xref: /linux/mm/khugepaged.c (revision 1d39d02a1535658962f9370312be7b2d634946a5)
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/rcupdate_wait.h>
21 #include <linux/swapops.h>
22 #include <linux/shmem_fs.h>
23 #include <linux/ksm.h>
24 
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28 #include "mm_slot.h"
29 
30 enum scan_result {
31 	SCAN_FAIL,
32 	SCAN_SUCCEED,
33 	SCAN_PMD_NULL,
34 	SCAN_PMD_NONE,
35 	SCAN_PMD_MAPPED,
36 	SCAN_EXCEED_NONE_PTE,
37 	SCAN_EXCEED_SWAP_PTE,
38 	SCAN_EXCEED_SHARED_PTE,
39 	SCAN_PTE_NON_PRESENT,
40 	SCAN_PTE_UFFD_WP,
41 	SCAN_PTE_MAPPED_HUGEPAGE,
42 	SCAN_PAGE_RO,
43 	SCAN_LACK_REFERENCED_PAGE,
44 	SCAN_PAGE_NULL,
45 	SCAN_SCAN_ABORT,
46 	SCAN_PAGE_COUNT,
47 	SCAN_PAGE_LRU,
48 	SCAN_PAGE_LOCK,
49 	SCAN_PAGE_ANON,
50 	SCAN_PAGE_COMPOUND,
51 	SCAN_ANY_PROCESS,
52 	SCAN_VMA_NULL,
53 	SCAN_VMA_CHECK,
54 	SCAN_ADDRESS_RANGE,
55 	SCAN_DEL_PAGE_LRU,
56 	SCAN_ALLOC_HUGE_PAGE_FAIL,
57 	SCAN_CGROUP_CHARGE_FAIL,
58 	SCAN_TRUNCATED,
59 	SCAN_PAGE_HAS_PRIVATE,
60 	SCAN_STORE_FAILED,
61 	SCAN_COPY_MC,
62 	SCAN_PAGE_FILLED,
63 };
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/huge_memory.h>
67 
68 static struct task_struct *khugepaged_thread __read_mostly;
69 static DEFINE_MUTEX(khugepaged_mutex);
70 
71 /* default scan 8*512 pte (or vmas) every 30 second */
72 static unsigned int khugepaged_pages_to_scan __read_mostly;
73 static unsigned int khugepaged_pages_collapsed;
74 static unsigned int khugepaged_full_scans;
75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
76 /* during fragmentation poll the hugepage allocator once every minute */
77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
78 static unsigned long khugepaged_sleep_expire;
79 static DEFINE_SPINLOCK(khugepaged_mm_lock);
80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
81 /*
82  * default collapse hugepages if there is at least one pte mapped like
83  * it would have happened if the vma was large enough during page
84  * fault.
85  *
86  * Note that these are only respected if collapse was initiated by khugepaged.
87  */
88 unsigned int khugepaged_max_ptes_none __read_mostly;
89 static unsigned int khugepaged_max_ptes_swap __read_mostly;
90 static unsigned int khugepaged_max_ptes_shared __read_mostly;
91 
92 #define MM_SLOTS_HASH_BITS 10
93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
94 
95 static struct kmem_cache *mm_slot_cache __ro_after_init;
96 
97 struct collapse_control {
98 	bool is_khugepaged;
99 
100 	/* Num pages scanned per node */
101 	u32 node_load[MAX_NUMNODES];
102 
103 	/* nodemask for allocation fallback */
104 	nodemask_t alloc_nmask;
105 };
106 
107 /**
108  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
109  * @slot: hash lookup from mm to mm_slot
110  */
111 struct khugepaged_mm_slot {
112 	struct mm_slot slot;
113 };
114 
115 /**
116  * struct khugepaged_scan - cursor for scanning
117  * @mm_head: the head of the mm list to scan
118  * @mm_slot: the current mm_slot we are scanning
119  * @address: the next address inside that to be scanned
120  *
121  * There is only the one khugepaged_scan instance of this cursor structure.
122  */
123 struct khugepaged_scan {
124 	struct list_head mm_head;
125 	struct khugepaged_mm_slot *mm_slot;
126 	unsigned long address;
127 };
128 
129 static struct khugepaged_scan khugepaged_scan = {
130 	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
131 };
132 
133 #ifdef CONFIG_SYSFS
134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
135 					 struct kobj_attribute *attr,
136 					 char *buf)
137 {
138 	return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
139 }
140 
141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
142 					  struct kobj_attribute *attr,
143 					  const char *buf, size_t count)
144 {
145 	unsigned int msecs;
146 	int err;
147 
148 	err = kstrtouint(buf, 10, &msecs);
149 	if (err)
150 		return -EINVAL;
151 
152 	khugepaged_scan_sleep_millisecs = msecs;
153 	khugepaged_sleep_expire = 0;
154 	wake_up_interruptible(&khugepaged_wait);
155 
156 	return count;
157 }
158 static struct kobj_attribute scan_sleep_millisecs_attr =
159 	__ATTR_RW(scan_sleep_millisecs);
160 
161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
162 					  struct kobj_attribute *attr,
163 					  char *buf)
164 {
165 	return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
166 }
167 
168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
169 					   struct kobj_attribute *attr,
170 					   const char *buf, size_t count)
171 {
172 	unsigned int msecs;
173 	int err;
174 
175 	err = kstrtouint(buf, 10, &msecs);
176 	if (err)
177 		return -EINVAL;
178 
179 	khugepaged_alloc_sleep_millisecs = msecs;
180 	khugepaged_sleep_expire = 0;
181 	wake_up_interruptible(&khugepaged_wait);
182 
183 	return count;
184 }
185 static struct kobj_attribute alloc_sleep_millisecs_attr =
186 	__ATTR_RW(alloc_sleep_millisecs);
187 
188 static ssize_t pages_to_scan_show(struct kobject *kobj,
189 				  struct kobj_attribute *attr,
190 				  char *buf)
191 {
192 	return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
193 }
194 static ssize_t pages_to_scan_store(struct kobject *kobj,
195 				   struct kobj_attribute *attr,
196 				   const char *buf, size_t count)
197 {
198 	unsigned int pages;
199 	int err;
200 
201 	err = kstrtouint(buf, 10, &pages);
202 	if (err || !pages)
203 		return -EINVAL;
204 
205 	khugepaged_pages_to_scan = pages;
206 
207 	return count;
208 }
209 static struct kobj_attribute pages_to_scan_attr =
210 	__ATTR_RW(pages_to_scan);
211 
212 static ssize_t pages_collapsed_show(struct kobject *kobj,
213 				    struct kobj_attribute *attr,
214 				    char *buf)
215 {
216 	return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
217 }
218 static struct kobj_attribute pages_collapsed_attr =
219 	__ATTR_RO(pages_collapsed);
220 
221 static ssize_t full_scans_show(struct kobject *kobj,
222 			       struct kobj_attribute *attr,
223 			       char *buf)
224 {
225 	return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
226 }
227 static struct kobj_attribute full_scans_attr =
228 	__ATTR_RO(full_scans);
229 
230 static ssize_t defrag_show(struct kobject *kobj,
231 			   struct kobj_attribute *attr, char *buf)
232 {
233 	return single_hugepage_flag_show(kobj, attr, buf,
234 					 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
235 }
236 static ssize_t defrag_store(struct kobject *kobj,
237 			    struct kobj_attribute *attr,
238 			    const char *buf, size_t count)
239 {
240 	return single_hugepage_flag_store(kobj, attr, buf, count,
241 				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
242 }
243 static struct kobj_attribute khugepaged_defrag_attr =
244 	__ATTR_RW(defrag);
245 
246 /*
247  * max_ptes_none controls if khugepaged should collapse hugepages over
248  * any unmapped ptes in turn potentially increasing the memory
249  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
250  * reduce the available free memory in the system as it
251  * runs. Increasing max_ptes_none will instead potentially reduce the
252  * free memory in the system during the khugepaged scan.
253  */
254 static ssize_t max_ptes_none_show(struct kobject *kobj,
255 				  struct kobj_attribute *attr,
256 				  char *buf)
257 {
258 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
259 }
260 static ssize_t max_ptes_none_store(struct kobject *kobj,
261 				   struct kobj_attribute *attr,
262 				   const char *buf, size_t count)
263 {
264 	int err;
265 	unsigned long max_ptes_none;
266 
267 	err = kstrtoul(buf, 10, &max_ptes_none);
268 	if (err || max_ptes_none > HPAGE_PMD_NR - 1)
269 		return -EINVAL;
270 
271 	khugepaged_max_ptes_none = max_ptes_none;
272 
273 	return count;
274 }
275 static struct kobj_attribute khugepaged_max_ptes_none_attr =
276 	__ATTR_RW(max_ptes_none);
277 
278 static ssize_t max_ptes_swap_show(struct kobject *kobj,
279 				  struct kobj_attribute *attr,
280 				  char *buf)
281 {
282 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
283 }
284 
285 static ssize_t max_ptes_swap_store(struct kobject *kobj,
286 				   struct kobj_attribute *attr,
287 				   const char *buf, size_t count)
288 {
289 	int err;
290 	unsigned long max_ptes_swap;
291 
292 	err  = kstrtoul(buf, 10, &max_ptes_swap);
293 	if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
294 		return -EINVAL;
295 
296 	khugepaged_max_ptes_swap = max_ptes_swap;
297 
298 	return count;
299 }
300 
301 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
302 	__ATTR_RW(max_ptes_swap);
303 
304 static ssize_t max_ptes_shared_show(struct kobject *kobj,
305 				    struct kobj_attribute *attr,
306 				    char *buf)
307 {
308 	return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
309 }
310 
311 static ssize_t max_ptes_shared_store(struct kobject *kobj,
312 				     struct kobj_attribute *attr,
313 				     const char *buf, size_t count)
314 {
315 	int err;
316 	unsigned long max_ptes_shared;
317 
318 	err  = kstrtoul(buf, 10, &max_ptes_shared);
319 	if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
320 		return -EINVAL;
321 
322 	khugepaged_max_ptes_shared = max_ptes_shared;
323 
324 	return count;
325 }
326 
327 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
328 	__ATTR_RW(max_ptes_shared);
329 
330 static struct attribute *khugepaged_attr[] = {
331 	&khugepaged_defrag_attr.attr,
332 	&khugepaged_max_ptes_none_attr.attr,
333 	&khugepaged_max_ptes_swap_attr.attr,
334 	&khugepaged_max_ptes_shared_attr.attr,
335 	&pages_to_scan_attr.attr,
336 	&pages_collapsed_attr.attr,
337 	&full_scans_attr.attr,
338 	&scan_sleep_millisecs_attr.attr,
339 	&alloc_sleep_millisecs_attr.attr,
340 	NULL,
341 };
342 
343 struct attribute_group khugepaged_attr_group = {
344 	.attrs = khugepaged_attr,
345 	.name = "khugepaged",
346 };
347 #endif /* CONFIG_SYSFS */
348 
349 int hugepage_madvise(struct vm_area_struct *vma,
350 		     unsigned long *vm_flags, int advice)
351 {
352 	switch (advice) {
353 	case MADV_HUGEPAGE:
354 #ifdef CONFIG_S390
355 		/*
356 		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
357 		 * can't handle this properly after s390_enable_sie, so we simply
358 		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
359 		 */
360 		if (mm_has_pgste(vma->vm_mm))
361 			return 0;
362 #endif
363 		*vm_flags &= ~VM_NOHUGEPAGE;
364 		*vm_flags |= VM_HUGEPAGE;
365 		/*
366 		 * If the vma become good for khugepaged to scan,
367 		 * register it here without waiting a page fault that
368 		 * may not happen any time soon.
369 		 */
370 		khugepaged_enter_vma(vma, *vm_flags);
371 		break;
372 	case MADV_NOHUGEPAGE:
373 		*vm_flags &= ~VM_HUGEPAGE;
374 		*vm_flags |= VM_NOHUGEPAGE;
375 		/*
376 		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 		 * this vma even if we leave the mm registered in khugepaged if
378 		 * it got registered before VM_NOHUGEPAGE was set.
379 		 */
380 		break;
381 	}
382 
383 	return 0;
384 }
385 
386 int __init khugepaged_init(void)
387 {
388 	mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0);
389 	if (!mm_slot_cache)
390 		return -ENOMEM;
391 
392 	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
393 	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
394 	khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
395 	khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
396 
397 	return 0;
398 }
399 
400 void __init khugepaged_destroy(void)
401 {
402 	kmem_cache_destroy(mm_slot_cache);
403 }
404 
405 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
406 {
407 	return atomic_read(&mm->mm_users) == 0;
408 }
409 
410 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm)
411 {
412 	return hpage_collapse_test_exit(mm) ||
413 	       test_bit(MMF_DISABLE_THP, &mm->flags);
414 }
415 
416 static bool hugepage_pmd_enabled(void)
417 {
418 	/*
419 	 * We cover both the anon and the file-backed case here; file-backed
420 	 * hugepages, when configured in, are determined by the global control.
421 	 * Anon pmd-sized hugepages are determined by the pmd-size control.
422 	 */
423 	if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
424 	    hugepage_global_enabled())
425 		return true;
426 	if (test_bit(PMD_ORDER, &huge_anon_orders_always))
427 		return true;
428 	if (test_bit(PMD_ORDER, &huge_anon_orders_madvise))
429 		return true;
430 	if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) &&
431 	    hugepage_global_enabled())
432 		return true;
433 	return false;
434 }
435 
436 void __khugepaged_enter(struct mm_struct *mm)
437 {
438 	struct khugepaged_mm_slot *mm_slot;
439 	struct mm_slot *slot;
440 	int wakeup;
441 
442 	/* __khugepaged_exit() must not run from under us */
443 	VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
444 	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
445 		return;
446 
447 	mm_slot = mm_slot_alloc(mm_slot_cache);
448 	if (!mm_slot)
449 		return;
450 
451 	slot = &mm_slot->slot;
452 
453 	spin_lock(&khugepaged_mm_lock);
454 	mm_slot_insert(mm_slots_hash, mm, slot);
455 	/*
456 	 * Insert just behind the scanning cursor, to let the area settle
457 	 * down a little.
458 	 */
459 	wakeup = list_empty(&khugepaged_scan.mm_head);
460 	list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
461 	spin_unlock(&khugepaged_mm_lock);
462 
463 	mmgrab(mm);
464 	if (wakeup)
465 		wake_up_interruptible(&khugepaged_wait);
466 }
467 
468 void khugepaged_enter_vma(struct vm_area_struct *vma,
469 			  unsigned long vm_flags)
470 {
471 	if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
472 	    hugepage_pmd_enabled()) {
473 		if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS,
474 					    PMD_ORDER))
475 			__khugepaged_enter(vma->vm_mm);
476 	}
477 }
478 
479 void __khugepaged_exit(struct mm_struct *mm)
480 {
481 	struct khugepaged_mm_slot *mm_slot;
482 	struct mm_slot *slot;
483 	int free = 0;
484 
485 	spin_lock(&khugepaged_mm_lock);
486 	slot = mm_slot_lookup(mm_slots_hash, mm);
487 	mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
488 	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
489 		hash_del(&slot->hash);
490 		list_del(&slot->mm_node);
491 		free = 1;
492 	}
493 	spin_unlock(&khugepaged_mm_lock);
494 
495 	if (free) {
496 		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
497 		mm_slot_free(mm_slot_cache, mm_slot);
498 		mmdrop(mm);
499 	} else if (mm_slot) {
500 		/*
501 		 * This is required to serialize against
502 		 * hpage_collapse_test_exit() (which is guaranteed to run
503 		 * under mmap sem read mode). Stop here (after we return all
504 		 * pagetables will be destroyed) until khugepaged has finished
505 		 * working on the pagetables under the mmap_lock.
506 		 */
507 		mmap_write_lock(mm);
508 		mmap_write_unlock(mm);
509 	}
510 }
511 
512 static void release_pte_folio(struct folio *folio)
513 {
514 	node_stat_mod_folio(folio,
515 			NR_ISOLATED_ANON + folio_is_file_lru(folio),
516 			-folio_nr_pages(folio));
517 	folio_unlock(folio);
518 	folio_putback_lru(folio);
519 }
520 
521 static void release_pte_pages(pte_t *pte, pte_t *_pte,
522 		struct list_head *compound_pagelist)
523 {
524 	struct folio *folio, *tmp;
525 
526 	while (--_pte >= pte) {
527 		pte_t pteval = ptep_get(_pte);
528 		unsigned long pfn;
529 
530 		if (pte_none(pteval))
531 			continue;
532 		pfn = pte_pfn(pteval);
533 		if (is_zero_pfn(pfn))
534 			continue;
535 		folio = pfn_folio(pfn);
536 		if (folio_test_large(folio))
537 			continue;
538 		release_pte_folio(folio);
539 	}
540 
541 	list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
542 		list_del(&folio->lru);
543 		release_pte_folio(folio);
544 	}
545 }
546 
547 static bool is_refcount_suitable(struct folio *folio)
548 {
549 	int expected_refcount = folio_mapcount(folio);
550 
551 	if (!folio_test_anon(folio) || folio_test_swapcache(folio))
552 		expected_refcount += folio_nr_pages(folio);
553 
554 	if (folio_test_private(folio))
555 		expected_refcount++;
556 
557 	return folio_ref_count(folio) == expected_refcount;
558 }
559 
560 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
561 					unsigned long address,
562 					pte_t *pte,
563 					struct collapse_control *cc,
564 					struct list_head *compound_pagelist)
565 {
566 	struct page *page = NULL;
567 	struct folio *folio = NULL;
568 	pte_t *_pte;
569 	int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
570 	bool writable = false;
571 
572 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
573 	     _pte++, address += PAGE_SIZE) {
574 		pte_t pteval = ptep_get(_pte);
575 		if (pte_none(pteval) || (pte_present(pteval) &&
576 				is_zero_pfn(pte_pfn(pteval)))) {
577 			++none_or_zero;
578 			if (!userfaultfd_armed(vma) &&
579 			    (!cc->is_khugepaged ||
580 			     none_or_zero <= khugepaged_max_ptes_none)) {
581 				continue;
582 			} else {
583 				result = SCAN_EXCEED_NONE_PTE;
584 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
585 				goto out;
586 			}
587 		}
588 		if (!pte_present(pteval)) {
589 			result = SCAN_PTE_NON_PRESENT;
590 			goto out;
591 		}
592 		if (pte_uffd_wp(pteval)) {
593 			result = SCAN_PTE_UFFD_WP;
594 			goto out;
595 		}
596 		page = vm_normal_page(vma, address, pteval);
597 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
598 			result = SCAN_PAGE_NULL;
599 			goto out;
600 		}
601 
602 		folio = page_folio(page);
603 		VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio);
604 
605 		/* See hpage_collapse_scan_pmd(). */
606 		if (folio_likely_mapped_shared(folio)) {
607 			++shared;
608 			if (cc->is_khugepaged &&
609 			    shared > khugepaged_max_ptes_shared) {
610 				result = SCAN_EXCEED_SHARED_PTE;
611 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
612 				goto out;
613 			}
614 		}
615 
616 		if (folio_test_large(folio)) {
617 			struct folio *f;
618 
619 			/*
620 			 * Check if we have dealt with the compound page
621 			 * already
622 			 */
623 			list_for_each_entry(f, compound_pagelist, lru) {
624 				if (folio == f)
625 					goto next;
626 			}
627 		}
628 
629 		/*
630 		 * We can do it before folio_isolate_lru because the
631 		 * folio can't be freed from under us. NOTE: PG_lock
632 		 * is needed to serialize against split_huge_page
633 		 * when invoked from the VM.
634 		 */
635 		if (!folio_trylock(folio)) {
636 			result = SCAN_PAGE_LOCK;
637 			goto out;
638 		}
639 
640 		/*
641 		 * Check if the page has any GUP (or other external) pins.
642 		 *
643 		 * The page table that maps the page has been already unlinked
644 		 * from the page table tree and this process cannot get
645 		 * an additional pin on the page.
646 		 *
647 		 * New pins can come later if the page is shared across fork,
648 		 * but not from this process. The other process cannot write to
649 		 * the page, only trigger CoW.
650 		 */
651 		if (!is_refcount_suitable(folio)) {
652 			folio_unlock(folio);
653 			result = SCAN_PAGE_COUNT;
654 			goto out;
655 		}
656 
657 		/*
658 		 * Isolate the page to avoid collapsing an hugepage
659 		 * currently in use by the VM.
660 		 */
661 		if (!folio_isolate_lru(folio)) {
662 			folio_unlock(folio);
663 			result = SCAN_DEL_PAGE_LRU;
664 			goto out;
665 		}
666 		node_stat_mod_folio(folio,
667 				NR_ISOLATED_ANON + folio_is_file_lru(folio),
668 				folio_nr_pages(folio));
669 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
670 		VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
671 
672 		if (folio_test_large(folio))
673 			list_add_tail(&folio->lru, compound_pagelist);
674 next:
675 		/*
676 		 * If collapse was initiated by khugepaged, check that there is
677 		 * enough young pte to justify collapsing the page
678 		 */
679 		if (cc->is_khugepaged &&
680 		    (pte_young(pteval) || folio_test_young(folio) ||
681 		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
682 								     address)))
683 			referenced++;
684 
685 		if (pte_write(pteval))
686 			writable = true;
687 	}
688 
689 	if (unlikely(!writable)) {
690 		result = SCAN_PAGE_RO;
691 	} else if (unlikely(cc->is_khugepaged && !referenced)) {
692 		result = SCAN_LACK_REFERENCED_PAGE;
693 	} else {
694 		result = SCAN_SUCCEED;
695 		trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
696 						    referenced, writable, result);
697 		return result;
698 	}
699 out:
700 	release_pte_pages(pte, _pte, compound_pagelist);
701 	trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero,
702 					    referenced, writable, result);
703 	return result;
704 }
705 
706 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
707 						struct vm_area_struct *vma,
708 						unsigned long address,
709 						spinlock_t *ptl,
710 						struct list_head *compound_pagelist)
711 {
712 	struct folio *src, *tmp;
713 	pte_t *_pte;
714 	pte_t pteval;
715 
716 	for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
717 	     _pte++, address += PAGE_SIZE) {
718 		pteval = ptep_get(_pte);
719 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
720 			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
721 			if (is_zero_pfn(pte_pfn(pteval))) {
722 				/*
723 				 * ptl mostly unnecessary.
724 				 */
725 				spin_lock(ptl);
726 				ptep_clear(vma->vm_mm, address, _pte);
727 				spin_unlock(ptl);
728 				ksm_might_unmap_zero_page(vma->vm_mm, pteval);
729 			}
730 		} else {
731 			struct page *src_page = pte_page(pteval);
732 
733 			src = page_folio(src_page);
734 			if (!folio_test_large(src))
735 				release_pte_folio(src);
736 			/*
737 			 * ptl mostly unnecessary, but preempt has to
738 			 * be disabled to update the per-cpu stats
739 			 * inside folio_remove_rmap_pte().
740 			 */
741 			spin_lock(ptl);
742 			ptep_clear(vma->vm_mm, address, _pte);
743 			folio_remove_rmap_pte(src, src_page, vma);
744 			spin_unlock(ptl);
745 			free_page_and_swap_cache(src_page);
746 		}
747 	}
748 
749 	list_for_each_entry_safe(src, tmp, compound_pagelist, lru) {
750 		list_del(&src->lru);
751 		node_stat_sub_folio(src, NR_ISOLATED_ANON +
752 				folio_is_file_lru(src));
753 		folio_unlock(src);
754 		free_swap_cache(src);
755 		folio_putback_lru(src);
756 	}
757 }
758 
759 static void __collapse_huge_page_copy_failed(pte_t *pte,
760 					     pmd_t *pmd,
761 					     pmd_t orig_pmd,
762 					     struct vm_area_struct *vma,
763 					     struct list_head *compound_pagelist)
764 {
765 	spinlock_t *pmd_ptl;
766 
767 	/*
768 	 * Re-establish the PMD to point to the original page table
769 	 * entry. Restoring PMD needs to be done prior to releasing
770 	 * pages. Since pages are still isolated and locked here,
771 	 * acquiring anon_vma_lock_write is unnecessary.
772 	 */
773 	pmd_ptl = pmd_lock(vma->vm_mm, pmd);
774 	pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
775 	spin_unlock(pmd_ptl);
776 	/*
777 	 * Release both raw and compound pages isolated
778 	 * in __collapse_huge_page_isolate.
779 	 */
780 	release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
781 }
782 
783 /*
784  * __collapse_huge_page_copy - attempts to copy memory contents from raw
785  * pages to a hugepage. Cleans up the raw pages if copying succeeds;
786  * otherwise restores the original page table and releases isolated raw pages.
787  * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
788  *
789  * @pte: starting of the PTEs to copy from
790  * @folio: the new hugepage to copy contents to
791  * @pmd: pointer to the new hugepage's PMD
792  * @orig_pmd: the original raw pages' PMD
793  * @vma: the original raw pages' virtual memory area
794  * @address: starting address to copy
795  * @ptl: lock on raw pages' PTEs
796  * @compound_pagelist: list that stores compound pages
797  */
798 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio,
799 		pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma,
800 		unsigned long address, spinlock_t *ptl,
801 		struct list_head *compound_pagelist)
802 {
803 	unsigned int i;
804 	int result = SCAN_SUCCEED;
805 
806 	/*
807 	 * Copying pages' contents is subject to memory poison at any iteration.
808 	 */
809 	for (i = 0; i < HPAGE_PMD_NR; i++) {
810 		pte_t pteval = ptep_get(pte + i);
811 		struct page *page = folio_page(folio, i);
812 		unsigned long src_addr = address + i * PAGE_SIZE;
813 		struct page *src_page;
814 
815 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
816 			clear_user_highpage(page, src_addr);
817 			continue;
818 		}
819 		src_page = pte_page(pteval);
820 		if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) {
821 			result = SCAN_COPY_MC;
822 			break;
823 		}
824 	}
825 
826 	if (likely(result == SCAN_SUCCEED))
827 		__collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
828 						    compound_pagelist);
829 	else
830 		__collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
831 						 compound_pagelist);
832 
833 	return result;
834 }
835 
836 static void khugepaged_alloc_sleep(void)
837 {
838 	DEFINE_WAIT(wait);
839 
840 	add_wait_queue(&khugepaged_wait, &wait);
841 	__set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
842 	schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
843 	remove_wait_queue(&khugepaged_wait, &wait);
844 }
845 
846 struct collapse_control khugepaged_collapse_control = {
847 	.is_khugepaged = true,
848 };
849 
850 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
851 {
852 	int i;
853 
854 	/*
855 	 * If node_reclaim_mode is disabled, then no extra effort is made to
856 	 * allocate memory locally.
857 	 */
858 	if (!node_reclaim_enabled())
859 		return false;
860 
861 	/* If there is a count for this node already, it must be acceptable */
862 	if (cc->node_load[nid])
863 		return false;
864 
865 	for (i = 0; i < MAX_NUMNODES; i++) {
866 		if (!cc->node_load[i])
867 			continue;
868 		if (node_distance(nid, i) > node_reclaim_distance)
869 			return true;
870 	}
871 	return false;
872 }
873 
874 #define khugepaged_defrag()					\
875 	(transparent_hugepage_flags &				\
876 	 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
877 
878 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
879 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
880 {
881 	return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
882 }
883 
884 #ifdef CONFIG_NUMA
885 static int hpage_collapse_find_target_node(struct collapse_control *cc)
886 {
887 	int nid, target_node = 0, max_value = 0;
888 
889 	/* find first node with max normal pages hit */
890 	for (nid = 0; nid < MAX_NUMNODES; nid++)
891 		if (cc->node_load[nid] > max_value) {
892 			max_value = cc->node_load[nid];
893 			target_node = nid;
894 		}
895 
896 	for_each_online_node(nid) {
897 		if (max_value == cc->node_load[nid])
898 			node_set(nid, cc->alloc_nmask);
899 	}
900 
901 	return target_node;
902 }
903 #else
904 static int hpage_collapse_find_target_node(struct collapse_control *cc)
905 {
906 	return 0;
907 }
908 #endif
909 
910 /*
911  * If mmap_lock temporarily dropped, revalidate vma
912  * before taking mmap_lock.
913  * Returns enum scan_result value.
914  */
915 
916 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
917 				   bool expect_anon,
918 				   struct vm_area_struct **vmap,
919 				   struct collapse_control *cc)
920 {
921 	struct vm_area_struct *vma;
922 	unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0;
923 
924 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
925 		return SCAN_ANY_PROCESS;
926 
927 	*vmap = vma = find_vma(mm, address);
928 	if (!vma)
929 		return SCAN_VMA_NULL;
930 
931 	if (!thp_vma_suitable_order(vma, address, PMD_ORDER))
932 		return SCAN_ADDRESS_RANGE;
933 	if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER))
934 		return SCAN_VMA_CHECK;
935 	/*
936 	 * Anon VMA expected, the address may be unmapped then
937 	 * remapped to file after khugepaged reaquired the mmap_lock.
938 	 *
939 	 * thp_vma_allowable_order may return true for qualified file
940 	 * vmas.
941 	 */
942 	if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
943 		return SCAN_PAGE_ANON;
944 	return SCAN_SUCCEED;
945 }
946 
947 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
948 				   unsigned long address,
949 				   pmd_t **pmd)
950 {
951 	pmd_t pmde;
952 
953 	*pmd = mm_find_pmd(mm, address);
954 	if (!*pmd)
955 		return SCAN_PMD_NULL;
956 
957 	pmde = pmdp_get_lockless(*pmd);
958 	if (pmd_none(pmde))
959 		return SCAN_PMD_NONE;
960 	if (!pmd_present(pmde))
961 		return SCAN_PMD_NULL;
962 	if (pmd_trans_huge(pmde))
963 		return SCAN_PMD_MAPPED;
964 	if (pmd_devmap(pmde))
965 		return SCAN_PMD_NULL;
966 	if (pmd_bad(pmde))
967 		return SCAN_PMD_NULL;
968 	return SCAN_SUCCEED;
969 }
970 
971 static int check_pmd_still_valid(struct mm_struct *mm,
972 				 unsigned long address,
973 				 pmd_t *pmd)
974 {
975 	pmd_t *new_pmd;
976 	int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
977 
978 	if (result != SCAN_SUCCEED)
979 		return result;
980 	if (new_pmd != pmd)
981 		return SCAN_FAIL;
982 	return SCAN_SUCCEED;
983 }
984 
985 /*
986  * Bring missing pages in from swap, to complete THP collapse.
987  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
988  *
989  * Called and returns without pte mapped or spinlocks held.
990  * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
991  */
992 static int __collapse_huge_page_swapin(struct mm_struct *mm,
993 				       struct vm_area_struct *vma,
994 				       unsigned long haddr, pmd_t *pmd,
995 				       int referenced)
996 {
997 	int swapped_in = 0;
998 	vm_fault_t ret = 0;
999 	unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1000 	int result;
1001 	pte_t *pte = NULL;
1002 	spinlock_t *ptl;
1003 
1004 	for (address = haddr; address < end; address += PAGE_SIZE) {
1005 		struct vm_fault vmf = {
1006 			.vma = vma,
1007 			.address = address,
1008 			.pgoff = linear_page_index(vma, address),
1009 			.flags = FAULT_FLAG_ALLOW_RETRY,
1010 			.pmd = pmd,
1011 		};
1012 
1013 		if (!pte++) {
1014 			pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
1015 			if (!pte) {
1016 				mmap_read_unlock(mm);
1017 				result = SCAN_PMD_NULL;
1018 				goto out;
1019 			}
1020 		}
1021 
1022 		vmf.orig_pte = ptep_get_lockless(pte);
1023 		if (!is_swap_pte(vmf.orig_pte))
1024 			continue;
1025 
1026 		vmf.pte = pte;
1027 		vmf.ptl = ptl;
1028 		ret = do_swap_page(&vmf);
1029 		/* Which unmaps pte (after perhaps re-checking the entry) */
1030 		pte = NULL;
1031 
1032 		/*
1033 		 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1034 		 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1035 		 * we do not retry here and swap entry will remain in pagetable
1036 		 * resulting in later failure.
1037 		 */
1038 		if (ret & VM_FAULT_RETRY) {
1039 			/* Likely, but not guaranteed, that page lock failed */
1040 			result = SCAN_PAGE_LOCK;
1041 			goto out;
1042 		}
1043 		if (ret & VM_FAULT_ERROR) {
1044 			mmap_read_unlock(mm);
1045 			result = SCAN_FAIL;
1046 			goto out;
1047 		}
1048 		swapped_in++;
1049 	}
1050 
1051 	if (pte)
1052 		pte_unmap(pte);
1053 
1054 	/* Drain LRU cache to remove extra pin on the swapped in pages */
1055 	if (swapped_in)
1056 		lru_add_drain();
1057 
1058 	result = SCAN_SUCCEED;
1059 out:
1060 	trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1061 	return result;
1062 }
1063 
1064 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm,
1065 			      struct collapse_control *cc)
1066 {
1067 	gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1068 		     GFP_TRANSHUGE);
1069 	int node = hpage_collapse_find_target_node(cc);
1070 	struct folio *folio;
1071 
1072 	folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask);
1073 	if (!folio) {
1074 		*foliop = NULL;
1075 		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1076 		return SCAN_ALLOC_HUGE_PAGE_FAIL;
1077 	}
1078 
1079 	count_vm_event(THP_COLLAPSE_ALLOC);
1080 	if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1081 		folio_put(folio);
1082 		*foliop = NULL;
1083 		return SCAN_CGROUP_CHARGE_FAIL;
1084 	}
1085 
1086 	count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1);
1087 
1088 	*foliop = folio;
1089 	return SCAN_SUCCEED;
1090 }
1091 
1092 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1093 			      int referenced, int unmapped,
1094 			      struct collapse_control *cc)
1095 {
1096 	LIST_HEAD(compound_pagelist);
1097 	pmd_t *pmd, _pmd;
1098 	pte_t *pte;
1099 	pgtable_t pgtable;
1100 	struct folio *folio;
1101 	spinlock_t *pmd_ptl, *pte_ptl;
1102 	int result = SCAN_FAIL;
1103 	struct vm_area_struct *vma;
1104 	struct mmu_notifier_range range;
1105 
1106 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1107 
1108 	/*
1109 	 * Before allocating the hugepage, release the mmap_lock read lock.
1110 	 * The allocation can take potentially a long time if it involves
1111 	 * sync compaction, and we do not need to hold the mmap_lock during
1112 	 * that. We will recheck the vma after taking it again in write mode.
1113 	 */
1114 	mmap_read_unlock(mm);
1115 
1116 	result = alloc_charge_folio(&folio, mm, cc);
1117 	if (result != SCAN_SUCCEED)
1118 		goto out_nolock;
1119 
1120 	mmap_read_lock(mm);
1121 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1122 	if (result != SCAN_SUCCEED) {
1123 		mmap_read_unlock(mm);
1124 		goto out_nolock;
1125 	}
1126 
1127 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1128 	if (result != SCAN_SUCCEED) {
1129 		mmap_read_unlock(mm);
1130 		goto out_nolock;
1131 	}
1132 
1133 	if (unmapped) {
1134 		/*
1135 		 * __collapse_huge_page_swapin will return with mmap_lock
1136 		 * released when it fails. So we jump out_nolock directly in
1137 		 * that case.  Continuing to collapse causes inconsistency.
1138 		 */
1139 		result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1140 						     referenced);
1141 		if (result != SCAN_SUCCEED)
1142 			goto out_nolock;
1143 	}
1144 
1145 	mmap_read_unlock(mm);
1146 	/*
1147 	 * Prevent all access to pagetables with the exception of
1148 	 * gup_fast later handled by the ptep_clear_flush and the VM
1149 	 * handled by the anon_vma lock + PG_lock.
1150 	 *
1151 	 * UFFDIO_MOVE is prevented to race as well thanks to the
1152 	 * mmap_lock.
1153 	 */
1154 	mmap_write_lock(mm);
1155 	result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1156 	if (result != SCAN_SUCCEED)
1157 		goto out_up_write;
1158 	/* check if the pmd is still valid */
1159 	result = check_pmd_still_valid(mm, address, pmd);
1160 	if (result != SCAN_SUCCEED)
1161 		goto out_up_write;
1162 
1163 	vma_start_write(vma);
1164 	anon_vma_lock_write(vma->anon_vma);
1165 
1166 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1167 				address + HPAGE_PMD_SIZE);
1168 	mmu_notifier_invalidate_range_start(&range);
1169 
1170 	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1171 	/*
1172 	 * This removes any huge TLB entry from the CPU so we won't allow
1173 	 * huge and small TLB entries for the same virtual address to
1174 	 * avoid the risk of CPU bugs in that area.
1175 	 *
1176 	 * Parallel GUP-fast is fine since GUP-fast will back off when
1177 	 * it detects PMD is changed.
1178 	 */
1179 	_pmd = pmdp_collapse_flush(vma, address, pmd);
1180 	spin_unlock(pmd_ptl);
1181 	mmu_notifier_invalidate_range_end(&range);
1182 	tlb_remove_table_sync_one();
1183 
1184 	pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1185 	if (pte) {
1186 		result = __collapse_huge_page_isolate(vma, address, pte, cc,
1187 						      &compound_pagelist);
1188 		spin_unlock(pte_ptl);
1189 	} else {
1190 		result = SCAN_PMD_NULL;
1191 	}
1192 
1193 	if (unlikely(result != SCAN_SUCCEED)) {
1194 		if (pte)
1195 			pte_unmap(pte);
1196 		spin_lock(pmd_ptl);
1197 		BUG_ON(!pmd_none(*pmd));
1198 		/*
1199 		 * We can only use set_pmd_at when establishing
1200 		 * hugepmds and never for establishing regular pmds that
1201 		 * points to regular pagetables. Use pmd_populate for that
1202 		 */
1203 		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1204 		spin_unlock(pmd_ptl);
1205 		anon_vma_unlock_write(vma->anon_vma);
1206 		goto out_up_write;
1207 	}
1208 
1209 	/*
1210 	 * All pages are isolated and locked so anon_vma rmap
1211 	 * can't run anymore.
1212 	 */
1213 	anon_vma_unlock_write(vma->anon_vma);
1214 
1215 	result = __collapse_huge_page_copy(pte, folio, pmd, _pmd,
1216 					   vma, address, pte_ptl,
1217 					   &compound_pagelist);
1218 	pte_unmap(pte);
1219 	if (unlikely(result != SCAN_SUCCEED))
1220 		goto out_up_write;
1221 
1222 	/*
1223 	 * The smp_wmb() inside __folio_mark_uptodate() ensures the
1224 	 * copy_huge_page writes become visible before the set_pmd_at()
1225 	 * write.
1226 	 */
1227 	__folio_mark_uptodate(folio);
1228 	pgtable = pmd_pgtable(_pmd);
1229 
1230 	_pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot);
1231 	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1232 
1233 	spin_lock(pmd_ptl);
1234 	BUG_ON(!pmd_none(*pmd));
1235 	folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE);
1236 	folio_add_lru_vma(folio, vma);
1237 	pgtable_trans_huge_deposit(mm, pmd, pgtable);
1238 	set_pmd_at(mm, address, pmd, _pmd);
1239 	update_mmu_cache_pmd(vma, address, pmd);
1240 	deferred_split_folio(folio, false);
1241 	spin_unlock(pmd_ptl);
1242 
1243 	folio = NULL;
1244 
1245 	result = SCAN_SUCCEED;
1246 out_up_write:
1247 	mmap_write_unlock(mm);
1248 out_nolock:
1249 	if (folio)
1250 		folio_put(folio);
1251 	trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1252 	return result;
1253 }
1254 
1255 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1256 				   struct vm_area_struct *vma,
1257 				   unsigned long address, bool *mmap_locked,
1258 				   struct collapse_control *cc)
1259 {
1260 	pmd_t *pmd;
1261 	pte_t *pte, *_pte;
1262 	int result = SCAN_FAIL, referenced = 0;
1263 	int none_or_zero = 0, shared = 0;
1264 	struct page *page = NULL;
1265 	struct folio *folio = NULL;
1266 	unsigned long _address;
1267 	spinlock_t *ptl;
1268 	int node = NUMA_NO_NODE, unmapped = 0;
1269 	bool writable = false;
1270 
1271 	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1272 
1273 	result = find_pmd_or_thp_or_none(mm, address, &pmd);
1274 	if (result != SCAN_SUCCEED)
1275 		goto out;
1276 
1277 	memset(cc->node_load, 0, sizeof(cc->node_load));
1278 	nodes_clear(cc->alloc_nmask);
1279 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1280 	if (!pte) {
1281 		result = SCAN_PMD_NULL;
1282 		goto out;
1283 	}
1284 
1285 	for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1286 	     _pte++, _address += PAGE_SIZE) {
1287 		pte_t pteval = ptep_get(_pte);
1288 		if (is_swap_pte(pteval)) {
1289 			++unmapped;
1290 			if (!cc->is_khugepaged ||
1291 			    unmapped <= khugepaged_max_ptes_swap) {
1292 				/*
1293 				 * Always be strict with uffd-wp
1294 				 * enabled swap entries.  Please see
1295 				 * comment below for pte_uffd_wp().
1296 				 */
1297 				if (pte_swp_uffd_wp_any(pteval)) {
1298 					result = SCAN_PTE_UFFD_WP;
1299 					goto out_unmap;
1300 				}
1301 				continue;
1302 			} else {
1303 				result = SCAN_EXCEED_SWAP_PTE;
1304 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1305 				goto out_unmap;
1306 			}
1307 		}
1308 		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1309 			++none_or_zero;
1310 			if (!userfaultfd_armed(vma) &&
1311 			    (!cc->is_khugepaged ||
1312 			     none_or_zero <= khugepaged_max_ptes_none)) {
1313 				continue;
1314 			} else {
1315 				result = SCAN_EXCEED_NONE_PTE;
1316 				count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1317 				goto out_unmap;
1318 			}
1319 		}
1320 		if (pte_uffd_wp(pteval)) {
1321 			/*
1322 			 * Don't collapse the page if any of the small
1323 			 * PTEs are armed with uffd write protection.
1324 			 * Here we can also mark the new huge pmd as
1325 			 * write protected if any of the small ones is
1326 			 * marked but that could bring unknown
1327 			 * userfault messages that falls outside of
1328 			 * the registered range.  So, just be simple.
1329 			 */
1330 			result = SCAN_PTE_UFFD_WP;
1331 			goto out_unmap;
1332 		}
1333 		if (pte_write(pteval))
1334 			writable = true;
1335 
1336 		page = vm_normal_page(vma, _address, pteval);
1337 		if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1338 			result = SCAN_PAGE_NULL;
1339 			goto out_unmap;
1340 		}
1341 		folio = page_folio(page);
1342 
1343 		if (!folio_test_anon(folio)) {
1344 			result = SCAN_PAGE_ANON;
1345 			goto out_unmap;
1346 		}
1347 
1348 		/*
1349 		 * We treat a single page as shared if any part of the THP
1350 		 * is shared. "False negatives" from
1351 		 * folio_likely_mapped_shared() are not expected to matter
1352 		 * much in practice.
1353 		 */
1354 		if (folio_likely_mapped_shared(folio)) {
1355 			++shared;
1356 			if (cc->is_khugepaged &&
1357 			    shared > khugepaged_max_ptes_shared) {
1358 				result = SCAN_EXCEED_SHARED_PTE;
1359 				count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1360 				goto out_unmap;
1361 			}
1362 		}
1363 
1364 		/*
1365 		 * Record which node the original page is from and save this
1366 		 * information to cc->node_load[].
1367 		 * Khugepaged will allocate hugepage from the node has the max
1368 		 * hit record.
1369 		 */
1370 		node = folio_nid(folio);
1371 		if (hpage_collapse_scan_abort(node, cc)) {
1372 			result = SCAN_SCAN_ABORT;
1373 			goto out_unmap;
1374 		}
1375 		cc->node_load[node]++;
1376 		if (!folio_test_lru(folio)) {
1377 			result = SCAN_PAGE_LRU;
1378 			goto out_unmap;
1379 		}
1380 		if (folio_test_locked(folio)) {
1381 			result = SCAN_PAGE_LOCK;
1382 			goto out_unmap;
1383 		}
1384 
1385 		/*
1386 		 * Check if the page has any GUP (or other external) pins.
1387 		 *
1388 		 * Here the check may be racy:
1389 		 * it may see folio_mapcount() > folio_ref_count().
1390 		 * But such case is ephemeral we could always retry collapse
1391 		 * later.  However it may report false positive if the page
1392 		 * has excessive GUP pins (i.e. 512).  Anyway the same check
1393 		 * will be done again later the risk seems low.
1394 		 */
1395 		if (!is_refcount_suitable(folio)) {
1396 			result = SCAN_PAGE_COUNT;
1397 			goto out_unmap;
1398 		}
1399 
1400 		/*
1401 		 * If collapse was initiated by khugepaged, check that there is
1402 		 * enough young pte to justify collapsing the page
1403 		 */
1404 		if (cc->is_khugepaged &&
1405 		    (pte_young(pteval) || folio_test_young(folio) ||
1406 		     folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm,
1407 								     address)))
1408 			referenced++;
1409 	}
1410 	if (!writable) {
1411 		result = SCAN_PAGE_RO;
1412 	} else if (cc->is_khugepaged &&
1413 		   (!referenced ||
1414 		    (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1415 		result = SCAN_LACK_REFERENCED_PAGE;
1416 	} else {
1417 		result = SCAN_SUCCEED;
1418 	}
1419 out_unmap:
1420 	pte_unmap_unlock(pte, ptl);
1421 	if (result == SCAN_SUCCEED) {
1422 		result = collapse_huge_page(mm, address, referenced,
1423 					    unmapped, cc);
1424 		/* collapse_huge_page will return with the mmap_lock released */
1425 		*mmap_locked = false;
1426 	}
1427 out:
1428 	trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced,
1429 				     none_or_zero, result, unmapped);
1430 	return result;
1431 }
1432 
1433 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1434 {
1435 	struct mm_slot *slot = &mm_slot->slot;
1436 	struct mm_struct *mm = slot->mm;
1437 
1438 	lockdep_assert_held(&khugepaged_mm_lock);
1439 
1440 	if (hpage_collapse_test_exit(mm)) {
1441 		/* free mm_slot */
1442 		hash_del(&slot->hash);
1443 		list_del(&slot->mm_node);
1444 
1445 		/*
1446 		 * Not strictly needed because the mm exited already.
1447 		 *
1448 		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1449 		 */
1450 
1451 		/* khugepaged_mm_lock actually not necessary for the below */
1452 		mm_slot_free(mm_slot_cache, mm_slot);
1453 		mmdrop(mm);
1454 	}
1455 }
1456 
1457 #ifdef CONFIG_SHMEM
1458 /* hpage must be locked, and mmap_lock must be held */
1459 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1460 			pmd_t *pmdp, struct page *hpage)
1461 {
1462 	struct vm_fault vmf = {
1463 		.vma = vma,
1464 		.address = addr,
1465 		.flags = 0,
1466 		.pmd = pmdp,
1467 	};
1468 
1469 	VM_BUG_ON(!PageTransHuge(hpage));
1470 	mmap_assert_locked(vma->vm_mm);
1471 
1472 	if (do_set_pmd(&vmf, hpage))
1473 		return SCAN_FAIL;
1474 
1475 	get_page(hpage);
1476 	return SCAN_SUCCEED;
1477 }
1478 
1479 /**
1480  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1481  * address haddr.
1482  *
1483  * @mm: process address space where collapse happens
1484  * @addr: THP collapse address
1485  * @install_pmd: If a huge PMD should be installed
1486  *
1487  * This function checks whether all the PTEs in the PMD are pointing to the
1488  * right THP. If so, retract the page table so the THP can refault in with
1489  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1490  */
1491 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1492 			    bool install_pmd)
1493 {
1494 	struct mmu_notifier_range range;
1495 	bool notified = false;
1496 	unsigned long haddr = addr & HPAGE_PMD_MASK;
1497 	struct vm_area_struct *vma = vma_lookup(mm, haddr);
1498 	struct folio *folio;
1499 	pte_t *start_pte, *pte;
1500 	pmd_t *pmd, pgt_pmd;
1501 	spinlock_t *pml = NULL, *ptl;
1502 	int nr_ptes = 0, result = SCAN_FAIL;
1503 	int i;
1504 
1505 	mmap_assert_locked(mm);
1506 
1507 	/* First check VMA found, in case page tables are being torn down */
1508 	if (!vma || !vma->vm_file ||
1509 	    !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1510 		return SCAN_VMA_CHECK;
1511 
1512 	/* Fast check before locking page if already PMD-mapped */
1513 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1514 	if (result == SCAN_PMD_MAPPED)
1515 		return result;
1516 
1517 	/*
1518 	 * If we are here, we've succeeded in replacing all the native pages
1519 	 * in the page cache with a single hugepage. If a mm were to fault-in
1520 	 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1521 	 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1522 	 * analogously elide sysfs THP settings here.
1523 	 */
1524 	if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
1525 		return SCAN_VMA_CHECK;
1526 
1527 	/* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1528 	if (userfaultfd_wp(vma))
1529 		return SCAN_PTE_UFFD_WP;
1530 
1531 	folio = filemap_lock_folio(vma->vm_file->f_mapping,
1532 			       linear_page_index(vma, haddr));
1533 	if (IS_ERR(folio))
1534 		return SCAN_PAGE_NULL;
1535 
1536 	if (folio_order(folio) != HPAGE_PMD_ORDER) {
1537 		result = SCAN_PAGE_COMPOUND;
1538 		goto drop_folio;
1539 	}
1540 
1541 	result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1542 	switch (result) {
1543 	case SCAN_SUCCEED:
1544 		break;
1545 	case SCAN_PMD_NONE:
1546 		/*
1547 		 * All pte entries have been removed and pmd cleared.
1548 		 * Skip all the pte checks and just update the pmd mapping.
1549 		 */
1550 		goto maybe_install_pmd;
1551 	default:
1552 		goto drop_folio;
1553 	}
1554 
1555 	result = SCAN_FAIL;
1556 	start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1557 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1558 		goto drop_folio;
1559 
1560 	/* step 1: check all mapped PTEs are to the right huge page */
1561 	for (i = 0, addr = haddr, pte = start_pte;
1562 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1563 		struct page *page;
1564 		pte_t ptent = ptep_get(pte);
1565 
1566 		/* empty pte, skip */
1567 		if (pte_none(ptent))
1568 			continue;
1569 
1570 		/* page swapped out, abort */
1571 		if (!pte_present(ptent)) {
1572 			result = SCAN_PTE_NON_PRESENT;
1573 			goto abort;
1574 		}
1575 
1576 		page = vm_normal_page(vma, addr, ptent);
1577 		if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1578 			page = NULL;
1579 		/*
1580 		 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1581 		 * page table, but the new page will not be a subpage of hpage.
1582 		 */
1583 		if (folio_page(folio, i) != page)
1584 			goto abort;
1585 	}
1586 
1587 	pte_unmap_unlock(start_pte, ptl);
1588 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1589 				haddr, haddr + HPAGE_PMD_SIZE);
1590 	mmu_notifier_invalidate_range_start(&range);
1591 	notified = true;
1592 
1593 	/*
1594 	 * pmd_lock covers a wider range than ptl, and (if split from mm's
1595 	 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1596 	 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1597 	 * inserts a valid as-if-COWed PTE without even looking up page cache.
1598 	 * So page lock of folio does not protect from it, so we must not drop
1599 	 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1600 	 */
1601 	if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1602 		pml = pmd_lock(mm, pmd);
1603 
1604 	start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl);
1605 	if (!start_pte)		/* mmap_lock + page lock should prevent this */
1606 		goto abort;
1607 	if (!pml)
1608 		spin_lock(ptl);
1609 	else if (ptl != pml)
1610 		spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1611 
1612 	/* step 2: clear page table and adjust rmap */
1613 	for (i = 0, addr = haddr, pte = start_pte;
1614 	     i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1615 		struct page *page;
1616 		pte_t ptent = ptep_get(pte);
1617 
1618 		if (pte_none(ptent))
1619 			continue;
1620 		/*
1621 		 * We dropped ptl after the first scan, to do the mmu_notifier:
1622 		 * page lock stops more PTEs of the folio being faulted in, but
1623 		 * does not stop write faults COWing anon copies from existing
1624 		 * PTEs; and does not stop those being swapped out or migrated.
1625 		 */
1626 		if (!pte_present(ptent)) {
1627 			result = SCAN_PTE_NON_PRESENT;
1628 			goto abort;
1629 		}
1630 		page = vm_normal_page(vma, addr, ptent);
1631 		if (folio_page(folio, i) != page)
1632 			goto abort;
1633 
1634 		/*
1635 		 * Must clear entry, or a racing truncate may re-remove it.
1636 		 * TLB flush can be left until pmdp_collapse_flush() does it.
1637 		 * PTE dirty? Shmem page is already dirty; file is read-only.
1638 		 */
1639 		ptep_clear(mm, addr, pte);
1640 		folio_remove_rmap_pte(folio, page, vma);
1641 		nr_ptes++;
1642 	}
1643 
1644 	pte_unmap(start_pte);
1645 	if (!pml)
1646 		spin_unlock(ptl);
1647 
1648 	/* step 3: set proper refcount and mm_counters. */
1649 	if (nr_ptes) {
1650 		folio_ref_sub(folio, nr_ptes);
1651 		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1652 	}
1653 
1654 	/* step 4: remove empty page table */
1655 	if (!pml) {
1656 		pml = pmd_lock(mm, pmd);
1657 		if (ptl != pml)
1658 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1659 	}
1660 	pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1661 	pmdp_get_lockless_sync();
1662 	if (ptl != pml)
1663 		spin_unlock(ptl);
1664 	spin_unlock(pml);
1665 
1666 	mmu_notifier_invalidate_range_end(&range);
1667 
1668 	mm_dec_nr_ptes(mm);
1669 	page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1670 	pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1671 
1672 maybe_install_pmd:
1673 	/* step 5: install pmd entry */
1674 	result = install_pmd
1675 			? set_huge_pmd(vma, haddr, pmd, &folio->page)
1676 			: SCAN_SUCCEED;
1677 	goto drop_folio;
1678 abort:
1679 	if (nr_ptes) {
1680 		flush_tlb_mm(mm);
1681 		folio_ref_sub(folio, nr_ptes);
1682 		add_mm_counter(mm, mm_counter_file(folio), -nr_ptes);
1683 	}
1684 	if (start_pte)
1685 		pte_unmap_unlock(start_pte, ptl);
1686 	if (pml && pml != ptl)
1687 		spin_unlock(pml);
1688 	if (notified)
1689 		mmu_notifier_invalidate_range_end(&range);
1690 drop_folio:
1691 	folio_unlock(folio);
1692 	folio_put(folio);
1693 	return result;
1694 }
1695 
1696 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1697 {
1698 	struct vm_area_struct *vma;
1699 
1700 	i_mmap_lock_read(mapping);
1701 	vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1702 		struct mmu_notifier_range range;
1703 		struct mm_struct *mm;
1704 		unsigned long addr;
1705 		pmd_t *pmd, pgt_pmd;
1706 		spinlock_t *pml;
1707 		spinlock_t *ptl;
1708 		bool skipped_uffd = false;
1709 
1710 		/*
1711 		 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1712 		 * got written to. These VMAs are likely not worth removing
1713 		 * page tables from, as PMD-mapping is likely to be split later.
1714 		 */
1715 		if (READ_ONCE(vma->anon_vma))
1716 			continue;
1717 
1718 		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1719 		if (addr & ~HPAGE_PMD_MASK ||
1720 		    vma->vm_end < addr + HPAGE_PMD_SIZE)
1721 			continue;
1722 
1723 		mm = vma->vm_mm;
1724 		if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1725 			continue;
1726 
1727 		if (hpage_collapse_test_exit(mm))
1728 			continue;
1729 		/*
1730 		 * When a vma is registered with uffd-wp, we cannot recycle
1731 		 * the page table because there may be pte markers installed.
1732 		 * Other vmas can still have the same file mapped hugely, but
1733 		 * skip this one: it will always be mapped in small page size
1734 		 * for uffd-wp registered ranges.
1735 		 */
1736 		if (userfaultfd_wp(vma))
1737 			continue;
1738 
1739 		/* PTEs were notified when unmapped; but now for the PMD? */
1740 		mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1741 					addr, addr + HPAGE_PMD_SIZE);
1742 		mmu_notifier_invalidate_range_start(&range);
1743 
1744 		pml = pmd_lock(mm, pmd);
1745 		ptl = pte_lockptr(mm, pmd);
1746 		if (ptl != pml)
1747 			spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1748 
1749 		/*
1750 		 * Huge page lock is still held, so normally the page table
1751 		 * must remain empty; and we have already skipped anon_vma
1752 		 * and userfaultfd_wp() vmas.  But since the mmap_lock is not
1753 		 * held, it is still possible for a racing userfaultfd_ioctl()
1754 		 * to have inserted ptes or markers.  Now that we hold ptlock,
1755 		 * repeating the anon_vma check protects from one category,
1756 		 * and repeating the userfaultfd_wp() check from another.
1757 		 */
1758 		if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
1759 			skipped_uffd = true;
1760 		} else {
1761 			pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1762 			pmdp_get_lockless_sync();
1763 		}
1764 
1765 		if (ptl != pml)
1766 			spin_unlock(ptl);
1767 		spin_unlock(pml);
1768 
1769 		mmu_notifier_invalidate_range_end(&range);
1770 
1771 		if (!skipped_uffd) {
1772 			mm_dec_nr_ptes(mm);
1773 			page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1774 			pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1775 		}
1776 	}
1777 	i_mmap_unlock_read(mapping);
1778 }
1779 
1780 /**
1781  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1782  *
1783  * @mm: process address space where collapse happens
1784  * @addr: virtual collapse start address
1785  * @file: file that collapse on
1786  * @start: collapse start address
1787  * @cc: collapse context and scratchpad
1788  *
1789  * Basic scheme is simple, details are more complex:
1790  *  - allocate and lock a new huge page;
1791  *  - scan page cache, locking old pages
1792  *    + swap/gup in pages if necessary;
1793  *  - copy data to new page
1794  *  - handle shmem holes
1795  *    + re-validate that holes weren't filled by someone else
1796  *    + check for userfaultfd
1797  *  - finalize updates to the page cache;
1798  *  - if replacing succeeds:
1799  *    + unlock huge page;
1800  *    + free old pages;
1801  *  - if replacing failed;
1802  *    + unlock old pages
1803  *    + unlock and free huge page;
1804  */
1805 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1806 			 struct file *file, pgoff_t start,
1807 			 struct collapse_control *cc)
1808 {
1809 	struct address_space *mapping = file->f_mapping;
1810 	struct page *dst;
1811 	struct folio *folio, *tmp, *new_folio;
1812 	pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1813 	LIST_HEAD(pagelist);
1814 	XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1815 	int nr_none = 0, result = SCAN_SUCCEED;
1816 	bool is_shmem = shmem_file(file);
1817 
1818 	VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1819 	VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1820 
1821 	result = alloc_charge_folio(&new_folio, mm, cc);
1822 	if (result != SCAN_SUCCEED)
1823 		goto out;
1824 
1825 	__folio_set_locked(new_folio);
1826 	if (is_shmem)
1827 		__folio_set_swapbacked(new_folio);
1828 	new_folio->index = start;
1829 	new_folio->mapping = mapping;
1830 
1831 	/*
1832 	 * Ensure we have slots for all the pages in the range.  This is
1833 	 * almost certainly a no-op because most of the pages must be present
1834 	 */
1835 	do {
1836 		xas_lock_irq(&xas);
1837 		xas_create_range(&xas);
1838 		if (!xas_error(&xas))
1839 			break;
1840 		xas_unlock_irq(&xas);
1841 		if (!xas_nomem(&xas, GFP_KERNEL)) {
1842 			result = SCAN_FAIL;
1843 			goto rollback;
1844 		}
1845 	} while (1);
1846 
1847 	for (index = start; index < end;) {
1848 		xas_set(&xas, index);
1849 		folio = xas_load(&xas);
1850 
1851 		VM_BUG_ON(index != xas.xa_index);
1852 		if (is_shmem) {
1853 			if (!folio) {
1854 				/*
1855 				 * Stop if extent has been truncated or
1856 				 * hole-punched, and is now completely
1857 				 * empty.
1858 				 */
1859 				if (index == start) {
1860 					if (!xas_next_entry(&xas, end - 1)) {
1861 						result = SCAN_TRUNCATED;
1862 						goto xa_locked;
1863 					}
1864 				}
1865 				nr_none++;
1866 				index++;
1867 				continue;
1868 			}
1869 
1870 			if (xa_is_value(folio) || !folio_test_uptodate(folio)) {
1871 				xas_unlock_irq(&xas);
1872 				/* swap in or instantiate fallocated page */
1873 				if (shmem_get_folio(mapping->host, index, 0,
1874 						&folio, SGP_NOALLOC)) {
1875 					result = SCAN_FAIL;
1876 					goto xa_unlocked;
1877 				}
1878 				/* drain lru cache to help folio_isolate_lru() */
1879 				lru_add_drain();
1880 			} else if (folio_trylock(folio)) {
1881 				folio_get(folio);
1882 				xas_unlock_irq(&xas);
1883 			} else {
1884 				result = SCAN_PAGE_LOCK;
1885 				goto xa_locked;
1886 			}
1887 		} else {	/* !is_shmem */
1888 			if (!folio || xa_is_value(folio)) {
1889 				xas_unlock_irq(&xas);
1890 				page_cache_sync_readahead(mapping, &file->f_ra,
1891 							  file, index,
1892 							  end - index);
1893 				/* drain lru cache to help folio_isolate_lru() */
1894 				lru_add_drain();
1895 				folio = filemap_lock_folio(mapping, index);
1896 				if (IS_ERR(folio)) {
1897 					result = SCAN_FAIL;
1898 					goto xa_unlocked;
1899 				}
1900 			} else if (folio_test_dirty(folio)) {
1901 				/*
1902 				 * khugepaged only works on read-only fd,
1903 				 * so this page is dirty because it hasn't
1904 				 * been flushed since first write. There
1905 				 * won't be new dirty pages.
1906 				 *
1907 				 * Trigger async flush here and hope the
1908 				 * writeback is done when khugepaged
1909 				 * revisits this page.
1910 				 *
1911 				 * This is a one-off situation. We are not
1912 				 * forcing writeback in loop.
1913 				 */
1914 				xas_unlock_irq(&xas);
1915 				filemap_flush(mapping);
1916 				result = SCAN_FAIL;
1917 				goto xa_unlocked;
1918 			} else if (folio_test_writeback(folio)) {
1919 				xas_unlock_irq(&xas);
1920 				result = SCAN_FAIL;
1921 				goto xa_unlocked;
1922 			} else if (folio_trylock(folio)) {
1923 				folio_get(folio);
1924 				xas_unlock_irq(&xas);
1925 			} else {
1926 				result = SCAN_PAGE_LOCK;
1927 				goto xa_locked;
1928 			}
1929 		}
1930 
1931 		/*
1932 		 * The folio must be locked, so we can drop the i_pages lock
1933 		 * without racing with truncate.
1934 		 */
1935 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1936 
1937 		/* make sure the folio is up to date */
1938 		if (unlikely(!folio_test_uptodate(folio))) {
1939 			result = SCAN_FAIL;
1940 			goto out_unlock;
1941 		}
1942 
1943 		/*
1944 		 * If file was truncated then extended, or hole-punched, before
1945 		 * we locked the first folio, then a THP might be there already.
1946 		 * This will be discovered on the first iteration.
1947 		 */
1948 		if (folio_order(folio) == HPAGE_PMD_ORDER &&
1949 		    folio->index == start) {
1950 			/* Maybe PMD-mapped */
1951 			result = SCAN_PTE_MAPPED_HUGEPAGE;
1952 			goto out_unlock;
1953 		}
1954 
1955 		if (folio_mapping(folio) != mapping) {
1956 			result = SCAN_TRUNCATED;
1957 			goto out_unlock;
1958 		}
1959 
1960 		if (!is_shmem && (folio_test_dirty(folio) ||
1961 				  folio_test_writeback(folio))) {
1962 			/*
1963 			 * khugepaged only works on read-only fd, so this
1964 			 * folio is dirty because it hasn't been flushed
1965 			 * since first write.
1966 			 */
1967 			result = SCAN_FAIL;
1968 			goto out_unlock;
1969 		}
1970 
1971 		if (!folio_isolate_lru(folio)) {
1972 			result = SCAN_DEL_PAGE_LRU;
1973 			goto out_unlock;
1974 		}
1975 
1976 		if (!filemap_release_folio(folio, GFP_KERNEL)) {
1977 			result = SCAN_PAGE_HAS_PRIVATE;
1978 			folio_putback_lru(folio);
1979 			goto out_unlock;
1980 		}
1981 
1982 		if (folio_mapped(folio))
1983 			try_to_unmap(folio,
1984 					TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1985 
1986 		xas_lock_irq(&xas);
1987 
1988 		VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio);
1989 
1990 		/*
1991 		 * We control 2 + nr_pages references to the folio:
1992 		 *  - we hold a pin on it;
1993 		 *  - nr_pages reference from page cache;
1994 		 *  - one from lru_isolate_folio;
1995 		 * If those are the only references, then any new usage
1996 		 * of the folio will have to fetch it from the page
1997 		 * cache. That requires locking the folio to handle
1998 		 * truncate, so any new usage will be blocked until we
1999 		 * unlock folio after collapse/during rollback.
2000 		 */
2001 		if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) {
2002 			result = SCAN_PAGE_COUNT;
2003 			xas_unlock_irq(&xas);
2004 			folio_putback_lru(folio);
2005 			goto out_unlock;
2006 		}
2007 
2008 		/*
2009 		 * Accumulate the folios that are being collapsed.
2010 		 */
2011 		list_add_tail(&folio->lru, &pagelist);
2012 		index += folio_nr_pages(folio);
2013 		continue;
2014 out_unlock:
2015 		folio_unlock(folio);
2016 		folio_put(folio);
2017 		goto xa_unlocked;
2018 	}
2019 
2020 	if (!is_shmem) {
2021 		filemap_nr_thps_inc(mapping);
2022 		/*
2023 		 * Paired with the fence in do_dentry_open() -> get_write_access()
2024 		 * to ensure i_writecount is up to date and the update to nr_thps
2025 		 * is visible. Ensures the page cache will be truncated if the
2026 		 * file is opened writable.
2027 		 */
2028 		smp_mb();
2029 		if (inode_is_open_for_write(mapping->host)) {
2030 			result = SCAN_FAIL;
2031 			filemap_nr_thps_dec(mapping);
2032 		}
2033 	}
2034 
2035 xa_locked:
2036 	xas_unlock_irq(&xas);
2037 xa_unlocked:
2038 
2039 	/*
2040 	 * If collapse is successful, flush must be done now before copying.
2041 	 * If collapse is unsuccessful, does flush actually need to be done?
2042 	 * Do it anyway, to clear the state.
2043 	 */
2044 	try_to_unmap_flush();
2045 
2046 	if (result == SCAN_SUCCEED && nr_none &&
2047 	    !shmem_charge(mapping->host, nr_none))
2048 		result = SCAN_FAIL;
2049 	if (result != SCAN_SUCCEED) {
2050 		nr_none = 0;
2051 		goto rollback;
2052 	}
2053 
2054 	/*
2055 	 * The old folios are locked, so they won't change anymore.
2056 	 */
2057 	index = start;
2058 	dst = folio_page(new_folio, 0);
2059 	list_for_each_entry(folio, &pagelist, lru) {
2060 		int i, nr_pages = folio_nr_pages(folio);
2061 
2062 		while (index < folio->index) {
2063 			clear_highpage(dst);
2064 			index++;
2065 			dst++;
2066 		}
2067 
2068 		for (i = 0; i < nr_pages; i++) {
2069 			if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) {
2070 				result = SCAN_COPY_MC;
2071 				goto rollback;
2072 			}
2073 			index++;
2074 			dst++;
2075 		}
2076 	}
2077 	while (index < end) {
2078 		clear_highpage(dst);
2079 		index++;
2080 		dst++;
2081 	}
2082 
2083 	if (nr_none) {
2084 		struct vm_area_struct *vma;
2085 		int nr_none_check = 0;
2086 
2087 		i_mmap_lock_read(mapping);
2088 		xas_lock_irq(&xas);
2089 
2090 		xas_set(&xas, start);
2091 		for (index = start; index < end; index++) {
2092 			if (!xas_next(&xas)) {
2093 				xas_store(&xas, XA_RETRY_ENTRY);
2094 				if (xas_error(&xas)) {
2095 					result = SCAN_STORE_FAILED;
2096 					goto immap_locked;
2097 				}
2098 				nr_none_check++;
2099 			}
2100 		}
2101 
2102 		if (nr_none != nr_none_check) {
2103 			result = SCAN_PAGE_FILLED;
2104 			goto immap_locked;
2105 		}
2106 
2107 		/*
2108 		 * If userspace observed a missing page in a VMA with
2109 		 * a MODE_MISSING userfaultfd, then it might expect a
2110 		 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to
2111 		 * roll back to avoid suppressing such an event. Since
2112 		 * wp/minor userfaultfds don't give userspace any
2113 		 * guarantees that the kernel doesn't fill a missing
2114 		 * page with a zero page, so they don't matter here.
2115 		 *
2116 		 * Any userfaultfds registered after this point will
2117 		 * not be able to observe any missing pages due to the
2118 		 * previously inserted retry entries.
2119 		 */
2120 		vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2121 			if (userfaultfd_missing(vma)) {
2122 				result = SCAN_EXCEED_NONE_PTE;
2123 				goto immap_locked;
2124 			}
2125 		}
2126 
2127 immap_locked:
2128 		i_mmap_unlock_read(mapping);
2129 		if (result != SCAN_SUCCEED) {
2130 			xas_set(&xas, start);
2131 			for (index = start; index < end; index++) {
2132 				if (xas_next(&xas) == XA_RETRY_ENTRY)
2133 					xas_store(&xas, NULL);
2134 			}
2135 
2136 			xas_unlock_irq(&xas);
2137 			goto rollback;
2138 		}
2139 	} else {
2140 		xas_lock_irq(&xas);
2141 	}
2142 
2143 	if (is_shmem)
2144 		__lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR);
2145 	else
2146 		__lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR);
2147 
2148 	if (nr_none) {
2149 		__lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none);
2150 		/* nr_none is always 0 for non-shmem. */
2151 		__lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none);
2152 	}
2153 
2154 	/*
2155 	 * Mark new_folio as uptodate before inserting it into the
2156 	 * page cache so that it isn't mistaken for an fallocated but
2157 	 * unwritten page.
2158 	 */
2159 	folio_mark_uptodate(new_folio);
2160 	folio_ref_add(new_folio, HPAGE_PMD_NR - 1);
2161 
2162 	if (is_shmem)
2163 		folio_mark_dirty(new_folio);
2164 	folio_add_lru(new_folio);
2165 
2166 	/* Join all the small entries into a single multi-index entry. */
2167 	xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2168 	xas_store(&xas, new_folio);
2169 	WARN_ON_ONCE(xas_error(&xas));
2170 	xas_unlock_irq(&xas);
2171 
2172 	/*
2173 	 * Remove pte page tables, so we can re-fault the page as huge.
2174 	 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2175 	 */
2176 	retract_page_tables(mapping, start);
2177 	if (cc && !cc->is_khugepaged)
2178 		result = SCAN_PTE_MAPPED_HUGEPAGE;
2179 	folio_unlock(new_folio);
2180 
2181 	/*
2182 	 * The collapse has succeeded, so free the old folios.
2183 	 */
2184 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2185 		list_del(&folio->lru);
2186 		folio->mapping = NULL;
2187 		folio_clear_active(folio);
2188 		folio_clear_unevictable(folio);
2189 		folio_unlock(folio);
2190 		folio_put_refs(folio, 2 + folio_nr_pages(folio));
2191 	}
2192 
2193 	goto out;
2194 
2195 rollback:
2196 	/* Something went wrong: roll back page cache changes */
2197 	if (nr_none) {
2198 		xas_lock_irq(&xas);
2199 		mapping->nrpages -= nr_none;
2200 		xas_unlock_irq(&xas);
2201 		shmem_uncharge(mapping->host, nr_none);
2202 	}
2203 
2204 	list_for_each_entry_safe(folio, tmp, &pagelist, lru) {
2205 		list_del(&folio->lru);
2206 		folio_unlock(folio);
2207 		folio_putback_lru(folio);
2208 		folio_put(folio);
2209 	}
2210 	/*
2211 	 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2212 	 * file only. This undo is not needed unless failure is
2213 	 * due to SCAN_COPY_MC.
2214 	 */
2215 	if (!is_shmem && result == SCAN_COPY_MC) {
2216 		filemap_nr_thps_dec(mapping);
2217 		/*
2218 		 * Paired with the fence in do_dentry_open() -> get_write_access()
2219 		 * to ensure the update to nr_thps is visible.
2220 		 */
2221 		smp_mb();
2222 	}
2223 
2224 	new_folio->mapping = NULL;
2225 
2226 	folio_unlock(new_folio);
2227 	folio_put(new_folio);
2228 out:
2229 	VM_BUG_ON(!list_empty(&pagelist));
2230 	trace_mm_khugepaged_collapse_file(mm, new_folio, index, is_shmem, addr, file, HPAGE_PMD_NR, result);
2231 	return result;
2232 }
2233 
2234 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2235 				    struct file *file, pgoff_t start,
2236 				    struct collapse_control *cc)
2237 {
2238 	struct folio *folio = NULL;
2239 	struct address_space *mapping = file->f_mapping;
2240 	XA_STATE(xas, &mapping->i_pages, start);
2241 	int present, swap;
2242 	int node = NUMA_NO_NODE;
2243 	int result = SCAN_SUCCEED;
2244 
2245 	present = 0;
2246 	swap = 0;
2247 	memset(cc->node_load, 0, sizeof(cc->node_load));
2248 	nodes_clear(cc->alloc_nmask);
2249 	rcu_read_lock();
2250 	xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) {
2251 		if (xas_retry(&xas, folio))
2252 			continue;
2253 
2254 		if (xa_is_value(folio)) {
2255 			++swap;
2256 			if (cc->is_khugepaged &&
2257 			    swap > khugepaged_max_ptes_swap) {
2258 				result = SCAN_EXCEED_SWAP_PTE;
2259 				count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2260 				break;
2261 			}
2262 			continue;
2263 		}
2264 
2265 		if (folio_order(folio) == HPAGE_PMD_ORDER &&
2266 		    folio->index == start) {
2267 			/* Maybe PMD-mapped */
2268 			result = SCAN_PTE_MAPPED_HUGEPAGE;
2269 			/*
2270 			 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2271 			 * by the caller won't touch the page cache, and so
2272 			 * it's safe to skip LRU and refcount checks before
2273 			 * returning.
2274 			 */
2275 			break;
2276 		}
2277 
2278 		node = folio_nid(folio);
2279 		if (hpage_collapse_scan_abort(node, cc)) {
2280 			result = SCAN_SCAN_ABORT;
2281 			break;
2282 		}
2283 		cc->node_load[node]++;
2284 
2285 		if (!folio_test_lru(folio)) {
2286 			result = SCAN_PAGE_LRU;
2287 			break;
2288 		}
2289 
2290 		if (!is_refcount_suitable(folio)) {
2291 			result = SCAN_PAGE_COUNT;
2292 			break;
2293 		}
2294 
2295 		/*
2296 		 * We probably should check if the folio is referenced
2297 		 * here, but nobody would transfer pte_young() to
2298 		 * folio_test_referenced() for us.  And rmap walk here
2299 		 * is just too costly...
2300 		 */
2301 
2302 		present++;
2303 
2304 		if (need_resched()) {
2305 			xas_pause(&xas);
2306 			cond_resched_rcu();
2307 		}
2308 	}
2309 	rcu_read_unlock();
2310 
2311 	if (result == SCAN_SUCCEED) {
2312 		if (cc->is_khugepaged &&
2313 		    present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2314 			result = SCAN_EXCEED_NONE_PTE;
2315 			count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2316 		} else {
2317 			result = collapse_file(mm, addr, file, start, cc);
2318 		}
2319 	}
2320 
2321 	trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result);
2322 	return result;
2323 }
2324 #else
2325 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2326 				    struct file *file, pgoff_t start,
2327 				    struct collapse_control *cc)
2328 {
2329 	BUILD_BUG();
2330 }
2331 #endif
2332 
2333 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2334 					    struct collapse_control *cc)
2335 	__releases(&khugepaged_mm_lock)
2336 	__acquires(&khugepaged_mm_lock)
2337 {
2338 	struct vma_iterator vmi;
2339 	struct khugepaged_mm_slot *mm_slot;
2340 	struct mm_slot *slot;
2341 	struct mm_struct *mm;
2342 	struct vm_area_struct *vma;
2343 	int progress = 0;
2344 
2345 	VM_BUG_ON(!pages);
2346 	lockdep_assert_held(&khugepaged_mm_lock);
2347 	*result = SCAN_FAIL;
2348 
2349 	if (khugepaged_scan.mm_slot) {
2350 		mm_slot = khugepaged_scan.mm_slot;
2351 		slot = &mm_slot->slot;
2352 	} else {
2353 		slot = list_entry(khugepaged_scan.mm_head.next,
2354 				     struct mm_slot, mm_node);
2355 		mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2356 		khugepaged_scan.address = 0;
2357 		khugepaged_scan.mm_slot = mm_slot;
2358 	}
2359 	spin_unlock(&khugepaged_mm_lock);
2360 
2361 	mm = slot->mm;
2362 	/*
2363 	 * Don't wait for semaphore (to avoid long wait times).  Just move to
2364 	 * the next mm on the list.
2365 	 */
2366 	vma = NULL;
2367 	if (unlikely(!mmap_read_trylock(mm)))
2368 		goto breakouterloop_mmap_lock;
2369 
2370 	progress++;
2371 	if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2372 		goto breakouterloop;
2373 
2374 	vma_iter_init(&vmi, mm, khugepaged_scan.address);
2375 	for_each_vma(vmi, vma) {
2376 		unsigned long hstart, hend;
2377 
2378 		cond_resched();
2379 		if (unlikely(hpage_collapse_test_exit_or_disable(mm))) {
2380 			progress++;
2381 			break;
2382 		}
2383 		if (!thp_vma_allowable_order(vma, vma->vm_flags,
2384 					TVA_ENFORCE_SYSFS, PMD_ORDER)) {
2385 skip:
2386 			progress++;
2387 			continue;
2388 		}
2389 		hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2390 		hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2391 		if (khugepaged_scan.address > hend)
2392 			goto skip;
2393 		if (khugepaged_scan.address < hstart)
2394 			khugepaged_scan.address = hstart;
2395 		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2396 
2397 		while (khugepaged_scan.address < hend) {
2398 			bool mmap_locked = true;
2399 
2400 			cond_resched();
2401 			if (unlikely(hpage_collapse_test_exit_or_disable(mm)))
2402 				goto breakouterloop;
2403 
2404 			VM_BUG_ON(khugepaged_scan.address < hstart ||
2405 				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2406 				  hend);
2407 			if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2408 				struct file *file = get_file(vma->vm_file);
2409 				pgoff_t pgoff = linear_page_index(vma,
2410 						khugepaged_scan.address);
2411 
2412 				mmap_read_unlock(mm);
2413 				mmap_locked = false;
2414 				*result = hpage_collapse_scan_file(mm,
2415 					khugepaged_scan.address, file, pgoff, cc);
2416 				fput(file);
2417 				if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2418 					mmap_read_lock(mm);
2419 					if (hpage_collapse_test_exit_or_disable(mm))
2420 						goto breakouterloop;
2421 					*result = collapse_pte_mapped_thp(mm,
2422 						khugepaged_scan.address, false);
2423 					if (*result == SCAN_PMD_MAPPED)
2424 						*result = SCAN_SUCCEED;
2425 					mmap_read_unlock(mm);
2426 				}
2427 			} else {
2428 				*result = hpage_collapse_scan_pmd(mm, vma,
2429 					khugepaged_scan.address, &mmap_locked, cc);
2430 			}
2431 
2432 			if (*result == SCAN_SUCCEED)
2433 				++khugepaged_pages_collapsed;
2434 
2435 			/* move to next address */
2436 			khugepaged_scan.address += HPAGE_PMD_SIZE;
2437 			progress += HPAGE_PMD_NR;
2438 			if (!mmap_locked)
2439 				/*
2440 				 * We released mmap_lock so break loop.  Note
2441 				 * that we drop mmap_lock before all hugepage
2442 				 * allocations, so if allocation fails, we are
2443 				 * guaranteed to break here and report the
2444 				 * correct result back to caller.
2445 				 */
2446 				goto breakouterloop_mmap_lock;
2447 			if (progress >= pages)
2448 				goto breakouterloop;
2449 		}
2450 	}
2451 breakouterloop:
2452 	mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2453 breakouterloop_mmap_lock:
2454 
2455 	spin_lock(&khugepaged_mm_lock);
2456 	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2457 	/*
2458 	 * Release the current mm_slot if this mm is about to die, or
2459 	 * if we scanned all vmas of this mm.
2460 	 */
2461 	if (hpage_collapse_test_exit(mm) || !vma) {
2462 		/*
2463 		 * Make sure that if mm_users is reaching zero while
2464 		 * khugepaged runs here, khugepaged_exit will find
2465 		 * mm_slot not pointing to the exiting mm.
2466 		 */
2467 		if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2468 			slot = list_entry(slot->mm_node.next,
2469 					  struct mm_slot, mm_node);
2470 			khugepaged_scan.mm_slot =
2471 				mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2472 			khugepaged_scan.address = 0;
2473 		} else {
2474 			khugepaged_scan.mm_slot = NULL;
2475 			khugepaged_full_scans++;
2476 		}
2477 
2478 		collect_mm_slot(mm_slot);
2479 	}
2480 
2481 	return progress;
2482 }
2483 
2484 static int khugepaged_has_work(void)
2485 {
2486 	return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled();
2487 }
2488 
2489 static int khugepaged_wait_event(void)
2490 {
2491 	return !list_empty(&khugepaged_scan.mm_head) ||
2492 		kthread_should_stop();
2493 }
2494 
2495 static void khugepaged_do_scan(struct collapse_control *cc)
2496 {
2497 	unsigned int progress = 0, pass_through_head = 0;
2498 	unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2499 	bool wait = true;
2500 	int result = SCAN_SUCCEED;
2501 
2502 	lru_add_drain_all();
2503 
2504 	while (true) {
2505 		cond_resched();
2506 
2507 		if (unlikely(kthread_should_stop()))
2508 			break;
2509 
2510 		spin_lock(&khugepaged_mm_lock);
2511 		if (!khugepaged_scan.mm_slot)
2512 			pass_through_head++;
2513 		if (khugepaged_has_work() &&
2514 		    pass_through_head < 2)
2515 			progress += khugepaged_scan_mm_slot(pages - progress,
2516 							    &result, cc);
2517 		else
2518 			progress = pages;
2519 		spin_unlock(&khugepaged_mm_lock);
2520 
2521 		if (progress >= pages)
2522 			break;
2523 
2524 		if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2525 			/*
2526 			 * If fail to allocate the first time, try to sleep for
2527 			 * a while.  When hit again, cancel the scan.
2528 			 */
2529 			if (!wait)
2530 				break;
2531 			wait = false;
2532 			khugepaged_alloc_sleep();
2533 		}
2534 	}
2535 }
2536 
2537 static bool khugepaged_should_wakeup(void)
2538 {
2539 	return kthread_should_stop() ||
2540 	       time_after_eq(jiffies, khugepaged_sleep_expire);
2541 }
2542 
2543 static void khugepaged_wait_work(void)
2544 {
2545 	if (khugepaged_has_work()) {
2546 		const unsigned long scan_sleep_jiffies =
2547 			msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2548 
2549 		if (!scan_sleep_jiffies)
2550 			return;
2551 
2552 		khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2553 		wait_event_freezable_timeout(khugepaged_wait,
2554 					     khugepaged_should_wakeup(),
2555 					     scan_sleep_jiffies);
2556 		return;
2557 	}
2558 
2559 	if (hugepage_pmd_enabled())
2560 		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2561 }
2562 
2563 static int khugepaged(void *none)
2564 {
2565 	struct khugepaged_mm_slot *mm_slot;
2566 
2567 	set_freezable();
2568 	set_user_nice(current, MAX_NICE);
2569 
2570 	while (!kthread_should_stop()) {
2571 		khugepaged_do_scan(&khugepaged_collapse_control);
2572 		khugepaged_wait_work();
2573 	}
2574 
2575 	spin_lock(&khugepaged_mm_lock);
2576 	mm_slot = khugepaged_scan.mm_slot;
2577 	khugepaged_scan.mm_slot = NULL;
2578 	if (mm_slot)
2579 		collect_mm_slot(mm_slot);
2580 	spin_unlock(&khugepaged_mm_lock);
2581 	return 0;
2582 }
2583 
2584 static void set_recommended_min_free_kbytes(void)
2585 {
2586 	struct zone *zone;
2587 	int nr_zones = 0;
2588 	unsigned long recommended_min;
2589 
2590 	if (!hugepage_pmd_enabled()) {
2591 		calculate_min_free_kbytes();
2592 		goto update_wmarks;
2593 	}
2594 
2595 	for_each_populated_zone(zone) {
2596 		/*
2597 		 * We don't need to worry about fragmentation of
2598 		 * ZONE_MOVABLE since it only has movable pages.
2599 		 */
2600 		if (zone_idx(zone) > gfp_zone(GFP_USER))
2601 			continue;
2602 
2603 		nr_zones++;
2604 	}
2605 
2606 	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2607 	recommended_min = pageblock_nr_pages * nr_zones * 2;
2608 
2609 	/*
2610 	 * Make sure that on average at least two pageblocks are almost free
2611 	 * of another type, one for a migratetype to fall back to and a
2612 	 * second to avoid subsequent fallbacks of other types There are 3
2613 	 * MIGRATE_TYPES we care about.
2614 	 */
2615 	recommended_min += pageblock_nr_pages * nr_zones *
2616 			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2617 
2618 	/* don't ever allow to reserve more than 5% of the lowmem */
2619 	recommended_min = min(recommended_min,
2620 			      (unsigned long) nr_free_buffer_pages() / 20);
2621 	recommended_min <<= (PAGE_SHIFT-10);
2622 
2623 	if (recommended_min > min_free_kbytes) {
2624 		if (user_min_free_kbytes >= 0)
2625 			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2626 				min_free_kbytes, recommended_min);
2627 
2628 		min_free_kbytes = recommended_min;
2629 	}
2630 
2631 update_wmarks:
2632 	setup_per_zone_wmarks();
2633 }
2634 
2635 int start_stop_khugepaged(void)
2636 {
2637 	int err = 0;
2638 
2639 	mutex_lock(&khugepaged_mutex);
2640 	if (hugepage_pmd_enabled()) {
2641 		if (!khugepaged_thread)
2642 			khugepaged_thread = kthread_run(khugepaged, NULL,
2643 							"khugepaged");
2644 		if (IS_ERR(khugepaged_thread)) {
2645 			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2646 			err = PTR_ERR(khugepaged_thread);
2647 			khugepaged_thread = NULL;
2648 			goto fail;
2649 		}
2650 
2651 		if (!list_empty(&khugepaged_scan.mm_head))
2652 			wake_up_interruptible(&khugepaged_wait);
2653 	} else if (khugepaged_thread) {
2654 		kthread_stop(khugepaged_thread);
2655 		khugepaged_thread = NULL;
2656 	}
2657 	set_recommended_min_free_kbytes();
2658 fail:
2659 	mutex_unlock(&khugepaged_mutex);
2660 	return err;
2661 }
2662 
2663 void khugepaged_min_free_kbytes_update(void)
2664 {
2665 	mutex_lock(&khugepaged_mutex);
2666 	if (hugepage_pmd_enabled() && khugepaged_thread)
2667 		set_recommended_min_free_kbytes();
2668 	mutex_unlock(&khugepaged_mutex);
2669 }
2670 
2671 bool current_is_khugepaged(void)
2672 {
2673 	return kthread_func(current) == khugepaged;
2674 }
2675 
2676 static int madvise_collapse_errno(enum scan_result r)
2677 {
2678 	/*
2679 	 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2680 	 * actionable feedback to caller, so they may take an appropriate
2681 	 * fallback measure depending on the nature of the failure.
2682 	 */
2683 	switch (r) {
2684 	case SCAN_ALLOC_HUGE_PAGE_FAIL:
2685 		return -ENOMEM;
2686 	case SCAN_CGROUP_CHARGE_FAIL:
2687 	case SCAN_EXCEED_NONE_PTE:
2688 		return -EBUSY;
2689 	/* Resource temporary unavailable - trying again might succeed */
2690 	case SCAN_PAGE_COUNT:
2691 	case SCAN_PAGE_LOCK:
2692 	case SCAN_PAGE_LRU:
2693 	case SCAN_DEL_PAGE_LRU:
2694 	case SCAN_PAGE_FILLED:
2695 		return -EAGAIN;
2696 	/*
2697 	 * Other: Trying again likely not to succeed / error intrinsic to
2698 	 * specified memory range. khugepaged likely won't be able to collapse
2699 	 * either.
2700 	 */
2701 	default:
2702 		return -EINVAL;
2703 	}
2704 }
2705 
2706 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2707 		     unsigned long start, unsigned long end)
2708 {
2709 	struct collapse_control *cc;
2710 	struct mm_struct *mm = vma->vm_mm;
2711 	unsigned long hstart, hend, addr;
2712 	int thps = 0, last_fail = SCAN_FAIL;
2713 	bool mmap_locked = true;
2714 
2715 	BUG_ON(vma->vm_start > start);
2716 	BUG_ON(vma->vm_end < end);
2717 
2718 	*prev = vma;
2719 
2720 	if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER))
2721 		return -EINVAL;
2722 
2723 	cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2724 	if (!cc)
2725 		return -ENOMEM;
2726 	cc->is_khugepaged = false;
2727 
2728 	mmgrab(mm);
2729 	lru_add_drain_all();
2730 
2731 	hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2732 	hend = end & HPAGE_PMD_MASK;
2733 
2734 	for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2735 		int result = SCAN_FAIL;
2736 
2737 		if (!mmap_locked) {
2738 			cond_resched();
2739 			mmap_read_lock(mm);
2740 			mmap_locked = true;
2741 			result = hugepage_vma_revalidate(mm, addr, false, &vma,
2742 							 cc);
2743 			if (result  != SCAN_SUCCEED) {
2744 				last_fail = result;
2745 				goto out_nolock;
2746 			}
2747 
2748 			hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2749 		}
2750 		mmap_assert_locked(mm);
2751 		memset(cc->node_load, 0, sizeof(cc->node_load));
2752 		nodes_clear(cc->alloc_nmask);
2753 		if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2754 			struct file *file = get_file(vma->vm_file);
2755 			pgoff_t pgoff = linear_page_index(vma, addr);
2756 
2757 			mmap_read_unlock(mm);
2758 			mmap_locked = false;
2759 			result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2760 							  cc);
2761 			fput(file);
2762 		} else {
2763 			result = hpage_collapse_scan_pmd(mm, vma, addr,
2764 							 &mmap_locked, cc);
2765 		}
2766 		if (!mmap_locked)
2767 			*prev = NULL;  /* Tell caller we dropped mmap_lock */
2768 
2769 handle_result:
2770 		switch (result) {
2771 		case SCAN_SUCCEED:
2772 		case SCAN_PMD_MAPPED:
2773 			++thps;
2774 			break;
2775 		case SCAN_PTE_MAPPED_HUGEPAGE:
2776 			BUG_ON(mmap_locked);
2777 			BUG_ON(*prev);
2778 			mmap_read_lock(mm);
2779 			result = collapse_pte_mapped_thp(mm, addr, true);
2780 			mmap_read_unlock(mm);
2781 			goto handle_result;
2782 		/* Whitelisted set of results where continuing OK */
2783 		case SCAN_PMD_NULL:
2784 		case SCAN_PTE_NON_PRESENT:
2785 		case SCAN_PTE_UFFD_WP:
2786 		case SCAN_PAGE_RO:
2787 		case SCAN_LACK_REFERENCED_PAGE:
2788 		case SCAN_PAGE_NULL:
2789 		case SCAN_PAGE_COUNT:
2790 		case SCAN_PAGE_LOCK:
2791 		case SCAN_PAGE_COMPOUND:
2792 		case SCAN_PAGE_LRU:
2793 		case SCAN_DEL_PAGE_LRU:
2794 			last_fail = result;
2795 			break;
2796 		default:
2797 			last_fail = result;
2798 			/* Other error, exit */
2799 			goto out_maybelock;
2800 		}
2801 	}
2802 
2803 out_maybelock:
2804 	/* Caller expects us to hold mmap_lock on return */
2805 	if (!mmap_locked)
2806 		mmap_read_lock(mm);
2807 out_nolock:
2808 	mmap_assert_locked(mm);
2809 	mmdrop(mm);
2810 	kfree(cc);
2811 
2812 	return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2813 			: madvise_collapse_errno(last_fail);
2814 }
2815