1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/mmu_notifier.h> 8 #include <linux/rmap.h> 9 #include <linux/swap.h> 10 #include <linux/mm_inline.h> 11 #include <linux/kthread.h> 12 #include <linux/khugepaged.h> 13 #include <linux/freezer.h> 14 #include <linux/mman.h> 15 #include <linux/hashtable.h> 16 #include <linux/userfaultfd_k.h> 17 #include <linux/page_idle.h> 18 #include <linux/page_table_check.h> 19 #include <linux/rcupdate_wait.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/dax.h> 23 #include <linux/ksm.h> 24 #include <linux/pgalloc.h> 25 26 #include <asm/tlb.h> 27 #include "internal.h" 28 #include "mm_slot.h" 29 30 enum scan_result { 31 SCAN_FAIL, 32 SCAN_SUCCEED, 33 SCAN_PMD_NULL, 34 SCAN_PMD_NONE, 35 SCAN_PMD_MAPPED, 36 SCAN_EXCEED_NONE_PTE, 37 SCAN_EXCEED_SWAP_PTE, 38 SCAN_EXCEED_SHARED_PTE, 39 SCAN_PTE_NON_PRESENT, 40 SCAN_PTE_UFFD_WP, 41 SCAN_PTE_MAPPED_HUGEPAGE, 42 SCAN_LACK_REFERENCED_PAGE, 43 SCAN_PAGE_NULL, 44 SCAN_SCAN_ABORT, 45 SCAN_PAGE_COUNT, 46 SCAN_PAGE_LRU, 47 SCAN_PAGE_LOCK, 48 SCAN_PAGE_ANON, 49 SCAN_PAGE_COMPOUND, 50 SCAN_ANY_PROCESS, 51 SCAN_VMA_NULL, 52 SCAN_VMA_CHECK, 53 SCAN_ADDRESS_RANGE, 54 SCAN_DEL_PAGE_LRU, 55 SCAN_ALLOC_HUGE_PAGE_FAIL, 56 SCAN_CGROUP_CHARGE_FAIL, 57 SCAN_TRUNCATED, 58 SCAN_PAGE_HAS_PRIVATE, 59 SCAN_STORE_FAILED, 60 SCAN_COPY_MC, 61 SCAN_PAGE_FILLED, 62 }; 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/huge_memory.h> 66 67 static struct task_struct *khugepaged_thread __read_mostly; 68 static DEFINE_MUTEX(khugepaged_mutex); 69 70 /* default scan 8*HPAGE_PMD_NR ptes (or vmas) every 10 second */ 71 static unsigned int khugepaged_pages_to_scan __read_mostly; 72 static unsigned int khugepaged_pages_collapsed; 73 static unsigned int khugepaged_full_scans; 74 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 75 /* during fragmentation poll the hugepage allocator once every minute */ 76 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 77 static unsigned long khugepaged_sleep_expire; 78 static DEFINE_SPINLOCK(khugepaged_mm_lock); 79 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 80 /* 81 * default collapse hugepages if there is at least one pte mapped like 82 * it would have happened if the vma was large enough during page 83 * fault. 84 * 85 * Note that these are only respected if collapse was initiated by khugepaged. 86 */ 87 unsigned int khugepaged_max_ptes_none __read_mostly; 88 static unsigned int khugepaged_max_ptes_swap __read_mostly; 89 static unsigned int khugepaged_max_ptes_shared __read_mostly; 90 91 #define MM_SLOTS_HASH_BITS 10 92 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 93 94 static struct kmem_cache *mm_slot_cache __ro_after_init; 95 96 struct collapse_control { 97 bool is_khugepaged; 98 99 /* Num pages scanned per node */ 100 u32 node_load[MAX_NUMNODES]; 101 102 /* nodemask for allocation fallback */ 103 nodemask_t alloc_nmask; 104 }; 105 106 /** 107 * struct khugepaged_scan - cursor for scanning 108 * @mm_head: the head of the mm list to scan 109 * @mm_slot: the current mm_slot we are scanning 110 * @address: the next address inside that to be scanned 111 * 112 * There is only the one khugepaged_scan instance of this cursor structure. 113 */ 114 struct khugepaged_scan { 115 struct list_head mm_head; 116 struct mm_slot *mm_slot; 117 unsigned long address; 118 }; 119 120 static struct khugepaged_scan khugepaged_scan = { 121 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 122 }; 123 124 #ifdef CONFIG_SYSFS 125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 126 struct kobj_attribute *attr, 127 char *buf) 128 { 129 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 130 } 131 132 static ssize_t __sleep_millisecs_store(const char *buf, size_t count, 133 unsigned int *millisecs) 134 { 135 unsigned int msecs; 136 int err; 137 138 err = kstrtouint(buf, 10, &msecs); 139 if (err) 140 return -EINVAL; 141 142 *millisecs = msecs; 143 khugepaged_sleep_expire = 0; 144 wake_up_interruptible(&khugepaged_wait); 145 146 return count; 147 } 148 149 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 150 struct kobj_attribute *attr, 151 const char *buf, size_t count) 152 { 153 return __sleep_millisecs_store(buf, count, &khugepaged_scan_sleep_millisecs); 154 } 155 static struct kobj_attribute scan_sleep_millisecs_attr = 156 __ATTR_RW(scan_sleep_millisecs); 157 158 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 159 struct kobj_attribute *attr, 160 char *buf) 161 { 162 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 163 } 164 165 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 166 struct kobj_attribute *attr, 167 const char *buf, size_t count) 168 { 169 return __sleep_millisecs_store(buf, count, &khugepaged_alloc_sleep_millisecs); 170 } 171 static struct kobj_attribute alloc_sleep_millisecs_attr = 172 __ATTR_RW(alloc_sleep_millisecs); 173 174 static ssize_t pages_to_scan_show(struct kobject *kobj, 175 struct kobj_attribute *attr, 176 char *buf) 177 { 178 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 179 } 180 static ssize_t pages_to_scan_store(struct kobject *kobj, 181 struct kobj_attribute *attr, 182 const char *buf, size_t count) 183 { 184 unsigned int pages; 185 int err; 186 187 err = kstrtouint(buf, 10, &pages); 188 if (err || !pages) 189 return -EINVAL; 190 191 khugepaged_pages_to_scan = pages; 192 193 return count; 194 } 195 static struct kobj_attribute pages_to_scan_attr = 196 __ATTR_RW(pages_to_scan); 197 198 static ssize_t pages_collapsed_show(struct kobject *kobj, 199 struct kobj_attribute *attr, 200 char *buf) 201 { 202 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 203 } 204 static struct kobj_attribute pages_collapsed_attr = 205 __ATTR_RO(pages_collapsed); 206 207 static ssize_t full_scans_show(struct kobject *kobj, 208 struct kobj_attribute *attr, 209 char *buf) 210 { 211 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 212 } 213 static struct kobj_attribute full_scans_attr = 214 __ATTR_RO(full_scans); 215 216 static ssize_t defrag_show(struct kobject *kobj, 217 struct kobj_attribute *attr, char *buf) 218 { 219 return single_hugepage_flag_show(kobj, attr, buf, 220 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 221 } 222 static ssize_t defrag_store(struct kobject *kobj, 223 struct kobj_attribute *attr, 224 const char *buf, size_t count) 225 { 226 return single_hugepage_flag_store(kobj, attr, buf, count, 227 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 228 } 229 static struct kobj_attribute khugepaged_defrag_attr = 230 __ATTR_RW(defrag); 231 232 /* 233 * max_ptes_none controls if khugepaged should collapse hugepages over 234 * any unmapped ptes in turn potentially increasing the memory 235 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 236 * reduce the available free memory in the system as it 237 * runs. Increasing max_ptes_none will instead potentially reduce the 238 * free memory in the system during the khugepaged scan. 239 */ 240 static ssize_t max_ptes_none_show(struct kobject *kobj, 241 struct kobj_attribute *attr, 242 char *buf) 243 { 244 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 245 } 246 static ssize_t max_ptes_none_store(struct kobject *kobj, 247 struct kobj_attribute *attr, 248 const char *buf, size_t count) 249 { 250 int err; 251 unsigned long max_ptes_none; 252 253 err = kstrtoul(buf, 10, &max_ptes_none); 254 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 255 return -EINVAL; 256 257 khugepaged_max_ptes_none = max_ptes_none; 258 259 return count; 260 } 261 static struct kobj_attribute khugepaged_max_ptes_none_attr = 262 __ATTR_RW(max_ptes_none); 263 264 static ssize_t max_ptes_swap_show(struct kobject *kobj, 265 struct kobj_attribute *attr, 266 char *buf) 267 { 268 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 269 } 270 271 static ssize_t max_ptes_swap_store(struct kobject *kobj, 272 struct kobj_attribute *attr, 273 const char *buf, size_t count) 274 { 275 int err; 276 unsigned long max_ptes_swap; 277 278 err = kstrtoul(buf, 10, &max_ptes_swap); 279 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 280 return -EINVAL; 281 282 khugepaged_max_ptes_swap = max_ptes_swap; 283 284 return count; 285 } 286 287 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 288 __ATTR_RW(max_ptes_swap); 289 290 static ssize_t max_ptes_shared_show(struct kobject *kobj, 291 struct kobj_attribute *attr, 292 char *buf) 293 { 294 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 295 } 296 297 static ssize_t max_ptes_shared_store(struct kobject *kobj, 298 struct kobj_attribute *attr, 299 const char *buf, size_t count) 300 { 301 int err; 302 unsigned long max_ptes_shared; 303 304 err = kstrtoul(buf, 10, &max_ptes_shared); 305 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 306 return -EINVAL; 307 308 khugepaged_max_ptes_shared = max_ptes_shared; 309 310 return count; 311 } 312 313 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 314 __ATTR_RW(max_ptes_shared); 315 316 static struct attribute *khugepaged_attr[] = { 317 &khugepaged_defrag_attr.attr, 318 &khugepaged_max_ptes_none_attr.attr, 319 &khugepaged_max_ptes_swap_attr.attr, 320 &khugepaged_max_ptes_shared_attr.attr, 321 &pages_to_scan_attr.attr, 322 &pages_collapsed_attr.attr, 323 &full_scans_attr.attr, 324 &scan_sleep_millisecs_attr.attr, 325 &alloc_sleep_millisecs_attr.attr, 326 NULL, 327 }; 328 329 struct attribute_group khugepaged_attr_group = { 330 .attrs = khugepaged_attr, 331 .name = "khugepaged", 332 }; 333 #endif /* CONFIG_SYSFS */ 334 335 static bool pte_none_or_zero(pte_t pte) 336 { 337 if (pte_none(pte)) 338 return true; 339 return pte_present(pte) && is_zero_pfn(pte_pfn(pte)); 340 } 341 342 int hugepage_madvise(struct vm_area_struct *vma, 343 vm_flags_t *vm_flags, int advice) 344 { 345 switch (advice) { 346 case MADV_HUGEPAGE: 347 #ifdef CONFIG_S390 348 /* 349 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 350 * can't handle this properly after s390_enable_sie, so we simply 351 * ignore the madvise to prevent qemu from causing a SIGSEGV. 352 */ 353 if (mm_has_pgste(vma->vm_mm)) 354 return 0; 355 #endif 356 *vm_flags &= ~VM_NOHUGEPAGE; 357 *vm_flags |= VM_HUGEPAGE; 358 /* 359 * If the vma become good for khugepaged to scan, 360 * register it here without waiting a page fault that 361 * may not happen any time soon. 362 */ 363 khugepaged_enter_vma(vma, *vm_flags); 364 break; 365 case MADV_NOHUGEPAGE: 366 *vm_flags &= ~VM_HUGEPAGE; 367 *vm_flags |= VM_NOHUGEPAGE; 368 /* 369 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 370 * this vma even if we leave the mm registered in khugepaged if 371 * it got registered before VM_NOHUGEPAGE was set. 372 */ 373 break; 374 } 375 376 return 0; 377 } 378 379 int __init khugepaged_init(void) 380 { 381 mm_slot_cache = KMEM_CACHE(mm_slot, 0); 382 if (!mm_slot_cache) 383 return -ENOMEM; 384 385 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 386 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 387 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 388 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 389 390 return 0; 391 } 392 393 void __init khugepaged_destroy(void) 394 { 395 kmem_cache_destroy(mm_slot_cache); 396 } 397 398 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 399 { 400 return atomic_read(&mm->mm_users) == 0; 401 } 402 403 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 404 { 405 return hpage_collapse_test_exit(mm) || 406 mm_flags_test(MMF_DISABLE_THP_COMPLETELY, mm); 407 } 408 409 static bool hugepage_pmd_enabled(void) 410 { 411 /* 412 * We cover the anon, shmem and the file-backed case here; file-backed 413 * hugepages, when configured in, are determined by the global control. 414 * Anon pmd-sized hugepages are determined by the pmd-size control. 415 * Shmem pmd-sized hugepages are also determined by its pmd-size control, 416 * except when the global shmem_huge is set to SHMEM_HUGE_DENY. 417 */ 418 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 419 hugepage_global_enabled()) 420 return true; 421 if (test_bit(PMD_ORDER, &huge_anon_orders_always)) 422 return true; 423 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) 424 return true; 425 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && 426 hugepage_global_enabled()) 427 return true; 428 if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled()) 429 return true; 430 return false; 431 } 432 433 void __khugepaged_enter(struct mm_struct *mm) 434 { 435 struct mm_slot *slot; 436 int wakeup; 437 438 /* __khugepaged_exit() must not run from under us */ 439 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 440 if (unlikely(mm_flags_test_and_set(MMF_VM_HUGEPAGE, mm))) 441 return; 442 443 slot = mm_slot_alloc(mm_slot_cache); 444 if (!slot) 445 return; 446 447 spin_lock(&khugepaged_mm_lock); 448 mm_slot_insert(mm_slots_hash, mm, slot); 449 /* 450 * Insert just behind the scanning cursor, to let the area settle 451 * down a little. 452 */ 453 wakeup = list_empty(&khugepaged_scan.mm_head); 454 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 455 spin_unlock(&khugepaged_mm_lock); 456 457 mmgrab(mm); 458 if (wakeup) 459 wake_up_interruptible(&khugepaged_wait); 460 } 461 462 void khugepaged_enter_vma(struct vm_area_struct *vma, 463 vm_flags_t vm_flags) 464 { 465 if (!mm_flags_test(MMF_VM_HUGEPAGE, vma->vm_mm) && 466 hugepage_pmd_enabled()) { 467 if (thp_vma_allowable_order(vma, vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) 468 __khugepaged_enter(vma->vm_mm); 469 } 470 } 471 472 void __khugepaged_exit(struct mm_struct *mm) 473 { 474 struct mm_slot *slot; 475 int free = 0; 476 477 spin_lock(&khugepaged_mm_lock); 478 slot = mm_slot_lookup(mm_slots_hash, mm); 479 if (slot && khugepaged_scan.mm_slot != slot) { 480 hash_del(&slot->hash); 481 list_del(&slot->mm_node); 482 free = 1; 483 } 484 spin_unlock(&khugepaged_mm_lock); 485 486 if (free) { 487 mm_flags_clear(MMF_VM_HUGEPAGE, mm); 488 mm_slot_free(mm_slot_cache, slot); 489 mmdrop(mm); 490 } else if (slot) { 491 /* 492 * This is required to serialize against 493 * hpage_collapse_test_exit() (which is guaranteed to run 494 * under mmap sem read mode). Stop here (after we return all 495 * pagetables will be destroyed) until khugepaged has finished 496 * working on the pagetables under the mmap_lock. 497 */ 498 mmap_write_lock(mm); 499 mmap_write_unlock(mm); 500 } 501 } 502 503 static void release_pte_folio(struct folio *folio) 504 { 505 node_stat_mod_folio(folio, 506 NR_ISOLATED_ANON + folio_is_file_lru(folio), 507 -folio_nr_pages(folio)); 508 folio_unlock(folio); 509 folio_putback_lru(folio); 510 } 511 512 static void release_pte_pages(pte_t *pte, pte_t *_pte, 513 struct list_head *compound_pagelist) 514 { 515 struct folio *folio, *tmp; 516 517 while (--_pte >= pte) { 518 pte_t pteval = ptep_get(_pte); 519 unsigned long pfn; 520 521 if (pte_none(pteval)) 522 continue; 523 VM_WARN_ON_ONCE(!pte_present(pteval)); 524 pfn = pte_pfn(pteval); 525 if (is_zero_pfn(pfn)) 526 continue; 527 folio = pfn_folio(pfn); 528 if (folio_test_large(folio)) 529 continue; 530 release_pte_folio(folio); 531 } 532 533 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 534 list_del(&folio->lru); 535 release_pte_folio(folio); 536 } 537 } 538 539 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 540 unsigned long start_addr, 541 pte_t *pte, 542 struct collapse_control *cc, 543 struct list_head *compound_pagelist) 544 { 545 struct page *page = NULL; 546 struct folio *folio = NULL; 547 unsigned long addr = start_addr; 548 pte_t *_pte; 549 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 550 551 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 552 _pte++, addr += PAGE_SIZE) { 553 pte_t pteval = ptep_get(_pte); 554 if (pte_none_or_zero(pteval)) { 555 ++none_or_zero; 556 if (!userfaultfd_armed(vma) && 557 (!cc->is_khugepaged || 558 none_or_zero <= khugepaged_max_ptes_none)) { 559 continue; 560 } else { 561 result = SCAN_EXCEED_NONE_PTE; 562 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 563 goto out; 564 } 565 } 566 if (!pte_present(pteval)) { 567 result = SCAN_PTE_NON_PRESENT; 568 goto out; 569 } 570 if (pte_uffd_wp(pteval)) { 571 result = SCAN_PTE_UFFD_WP; 572 goto out; 573 } 574 page = vm_normal_page(vma, addr, pteval); 575 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 576 result = SCAN_PAGE_NULL; 577 goto out; 578 } 579 580 folio = page_folio(page); 581 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 582 583 /* See hpage_collapse_scan_pmd(). */ 584 if (folio_maybe_mapped_shared(folio)) { 585 ++shared; 586 if (cc->is_khugepaged && 587 shared > khugepaged_max_ptes_shared) { 588 result = SCAN_EXCEED_SHARED_PTE; 589 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 590 goto out; 591 } 592 } 593 594 if (folio_test_large(folio)) { 595 struct folio *f; 596 597 /* 598 * Check if we have dealt with the compound page 599 * already 600 */ 601 list_for_each_entry(f, compound_pagelist, lru) { 602 if (folio == f) 603 goto next; 604 } 605 } 606 607 /* 608 * We can do it before folio_isolate_lru because the 609 * folio can't be freed from under us. NOTE: PG_lock 610 * is needed to serialize against split_huge_page 611 * when invoked from the VM. 612 */ 613 if (!folio_trylock(folio)) { 614 result = SCAN_PAGE_LOCK; 615 goto out; 616 } 617 618 /* 619 * Check if the page has any GUP (or other external) pins. 620 * 621 * The page table that maps the page has been already unlinked 622 * from the page table tree and this process cannot get 623 * an additional pin on the page. 624 * 625 * New pins can come later if the page is shared across fork, 626 * but not from this process. The other process cannot write to 627 * the page, only trigger CoW. 628 */ 629 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 630 folio_unlock(folio); 631 result = SCAN_PAGE_COUNT; 632 goto out; 633 } 634 635 /* 636 * Isolate the page to avoid collapsing an hugepage 637 * currently in use by the VM. 638 */ 639 if (!folio_isolate_lru(folio)) { 640 folio_unlock(folio); 641 result = SCAN_DEL_PAGE_LRU; 642 goto out; 643 } 644 node_stat_mod_folio(folio, 645 NR_ISOLATED_ANON + folio_is_file_lru(folio), 646 folio_nr_pages(folio)); 647 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 648 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 649 650 if (folio_test_large(folio)) 651 list_add_tail(&folio->lru, compound_pagelist); 652 next: 653 /* 654 * If collapse was initiated by khugepaged, check that there is 655 * enough young pte to justify collapsing the page 656 */ 657 if (cc->is_khugepaged && 658 (pte_young(pteval) || folio_test_young(folio) || 659 folio_test_referenced(folio) || 660 mmu_notifier_test_young(vma->vm_mm, addr))) 661 referenced++; 662 } 663 664 if (unlikely(cc->is_khugepaged && !referenced)) { 665 result = SCAN_LACK_REFERENCED_PAGE; 666 } else { 667 result = SCAN_SUCCEED; 668 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 669 referenced, result); 670 return result; 671 } 672 out: 673 release_pte_pages(pte, _pte, compound_pagelist); 674 trace_mm_collapse_huge_page_isolate(folio, none_or_zero, 675 referenced, result); 676 return result; 677 } 678 679 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 680 struct vm_area_struct *vma, 681 unsigned long address, 682 spinlock_t *ptl, 683 struct list_head *compound_pagelist) 684 { 685 unsigned long end = address + HPAGE_PMD_SIZE; 686 struct folio *src, *tmp; 687 pte_t pteval; 688 pte_t *_pte; 689 unsigned int nr_ptes; 690 691 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; _pte += nr_ptes, 692 address += nr_ptes * PAGE_SIZE) { 693 nr_ptes = 1; 694 pteval = ptep_get(_pte); 695 if (pte_none_or_zero(pteval)) { 696 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 697 if (pte_none(pteval)) 698 continue; 699 /* 700 * ptl mostly unnecessary. 701 */ 702 spin_lock(ptl); 703 ptep_clear(vma->vm_mm, address, _pte); 704 spin_unlock(ptl); 705 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 706 } else { 707 struct page *src_page = pte_page(pteval); 708 709 src = page_folio(src_page); 710 711 if (folio_test_large(src)) { 712 unsigned int max_nr_ptes = (end - address) >> PAGE_SHIFT; 713 714 nr_ptes = folio_pte_batch(src, _pte, pteval, max_nr_ptes); 715 } else { 716 release_pte_folio(src); 717 } 718 719 /* 720 * ptl mostly unnecessary, but preempt has to 721 * be disabled to update the per-cpu stats 722 * inside folio_remove_rmap_pte(). 723 */ 724 spin_lock(ptl); 725 clear_ptes(vma->vm_mm, address, _pte, nr_ptes); 726 folio_remove_rmap_ptes(src, src_page, nr_ptes, vma); 727 spin_unlock(ptl); 728 free_swap_cache(src); 729 folio_put_refs(src, nr_ptes); 730 } 731 } 732 733 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 734 list_del(&src->lru); 735 node_stat_sub_folio(src, NR_ISOLATED_ANON + 736 folio_is_file_lru(src)); 737 folio_unlock(src); 738 free_swap_cache(src); 739 folio_putback_lru(src); 740 } 741 } 742 743 static void __collapse_huge_page_copy_failed(pte_t *pte, 744 pmd_t *pmd, 745 pmd_t orig_pmd, 746 struct vm_area_struct *vma, 747 struct list_head *compound_pagelist) 748 { 749 spinlock_t *pmd_ptl; 750 751 /* 752 * Re-establish the PMD to point to the original page table 753 * entry. Restoring PMD needs to be done prior to releasing 754 * pages. Since pages are still isolated and locked here, 755 * acquiring anon_vma_lock_write is unnecessary. 756 */ 757 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 758 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 759 spin_unlock(pmd_ptl); 760 /* 761 * Release both raw and compound pages isolated 762 * in __collapse_huge_page_isolate. 763 */ 764 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 765 } 766 767 /* 768 * __collapse_huge_page_copy - attempts to copy memory contents from raw 769 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 770 * otherwise restores the original page table and releases isolated raw pages. 771 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 772 * 773 * @pte: starting of the PTEs to copy from 774 * @folio: the new hugepage to copy contents to 775 * @pmd: pointer to the new hugepage's PMD 776 * @orig_pmd: the original raw pages' PMD 777 * @vma: the original raw pages' virtual memory area 778 * @address: starting address to copy 779 * @ptl: lock on raw pages' PTEs 780 * @compound_pagelist: list that stores compound pages 781 */ 782 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 783 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 784 unsigned long address, spinlock_t *ptl, 785 struct list_head *compound_pagelist) 786 { 787 unsigned int i; 788 int result = SCAN_SUCCEED; 789 790 /* 791 * Copying pages' contents is subject to memory poison at any iteration. 792 */ 793 for (i = 0; i < HPAGE_PMD_NR; i++) { 794 pte_t pteval = ptep_get(pte + i); 795 struct page *page = folio_page(folio, i); 796 unsigned long src_addr = address + i * PAGE_SIZE; 797 struct page *src_page; 798 799 if (pte_none_or_zero(pteval)) { 800 clear_user_highpage(page, src_addr); 801 continue; 802 } 803 src_page = pte_page(pteval); 804 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 805 result = SCAN_COPY_MC; 806 break; 807 } 808 } 809 810 if (likely(result == SCAN_SUCCEED)) 811 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 812 compound_pagelist); 813 else 814 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 815 compound_pagelist); 816 817 return result; 818 } 819 820 static void khugepaged_alloc_sleep(void) 821 { 822 DEFINE_WAIT(wait); 823 824 add_wait_queue(&khugepaged_wait, &wait); 825 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 826 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 827 remove_wait_queue(&khugepaged_wait, &wait); 828 } 829 830 struct collapse_control khugepaged_collapse_control = { 831 .is_khugepaged = true, 832 }; 833 834 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 835 { 836 int i; 837 838 /* 839 * If node_reclaim_mode is disabled, then no extra effort is made to 840 * allocate memory locally. 841 */ 842 if (!node_reclaim_enabled()) 843 return false; 844 845 /* If there is a count for this node already, it must be acceptable */ 846 if (cc->node_load[nid]) 847 return false; 848 849 for (i = 0; i < MAX_NUMNODES; i++) { 850 if (!cc->node_load[i]) 851 continue; 852 if (node_distance(nid, i) > node_reclaim_distance) 853 return true; 854 } 855 return false; 856 } 857 858 #define khugepaged_defrag() \ 859 (transparent_hugepage_flags & \ 860 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 861 862 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 863 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 864 { 865 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 866 } 867 868 #ifdef CONFIG_NUMA 869 static int hpage_collapse_find_target_node(struct collapse_control *cc) 870 { 871 int nid, target_node = 0, max_value = 0; 872 873 /* find first node with max normal pages hit */ 874 for (nid = 0; nid < MAX_NUMNODES; nid++) 875 if (cc->node_load[nid] > max_value) { 876 max_value = cc->node_load[nid]; 877 target_node = nid; 878 } 879 880 for_each_online_node(nid) { 881 if (max_value == cc->node_load[nid]) 882 node_set(nid, cc->alloc_nmask); 883 } 884 885 return target_node; 886 } 887 #else 888 static int hpage_collapse_find_target_node(struct collapse_control *cc) 889 { 890 return 0; 891 } 892 #endif 893 894 /* 895 * If mmap_lock temporarily dropped, revalidate vma 896 * before taking mmap_lock. 897 * Returns enum scan_result value. 898 */ 899 900 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 901 bool expect_anon, 902 struct vm_area_struct **vmap, 903 struct collapse_control *cc) 904 { 905 struct vm_area_struct *vma; 906 enum tva_type type = cc->is_khugepaged ? TVA_KHUGEPAGED : 907 TVA_FORCED_COLLAPSE; 908 909 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 910 return SCAN_ANY_PROCESS; 911 912 *vmap = vma = find_vma(mm, address); 913 if (!vma) 914 return SCAN_VMA_NULL; 915 916 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 917 return SCAN_ADDRESS_RANGE; 918 if (!thp_vma_allowable_order(vma, vma->vm_flags, type, PMD_ORDER)) 919 return SCAN_VMA_CHECK; 920 /* 921 * Anon VMA expected, the address may be unmapped then 922 * remapped to file after khugepaged reaquired the mmap_lock. 923 * 924 * thp_vma_allowable_order may return true for qualified file 925 * vmas. 926 */ 927 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 928 return SCAN_PAGE_ANON; 929 return SCAN_SUCCEED; 930 } 931 932 static inline int check_pmd_state(pmd_t *pmd) 933 { 934 pmd_t pmde = pmdp_get_lockless(pmd); 935 936 if (pmd_none(pmde)) 937 return SCAN_PMD_NONE; 938 939 /* 940 * The folio may be under migration when khugepaged is trying to 941 * collapse it. Migration success or failure will eventually end 942 * up with a present PMD mapping a folio again. 943 */ 944 if (is_pmd_migration_entry(pmde)) 945 return SCAN_PMD_MAPPED; 946 if (!pmd_present(pmde)) 947 return SCAN_PMD_NULL; 948 if (pmd_trans_huge(pmde)) 949 return SCAN_PMD_MAPPED; 950 if (pmd_bad(pmde)) 951 return SCAN_PMD_NULL; 952 return SCAN_SUCCEED; 953 } 954 955 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 956 unsigned long address, 957 pmd_t **pmd) 958 { 959 *pmd = mm_find_pmd(mm, address); 960 if (!*pmd) 961 return SCAN_PMD_NULL; 962 963 return check_pmd_state(*pmd); 964 } 965 966 static int check_pmd_still_valid(struct mm_struct *mm, 967 unsigned long address, 968 pmd_t *pmd) 969 { 970 pmd_t *new_pmd; 971 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 972 973 if (result != SCAN_SUCCEED) 974 return result; 975 if (new_pmd != pmd) 976 return SCAN_FAIL; 977 return SCAN_SUCCEED; 978 } 979 980 /* 981 * Bring missing pages in from swap, to complete THP collapse. 982 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 983 * 984 * Called and returns without pte mapped or spinlocks held. 985 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 986 */ 987 static int __collapse_huge_page_swapin(struct mm_struct *mm, 988 struct vm_area_struct *vma, 989 unsigned long start_addr, pmd_t *pmd, 990 int referenced) 991 { 992 int swapped_in = 0; 993 vm_fault_t ret = 0; 994 unsigned long addr, end = start_addr + (HPAGE_PMD_NR * PAGE_SIZE); 995 int result; 996 pte_t *pte = NULL; 997 spinlock_t *ptl; 998 999 for (addr = start_addr; addr < end; addr += PAGE_SIZE) { 1000 struct vm_fault vmf = { 1001 .vma = vma, 1002 .address = addr, 1003 .pgoff = linear_page_index(vma, addr), 1004 .flags = FAULT_FLAG_ALLOW_RETRY, 1005 .pmd = pmd, 1006 }; 1007 1008 if (!pte++) { 1009 /* 1010 * Here the ptl is only used to check pte_same() in 1011 * do_swap_page(), so readonly version is enough. 1012 */ 1013 pte = pte_offset_map_ro_nolock(mm, pmd, addr, &ptl); 1014 if (!pte) { 1015 mmap_read_unlock(mm); 1016 result = SCAN_PMD_NULL; 1017 goto out; 1018 } 1019 } 1020 1021 vmf.orig_pte = ptep_get_lockless(pte); 1022 if (!is_swap_pte(vmf.orig_pte)) 1023 continue; 1024 1025 vmf.pte = pte; 1026 vmf.ptl = ptl; 1027 ret = do_swap_page(&vmf); 1028 /* Which unmaps pte (after perhaps re-checking the entry) */ 1029 pte = NULL; 1030 1031 /* 1032 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1033 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1034 * we do not retry here and swap entry will remain in pagetable 1035 * resulting in later failure. 1036 */ 1037 if (ret & VM_FAULT_RETRY) { 1038 /* Likely, but not guaranteed, that page lock failed */ 1039 result = SCAN_PAGE_LOCK; 1040 goto out; 1041 } 1042 if (ret & VM_FAULT_ERROR) { 1043 mmap_read_unlock(mm); 1044 result = SCAN_FAIL; 1045 goto out; 1046 } 1047 swapped_in++; 1048 } 1049 1050 if (pte) 1051 pte_unmap(pte); 1052 1053 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1054 if (swapped_in) 1055 lru_add_drain(); 1056 1057 result = SCAN_SUCCEED; 1058 out: 1059 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1060 return result; 1061 } 1062 1063 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1064 struct collapse_control *cc) 1065 { 1066 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1067 GFP_TRANSHUGE); 1068 int node = hpage_collapse_find_target_node(cc); 1069 struct folio *folio; 1070 1071 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1072 if (!folio) { 1073 *foliop = NULL; 1074 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1075 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1076 } 1077 1078 count_vm_event(THP_COLLAPSE_ALLOC); 1079 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1080 folio_put(folio); 1081 *foliop = NULL; 1082 return SCAN_CGROUP_CHARGE_FAIL; 1083 } 1084 1085 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1086 1087 *foliop = folio; 1088 return SCAN_SUCCEED; 1089 } 1090 1091 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1092 int referenced, int unmapped, 1093 struct collapse_control *cc) 1094 { 1095 LIST_HEAD(compound_pagelist); 1096 pmd_t *pmd, _pmd; 1097 pte_t *pte; 1098 pgtable_t pgtable; 1099 struct folio *folio; 1100 spinlock_t *pmd_ptl, *pte_ptl; 1101 int result = SCAN_FAIL; 1102 struct vm_area_struct *vma; 1103 struct mmu_notifier_range range; 1104 1105 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1106 1107 /* 1108 * Before allocating the hugepage, release the mmap_lock read lock. 1109 * The allocation can take potentially a long time if it involves 1110 * sync compaction, and we do not need to hold the mmap_lock during 1111 * that. We will recheck the vma after taking it again in write mode. 1112 */ 1113 mmap_read_unlock(mm); 1114 1115 result = alloc_charge_folio(&folio, mm, cc); 1116 if (result != SCAN_SUCCEED) 1117 goto out_nolock; 1118 1119 mmap_read_lock(mm); 1120 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1121 if (result != SCAN_SUCCEED) { 1122 mmap_read_unlock(mm); 1123 goto out_nolock; 1124 } 1125 1126 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1127 if (result != SCAN_SUCCEED) { 1128 mmap_read_unlock(mm); 1129 goto out_nolock; 1130 } 1131 1132 if (unmapped) { 1133 /* 1134 * __collapse_huge_page_swapin will return with mmap_lock 1135 * released when it fails. So we jump out_nolock directly in 1136 * that case. Continuing to collapse causes inconsistency. 1137 */ 1138 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1139 referenced); 1140 if (result != SCAN_SUCCEED) 1141 goto out_nolock; 1142 } 1143 1144 mmap_read_unlock(mm); 1145 /* 1146 * Prevent all access to pagetables with the exception of 1147 * gup_fast later handled by the ptep_clear_flush and the VM 1148 * handled by the anon_vma lock + PG_lock. 1149 * 1150 * UFFDIO_MOVE is prevented to race as well thanks to the 1151 * mmap_lock. 1152 */ 1153 mmap_write_lock(mm); 1154 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1155 if (result != SCAN_SUCCEED) 1156 goto out_up_write; 1157 /* check if the pmd is still valid */ 1158 vma_start_write(vma); 1159 result = check_pmd_still_valid(mm, address, pmd); 1160 if (result != SCAN_SUCCEED) 1161 goto out_up_write; 1162 1163 anon_vma_lock_write(vma->anon_vma); 1164 1165 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1166 address + HPAGE_PMD_SIZE); 1167 mmu_notifier_invalidate_range_start(&range); 1168 1169 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1170 /* 1171 * This removes any huge TLB entry from the CPU so we won't allow 1172 * huge and small TLB entries for the same virtual address to 1173 * avoid the risk of CPU bugs in that area. 1174 * 1175 * Parallel GUP-fast is fine since GUP-fast will back off when 1176 * it detects PMD is changed. 1177 */ 1178 _pmd = pmdp_collapse_flush(vma, address, pmd); 1179 spin_unlock(pmd_ptl); 1180 mmu_notifier_invalidate_range_end(&range); 1181 tlb_remove_table_sync_one(); 1182 1183 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1184 if (pte) { 1185 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1186 &compound_pagelist); 1187 spin_unlock(pte_ptl); 1188 } else { 1189 result = SCAN_PMD_NULL; 1190 } 1191 1192 if (unlikely(result != SCAN_SUCCEED)) { 1193 if (pte) 1194 pte_unmap(pte); 1195 spin_lock(pmd_ptl); 1196 BUG_ON(!pmd_none(*pmd)); 1197 /* 1198 * We can only use set_pmd_at when establishing 1199 * hugepmds and never for establishing regular pmds that 1200 * points to regular pagetables. Use pmd_populate for that 1201 */ 1202 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1203 spin_unlock(pmd_ptl); 1204 anon_vma_unlock_write(vma->anon_vma); 1205 goto out_up_write; 1206 } 1207 1208 /* 1209 * All pages are isolated and locked so anon_vma rmap 1210 * can't run anymore. 1211 */ 1212 anon_vma_unlock_write(vma->anon_vma); 1213 1214 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1215 vma, address, pte_ptl, 1216 &compound_pagelist); 1217 pte_unmap(pte); 1218 if (unlikely(result != SCAN_SUCCEED)) 1219 goto out_up_write; 1220 1221 /* 1222 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1223 * copy_huge_page writes become visible before the set_pmd_at() 1224 * write. 1225 */ 1226 __folio_mark_uptodate(folio); 1227 pgtable = pmd_pgtable(_pmd); 1228 1229 _pmd = folio_mk_pmd(folio, vma->vm_page_prot); 1230 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1231 1232 spin_lock(pmd_ptl); 1233 BUG_ON(!pmd_none(*pmd)); 1234 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 1235 folio_add_lru_vma(folio, vma); 1236 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1237 set_pmd_at(mm, address, pmd, _pmd); 1238 update_mmu_cache_pmd(vma, address, pmd); 1239 deferred_split_folio(folio, false); 1240 spin_unlock(pmd_ptl); 1241 1242 folio = NULL; 1243 1244 result = SCAN_SUCCEED; 1245 out_up_write: 1246 mmap_write_unlock(mm); 1247 out_nolock: 1248 if (folio) 1249 folio_put(folio); 1250 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1251 return result; 1252 } 1253 1254 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1255 struct vm_area_struct *vma, 1256 unsigned long start_addr, bool *mmap_locked, 1257 struct collapse_control *cc) 1258 { 1259 pmd_t *pmd; 1260 pte_t *pte, *_pte; 1261 int result = SCAN_FAIL, referenced = 0; 1262 int none_or_zero = 0, shared = 0; 1263 struct page *page = NULL; 1264 struct folio *folio = NULL; 1265 unsigned long addr; 1266 spinlock_t *ptl; 1267 int node = NUMA_NO_NODE, unmapped = 0; 1268 1269 VM_BUG_ON(start_addr & ~HPAGE_PMD_MASK); 1270 1271 result = find_pmd_or_thp_or_none(mm, start_addr, &pmd); 1272 if (result != SCAN_SUCCEED) 1273 goto out; 1274 1275 memset(cc->node_load, 0, sizeof(cc->node_load)); 1276 nodes_clear(cc->alloc_nmask); 1277 pte = pte_offset_map_lock(mm, pmd, start_addr, &ptl); 1278 if (!pte) { 1279 result = SCAN_PMD_NULL; 1280 goto out; 1281 } 1282 1283 for (addr = start_addr, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1284 _pte++, addr += PAGE_SIZE) { 1285 pte_t pteval = ptep_get(_pte); 1286 if (is_swap_pte(pteval)) { 1287 ++unmapped; 1288 if (!cc->is_khugepaged || 1289 unmapped <= khugepaged_max_ptes_swap) { 1290 /* 1291 * Always be strict with uffd-wp 1292 * enabled swap entries. Please see 1293 * comment below for pte_uffd_wp(). 1294 */ 1295 if (pte_swp_uffd_wp_any(pteval)) { 1296 result = SCAN_PTE_UFFD_WP; 1297 goto out_unmap; 1298 } 1299 continue; 1300 } else { 1301 result = SCAN_EXCEED_SWAP_PTE; 1302 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1303 goto out_unmap; 1304 } 1305 } 1306 if (pte_none_or_zero(pteval)) { 1307 ++none_or_zero; 1308 if (!userfaultfd_armed(vma) && 1309 (!cc->is_khugepaged || 1310 none_or_zero <= khugepaged_max_ptes_none)) { 1311 continue; 1312 } else { 1313 result = SCAN_EXCEED_NONE_PTE; 1314 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1315 goto out_unmap; 1316 } 1317 } 1318 if (pte_uffd_wp(pteval)) { 1319 /* 1320 * Don't collapse the page if any of the small 1321 * PTEs are armed with uffd write protection. 1322 * Here we can also mark the new huge pmd as 1323 * write protected if any of the small ones is 1324 * marked but that could bring unknown 1325 * userfault messages that falls outside of 1326 * the registered range. So, just be simple. 1327 */ 1328 result = SCAN_PTE_UFFD_WP; 1329 goto out_unmap; 1330 } 1331 1332 page = vm_normal_page(vma, addr, pteval); 1333 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1334 result = SCAN_PAGE_NULL; 1335 goto out_unmap; 1336 } 1337 folio = page_folio(page); 1338 1339 if (!folio_test_anon(folio)) { 1340 result = SCAN_PAGE_ANON; 1341 goto out_unmap; 1342 } 1343 1344 /* 1345 * We treat a single page as shared if any part of the THP 1346 * is shared. 1347 */ 1348 if (folio_maybe_mapped_shared(folio)) { 1349 ++shared; 1350 if (cc->is_khugepaged && 1351 shared > khugepaged_max_ptes_shared) { 1352 result = SCAN_EXCEED_SHARED_PTE; 1353 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1354 goto out_unmap; 1355 } 1356 } 1357 1358 /* 1359 * Record which node the original page is from and save this 1360 * information to cc->node_load[]. 1361 * Khugepaged will allocate hugepage from the node has the max 1362 * hit record. 1363 */ 1364 node = folio_nid(folio); 1365 if (hpage_collapse_scan_abort(node, cc)) { 1366 result = SCAN_SCAN_ABORT; 1367 goto out_unmap; 1368 } 1369 cc->node_load[node]++; 1370 if (!folio_test_lru(folio)) { 1371 result = SCAN_PAGE_LRU; 1372 goto out_unmap; 1373 } 1374 if (folio_test_locked(folio)) { 1375 result = SCAN_PAGE_LOCK; 1376 goto out_unmap; 1377 } 1378 1379 /* 1380 * Check if the page has any GUP (or other external) pins. 1381 * 1382 * Here the check may be racy: 1383 * it may see folio_mapcount() > folio_ref_count(). 1384 * But such case is ephemeral we could always retry collapse 1385 * later. However it may report false positive if the page 1386 * has excessive GUP pins (i.e. 512). Anyway the same check 1387 * will be done again later the risk seems low. 1388 */ 1389 if (folio_expected_ref_count(folio) != folio_ref_count(folio)) { 1390 result = SCAN_PAGE_COUNT; 1391 goto out_unmap; 1392 } 1393 1394 /* 1395 * If collapse was initiated by khugepaged, check that there is 1396 * enough young pte to justify collapsing the page 1397 */ 1398 if (cc->is_khugepaged && 1399 (pte_young(pteval) || folio_test_young(folio) || 1400 folio_test_referenced(folio) || 1401 mmu_notifier_test_young(vma->vm_mm, addr))) 1402 referenced++; 1403 } 1404 if (cc->is_khugepaged && 1405 (!referenced || 1406 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1407 result = SCAN_LACK_REFERENCED_PAGE; 1408 } else { 1409 result = SCAN_SUCCEED; 1410 } 1411 out_unmap: 1412 pte_unmap_unlock(pte, ptl); 1413 if (result == SCAN_SUCCEED) { 1414 result = collapse_huge_page(mm, start_addr, referenced, 1415 unmapped, cc); 1416 /* collapse_huge_page will return with the mmap_lock released */ 1417 *mmap_locked = false; 1418 } 1419 out: 1420 trace_mm_khugepaged_scan_pmd(mm, folio, referenced, 1421 none_or_zero, result, unmapped); 1422 return result; 1423 } 1424 1425 static void collect_mm_slot(struct mm_slot *slot) 1426 { 1427 struct mm_struct *mm = slot->mm; 1428 1429 lockdep_assert_held(&khugepaged_mm_lock); 1430 1431 if (hpage_collapse_test_exit(mm)) { 1432 /* free mm_slot */ 1433 hash_del(&slot->hash); 1434 list_del(&slot->mm_node); 1435 1436 /* 1437 * Not strictly needed because the mm exited already. 1438 * 1439 * mm_flags_clear(MMF_VM_HUGEPAGE, mm); 1440 */ 1441 1442 /* khugepaged_mm_lock actually not necessary for the below */ 1443 mm_slot_free(mm_slot_cache, slot); 1444 mmdrop(mm); 1445 } 1446 } 1447 1448 /* folio must be locked, and mmap_lock must be held */ 1449 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1450 pmd_t *pmdp, struct folio *folio, struct page *page) 1451 { 1452 struct mm_struct *mm = vma->vm_mm; 1453 struct vm_fault vmf = { 1454 .vma = vma, 1455 .address = addr, 1456 .flags = 0, 1457 }; 1458 pgd_t *pgdp; 1459 p4d_t *p4dp; 1460 pud_t *pudp; 1461 1462 mmap_assert_locked(vma->vm_mm); 1463 1464 if (!pmdp) { 1465 pgdp = pgd_offset(mm, addr); 1466 p4dp = p4d_alloc(mm, pgdp, addr); 1467 if (!p4dp) 1468 return SCAN_FAIL; 1469 pudp = pud_alloc(mm, p4dp, addr); 1470 if (!pudp) 1471 return SCAN_FAIL; 1472 pmdp = pmd_alloc(mm, pudp, addr); 1473 if (!pmdp) 1474 return SCAN_FAIL; 1475 } 1476 1477 vmf.pmd = pmdp; 1478 if (do_set_pmd(&vmf, folio, page)) 1479 return SCAN_FAIL; 1480 1481 folio_get(folio); 1482 return SCAN_SUCCEED; 1483 } 1484 1485 /** 1486 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1487 * address haddr. 1488 * 1489 * @mm: process address space where collapse happens 1490 * @addr: THP collapse address 1491 * @install_pmd: If a huge PMD should be installed 1492 * 1493 * This function checks whether all the PTEs in the PMD are pointing to the 1494 * right THP. If so, retract the page table so the THP can refault in with 1495 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1496 */ 1497 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1498 bool install_pmd) 1499 { 1500 int nr_mapped_ptes = 0, result = SCAN_FAIL; 1501 unsigned int nr_batch_ptes; 1502 struct mmu_notifier_range range; 1503 bool notified = false; 1504 unsigned long haddr = addr & HPAGE_PMD_MASK; 1505 unsigned long end = haddr + HPAGE_PMD_SIZE; 1506 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1507 struct folio *folio; 1508 pte_t *start_pte, *pte; 1509 pmd_t *pmd, pgt_pmd; 1510 spinlock_t *pml = NULL, *ptl; 1511 int i; 1512 1513 mmap_assert_locked(mm); 1514 1515 /* First check VMA found, in case page tables are being torn down */ 1516 if (!vma || !vma->vm_file || 1517 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1518 return SCAN_VMA_CHECK; 1519 1520 /* Fast check before locking page if already PMD-mapped */ 1521 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1522 if (result == SCAN_PMD_MAPPED) 1523 return result; 1524 1525 /* 1526 * If we are here, we've succeeded in replacing all the native pages 1527 * in the page cache with a single hugepage. If a mm were to fault-in 1528 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1529 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1530 * analogously elide sysfs THP settings here and force collapse. 1531 */ 1532 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER)) 1533 return SCAN_VMA_CHECK; 1534 1535 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1536 if (userfaultfd_wp(vma)) 1537 return SCAN_PTE_UFFD_WP; 1538 1539 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1540 linear_page_index(vma, haddr)); 1541 if (IS_ERR(folio)) 1542 return SCAN_PAGE_NULL; 1543 1544 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1545 result = SCAN_PAGE_COMPOUND; 1546 goto drop_folio; 1547 } 1548 1549 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1550 switch (result) { 1551 case SCAN_SUCCEED: 1552 break; 1553 case SCAN_PMD_NULL: 1554 case SCAN_PMD_NONE: 1555 /* 1556 * All pte entries have been removed and pmd cleared. 1557 * Skip all the pte checks and just update the pmd mapping. 1558 */ 1559 goto maybe_install_pmd; 1560 default: 1561 goto drop_folio; 1562 } 1563 1564 result = SCAN_FAIL; 1565 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1566 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1567 goto drop_folio; 1568 1569 /* step 1: check all mapped PTEs are to the right huge page */ 1570 for (i = 0, addr = haddr, pte = start_pte; 1571 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1572 struct page *page; 1573 pte_t ptent = ptep_get(pte); 1574 1575 /* empty pte, skip */ 1576 if (pte_none(ptent)) 1577 continue; 1578 1579 /* page swapped out, abort */ 1580 if (!pte_present(ptent)) { 1581 result = SCAN_PTE_NON_PRESENT; 1582 goto abort; 1583 } 1584 1585 page = vm_normal_page(vma, addr, ptent); 1586 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1587 page = NULL; 1588 /* 1589 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1590 * page table, but the new page will not be a subpage of hpage. 1591 */ 1592 if (folio_page(folio, i) != page) 1593 goto abort; 1594 } 1595 1596 pte_unmap_unlock(start_pte, ptl); 1597 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1598 haddr, haddr + HPAGE_PMD_SIZE); 1599 mmu_notifier_invalidate_range_start(&range); 1600 notified = true; 1601 1602 /* 1603 * pmd_lock covers a wider range than ptl, and (if split from mm's 1604 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1605 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1606 * inserts a valid as-if-COWed PTE without even looking up page cache. 1607 * So page lock of folio does not protect from it, so we must not drop 1608 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1609 */ 1610 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1611 pml = pmd_lock(mm, pmd); 1612 1613 start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl); 1614 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1615 goto abort; 1616 if (!pml) 1617 spin_lock(ptl); 1618 else if (ptl != pml) 1619 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1620 1621 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) 1622 goto abort; 1623 1624 /* step 2: clear page table and adjust rmap */ 1625 for (i = 0, addr = haddr, pte = start_pte; i < HPAGE_PMD_NR; 1626 i += nr_batch_ptes, addr += nr_batch_ptes * PAGE_SIZE, 1627 pte += nr_batch_ptes) { 1628 unsigned int max_nr_batch_ptes = (end - addr) >> PAGE_SHIFT; 1629 struct page *page; 1630 pte_t ptent = ptep_get(pte); 1631 1632 nr_batch_ptes = 1; 1633 1634 if (pte_none(ptent)) 1635 continue; 1636 /* 1637 * We dropped ptl after the first scan, to do the mmu_notifier: 1638 * page lock stops more PTEs of the folio being faulted in, but 1639 * does not stop write faults COWing anon copies from existing 1640 * PTEs; and does not stop those being swapped out or migrated. 1641 */ 1642 if (!pte_present(ptent)) { 1643 result = SCAN_PTE_NON_PRESENT; 1644 goto abort; 1645 } 1646 page = vm_normal_page(vma, addr, ptent); 1647 1648 if (folio_page(folio, i) != page) 1649 goto abort; 1650 1651 nr_batch_ptes = folio_pte_batch(folio, pte, ptent, max_nr_batch_ptes); 1652 1653 /* 1654 * Must clear entry, or a racing truncate may re-remove it. 1655 * TLB flush can be left until pmdp_collapse_flush() does it. 1656 * PTE dirty? Shmem page is already dirty; file is read-only. 1657 */ 1658 clear_ptes(mm, addr, pte, nr_batch_ptes); 1659 folio_remove_rmap_ptes(folio, page, nr_batch_ptes, vma); 1660 nr_mapped_ptes += nr_batch_ptes; 1661 } 1662 1663 if (!pml) 1664 spin_unlock(ptl); 1665 1666 /* step 3: set proper refcount and mm_counters. */ 1667 if (nr_mapped_ptes) { 1668 folio_ref_sub(folio, nr_mapped_ptes); 1669 add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes); 1670 } 1671 1672 /* step 4: remove empty page table */ 1673 if (!pml) { 1674 pml = pmd_lock(mm, pmd); 1675 if (ptl != pml) { 1676 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1677 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) { 1678 flush_tlb_mm(mm); 1679 goto unlock; 1680 } 1681 } 1682 } 1683 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1684 pmdp_get_lockless_sync(); 1685 pte_unmap_unlock(start_pte, ptl); 1686 if (ptl != pml) 1687 spin_unlock(pml); 1688 1689 mmu_notifier_invalidate_range_end(&range); 1690 1691 mm_dec_nr_ptes(mm); 1692 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1693 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1694 1695 maybe_install_pmd: 1696 /* step 5: install pmd entry */ 1697 result = install_pmd 1698 ? set_huge_pmd(vma, haddr, pmd, folio, &folio->page) 1699 : SCAN_SUCCEED; 1700 goto drop_folio; 1701 abort: 1702 if (nr_mapped_ptes) { 1703 flush_tlb_mm(mm); 1704 folio_ref_sub(folio, nr_mapped_ptes); 1705 add_mm_counter(mm, mm_counter_file(folio), -nr_mapped_ptes); 1706 } 1707 unlock: 1708 if (start_pte) 1709 pte_unmap_unlock(start_pte, ptl); 1710 if (pml && pml != ptl) 1711 spin_unlock(pml); 1712 if (notified) 1713 mmu_notifier_invalidate_range_end(&range); 1714 drop_folio: 1715 folio_unlock(folio); 1716 folio_put(folio); 1717 return result; 1718 } 1719 1720 /* Can we retract page tables for this file-backed VMA? */ 1721 static bool file_backed_vma_is_retractable(struct vm_area_struct *vma) 1722 { 1723 /* 1724 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1725 * got written to. These VMAs are likely not worth removing 1726 * page tables from, as PMD-mapping is likely to be split later. 1727 */ 1728 if (READ_ONCE(vma->anon_vma)) 1729 return false; 1730 1731 /* 1732 * When a vma is registered with uffd-wp, we cannot recycle 1733 * the page table because there may be pte markers installed. 1734 * Other vmas can still have the same file mapped hugely, but 1735 * skip this one: it will always be mapped in small page size 1736 * for uffd-wp registered ranges. 1737 */ 1738 if (userfaultfd_wp(vma)) 1739 return false; 1740 1741 /* 1742 * If the VMA contains guard regions then we can't collapse it. 1743 * 1744 * This is set atomically on guard marker installation under mmap/VMA 1745 * read lock, and here we may not hold any VMA or mmap lock at all. 1746 * 1747 * This is therefore serialised on the PTE page table lock, which is 1748 * obtained on guard region installation after the flag is set, so this 1749 * check being performed under this lock excludes races. 1750 */ 1751 if (vma_flag_test_atomic(vma, VM_MAYBE_GUARD_BIT)) 1752 return false; 1753 1754 return true; 1755 } 1756 1757 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1758 { 1759 struct vm_area_struct *vma; 1760 1761 i_mmap_lock_read(mapping); 1762 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1763 struct mmu_notifier_range range; 1764 struct mm_struct *mm; 1765 unsigned long addr; 1766 pmd_t *pmd, pgt_pmd; 1767 spinlock_t *pml; 1768 spinlock_t *ptl; 1769 bool success = false; 1770 1771 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1772 if (addr & ~HPAGE_PMD_MASK || 1773 vma->vm_end < addr + HPAGE_PMD_SIZE) 1774 continue; 1775 1776 mm = vma->vm_mm; 1777 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1778 continue; 1779 1780 if (hpage_collapse_test_exit(mm)) 1781 continue; 1782 1783 if (!file_backed_vma_is_retractable(vma)) 1784 continue; 1785 1786 /* PTEs were notified when unmapped; but now for the PMD? */ 1787 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1788 addr, addr + HPAGE_PMD_SIZE); 1789 mmu_notifier_invalidate_range_start(&range); 1790 1791 pml = pmd_lock(mm, pmd); 1792 /* 1793 * The lock of new_folio is still held, we will be blocked in 1794 * the page fault path, which prevents the pte entries from 1795 * being set again. So even though the old empty PTE page may be 1796 * concurrently freed and a new PTE page is filled into the pmd 1797 * entry, it is still empty and can be removed. 1798 * 1799 * So here we only need to recheck if the state of pmd entry 1800 * still meets our requirements, rather than checking pmd_same() 1801 * like elsewhere. 1802 */ 1803 if (check_pmd_state(pmd) != SCAN_SUCCEED) 1804 goto drop_pml; 1805 ptl = pte_lockptr(mm, pmd); 1806 if (ptl != pml) 1807 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1808 1809 /* 1810 * Huge page lock is still held, so normally the page table must 1811 * remain empty; and we have already skipped anon_vma and 1812 * userfaultfd_wp() vmas. But since the mmap_lock is not held, 1813 * it is still possible for a racing userfaultfd_ioctl() or 1814 * madvise() to have inserted ptes or markers. Now that we hold 1815 * ptlock, repeating the retractable checks protects us from 1816 * races against the prior checks. 1817 */ 1818 if (likely(file_backed_vma_is_retractable(vma))) { 1819 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1820 pmdp_get_lockless_sync(); 1821 success = true; 1822 } 1823 1824 if (ptl != pml) 1825 spin_unlock(ptl); 1826 drop_pml: 1827 spin_unlock(pml); 1828 1829 mmu_notifier_invalidate_range_end(&range); 1830 1831 if (success) { 1832 mm_dec_nr_ptes(mm); 1833 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1834 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1835 } 1836 } 1837 i_mmap_unlock_read(mapping); 1838 } 1839 1840 /** 1841 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1842 * 1843 * @mm: process address space where collapse happens 1844 * @addr: virtual collapse start address 1845 * @file: file that collapse on 1846 * @start: collapse start address 1847 * @cc: collapse context and scratchpad 1848 * 1849 * Basic scheme is simple, details are more complex: 1850 * - allocate and lock a new huge page; 1851 * - scan page cache, locking old pages 1852 * + swap/gup in pages if necessary; 1853 * - copy data to new page 1854 * - handle shmem holes 1855 * + re-validate that holes weren't filled by someone else 1856 * + check for userfaultfd 1857 * - finalize updates to the page cache; 1858 * - if replacing succeeds: 1859 * + unlock huge page; 1860 * + free old pages; 1861 * - if replacing failed; 1862 * + unlock old pages 1863 * + unlock and free huge page; 1864 */ 1865 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1866 struct file *file, pgoff_t start, 1867 struct collapse_control *cc) 1868 { 1869 struct address_space *mapping = file->f_mapping; 1870 struct page *dst; 1871 struct folio *folio, *tmp, *new_folio; 1872 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1873 LIST_HEAD(pagelist); 1874 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1875 int nr_none = 0, result = SCAN_SUCCEED; 1876 bool is_shmem = shmem_file(file); 1877 1878 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1879 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1880 1881 result = alloc_charge_folio(&new_folio, mm, cc); 1882 if (result != SCAN_SUCCEED) 1883 goto out; 1884 1885 mapping_set_update(&xas, mapping); 1886 1887 __folio_set_locked(new_folio); 1888 if (is_shmem) 1889 __folio_set_swapbacked(new_folio); 1890 new_folio->index = start; 1891 new_folio->mapping = mapping; 1892 1893 /* 1894 * Ensure we have slots for all the pages in the range. This is 1895 * almost certainly a no-op because most of the pages must be present 1896 */ 1897 do { 1898 xas_lock_irq(&xas); 1899 xas_create_range(&xas); 1900 if (!xas_error(&xas)) 1901 break; 1902 xas_unlock_irq(&xas); 1903 if (!xas_nomem(&xas, GFP_KERNEL)) { 1904 result = SCAN_FAIL; 1905 goto rollback; 1906 } 1907 } while (1); 1908 1909 for (index = start; index < end;) { 1910 xas_set(&xas, index); 1911 folio = xas_load(&xas); 1912 1913 VM_BUG_ON(index != xas.xa_index); 1914 if (is_shmem) { 1915 if (!folio) { 1916 /* 1917 * Stop if extent has been truncated or 1918 * hole-punched, and is now completely 1919 * empty. 1920 */ 1921 if (index == start) { 1922 if (!xas_next_entry(&xas, end - 1)) { 1923 result = SCAN_TRUNCATED; 1924 goto xa_locked; 1925 } 1926 } 1927 nr_none++; 1928 index++; 1929 continue; 1930 } 1931 1932 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1933 xas_unlock_irq(&xas); 1934 /* swap in or instantiate fallocated page */ 1935 if (shmem_get_folio(mapping->host, index, 0, 1936 &folio, SGP_NOALLOC)) { 1937 result = SCAN_FAIL; 1938 goto xa_unlocked; 1939 } 1940 /* drain lru cache to help folio_isolate_lru() */ 1941 lru_add_drain(); 1942 } else if (folio_trylock(folio)) { 1943 folio_get(folio); 1944 xas_unlock_irq(&xas); 1945 } else { 1946 result = SCAN_PAGE_LOCK; 1947 goto xa_locked; 1948 } 1949 } else { /* !is_shmem */ 1950 if (!folio || xa_is_value(folio)) { 1951 xas_unlock_irq(&xas); 1952 page_cache_sync_readahead(mapping, &file->f_ra, 1953 file, index, 1954 end - index); 1955 /* drain lru cache to help folio_isolate_lru() */ 1956 lru_add_drain(); 1957 folio = filemap_lock_folio(mapping, index); 1958 if (IS_ERR(folio)) { 1959 result = SCAN_FAIL; 1960 goto xa_unlocked; 1961 } 1962 } else if (folio_test_dirty(folio)) { 1963 /* 1964 * khugepaged only works on read-only fd, 1965 * so this page is dirty because it hasn't 1966 * been flushed since first write. There 1967 * won't be new dirty pages. 1968 * 1969 * Trigger async flush here and hope the 1970 * writeback is done when khugepaged 1971 * revisits this page. 1972 * 1973 * This is a one-off situation. We are not 1974 * forcing writeback in loop. 1975 */ 1976 xas_unlock_irq(&xas); 1977 filemap_flush(mapping); 1978 result = SCAN_FAIL; 1979 goto xa_unlocked; 1980 } else if (folio_test_writeback(folio)) { 1981 xas_unlock_irq(&xas); 1982 result = SCAN_FAIL; 1983 goto xa_unlocked; 1984 } else if (folio_trylock(folio)) { 1985 folio_get(folio); 1986 xas_unlock_irq(&xas); 1987 } else { 1988 result = SCAN_PAGE_LOCK; 1989 goto xa_locked; 1990 } 1991 } 1992 1993 /* 1994 * The folio must be locked, so we can drop the i_pages lock 1995 * without racing with truncate. 1996 */ 1997 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1998 1999 /* make sure the folio is up to date */ 2000 if (unlikely(!folio_test_uptodate(folio))) { 2001 result = SCAN_FAIL; 2002 goto out_unlock; 2003 } 2004 2005 /* 2006 * If file was truncated then extended, or hole-punched, before 2007 * we locked the first folio, then a THP might be there already. 2008 * This will be discovered on the first iteration. 2009 */ 2010 if (folio_order(folio) == HPAGE_PMD_ORDER && 2011 folio->index == start) { 2012 /* Maybe PMD-mapped */ 2013 result = SCAN_PTE_MAPPED_HUGEPAGE; 2014 goto out_unlock; 2015 } 2016 2017 if (folio_mapping(folio) != mapping) { 2018 result = SCAN_TRUNCATED; 2019 goto out_unlock; 2020 } 2021 2022 if (!is_shmem && (folio_test_dirty(folio) || 2023 folio_test_writeback(folio))) { 2024 /* 2025 * khugepaged only works on read-only fd, so this 2026 * folio is dirty because it hasn't been flushed 2027 * since first write. 2028 */ 2029 result = SCAN_FAIL; 2030 goto out_unlock; 2031 } 2032 2033 if (!folio_isolate_lru(folio)) { 2034 result = SCAN_DEL_PAGE_LRU; 2035 goto out_unlock; 2036 } 2037 2038 if (!filemap_release_folio(folio, GFP_KERNEL)) { 2039 result = SCAN_PAGE_HAS_PRIVATE; 2040 folio_putback_lru(folio); 2041 goto out_unlock; 2042 } 2043 2044 if (folio_mapped(folio)) 2045 try_to_unmap(folio, 2046 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 2047 2048 xas_lock_irq(&xas); 2049 2050 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 2051 2052 /* 2053 * We control 2 + nr_pages references to the folio: 2054 * - we hold a pin on it; 2055 * - nr_pages reference from page cache; 2056 * - one from lru_isolate_folio; 2057 * If those are the only references, then any new usage 2058 * of the folio will have to fetch it from the page 2059 * cache. That requires locking the folio to handle 2060 * truncate, so any new usage will be blocked until we 2061 * unlock folio after collapse/during rollback. 2062 */ 2063 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) { 2064 result = SCAN_PAGE_COUNT; 2065 xas_unlock_irq(&xas); 2066 folio_putback_lru(folio); 2067 goto out_unlock; 2068 } 2069 2070 /* 2071 * Accumulate the folios that are being collapsed. 2072 */ 2073 list_add_tail(&folio->lru, &pagelist); 2074 index += folio_nr_pages(folio); 2075 continue; 2076 out_unlock: 2077 folio_unlock(folio); 2078 folio_put(folio); 2079 goto xa_unlocked; 2080 } 2081 2082 if (!is_shmem) { 2083 filemap_nr_thps_inc(mapping); 2084 /* 2085 * Paired with the fence in do_dentry_open() -> get_write_access() 2086 * to ensure i_writecount is up to date and the update to nr_thps 2087 * is visible. Ensures the page cache will be truncated if the 2088 * file is opened writable. 2089 */ 2090 smp_mb(); 2091 if (inode_is_open_for_write(mapping->host)) { 2092 result = SCAN_FAIL; 2093 filemap_nr_thps_dec(mapping); 2094 } 2095 } 2096 2097 xa_locked: 2098 xas_unlock_irq(&xas); 2099 xa_unlocked: 2100 2101 /* 2102 * If collapse is successful, flush must be done now before copying. 2103 * If collapse is unsuccessful, does flush actually need to be done? 2104 * Do it anyway, to clear the state. 2105 */ 2106 try_to_unmap_flush(); 2107 2108 if (result == SCAN_SUCCEED && nr_none && 2109 !shmem_charge(mapping->host, nr_none)) 2110 result = SCAN_FAIL; 2111 if (result != SCAN_SUCCEED) { 2112 nr_none = 0; 2113 goto rollback; 2114 } 2115 2116 /* 2117 * The old folios are locked, so they won't change anymore. 2118 */ 2119 index = start; 2120 dst = folio_page(new_folio, 0); 2121 list_for_each_entry(folio, &pagelist, lru) { 2122 int i, nr_pages = folio_nr_pages(folio); 2123 2124 while (index < folio->index) { 2125 clear_highpage(dst); 2126 index++; 2127 dst++; 2128 } 2129 2130 for (i = 0; i < nr_pages; i++) { 2131 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) { 2132 result = SCAN_COPY_MC; 2133 goto rollback; 2134 } 2135 index++; 2136 dst++; 2137 } 2138 } 2139 while (index < end) { 2140 clear_highpage(dst); 2141 index++; 2142 dst++; 2143 } 2144 2145 if (nr_none) { 2146 struct vm_area_struct *vma; 2147 int nr_none_check = 0; 2148 2149 i_mmap_lock_read(mapping); 2150 xas_lock_irq(&xas); 2151 2152 xas_set(&xas, start); 2153 for (index = start; index < end; index++) { 2154 if (!xas_next(&xas)) { 2155 xas_store(&xas, XA_RETRY_ENTRY); 2156 if (xas_error(&xas)) { 2157 result = SCAN_STORE_FAILED; 2158 goto immap_locked; 2159 } 2160 nr_none_check++; 2161 } 2162 } 2163 2164 if (nr_none != nr_none_check) { 2165 result = SCAN_PAGE_FILLED; 2166 goto immap_locked; 2167 } 2168 2169 /* 2170 * If userspace observed a missing page in a VMA with 2171 * a MODE_MISSING userfaultfd, then it might expect a 2172 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2173 * roll back to avoid suppressing such an event. Since 2174 * wp/minor userfaultfds don't give userspace any 2175 * guarantees that the kernel doesn't fill a missing 2176 * page with a zero page, so they don't matter here. 2177 * 2178 * Any userfaultfds registered after this point will 2179 * not be able to observe any missing pages due to the 2180 * previously inserted retry entries. 2181 */ 2182 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2183 if (userfaultfd_missing(vma)) { 2184 result = SCAN_EXCEED_NONE_PTE; 2185 goto immap_locked; 2186 } 2187 } 2188 2189 immap_locked: 2190 i_mmap_unlock_read(mapping); 2191 if (result != SCAN_SUCCEED) { 2192 xas_set(&xas, start); 2193 for (index = start; index < end; index++) { 2194 if (xas_next(&xas) == XA_RETRY_ENTRY) 2195 xas_store(&xas, NULL); 2196 } 2197 2198 xas_unlock_irq(&xas); 2199 goto rollback; 2200 } 2201 } else { 2202 xas_lock_irq(&xas); 2203 } 2204 2205 if (is_shmem) 2206 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2207 else 2208 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2209 2210 if (nr_none) { 2211 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none); 2212 /* nr_none is always 0 for non-shmem. */ 2213 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none); 2214 } 2215 2216 /* 2217 * Mark new_folio as uptodate before inserting it into the 2218 * page cache so that it isn't mistaken for an fallocated but 2219 * unwritten page. 2220 */ 2221 folio_mark_uptodate(new_folio); 2222 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2223 2224 if (is_shmem) 2225 folio_mark_dirty(new_folio); 2226 folio_add_lru(new_folio); 2227 2228 /* Join all the small entries into a single multi-index entry. */ 2229 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2230 xas_store(&xas, new_folio); 2231 WARN_ON_ONCE(xas_error(&xas)); 2232 xas_unlock_irq(&xas); 2233 2234 /* 2235 * Remove pte page tables, so we can re-fault the page as huge. 2236 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2237 */ 2238 retract_page_tables(mapping, start); 2239 if (cc && !cc->is_khugepaged) 2240 result = SCAN_PTE_MAPPED_HUGEPAGE; 2241 folio_unlock(new_folio); 2242 2243 /* 2244 * The collapse has succeeded, so free the old folios. 2245 */ 2246 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2247 list_del(&folio->lru); 2248 folio->mapping = NULL; 2249 folio_clear_active(folio); 2250 folio_clear_unevictable(folio); 2251 folio_unlock(folio); 2252 folio_put_refs(folio, 2 + folio_nr_pages(folio)); 2253 } 2254 2255 goto out; 2256 2257 rollback: 2258 /* Something went wrong: roll back page cache changes */ 2259 if (nr_none) { 2260 xas_lock_irq(&xas); 2261 mapping->nrpages -= nr_none; 2262 xas_unlock_irq(&xas); 2263 shmem_uncharge(mapping->host, nr_none); 2264 } 2265 2266 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2267 list_del(&folio->lru); 2268 folio_unlock(folio); 2269 folio_putback_lru(folio); 2270 folio_put(folio); 2271 } 2272 /* 2273 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2274 * file only. This undo is not needed unless failure is 2275 * due to SCAN_COPY_MC. 2276 */ 2277 if (!is_shmem && result == SCAN_COPY_MC) { 2278 filemap_nr_thps_dec(mapping); 2279 /* 2280 * Paired with the fence in do_dentry_open() -> get_write_access() 2281 * to ensure the update to nr_thps is visible. 2282 */ 2283 smp_mb(); 2284 } 2285 2286 new_folio->mapping = NULL; 2287 2288 folio_unlock(new_folio); 2289 folio_put(new_folio); 2290 out: 2291 VM_BUG_ON(!list_empty(&pagelist)); 2292 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result); 2293 return result; 2294 } 2295 2296 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2297 struct file *file, pgoff_t start, 2298 struct collapse_control *cc) 2299 { 2300 struct folio *folio = NULL; 2301 struct address_space *mapping = file->f_mapping; 2302 XA_STATE(xas, &mapping->i_pages, start); 2303 int present, swap; 2304 int node = NUMA_NO_NODE; 2305 int result = SCAN_SUCCEED; 2306 2307 present = 0; 2308 swap = 0; 2309 memset(cc->node_load, 0, sizeof(cc->node_load)); 2310 nodes_clear(cc->alloc_nmask); 2311 rcu_read_lock(); 2312 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2313 if (xas_retry(&xas, folio)) 2314 continue; 2315 2316 if (xa_is_value(folio)) { 2317 swap += 1 << xas_get_order(&xas); 2318 if (cc->is_khugepaged && 2319 swap > khugepaged_max_ptes_swap) { 2320 result = SCAN_EXCEED_SWAP_PTE; 2321 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2322 break; 2323 } 2324 continue; 2325 } 2326 2327 if (!folio_try_get(folio)) { 2328 xas_reset(&xas); 2329 continue; 2330 } 2331 2332 if (unlikely(folio != xas_reload(&xas))) { 2333 folio_put(folio); 2334 xas_reset(&xas); 2335 continue; 2336 } 2337 2338 if (folio_order(folio) == HPAGE_PMD_ORDER && 2339 folio->index == start) { 2340 /* Maybe PMD-mapped */ 2341 result = SCAN_PTE_MAPPED_HUGEPAGE; 2342 /* 2343 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2344 * by the caller won't touch the page cache, and so 2345 * it's safe to skip LRU and refcount checks before 2346 * returning. 2347 */ 2348 folio_put(folio); 2349 break; 2350 } 2351 2352 node = folio_nid(folio); 2353 if (hpage_collapse_scan_abort(node, cc)) { 2354 result = SCAN_SCAN_ABORT; 2355 folio_put(folio); 2356 break; 2357 } 2358 cc->node_load[node]++; 2359 2360 if (!folio_test_lru(folio)) { 2361 result = SCAN_PAGE_LRU; 2362 folio_put(folio); 2363 break; 2364 } 2365 2366 if (folio_expected_ref_count(folio) + 1 != folio_ref_count(folio)) { 2367 result = SCAN_PAGE_COUNT; 2368 folio_put(folio); 2369 break; 2370 } 2371 2372 /* 2373 * We probably should check if the folio is referenced 2374 * here, but nobody would transfer pte_young() to 2375 * folio_test_referenced() for us. And rmap walk here 2376 * is just too costly... 2377 */ 2378 2379 present += folio_nr_pages(folio); 2380 folio_put(folio); 2381 2382 if (need_resched()) { 2383 xas_pause(&xas); 2384 cond_resched_rcu(); 2385 } 2386 } 2387 rcu_read_unlock(); 2388 2389 if (result == SCAN_SUCCEED) { 2390 if (cc->is_khugepaged && 2391 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2392 result = SCAN_EXCEED_NONE_PTE; 2393 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2394 } else { 2395 result = collapse_file(mm, addr, file, start, cc); 2396 } 2397 } 2398 2399 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2400 return result; 2401 } 2402 2403 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2404 struct collapse_control *cc) 2405 __releases(&khugepaged_mm_lock) 2406 __acquires(&khugepaged_mm_lock) 2407 { 2408 struct vma_iterator vmi; 2409 struct mm_slot *slot; 2410 struct mm_struct *mm; 2411 struct vm_area_struct *vma; 2412 int progress = 0; 2413 2414 VM_BUG_ON(!pages); 2415 lockdep_assert_held(&khugepaged_mm_lock); 2416 *result = SCAN_FAIL; 2417 2418 if (khugepaged_scan.mm_slot) { 2419 slot = khugepaged_scan.mm_slot; 2420 } else { 2421 slot = list_first_entry(&khugepaged_scan.mm_head, 2422 struct mm_slot, mm_node); 2423 khugepaged_scan.address = 0; 2424 khugepaged_scan.mm_slot = slot; 2425 } 2426 spin_unlock(&khugepaged_mm_lock); 2427 2428 mm = slot->mm; 2429 /* 2430 * Don't wait for semaphore (to avoid long wait times). Just move to 2431 * the next mm on the list. 2432 */ 2433 vma = NULL; 2434 if (unlikely(!mmap_read_trylock(mm))) 2435 goto breakouterloop_mmap_lock; 2436 2437 progress++; 2438 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2439 goto breakouterloop; 2440 2441 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2442 for_each_vma(vmi, vma) { 2443 unsigned long hstart, hend; 2444 2445 cond_resched(); 2446 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2447 progress++; 2448 break; 2449 } 2450 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_KHUGEPAGED, PMD_ORDER)) { 2451 skip: 2452 progress++; 2453 continue; 2454 } 2455 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2456 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2457 if (khugepaged_scan.address > hend) 2458 goto skip; 2459 if (khugepaged_scan.address < hstart) 2460 khugepaged_scan.address = hstart; 2461 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2462 2463 while (khugepaged_scan.address < hend) { 2464 bool mmap_locked = true; 2465 2466 cond_resched(); 2467 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2468 goto breakouterloop; 2469 2470 VM_BUG_ON(khugepaged_scan.address < hstart || 2471 khugepaged_scan.address + HPAGE_PMD_SIZE > 2472 hend); 2473 if (!vma_is_anonymous(vma)) { 2474 struct file *file = get_file(vma->vm_file); 2475 pgoff_t pgoff = linear_page_index(vma, 2476 khugepaged_scan.address); 2477 2478 mmap_read_unlock(mm); 2479 mmap_locked = false; 2480 *result = hpage_collapse_scan_file(mm, 2481 khugepaged_scan.address, file, pgoff, cc); 2482 fput(file); 2483 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2484 mmap_read_lock(mm); 2485 if (hpage_collapse_test_exit_or_disable(mm)) 2486 goto breakouterloop; 2487 *result = collapse_pte_mapped_thp(mm, 2488 khugepaged_scan.address, false); 2489 if (*result == SCAN_PMD_MAPPED) 2490 *result = SCAN_SUCCEED; 2491 mmap_read_unlock(mm); 2492 } 2493 } else { 2494 *result = hpage_collapse_scan_pmd(mm, vma, 2495 khugepaged_scan.address, &mmap_locked, cc); 2496 } 2497 2498 if (*result == SCAN_SUCCEED) 2499 ++khugepaged_pages_collapsed; 2500 2501 /* move to next address */ 2502 khugepaged_scan.address += HPAGE_PMD_SIZE; 2503 progress += HPAGE_PMD_NR; 2504 if (!mmap_locked) 2505 /* 2506 * We released mmap_lock so break loop. Note 2507 * that we drop mmap_lock before all hugepage 2508 * allocations, so if allocation fails, we are 2509 * guaranteed to break here and report the 2510 * correct result back to caller. 2511 */ 2512 goto breakouterloop_mmap_lock; 2513 if (progress >= pages) 2514 goto breakouterloop; 2515 } 2516 } 2517 breakouterloop: 2518 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2519 breakouterloop_mmap_lock: 2520 2521 spin_lock(&khugepaged_mm_lock); 2522 VM_BUG_ON(khugepaged_scan.mm_slot != slot); 2523 /* 2524 * Release the current mm_slot if this mm is about to die, or 2525 * if we scanned all vmas of this mm. 2526 */ 2527 if (hpage_collapse_test_exit(mm) || !vma) { 2528 /* 2529 * Make sure that if mm_users is reaching zero while 2530 * khugepaged runs here, khugepaged_exit will find 2531 * mm_slot not pointing to the exiting mm. 2532 */ 2533 if (!list_is_last(&slot->mm_node, &khugepaged_scan.mm_head)) { 2534 khugepaged_scan.mm_slot = list_next_entry(slot, mm_node); 2535 khugepaged_scan.address = 0; 2536 } else { 2537 khugepaged_scan.mm_slot = NULL; 2538 khugepaged_full_scans++; 2539 } 2540 2541 collect_mm_slot(slot); 2542 } 2543 2544 return progress; 2545 } 2546 2547 static int khugepaged_has_work(void) 2548 { 2549 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); 2550 } 2551 2552 static int khugepaged_wait_event(void) 2553 { 2554 return !list_empty(&khugepaged_scan.mm_head) || 2555 kthread_should_stop(); 2556 } 2557 2558 static void khugepaged_do_scan(struct collapse_control *cc) 2559 { 2560 unsigned int progress = 0, pass_through_head = 0; 2561 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2562 bool wait = true; 2563 int result = SCAN_SUCCEED; 2564 2565 lru_add_drain_all(); 2566 2567 while (true) { 2568 cond_resched(); 2569 2570 if (unlikely(kthread_should_stop())) 2571 break; 2572 2573 spin_lock(&khugepaged_mm_lock); 2574 if (!khugepaged_scan.mm_slot) 2575 pass_through_head++; 2576 if (khugepaged_has_work() && 2577 pass_through_head < 2) 2578 progress += khugepaged_scan_mm_slot(pages - progress, 2579 &result, cc); 2580 else 2581 progress = pages; 2582 spin_unlock(&khugepaged_mm_lock); 2583 2584 if (progress >= pages) 2585 break; 2586 2587 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2588 /* 2589 * If fail to allocate the first time, try to sleep for 2590 * a while. When hit again, cancel the scan. 2591 */ 2592 if (!wait) 2593 break; 2594 wait = false; 2595 khugepaged_alloc_sleep(); 2596 } 2597 } 2598 } 2599 2600 static bool khugepaged_should_wakeup(void) 2601 { 2602 return kthread_should_stop() || 2603 time_after_eq(jiffies, khugepaged_sleep_expire); 2604 } 2605 2606 static void khugepaged_wait_work(void) 2607 { 2608 if (khugepaged_has_work()) { 2609 const unsigned long scan_sleep_jiffies = 2610 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2611 2612 if (!scan_sleep_jiffies) 2613 return; 2614 2615 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2616 wait_event_freezable_timeout(khugepaged_wait, 2617 khugepaged_should_wakeup(), 2618 scan_sleep_jiffies); 2619 return; 2620 } 2621 2622 if (hugepage_pmd_enabled()) 2623 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2624 } 2625 2626 static int khugepaged(void *none) 2627 { 2628 struct mm_slot *slot; 2629 2630 set_freezable(); 2631 set_user_nice(current, MAX_NICE); 2632 2633 while (!kthread_should_stop()) { 2634 khugepaged_do_scan(&khugepaged_collapse_control); 2635 khugepaged_wait_work(); 2636 } 2637 2638 spin_lock(&khugepaged_mm_lock); 2639 slot = khugepaged_scan.mm_slot; 2640 khugepaged_scan.mm_slot = NULL; 2641 if (slot) 2642 collect_mm_slot(slot); 2643 spin_unlock(&khugepaged_mm_lock); 2644 return 0; 2645 } 2646 2647 static void set_recommended_min_free_kbytes(void) 2648 { 2649 struct zone *zone; 2650 int nr_zones = 0; 2651 unsigned long recommended_min; 2652 2653 if (!hugepage_pmd_enabled()) { 2654 calculate_min_free_kbytes(); 2655 goto update_wmarks; 2656 } 2657 2658 for_each_populated_zone(zone) { 2659 /* 2660 * We don't need to worry about fragmentation of 2661 * ZONE_MOVABLE since it only has movable pages. 2662 */ 2663 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2664 continue; 2665 2666 nr_zones++; 2667 } 2668 2669 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2670 recommended_min = pageblock_nr_pages * nr_zones * 2; 2671 2672 /* 2673 * Make sure that on average at least two pageblocks are almost free 2674 * of another type, one for a migratetype to fall back to and a 2675 * second to avoid subsequent fallbacks of other types There are 3 2676 * MIGRATE_TYPES we care about. 2677 */ 2678 recommended_min += pageblock_nr_pages * nr_zones * 2679 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2680 2681 /* don't ever allow to reserve more than 5% of the lowmem */ 2682 recommended_min = min(recommended_min, 2683 (unsigned long) nr_free_buffer_pages() / 20); 2684 recommended_min <<= (PAGE_SHIFT-10); 2685 2686 if (recommended_min > min_free_kbytes) { 2687 if (user_min_free_kbytes >= 0) 2688 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2689 min_free_kbytes, recommended_min); 2690 2691 min_free_kbytes = recommended_min; 2692 } 2693 2694 update_wmarks: 2695 setup_per_zone_wmarks(); 2696 } 2697 2698 int start_stop_khugepaged(void) 2699 { 2700 int err = 0; 2701 2702 mutex_lock(&khugepaged_mutex); 2703 if (hugepage_pmd_enabled()) { 2704 if (!khugepaged_thread) 2705 khugepaged_thread = kthread_run(khugepaged, NULL, 2706 "khugepaged"); 2707 if (IS_ERR(khugepaged_thread)) { 2708 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2709 err = PTR_ERR(khugepaged_thread); 2710 khugepaged_thread = NULL; 2711 goto fail; 2712 } 2713 2714 if (!list_empty(&khugepaged_scan.mm_head)) 2715 wake_up_interruptible(&khugepaged_wait); 2716 } else if (khugepaged_thread) { 2717 kthread_stop(khugepaged_thread); 2718 khugepaged_thread = NULL; 2719 } 2720 set_recommended_min_free_kbytes(); 2721 fail: 2722 mutex_unlock(&khugepaged_mutex); 2723 return err; 2724 } 2725 2726 void khugepaged_min_free_kbytes_update(void) 2727 { 2728 mutex_lock(&khugepaged_mutex); 2729 if (hugepage_pmd_enabled() && khugepaged_thread) 2730 set_recommended_min_free_kbytes(); 2731 mutex_unlock(&khugepaged_mutex); 2732 } 2733 2734 bool current_is_khugepaged(void) 2735 { 2736 return kthread_func(current) == khugepaged; 2737 } 2738 2739 static int madvise_collapse_errno(enum scan_result r) 2740 { 2741 /* 2742 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2743 * actionable feedback to caller, so they may take an appropriate 2744 * fallback measure depending on the nature of the failure. 2745 */ 2746 switch (r) { 2747 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2748 return -ENOMEM; 2749 case SCAN_CGROUP_CHARGE_FAIL: 2750 case SCAN_EXCEED_NONE_PTE: 2751 return -EBUSY; 2752 /* Resource temporary unavailable - trying again might succeed */ 2753 case SCAN_PAGE_COUNT: 2754 case SCAN_PAGE_LOCK: 2755 case SCAN_PAGE_LRU: 2756 case SCAN_DEL_PAGE_LRU: 2757 case SCAN_PAGE_FILLED: 2758 return -EAGAIN; 2759 /* 2760 * Other: Trying again likely not to succeed / error intrinsic to 2761 * specified memory range. khugepaged likely won't be able to collapse 2762 * either. 2763 */ 2764 default: 2765 return -EINVAL; 2766 } 2767 } 2768 2769 int madvise_collapse(struct vm_area_struct *vma, unsigned long start, 2770 unsigned long end, bool *lock_dropped) 2771 { 2772 struct collapse_control *cc; 2773 struct mm_struct *mm = vma->vm_mm; 2774 unsigned long hstart, hend, addr; 2775 int thps = 0, last_fail = SCAN_FAIL; 2776 bool mmap_locked = true; 2777 2778 BUG_ON(vma->vm_start > start); 2779 BUG_ON(vma->vm_end < end); 2780 2781 if (!thp_vma_allowable_order(vma, vma->vm_flags, TVA_FORCED_COLLAPSE, PMD_ORDER)) 2782 return -EINVAL; 2783 2784 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2785 if (!cc) 2786 return -ENOMEM; 2787 cc->is_khugepaged = false; 2788 2789 mmgrab(mm); 2790 lru_add_drain_all(); 2791 2792 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2793 hend = end & HPAGE_PMD_MASK; 2794 2795 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2796 int result = SCAN_FAIL; 2797 2798 if (!mmap_locked) { 2799 cond_resched(); 2800 mmap_read_lock(mm); 2801 mmap_locked = true; 2802 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2803 cc); 2804 if (result != SCAN_SUCCEED) { 2805 last_fail = result; 2806 goto out_nolock; 2807 } 2808 2809 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2810 } 2811 mmap_assert_locked(mm); 2812 memset(cc->node_load, 0, sizeof(cc->node_load)); 2813 nodes_clear(cc->alloc_nmask); 2814 if (!vma_is_anonymous(vma)) { 2815 struct file *file = get_file(vma->vm_file); 2816 pgoff_t pgoff = linear_page_index(vma, addr); 2817 2818 mmap_read_unlock(mm); 2819 mmap_locked = false; 2820 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2821 cc); 2822 fput(file); 2823 } else { 2824 result = hpage_collapse_scan_pmd(mm, vma, addr, 2825 &mmap_locked, cc); 2826 } 2827 if (!mmap_locked) 2828 *lock_dropped = true; 2829 2830 handle_result: 2831 switch (result) { 2832 case SCAN_SUCCEED: 2833 case SCAN_PMD_MAPPED: 2834 ++thps; 2835 break; 2836 case SCAN_PTE_MAPPED_HUGEPAGE: 2837 BUG_ON(mmap_locked); 2838 mmap_read_lock(mm); 2839 result = collapse_pte_mapped_thp(mm, addr, true); 2840 mmap_read_unlock(mm); 2841 goto handle_result; 2842 /* Whitelisted set of results where continuing OK */ 2843 case SCAN_PMD_NULL: 2844 case SCAN_PTE_NON_PRESENT: 2845 case SCAN_PTE_UFFD_WP: 2846 case SCAN_LACK_REFERENCED_PAGE: 2847 case SCAN_PAGE_NULL: 2848 case SCAN_PAGE_COUNT: 2849 case SCAN_PAGE_LOCK: 2850 case SCAN_PAGE_COMPOUND: 2851 case SCAN_PAGE_LRU: 2852 case SCAN_DEL_PAGE_LRU: 2853 last_fail = result; 2854 break; 2855 default: 2856 last_fail = result; 2857 /* Other error, exit */ 2858 goto out_maybelock; 2859 } 2860 } 2861 2862 out_maybelock: 2863 /* Caller expects us to hold mmap_lock on return */ 2864 if (!mmap_locked) 2865 mmap_read_lock(mm); 2866 out_nolock: 2867 mmap_assert_locked(mm); 2868 mmdrop(mm); 2869 kfree(cc); 2870 2871 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2872 : madvise_collapse_errno(last_fail); 2873 } 2874