone_wmarks(); 2633 } 2634 2635 int start_stop_khugepaged(void) 2636 { 2637 int err = 0; 2638 2639 mutex_lock(&khugepaged_mutex); 2640 if (hugepage_pmd_enabled()) { 2641 if (!khugepaged_thread) 2642 khugepaged_thread = kthread_run(khugepaged, NULL, 2643 "khugepaged"); 2644 if (IS_ERR(khugepaged_thread)) { 2645 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2646 err = PTR_ERR(khugepaged_thread); 2647 khugepaged_thread = NULL; 2648 goto fail; 2649 } 2650 2651 if (!list_empty(&khugepaged_scan.mm_head)) 2652 wake_up_interruptible(&khugepaged_wait); 2653 } else if (khugepaged_thread) { 2654 kthread_stop(khugepaged_thread); 2655 khugepaged_thread = NULL; 2656 } 2657 set_recommended_min_free_kbytes(); 2658 fail: 2659 mutex_unlock(&khugepaged_mutex); 2660 return err; 2661 } 2662 2663 void khugepaged_min_free_kbytes_update(void) 2664 { 2665 mutex_lock(&khugepaged_mutex); 2666 if (hugepage_pmd_enabled() && khugepaged_thread) 2667 set_recommended_min_free_kbytes(); 2668 mutex_unlock(&khugepaged_mutex); 2669 } 2670 2671 bool current_is_khugepaged(void) 2672 { 2673 return kthread_func(current) == khugepaged; 2674 } 2675 2676 static int madvise_collapse_errno(enum scan_result r) 2677 { 2678 /* 2679 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2680 * actionable feedback to caller, so they may take an appropriate 2681 * fallback measure depending on the nature of the failure. 2682 */ 2683 switch (r) { 2684 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2685 return -ENOMEM; 2686 case SCAN_CGROUP_CHARGE_FAIL: 2687 case SCAN_EXCEED_NONE_PTE: 2688 return -EBUSY; 2689 /* Resource temporary unavailable - trying again might succeed */ 2690 case SCAN_PAGE_COUNT: 2691 case SCAN_PAGE_LOCK: 2692 case SCAN_PAGE_LRU: 2693 case SCAN_DEL_PAGE_LRU: 2694 case SCAN_PAGE_FILLED: 2695 return -EAGAIN; 2696 /* 2697 * Other: Trying again likely not to succeed / error intrinsic to 2698 * specified memory range. khugepaged likely won't be able to collapse 2699 * either. 2700 */ 2701 default: 2702 return -EINVAL; 2703 } 2704 } 2705 2706 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2707 unsigned long start, unsigned long end) 2708 { 2709 struct collapse_control *cc; 2710 struct mm_struct *mm = vma->vm_mm; 2711 unsigned long hstart, hend, addr; 2712 int thps = 0, last_fail = SCAN_FAIL; 2713 bool mmap_locked = true; 2714 2715 BUG_ON(vma->vm_start > start); 2716 BUG_ON(vma->vm_end < end); 2717 2718 *prev = vma; 2719 2720 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 2721 return -EINVAL; 2722 2723 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2724 if (!cc) 2725 return -ENOMEM; 2726 cc->is_khugepaged = false; 2727 2728 mmgrab(mm); 2729 lru_add_drain_all(); 2730 2731 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2732 hend = end & HPAGE_PMD_MASK; 2733 2734 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2735 int result = SCAN_FAIL; 2736 2737 if (!mmap_locked) { 2738 cond_resched(); 2739 mmap_read_lock(mm); 2740 mmap_locked = true; 2741 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2742 cc); 2743 if (result != SCAN_SUCCEED) { 2744 last_fail = result; 2745 goto out_nolock; 2746 } 2747 2748 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2749 } 2750 mmap_assert_locked(mm); 2751 memset(cc->node_load, 0, sizeof(cc->node_load)); 2752 nodes_clear(cc->alloc_nmask); 2753 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2754 struct file *file = get_file(vma->vm_file); 2755 pgoff_t pgoff = linear_page_index(vma, addr); 2756 2757 mmap_read_unlock(mm); 2758 mmap_locked = false; 2759 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2760 cc); 2761 fput(file); 2762 } else { 2763 result = hpage_collapse_scan_pmd(mm, vma, addr, 2764 &mmap_locked, cc); 2765 } 2766 if (!mmap_locked) 2767 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2768 2769 handle_result: 2770 switch (result) { 2771 case SCAN_SUCCEED: 2772 case SCAN_PMD_MAPPED: 2773 ++thps; 2774 break; 2775 case SCAN_PTE_MAPPED_HUGEPAGE: 2776 BUG_ON(mmap_locked); 2777 BUG_ON(*prev); 2778 mmap_read_lock(mm); 2779 result = collapse_pte_mapped_thp(mm, addr, true); 2780 mmap_read_unlock(mm); 2781 goto handle_result; 2782 /* Whitelisted set of results where continuing OK */ 2783 case SCAN_PMD_NULL: 2784 case SCAN_PTE_NON_PRESENT: 2785 case SCAN_PTE_UFFD_WP: 2786 case SCAN_PAGE_RO: 2787 case SCAN_LACK_REFERENCED_PAGE: 2788 case SCAN_PAGE_NULL: 2789 case SCAN_PAGE_COUNT: 2790 case SCAN_PAGE_LOCK: 2791 case SCAN_PAGE_COMPOUND: 2792 case SCAN_PAGE_LRU: 2793 case SCAN_DEL_PAGE_LRU: 2794 last_fail = result; 2795 break; 2796 default: 2797 last_fail = result; 2798 /* Other error, exit */ 2799 goto out_maybelock; 2800 } 2801 } 2802 2803 out_maybelock: 2804 /* Caller expects us to hold mmap_lock on return */ 2805 if (!mmap_locked) 2806 mmap_read_lock(mm); 2807 out_nolock: 2808 mmap_assert_locked(mm); 2809 mmdrop(mm); 2810 kfree(cc); 2811 2812 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2813 : madvise_collapse_errno(last_fail); 2814 } 2815