1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/mmu_notifier.h> 8 #include <linux/rmap.h> 9 #include <linux/swap.h> 10 #include <linux/mm_inline.h> 11 #include <linux/kthread.h> 12 #include <linux/khugepaged.h> 13 #include <linux/freezer.h> 14 #include <linux/mman.h> 15 #include <linux/hashtable.h> 16 #include <linux/userfaultfd_k.h> 17 #include <linux/page_idle.h> 18 #include <linux/page_table_check.h> 19 #include <linux/rcupdate_wait.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/dax.h> 23 #include <linux/ksm.h> 24 25 #include <asm/tlb.h> 26 #include <asm/pgalloc.h> 27 #include "internal.h" 28 #include "mm_slot.h" 29 30 enum scan_result { 31 SCAN_FAIL, 32 SCAN_SUCCEED, 33 SCAN_PMD_NULL, 34 SCAN_PMD_NONE, 35 SCAN_PMD_MAPPED, 36 SCAN_EXCEED_NONE_PTE, 37 SCAN_EXCEED_SWAP_PTE, 38 SCAN_EXCEED_SHARED_PTE, 39 SCAN_PTE_NON_PRESENT, 40 SCAN_PTE_UFFD_WP, 41 SCAN_PTE_MAPPED_HUGEPAGE, 42 SCAN_PAGE_RO, 43 SCAN_LACK_REFERENCED_PAGE, 44 SCAN_PAGE_NULL, 45 SCAN_SCAN_ABORT, 46 SCAN_PAGE_COUNT, 47 SCAN_PAGE_LRU, 48 SCAN_PAGE_LOCK, 49 SCAN_PAGE_ANON, 50 SCAN_PAGE_COMPOUND, 51 SCAN_ANY_PROCESS, 52 SCAN_VMA_NULL, 53 SCAN_VMA_CHECK, 54 SCAN_ADDRESS_RANGE, 55 SCAN_DEL_PAGE_LRU, 56 SCAN_ALLOC_HUGE_PAGE_FAIL, 57 SCAN_CGROUP_CHARGE_FAIL, 58 SCAN_TRUNCATED, 59 SCAN_PAGE_HAS_PRIVATE, 60 SCAN_STORE_FAILED, 61 SCAN_COPY_MC, 62 SCAN_PAGE_FILLED, 63 }; 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/huge_memory.h> 67 68 static struct task_struct *khugepaged_thread __read_mostly; 69 static DEFINE_MUTEX(khugepaged_mutex); 70 71 /* default scan 8*512 pte (or vmas) every 30 second */ 72 static unsigned int khugepaged_pages_to_scan __read_mostly; 73 static unsigned int khugepaged_pages_collapsed; 74 static unsigned int khugepaged_full_scans; 75 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 76 /* during fragmentation poll the hugepage allocator once every minute */ 77 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 78 static unsigned long khugepaged_sleep_expire; 79 static DEFINE_SPINLOCK(khugepaged_mm_lock); 80 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 81 /* 82 * default collapse hugepages if there is at least one pte mapped like 83 * it would have happened if the vma was large enough during page 84 * fault. 85 * 86 * Note that these are only respected if collapse was initiated by khugepaged. 87 */ 88 unsigned int khugepaged_max_ptes_none __read_mostly; 89 static unsigned int khugepaged_max_ptes_swap __read_mostly; 90 static unsigned int khugepaged_max_ptes_shared __read_mostly; 91 92 #define MM_SLOTS_HASH_BITS 10 93 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 94 95 static struct kmem_cache *mm_slot_cache __ro_after_init; 96 97 struct collapse_control { 98 bool is_khugepaged; 99 100 /* Num pages scanned per node */ 101 u32 node_load[MAX_NUMNODES]; 102 103 /* nodemask for allocation fallback */ 104 nodemask_t alloc_nmask; 105 }; 106 107 /** 108 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 109 * @slot: hash lookup from mm to mm_slot 110 */ 111 struct khugepaged_mm_slot { 112 struct mm_slot slot; 113 }; 114 115 /** 116 * struct khugepaged_scan - cursor for scanning 117 * @mm_head: the head of the mm list to scan 118 * @mm_slot: the current mm_slot we are scanning 119 * @address: the next address inside that to be scanned 120 * 121 * There is only the one khugepaged_scan instance of this cursor structure. 122 */ 123 struct khugepaged_scan { 124 struct list_head mm_head; 125 struct khugepaged_mm_slot *mm_slot; 126 unsigned long address; 127 }; 128 129 static struct khugepaged_scan khugepaged_scan = { 130 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 131 }; 132 133 #ifdef CONFIG_SYSFS 134 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 135 struct kobj_attribute *attr, 136 char *buf) 137 { 138 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 139 } 140 141 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 142 struct kobj_attribute *attr, 143 const char *buf, size_t count) 144 { 145 unsigned int msecs; 146 int err; 147 148 err = kstrtouint(buf, 10, &msecs); 149 if (err) 150 return -EINVAL; 151 152 khugepaged_scan_sleep_millisecs = msecs; 153 khugepaged_sleep_expire = 0; 154 wake_up_interruptible(&khugepaged_wait); 155 156 return count; 157 } 158 static struct kobj_attribute scan_sleep_millisecs_attr = 159 __ATTR_RW(scan_sleep_millisecs); 160 161 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 162 struct kobj_attribute *attr, 163 char *buf) 164 { 165 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 166 } 167 168 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 169 struct kobj_attribute *attr, 170 const char *buf, size_t count) 171 { 172 unsigned int msecs; 173 int err; 174 175 err = kstrtouint(buf, 10, &msecs); 176 if (err) 177 return -EINVAL; 178 179 khugepaged_alloc_sleep_millisecs = msecs; 180 khugepaged_sleep_expire = 0; 181 wake_up_interruptible(&khugepaged_wait); 182 183 return count; 184 } 185 static struct kobj_attribute alloc_sleep_millisecs_attr = 186 __ATTR_RW(alloc_sleep_millisecs); 187 188 static ssize_t pages_to_scan_show(struct kobject *kobj, 189 struct kobj_attribute *attr, 190 char *buf) 191 { 192 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 193 } 194 static ssize_t pages_to_scan_store(struct kobject *kobj, 195 struct kobj_attribute *attr, 196 const char *buf, size_t count) 197 { 198 unsigned int pages; 199 int err; 200 201 err = kstrtouint(buf, 10, &pages); 202 if (err || !pages) 203 return -EINVAL; 204 205 khugepaged_pages_to_scan = pages; 206 207 return count; 208 } 209 static struct kobj_attribute pages_to_scan_attr = 210 __ATTR_RW(pages_to_scan); 211 212 static ssize_t pages_collapsed_show(struct kobject *kobj, 213 struct kobj_attribute *attr, 214 char *buf) 215 { 216 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 217 } 218 static struct kobj_attribute pages_collapsed_attr = 219 __ATTR_RO(pages_collapsed); 220 221 static ssize_t full_scans_show(struct kobject *kobj, 222 struct kobj_attribute *attr, 223 char *buf) 224 { 225 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 226 } 227 static struct kobj_attribute full_scans_attr = 228 __ATTR_RO(full_scans); 229 230 static ssize_t defrag_show(struct kobject *kobj, 231 struct kobj_attribute *attr, char *buf) 232 { 233 return single_hugepage_flag_show(kobj, attr, buf, 234 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 235 } 236 static ssize_t defrag_store(struct kobject *kobj, 237 struct kobj_attribute *attr, 238 const char *buf, size_t count) 239 { 240 return single_hugepage_flag_store(kobj, attr, buf, count, 241 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 242 } 243 static struct kobj_attribute khugepaged_defrag_attr = 244 __ATTR_RW(defrag); 245 246 /* 247 * max_ptes_none controls if khugepaged should collapse hugepages over 248 * any unmapped ptes in turn potentially increasing the memory 249 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 250 * reduce the available free memory in the system as it 251 * runs. Increasing max_ptes_none will instead potentially reduce the 252 * free memory in the system during the khugepaged scan. 253 */ 254 static ssize_t max_ptes_none_show(struct kobject *kobj, 255 struct kobj_attribute *attr, 256 char *buf) 257 { 258 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 259 } 260 static ssize_t max_ptes_none_store(struct kobject *kobj, 261 struct kobj_attribute *attr, 262 const char *buf, size_t count) 263 { 264 int err; 265 unsigned long max_ptes_none; 266 267 err = kstrtoul(buf, 10, &max_ptes_none); 268 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 269 return -EINVAL; 270 271 khugepaged_max_ptes_none = max_ptes_none; 272 273 return count; 274 } 275 static struct kobj_attribute khugepaged_max_ptes_none_attr = 276 __ATTR_RW(max_ptes_none); 277 278 static ssize_t max_ptes_swap_show(struct kobject *kobj, 279 struct kobj_attribute *attr, 280 char *buf) 281 { 282 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 283 } 284 285 static ssize_t max_ptes_swap_store(struct kobject *kobj, 286 struct kobj_attribute *attr, 287 const char *buf, size_t count) 288 { 289 int err; 290 unsigned long max_ptes_swap; 291 292 err = kstrtoul(buf, 10, &max_ptes_swap); 293 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 294 return -EINVAL; 295 296 khugepaged_max_ptes_swap = max_ptes_swap; 297 298 return count; 299 } 300 301 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 302 __ATTR_RW(max_ptes_swap); 303 304 static ssize_t max_ptes_shared_show(struct kobject *kobj, 305 struct kobj_attribute *attr, 306 char *buf) 307 { 308 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 309 } 310 311 static ssize_t max_ptes_shared_store(struct kobject *kobj, 312 struct kobj_attribute *attr, 313 const char *buf, size_t count) 314 { 315 int err; 316 unsigned long max_ptes_shared; 317 318 err = kstrtoul(buf, 10, &max_ptes_shared); 319 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 320 return -EINVAL; 321 322 khugepaged_max_ptes_shared = max_ptes_shared; 323 324 return count; 325 } 326 327 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 328 __ATTR_RW(max_ptes_shared); 329 330 static struct attribute *khugepaged_attr[] = { 331 &khugepaged_defrag_attr.attr, 332 &khugepaged_max_ptes_none_attr.attr, 333 &khugepaged_max_ptes_swap_attr.attr, 334 &khugepaged_max_ptes_shared_attr.attr, 335 &pages_to_scan_attr.attr, 336 &pages_collapsed_attr.attr, 337 &full_scans_attr.attr, 338 &scan_sleep_millisecs_attr.attr, 339 &alloc_sleep_millisecs_attr.attr, 340 NULL, 341 }; 342 343 struct attribute_group khugepaged_attr_group = { 344 .attrs = khugepaged_attr, 345 .name = "khugepaged", 346 }; 347 #endif /* CONFIG_SYSFS */ 348 349 int hugepage_madvise(struct vm_area_struct *vma, 350 unsigned long *vm_flags, int advice) 351 { 352 switch (advice) { 353 case MADV_HUGEPAGE: 354 #ifdef CONFIG_S390 355 /* 356 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 357 * can't handle this properly after s390_enable_sie, so we simply 358 * ignore the madvise to prevent qemu from causing a SIGSEGV. 359 */ 360 if (mm_has_pgste(vma->vm_mm)) 361 return 0; 362 #endif 363 *vm_flags &= ~VM_NOHUGEPAGE; 364 *vm_flags |= VM_HUGEPAGE; 365 /* 366 * If the vma become good for khugepaged to scan, 367 * register it here without waiting a page fault that 368 * may not happen any time soon. 369 */ 370 khugepaged_enter_vma(vma, *vm_flags); 371 break; 372 case MADV_NOHUGEPAGE: 373 *vm_flags &= ~VM_HUGEPAGE; 374 *vm_flags |= VM_NOHUGEPAGE; 375 /* 376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 377 * this vma even if we leave the mm registered in khugepaged if 378 * it got registered before VM_NOHUGEPAGE was set. 379 */ 380 break; 381 } 382 383 return 0; 384 } 385 386 int __init khugepaged_init(void) 387 { 388 mm_slot_cache = KMEM_CACHE(khugepaged_mm_slot, 0); 389 if (!mm_slot_cache) 390 return -ENOMEM; 391 392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 396 397 return 0; 398 } 399 400 void __init khugepaged_destroy(void) 401 { 402 kmem_cache_destroy(mm_slot_cache); 403 } 404 405 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 406 { 407 return atomic_read(&mm->mm_users) == 0; 408 } 409 410 static inline int hpage_collapse_test_exit_or_disable(struct mm_struct *mm) 411 { 412 return hpage_collapse_test_exit(mm) || 413 test_bit(MMF_DISABLE_THP, &mm->flags); 414 } 415 416 static bool hugepage_pmd_enabled(void) 417 { 418 /* 419 * We cover the anon, shmem and the file-backed case here; file-backed 420 * hugepages, when configured in, are determined by the global control. 421 * Anon pmd-sized hugepages are determined by the pmd-size control. 422 * Shmem pmd-sized hugepages are also determined by its pmd-size control, 423 * except when the global shmem_huge is set to SHMEM_HUGE_DENY. 424 */ 425 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && 426 hugepage_global_enabled()) 427 return true; 428 if (test_bit(PMD_ORDER, &huge_anon_orders_always)) 429 return true; 430 if (test_bit(PMD_ORDER, &huge_anon_orders_madvise)) 431 return true; 432 if (test_bit(PMD_ORDER, &huge_anon_orders_inherit) && 433 hugepage_global_enabled()) 434 return true; 435 if (IS_ENABLED(CONFIG_SHMEM) && shmem_hpage_pmd_enabled()) 436 return true; 437 return false; 438 } 439 440 void __khugepaged_enter(struct mm_struct *mm) 441 { 442 struct khugepaged_mm_slot *mm_slot; 443 struct mm_slot *slot; 444 int wakeup; 445 446 /* __khugepaged_exit() must not run from under us */ 447 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 448 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 449 return; 450 451 mm_slot = mm_slot_alloc(mm_slot_cache); 452 if (!mm_slot) 453 return; 454 455 slot = &mm_slot->slot; 456 457 spin_lock(&khugepaged_mm_lock); 458 mm_slot_insert(mm_slots_hash, mm, slot); 459 /* 460 * Insert just behind the scanning cursor, to let the area settle 461 * down a little. 462 */ 463 wakeup = list_empty(&khugepaged_scan.mm_head); 464 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 465 spin_unlock(&khugepaged_mm_lock); 466 467 mmgrab(mm); 468 if (wakeup) 469 wake_up_interruptible(&khugepaged_wait); 470 } 471 472 void khugepaged_enter_vma(struct vm_area_struct *vma, 473 unsigned long vm_flags) 474 { 475 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 476 hugepage_pmd_enabled()) { 477 if (thp_vma_allowable_order(vma, vm_flags, TVA_ENFORCE_SYSFS, 478 PMD_ORDER)) 479 __khugepaged_enter(vma->vm_mm); 480 } 481 } 482 483 void __khugepaged_exit(struct mm_struct *mm) 484 { 485 struct khugepaged_mm_slot *mm_slot; 486 struct mm_slot *slot; 487 int free = 0; 488 489 spin_lock(&khugepaged_mm_lock); 490 slot = mm_slot_lookup(mm_slots_hash, mm); 491 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 492 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 493 hash_del(&slot->hash); 494 list_del(&slot->mm_node); 495 free = 1; 496 } 497 spin_unlock(&khugepaged_mm_lock); 498 499 if (free) { 500 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 501 mm_slot_free(mm_slot_cache, mm_slot); 502 mmdrop(mm); 503 } else if (mm_slot) { 504 /* 505 * This is required to serialize against 506 * hpage_collapse_test_exit() (which is guaranteed to run 507 * under mmap sem read mode). Stop here (after we return all 508 * pagetables will be destroyed) until khugepaged has finished 509 * working on the pagetables under the mmap_lock. 510 */ 511 mmap_write_lock(mm); 512 mmap_write_unlock(mm); 513 } 514 } 515 516 static void release_pte_folio(struct folio *folio) 517 { 518 node_stat_mod_folio(folio, 519 NR_ISOLATED_ANON + folio_is_file_lru(folio), 520 -folio_nr_pages(folio)); 521 folio_unlock(folio); 522 folio_putback_lru(folio); 523 } 524 525 static void release_pte_pages(pte_t *pte, pte_t *_pte, 526 struct list_head *compound_pagelist) 527 { 528 struct folio *folio, *tmp; 529 530 while (--_pte >= pte) { 531 pte_t pteval = ptep_get(_pte); 532 unsigned long pfn; 533 534 if (pte_none(pteval)) 535 continue; 536 pfn = pte_pfn(pteval); 537 if (is_zero_pfn(pfn)) 538 continue; 539 folio = pfn_folio(pfn); 540 if (folio_test_large(folio)) 541 continue; 542 release_pte_folio(folio); 543 } 544 545 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 546 list_del(&folio->lru); 547 release_pte_folio(folio); 548 } 549 } 550 551 static bool is_refcount_suitable(struct folio *folio) 552 { 553 int expected_refcount = folio_mapcount(folio); 554 555 if (!folio_test_anon(folio) || folio_test_swapcache(folio)) 556 expected_refcount += folio_nr_pages(folio); 557 558 if (folio_test_private(folio)) 559 expected_refcount++; 560 561 return folio_ref_count(folio) == expected_refcount; 562 } 563 564 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 565 unsigned long address, 566 pte_t *pte, 567 struct collapse_control *cc, 568 struct list_head *compound_pagelist) 569 { 570 struct page *page = NULL; 571 struct folio *folio = NULL; 572 pte_t *_pte; 573 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 574 bool writable = false; 575 576 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 577 _pte++, address += PAGE_SIZE) { 578 pte_t pteval = ptep_get(_pte); 579 if (pte_none(pteval) || (pte_present(pteval) && 580 is_zero_pfn(pte_pfn(pteval)))) { 581 ++none_or_zero; 582 if (!userfaultfd_armed(vma) && 583 (!cc->is_khugepaged || 584 none_or_zero <= khugepaged_max_ptes_none)) { 585 continue; 586 } else { 587 result = SCAN_EXCEED_NONE_PTE; 588 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 589 goto out; 590 } 591 } 592 if (!pte_present(pteval)) { 593 result = SCAN_PTE_NON_PRESENT; 594 goto out; 595 } 596 if (pte_uffd_wp(pteval)) { 597 result = SCAN_PTE_UFFD_WP; 598 goto out; 599 } 600 page = vm_normal_page(vma, address, pteval); 601 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 602 result = SCAN_PAGE_NULL; 603 goto out; 604 } 605 606 folio = page_folio(page); 607 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 608 609 /* See hpage_collapse_scan_pmd(). */ 610 if (folio_likely_mapped_shared(folio)) { 611 ++shared; 612 if (cc->is_khugepaged && 613 shared > khugepaged_max_ptes_shared) { 614 result = SCAN_EXCEED_SHARED_PTE; 615 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 616 goto out; 617 } 618 } 619 620 if (folio_test_large(folio)) { 621 struct folio *f; 622 623 /* 624 * Check if we have dealt with the compound page 625 * already 626 */ 627 list_for_each_entry(f, compound_pagelist, lru) { 628 if (folio == f) 629 goto next; 630 } 631 } 632 633 /* 634 * We can do it before folio_isolate_lru because the 635 * folio can't be freed from under us. NOTE: PG_lock 636 * is needed to serialize against split_huge_page 637 * when invoked from the VM. 638 */ 639 if (!folio_trylock(folio)) { 640 result = SCAN_PAGE_LOCK; 641 goto out; 642 } 643 644 /* 645 * Check if the page has any GUP (or other external) pins. 646 * 647 * The page table that maps the page has been already unlinked 648 * from the page table tree and this process cannot get 649 * an additional pin on the page. 650 * 651 * New pins can come later if the page is shared across fork, 652 * but not from this process. The other process cannot write to 653 * the page, only trigger CoW. 654 */ 655 if (!is_refcount_suitable(folio)) { 656 folio_unlock(folio); 657 result = SCAN_PAGE_COUNT; 658 goto out; 659 } 660 661 /* 662 * Isolate the page to avoid collapsing an hugepage 663 * currently in use by the VM. 664 */ 665 if (!folio_isolate_lru(folio)) { 666 folio_unlock(folio); 667 result = SCAN_DEL_PAGE_LRU; 668 goto out; 669 } 670 node_stat_mod_folio(folio, 671 NR_ISOLATED_ANON + folio_is_file_lru(folio), 672 folio_nr_pages(folio)); 673 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 674 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 675 676 if (folio_test_large(folio)) 677 list_add_tail(&folio->lru, compound_pagelist); 678 next: 679 /* 680 * If collapse was initiated by khugepaged, check that there is 681 * enough young pte to justify collapsing the page 682 */ 683 if (cc->is_khugepaged && 684 (pte_young(pteval) || folio_test_young(folio) || 685 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 686 address))) 687 referenced++; 688 689 if (pte_write(pteval)) 690 writable = true; 691 } 692 693 if (unlikely(!writable)) { 694 result = SCAN_PAGE_RO; 695 } else if (unlikely(cc->is_khugepaged && !referenced)) { 696 result = SCAN_LACK_REFERENCED_PAGE; 697 } else { 698 result = SCAN_SUCCEED; 699 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 700 referenced, writable, result); 701 return result; 702 } 703 out: 704 release_pte_pages(pte, _pte, compound_pagelist); 705 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 706 referenced, writable, result); 707 return result; 708 } 709 710 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 711 struct vm_area_struct *vma, 712 unsigned long address, 713 spinlock_t *ptl, 714 struct list_head *compound_pagelist) 715 { 716 struct folio *src, *tmp; 717 pte_t *_pte; 718 pte_t pteval; 719 720 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 721 _pte++, address += PAGE_SIZE) { 722 pteval = ptep_get(_pte); 723 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 724 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 725 if (is_zero_pfn(pte_pfn(pteval))) { 726 /* 727 * ptl mostly unnecessary. 728 */ 729 spin_lock(ptl); 730 ptep_clear(vma->vm_mm, address, _pte); 731 spin_unlock(ptl); 732 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 733 } 734 } else { 735 struct page *src_page = pte_page(pteval); 736 737 src = page_folio(src_page); 738 if (!folio_test_large(src)) 739 release_pte_folio(src); 740 /* 741 * ptl mostly unnecessary, but preempt has to 742 * be disabled to update the per-cpu stats 743 * inside folio_remove_rmap_pte(). 744 */ 745 spin_lock(ptl); 746 ptep_clear(vma->vm_mm, address, _pte); 747 folio_remove_rmap_pte(src, src_page, vma); 748 spin_unlock(ptl); 749 free_page_and_swap_cache(src_page); 750 } 751 } 752 753 list_for_each_entry_safe(src, tmp, compound_pagelist, lru) { 754 list_del(&src->lru); 755 node_stat_sub_folio(src, NR_ISOLATED_ANON + 756 folio_is_file_lru(src)); 757 folio_unlock(src); 758 free_swap_cache(src); 759 folio_putback_lru(src); 760 } 761 } 762 763 static void __collapse_huge_page_copy_failed(pte_t *pte, 764 pmd_t *pmd, 765 pmd_t orig_pmd, 766 struct vm_area_struct *vma, 767 struct list_head *compound_pagelist) 768 { 769 spinlock_t *pmd_ptl; 770 771 /* 772 * Re-establish the PMD to point to the original page table 773 * entry. Restoring PMD needs to be done prior to releasing 774 * pages. Since pages are still isolated and locked here, 775 * acquiring anon_vma_lock_write is unnecessary. 776 */ 777 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 778 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 779 spin_unlock(pmd_ptl); 780 /* 781 * Release both raw and compound pages isolated 782 * in __collapse_huge_page_isolate. 783 */ 784 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 785 } 786 787 /* 788 * __collapse_huge_page_copy - attempts to copy memory contents from raw 789 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 790 * otherwise restores the original page table and releases isolated raw pages. 791 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 792 * 793 * @pte: starting of the PTEs to copy from 794 * @folio: the new hugepage to copy contents to 795 * @pmd: pointer to the new hugepage's PMD 796 * @orig_pmd: the original raw pages' PMD 797 * @vma: the original raw pages' virtual memory area 798 * @address: starting address to copy 799 * @ptl: lock on raw pages' PTEs 800 * @compound_pagelist: list that stores compound pages 801 */ 802 static int __collapse_huge_page_copy(pte_t *pte, struct folio *folio, 803 pmd_t *pmd, pmd_t orig_pmd, struct vm_area_struct *vma, 804 unsigned long address, spinlock_t *ptl, 805 struct list_head *compound_pagelist) 806 { 807 unsigned int i; 808 int result = SCAN_SUCCEED; 809 810 /* 811 * Copying pages' contents is subject to memory poison at any iteration. 812 */ 813 for (i = 0; i < HPAGE_PMD_NR; i++) { 814 pte_t pteval = ptep_get(pte + i); 815 struct page *page = folio_page(folio, i); 816 unsigned long src_addr = address + i * PAGE_SIZE; 817 struct page *src_page; 818 819 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 820 clear_user_highpage(page, src_addr); 821 continue; 822 } 823 src_page = pte_page(pteval); 824 if (copy_mc_user_highpage(page, src_page, src_addr, vma) > 0) { 825 result = SCAN_COPY_MC; 826 break; 827 } 828 } 829 830 if (likely(result == SCAN_SUCCEED)) 831 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 832 compound_pagelist); 833 else 834 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 835 compound_pagelist); 836 837 return result; 838 } 839 840 static void khugepaged_alloc_sleep(void) 841 { 842 DEFINE_WAIT(wait); 843 844 add_wait_queue(&khugepaged_wait, &wait); 845 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 846 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 847 remove_wait_queue(&khugepaged_wait, &wait); 848 } 849 850 struct collapse_control khugepaged_collapse_control = { 851 .is_khugepaged = true, 852 }; 853 854 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 855 { 856 int i; 857 858 /* 859 * If node_reclaim_mode is disabled, then no extra effort is made to 860 * allocate memory locally. 861 */ 862 if (!node_reclaim_enabled()) 863 return false; 864 865 /* If there is a count for this node already, it must be acceptable */ 866 if (cc->node_load[nid]) 867 return false; 868 869 for (i = 0; i < MAX_NUMNODES; i++) { 870 if (!cc->node_load[i]) 871 continue; 872 if (node_distance(nid, i) > node_reclaim_distance) 873 return true; 874 } 875 return false; 876 } 877 878 #define khugepaged_defrag() \ 879 (transparent_hugepage_flags & \ 880 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 881 882 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 883 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 884 { 885 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 886 } 887 888 #ifdef CONFIG_NUMA 889 static int hpage_collapse_find_target_node(struct collapse_control *cc) 890 { 891 int nid, target_node = 0, max_value = 0; 892 893 /* find first node with max normal pages hit */ 894 for (nid = 0; nid < MAX_NUMNODES; nid++) 895 if (cc->node_load[nid] > max_value) { 896 max_value = cc->node_load[nid]; 897 target_node = nid; 898 } 899 900 for_each_online_node(nid) { 901 if (max_value == cc->node_load[nid]) 902 node_set(nid, cc->alloc_nmask); 903 } 904 905 return target_node; 906 } 907 #else 908 static int hpage_collapse_find_target_node(struct collapse_control *cc) 909 { 910 return 0; 911 } 912 #endif 913 914 /* 915 * If mmap_lock temporarily dropped, revalidate vma 916 * before taking mmap_lock. 917 * Returns enum scan_result value. 918 */ 919 920 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 921 bool expect_anon, 922 struct vm_area_struct **vmap, 923 struct collapse_control *cc) 924 { 925 struct vm_area_struct *vma; 926 unsigned long tva_flags = cc->is_khugepaged ? TVA_ENFORCE_SYSFS : 0; 927 928 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 929 return SCAN_ANY_PROCESS; 930 931 *vmap = vma = find_vma(mm, address); 932 if (!vma) 933 return SCAN_VMA_NULL; 934 935 if (!thp_vma_suitable_order(vma, address, PMD_ORDER)) 936 return SCAN_ADDRESS_RANGE; 937 if (!thp_vma_allowable_order(vma, vma->vm_flags, tva_flags, PMD_ORDER)) 938 return SCAN_VMA_CHECK; 939 /* 940 * Anon VMA expected, the address may be unmapped then 941 * remapped to file after khugepaged reaquired the mmap_lock. 942 * 943 * thp_vma_allowable_order may return true for qualified file 944 * vmas. 945 */ 946 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 947 return SCAN_PAGE_ANON; 948 return SCAN_SUCCEED; 949 } 950 951 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 952 unsigned long address, 953 pmd_t **pmd) 954 { 955 pmd_t pmde; 956 957 *pmd = mm_find_pmd(mm, address); 958 if (!*pmd) 959 return SCAN_PMD_NULL; 960 961 pmde = pmdp_get_lockless(*pmd); 962 if (pmd_none(pmde)) 963 return SCAN_PMD_NONE; 964 if (!pmd_present(pmde)) 965 return SCAN_PMD_NULL; 966 if (pmd_trans_huge(pmde)) 967 return SCAN_PMD_MAPPED; 968 if (pmd_devmap(pmde)) 969 return SCAN_PMD_NULL; 970 if (pmd_bad(pmde)) 971 return SCAN_PMD_NULL; 972 return SCAN_SUCCEED; 973 } 974 975 static int check_pmd_still_valid(struct mm_struct *mm, 976 unsigned long address, 977 pmd_t *pmd) 978 { 979 pmd_t *new_pmd; 980 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 981 982 if (result != SCAN_SUCCEED) 983 return result; 984 if (new_pmd != pmd) 985 return SCAN_FAIL; 986 return SCAN_SUCCEED; 987 } 988 989 /* 990 * Bring missing pages in from swap, to complete THP collapse. 991 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 992 * 993 * Called and returns without pte mapped or spinlocks held. 994 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 995 */ 996 static int __collapse_huge_page_swapin(struct mm_struct *mm, 997 struct vm_area_struct *vma, 998 unsigned long haddr, pmd_t *pmd, 999 int referenced) 1000 { 1001 int swapped_in = 0; 1002 vm_fault_t ret = 0; 1003 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 1004 int result; 1005 pte_t *pte = NULL; 1006 spinlock_t *ptl; 1007 1008 for (address = haddr; address < end; address += PAGE_SIZE) { 1009 struct vm_fault vmf = { 1010 .vma = vma, 1011 .address = address, 1012 .pgoff = linear_page_index(vma, address), 1013 .flags = FAULT_FLAG_ALLOW_RETRY, 1014 .pmd = pmd, 1015 }; 1016 1017 if (!pte++) { 1018 /* 1019 * Here the ptl is only used to check pte_same() in 1020 * do_swap_page(), so readonly version is enough. 1021 */ 1022 pte = pte_offset_map_ro_nolock(mm, pmd, address, &ptl); 1023 if (!pte) { 1024 mmap_read_unlock(mm); 1025 result = SCAN_PMD_NULL; 1026 goto out; 1027 } 1028 } 1029 1030 vmf.orig_pte = ptep_get_lockless(pte); 1031 if (!is_swap_pte(vmf.orig_pte)) 1032 continue; 1033 1034 vmf.pte = pte; 1035 vmf.ptl = ptl; 1036 ret = do_swap_page(&vmf); 1037 /* Which unmaps pte (after perhaps re-checking the entry) */ 1038 pte = NULL; 1039 1040 /* 1041 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1042 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1043 * we do not retry here and swap entry will remain in pagetable 1044 * resulting in later failure. 1045 */ 1046 if (ret & VM_FAULT_RETRY) { 1047 /* Likely, but not guaranteed, that page lock failed */ 1048 result = SCAN_PAGE_LOCK; 1049 goto out; 1050 } 1051 if (ret & VM_FAULT_ERROR) { 1052 mmap_read_unlock(mm); 1053 result = SCAN_FAIL; 1054 goto out; 1055 } 1056 swapped_in++; 1057 } 1058 1059 if (pte) 1060 pte_unmap(pte); 1061 1062 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1063 if (swapped_in) 1064 lru_add_drain(); 1065 1066 result = SCAN_SUCCEED; 1067 out: 1068 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1069 return result; 1070 } 1071 1072 static int alloc_charge_folio(struct folio **foliop, struct mm_struct *mm, 1073 struct collapse_control *cc) 1074 { 1075 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1076 GFP_TRANSHUGE); 1077 int node = hpage_collapse_find_target_node(cc); 1078 struct folio *folio; 1079 1080 folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, &cc->alloc_nmask); 1081 if (!folio) { 1082 *foliop = NULL; 1083 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 1084 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1085 } 1086 1087 count_vm_event(THP_COLLAPSE_ALLOC); 1088 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1089 folio_put(folio); 1090 *foliop = NULL; 1091 return SCAN_CGROUP_CHARGE_FAIL; 1092 } 1093 1094 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1095 1096 *foliop = folio; 1097 return SCAN_SUCCEED; 1098 } 1099 1100 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1101 int referenced, int unmapped, 1102 struct collapse_control *cc) 1103 { 1104 LIST_HEAD(compound_pagelist); 1105 pmd_t *pmd, _pmd; 1106 pte_t *pte; 1107 pgtable_t pgtable; 1108 struct folio *folio; 1109 spinlock_t *pmd_ptl, *pte_ptl; 1110 int result = SCAN_FAIL; 1111 struct vm_area_struct *vma; 1112 struct mmu_notifier_range range; 1113 1114 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1115 1116 /* 1117 * Before allocating the hugepage, release the mmap_lock read lock. 1118 * The allocation can take potentially a long time if it involves 1119 * sync compaction, and we do not need to hold the mmap_lock during 1120 * that. We will recheck the vma after taking it again in write mode. 1121 */ 1122 mmap_read_unlock(mm); 1123 1124 result = alloc_charge_folio(&folio, mm, cc); 1125 if (result != SCAN_SUCCEED) 1126 goto out_nolock; 1127 1128 mmap_read_lock(mm); 1129 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1130 if (result != SCAN_SUCCEED) { 1131 mmap_read_unlock(mm); 1132 goto out_nolock; 1133 } 1134 1135 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1136 if (result != SCAN_SUCCEED) { 1137 mmap_read_unlock(mm); 1138 goto out_nolock; 1139 } 1140 1141 if (unmapped) { 1142 /* 1143 * __collapse_huge_page_swapin will return with mmap_lock 1144 * released when it fails. So we jump out_nolock directly in 1145 * that case. Continuing to collapse causes inconsistency. 1146 */ 1147 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1148 referenced); 1149 if (result != SCAN_SUCCEED) 1150 goto out_nolock; 1151 } 1152 1153 mmap_read_unlock(mm); 1154 /* 1155 * Prevent all access to pagetables with the exception of 1156 * gup_fast later handled by the ptep_clear_flush and the VM 1157 * handled by the anon_vma lock + PG_lock. 1158 * 1159 * UFFDIO_MOVE is prevented to race as well thanks to the 1160 * mmap_lock. 1161 */ 1162 mmap_write_lock(mm); 1163 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1164 if (result != SCAN_SUCCEED) 1165 goto out_up_write; 1166 /* check if the pmd is still valid */ 1167 result = check_pmd_still_valid(mm, address, pmd); 1168 if (result != SCAN_SUCCEED) 1169 goto out_up_write; 1170 1171 vma_start_write(vma); 1172 anon_vma_lock_write(vma->anon_vma); 1173 1174 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1175 address + HPAGE_PMD_SIZE); 1176 mmu_notifier_invalidate_range_start(&range); 1177 1178 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1179 /* 1180 * This removes any huge TLB entry from the CPU so we won't allow 1181 * huge and small TLB entries for the same virtual address to 1182 * avoid the risk of CPU bugs in that area. 1183 * 1184 * Parallel GUP-fast is fine since GUP-fast will back off when 1185 * it detects PMD is changed. 1186 */ 1187 _pmd = pmdp_collapse_flush(vma, address, pmd); 1188 spin_unlock(pmd_ptl); 1189 mmu_notifier_invalidate_range_end(&range); 1190 tlb_remove_table_sync_one(); 1191 1192 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1193 if (pte) { 1194 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1195 &compound_pagelist); 1196 spin_unlock(pte_ptl); 1197 } else { 1198 result = SCAN_PMD_NULL; 1199 } 1200 1201 if (unlikely(result != SCAN_SUCCEED)) { 1202 if (pte) 1203 pte_unmap(pte); 1204 spin_lock(pmd_ptl); 1205 BUG_ON(!pmd_none(*pmd)); 1206 /* 1207 * We can only use set_pmd_at when establishing 1208 * hugepmds and never for establishing regular pmds that 1209 * points to regular pagetables. Use pmd_populate for that 1210 */ 1211 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1212 spin_unlock(pmd_ptl); 1213 anon_vma_unlock_write(vma->anon_vma); 1214 goto out_up_write; 1215 } 1216 1217 /* 1218 * All pages are isolated and locked so anon_vma rmap 1219 * can't run anymore. 1220 */ 1221 anon_vma_unlock_write(vma->anon_vma); 1222 1223 result = __collapse_huge_page_copy(pte, folio, pmd, _pmd, 1224 vma, address, pte_ptl, 1225 &compound_pagelist); 1226 pte_unmap(pte); 1227 if (unlikely(result != SCAN_SUCCEED)) 1228 goto out_up_write; 1229 1230 /* 1231 * The smp_wmb() inside __folio_mark_uptodate() ensures the 1232 * copy_huge_page writes become visible before the set_pmd_at() 1233 * write. 1234 */ 1235 __folio_mark_uptodate(folio); 1236 pgtable = pmd_pgtable(_pmd); 1237 1238 _pmd = mk_huge_pmd(&folio->page, vma->vm_page_prot); 1239 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1240 1241 spin_lock(pmd_ptl); 1242 BUG_ON(!pmd_none(*pmd)); 1243 folio_add_new_anon_rmap(folio, vma, address, RMAP_EXCLUSIVE); 1244 folio_add_lru_vma(folio, vma); 1245 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1246 set_pmd_at(mm, address, pmd, _pmd); 1247 update_mmu_cache_pmd(vma, address, pmd); 1248 deferred_split_folio(folio, false); 1249 spin_unlock(pmd_ptl); 1250 1251 folio = NULL; 1252 1253 result = SCAN_SUCCEED; 1254 out_up_write: 1255 mmap_write_unlock(mm); 1256 out_nolock: 1257 if (folio) 1258 folio_put(folio); 1259 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1260 return result; 1261 } 1262 1263 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1264 struct vm_area_struct *vma, 1265 unsigned long address, bool *mmap_locked, 1266 struct collapse_control *cc) 1267 { 1268 pmd_t *pmd; 1269 pte_t *pte, *_pte; 1270 int result = SCAN_FAIL, referenced = 0; 1271 int none_or_zero = 0, shared = 0; 1272 struct page *page = NULL; 1273 struct folio *folio = NULL; 1274 unsigned long _address; 1275 spinlock_t *ptl; 1276 int node = NUMA_NO_NODE, unmapped = 0; 1277 bool writable = false; 1278 1279 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1280 1281 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1282 if (result != SCAN_SUCCEED) 1283 goto out; 1284 1285 memset(cc->node_load, 0, sizeof(cc->node_load)); 1286 nodes_clear(cc->alloc_nmask); 1287 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1288 if (!pte) { 1289 result = SCAN_PMD_NULL; 1290 goto out; 1291 } 1292 1293 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1294 _pte++, _address += PAGE_SIZE) { 1295 pte_t pteval = ptep_get(_pte); 1296 if (is_swap_pte(pteval)) { 1297 ++unmapped; 1298 if (!cc->is_khugepaged || 1299 unmapped <= khugepaged_max_ptes_swap) { 1300 /* 1301 * Always be strict with uffd-wp 1302 * enabled swap entries. Please see 1303 * comment below for pte_uffd_wp(). 1304 */ 1305 if (pte_swp_uffd_wp_any(pteval)) { 1306 result = SCAN_PTE_UFFD_WP; 1307 goto out_unmap; 1308 } 1309 continue; 1310 } else { 1311 result = SCAN_EXCEED_SWAP_PTE; 1312 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1313 goto out_unmap; 1314 } 1315 } 1316 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1317 ++none_or_zero; 1318 if (!userfaultfd_armed(vma) && 1319 (!cc->is_khugepaged || 1320 none_or_zero <= khugepaged_max_ptes_none)) { 1321 continue; 1322 } else { 1323 result = SCAN_EXCEED_NONE_PTE; 1324 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1325 goto out_unmap; 1326 } 1327 } 1328 if (pte_uffd_wp(pteval)) { 1329 /* 1330 * Don't collapse the page if any of the small 1331 * PTEs are armed with uffd write protection. 1332 * Here we can also mark the new huge pmd as 1333 * write protected if any of the small ones is 1334 * marked but that could bring unknown 1335 * userfault messages that falls outside of 1336 * the registered range. So, just be simple. 1337 */ 1338 result = SCAN_PTE_UFFD_WP; 1339 goto out_unmap; 1340 } 1341 if (pte_write(pteval)) 1342 writable = true; 1343 1344 page = vm_normal_page(vma, _address, pteval); 1345 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1346 result = SCAN_PAGE_NULL; 1347 goto out_unmap; 1348 } 1349 folio = page_folio(page); 1350 1351 if (!folio_test_anon(folio)) { 1352 result = SCAN_PAGE_ANON; 1353 goto out_unmap; 1354 } 1355 1356 /* 1357 * We treat a single page as shared if any part of the THP 1358 * is shared. "False negatives" from 1359 * folio_likely_mapped_shared() are not expected to matter 1360 * much in practice. 1361 */ 1362 if (folio_likely_mapped_shared(folio)) { 1363 ++shared; 1364 if (cc->is_khugepaged && 1365 shared > khugepaged_max_ptes_shared) { 1366 result = SCAN_EXCEED_SHARED_PTE; 1367 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1368 goto out_unmap; 1369 } 1370 } 1371 1372 /* 1373 * Record which node the original page is from and save this 1374 * information to cc->node_load[]. 1375 * Khugepaged will allocate hugepage from the node has the max 1376 * hit record. 1377 */ 1378 node = folio_nid(folio); 1379 if (hpage_collapse_scan_abort(node, cc)) { 1380 result = SCAN_SCAN_ABORT; 1381 goto out_unmap; 1382 } 1383 cc->node_load[node]++; 1384 if (!folio_test_lru(folio)) { 1385 result = SCAN_PAGE_LRU; 1386 goto out_unmap; 1387 } 1388 if (folio_test_locked(folio)) { 1389 result = SCAN_PAGE_LOCK; 1390 goto out_unmap; 1391 } 1392 1393 /* 1394 * Check if the page has any GUP (or other external) pins. 1395 * 1396 * Here the check may be racy: 1397 * it may see folio_mapcount() > folio_ref_count(). 1398 * But such case is ephemeral we could always retry collapse 1399 * later. However it may report false positive if the page 1400 * has excessive GUP pins (i.e. 512). Anyway the same check 1401 * will be done again later the risk seems low. 1402 */ 1403 if (!is_refcount_suitable(folio)) { 1404 result = SCAN_PAGE_COUNT; 1405 goto out_unmap; 1406 } 1407 1408 /* 1409 * If collapse was initiated by khugepaged, check that there is 1410 * enough young pte to justify collapsing the page 1411 */ 1412 if (cc->is_khugepaged && 1413 (pte_young(pteval) || folio_test_young(folio) || 1414 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 1415 address))) 1416 referenced++; 1417 } 1418 if (!writable) { 1419 result = SCAN_PAGE_RO; 1420 } else if (cc->is_khugepaged && 1421 (!referenced || 1422 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1423 result = SCAN_LACK_REFERENCED_PAGE; 1424 } else { 1425 result = SCAN_SUCCEED; 1426 } 1427 out_unmap: 1428 pte_unmap_unlock(pte, ptl); 1429 if (result == SCAN_SUCCEED) { 1430 result = collapse_huge_page(mm, address, referenced, 1431 unmapped, cc); 1432 /* collapse_huge_page will return with the mmap_lock released */ 1433 *mmap_locked = false; 1434 } 1435 out: 1436 trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced, 1437 none_or_zero, result, unmapped); 1438 return result; 1439 } 1440 1441 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1442 { 1443 struct mm_slot *slot = &mm_slot->slot; 1444 struct mm_struct *mm = slot->mm; 1445 1446 lockdep_assert_held(&khugepaged_mm_lock); 1447 1448 if (hpage_collapse_test_exit(mm)) { 1449 /* free mm_slot */ 1450 hash_del(&slot->hash); 1451 list_del(&slot->mm_node); 1452 1453 /* 1454 * Not strictly needed because the mm exited already. 1455 * 1456 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1457 */ 1458 1459 /* khugepaged_mm_lock actually not necessary for the below */ 1460 mm_slot_free(mm_slot_cache, mm_slot); 1461 mmdrop(mm); 1462 } 1463 } 1464 1465 #ifdef CONFIG_SHMEM 1466 /* hpage must be locked, and mmap_lock must be held */ 1467 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1468 pmd_t *pmdp, struct page *hpage) 1469 { 1470 struct vm_fault vmf = { 1471 .vma = vma, 1472 .address = addr, 1473 .flags = 0, 1474 .pmd = pmdp, 1475 }; 1476 1477 VM_BUG_ON(!PageTransHuge(hpage)); 1478 mmap_assert_locked(vma->vm_mm); 1479 1480 if (do_set_pmd(&vmf, hpage)) 1481 return SCAN_FAIL; 1482 1483 get_page(hpage); 1484 return SCAN_SUCCEED; 1485 } 1486 1487 /** 1488 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1489 * address haddr. 1490 * 1491 * @mm: process address space where collapse happens 1492 * @addr: THP collapse address 1493 * @install_pmd: If a huge PMD should be installed 1494 * 1495 * This function checks whether all the PTEs in the PMD are pointing to the 1496 * right THP. If so, retract the page table so the THP can refault in with 1497 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1498 */ 1499 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1500 bool install_pmd) 1501 { 1502 struct mmu_notifier_range range; 1503 bool notified = false; 1504 unsigned long haddr = addr & HPAGE_PMD_MASK; 1505 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1506 struct folio *folio; 1507 pte_t *start_pte, *pte; 1508 pmd_t *pmd, pgt_pmd; 1509 spinlock_t *pml = NULL, *ptl; 1510 int nr_ptes = 0, result = SCAN_FAIL; 1511 int i; 1512 1513 mmap_assert_locked(mm); 1514 1515 /* First check VMA found, in case page tables are being torn down */ 1516 if (!vma || !vma->vm_file || 1517 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1518 return SCAN_VMA_CHECK; 1519 1520 /* Fast check before locking page if already PMD-mapped */ 1521 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1522 if (result == SCAN_PMD_MAPPED) 1523 return result; 1524 1525 /* 1526 * If we are here, we've succeeded in replacing all the native pages 1527 * in the page cache with a single hugepage. If a mm were to fault-in 1528 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1529 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1530 * analogously elide sysfs THP settings here. 1531 */ 1532 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 1533 return SCAN_VMA_CHECK; 1534 1535 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1536 if (userfaultfd_wp(vma)) 1537 return SCAN_PTE_UFFD_WP; 1538 1539 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1540 linear_page_index(vma, haddr)); 1541 if (IS_ERR(folio)) 1542 return SCAN_PAGE_NULL; 1543 1544 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1545 result = SCAN_PAGE_COMPOUND; 1546 goto drop_folio; 1547 } 1548 1549 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1550 switch (result) { 1551 case SCAN_SUCCEED: 1552 break; 1553 case SCAN_PMD_NONE: 1554 /* 1555 * All pte entries have been removed and pmd cleared. 1556 * Skip all the pte checks and just update the pmd mapping. 1557 */ 1558 goto maybe_install_pmd; 1559 default: 1560 goto drop_folio; 1561 } 1562 1563 result = SCAN_FAIL; 1564 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1565 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1566 goto drop_folio; 1567 1568 /* step 1: check all mapped PTEs are to the right huge page */ 1569 for (i = 0, addr = haddr, pte = start_pte; 1570 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1571 struct page *page; 1572 pte_t ptent = ptep_get(pte); 1573 1574 /* empty pte, skip */ 1575 if (pte_none(ptent)) 1576 continue; 1577 1578 /* page swapped out, abort */ 1579 if (!pte_present(ptent)) { 1580 result = SCAN_PTE_NON_PRESENT; 1581 goto abort; 1582 } 1583 1584 page = vm_normal_page(vma, addr, ptent); 1585 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1586 page = NULL; 1587 /* 1588 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1589 * page table, but the new page will not be a subpage of hpage. 1590 */ 1591 if (folio_page(folio, i) != page) 1592 goto abort; 1593 } 1594 1595 pte_unmap_unlock(start_pte, ptl); 1596 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1597 haddr, haddr + HPAGE_PMD_SIZE); 1598 mmu_notifier_invalidate_range_start(&range); 1599 notified = true; 1600 1601 /* 1602 * pmd_lock covers a wider range than ptl, and (if split from mm's 1603 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1604 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1605 * inserts a valid as-if-COWed PTE without even looking up page cache. 1606 * So page lock of folio does not protect from it, so we must not drop 1607 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1608 */ 1609 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1610 pml = pmd_lock(mm, pmd); 1611 1612 start_pte = pte_offset_map_rw_nolock(mm, pmd, haddr, &pgt_pmd, &ptl); 1613 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1614 goto abort; 1615 if (!pml) 1616 spin_lock(ptl); 1617 else if (ptl != pml) 1618 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1619 1620 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) 1621 goto abort; 1622 1623 /* step 2: clear page table and adjust rmap */ 1624 for (i = 0, addr = haddr, pte = start_pte; 1625 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1626 struct page *page; 1627 pte_t ptent = ptep_get(pte); 1628 1629 if (pte_none(ptent)) 1630 continue; 1631 /* 1632 * We dropped ptl after the first scan, to do the mmu_notifier: 1633 * page lock stops more PTEs of the folio being faulted in, but 1634 * does not stop write faults COWing anon copies from existing 1635 * PTEs; and does not stop those being swapped out or migrated. 1636 */ 1637 if (!pte_present(ptent)) { 1638 result = SCAN_PTE_NON_PRESENT; 1639 goto abort; 1640 } 1641 page = vm_normal_page(vma, addr, ptent); 1642 if (folio_page(folio, i) != page) 1643 goto abort; 1644 1645 /* 1646 * Must clear entry, or a racing truncate may re-remove it. 1647 * TLB flush can be left until pmdp_collapse_flush() does it. 1648 * PTE dirty? Shmem page is already dirty; file is read-only. 1649 */ 1650 ptep_clear(mm, addr, pte); 1651 folio_remove_rmap_pte(folio, page, vma); 1652 nr_ptes++; 1653 } 1654 1655 if (!pml) 1656 spin_unlock(ptl); 1657 1658 /* step 3: set proper refcount and mm_counters. */ 1659 if (nr_ptes) { 1660 folio_ref_sub(folio, nr_ptes); 1661 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1662 } 1663 1664 /* step 4: remove empty page table */ 1665 if (!pml) { 1666 pml = pmd_lock(mm, pmd); 1667 if (ptl != pml) { 1668 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1669 if (unlikely(!pmd_same(pgt_pmd, pmdp_get_lockless(pmd)))) { 1670 flush_tlb_mm(mm); 1671 goto unlock; 1672 } 1673 } 1674 } 1675 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1676 pmdp_get_lockless_sync(); 1677 pte_unmap_unlock(start_pte, ptl); 1678 if (ptl != pml) 1679 spin_unlock(pml); 1680 1681 mmu_notifier_invalidate_range_end(&range); 1682 1683 mm_dec_nr_ptes(mm); 1684 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1685 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1686 1687 maybe_install_pmd: 1688 /* step 5: install pmd entry */ 1689 result = install_pmd 1690 ? set_huge_pmd(vma, haddr, pmd, &folio->page) 1691 : SCAN_SUCCEED; 1692 goto drop_folio; 1693 abort: 1694 if (nr_ptes) { 1695 flush_tlb_mm(mm); 1696 folio_ref_sub(folio, nr_ptes); 1697 add_mm_counter(mm, mm_counter_file(folio), -nr_ptes); 1698 } 1699 unlock: 1700 if (start_pte) 1701 pte_unmap_unlock(start_pte, ptl); 1702 if (pml && pml != ptl) 1703 spin_unlock(pml); 1704 if (notified) 1705 mmu_notifier_invalidate_range_end(&range); 1706 drop_folio: 1707 folio_unlock(folio); 1708 folio_put(folio); 1709 return result; 1710 } 1711 1712 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1713 { 1714 struct vm_area_struct *vma; 1715 1716 i_mmap_lock_read(mapping); 1717 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1718 struct mmu_notifier_range range; 1719 struct mm_struct *mm; 1720 unsigned long addr; 1721 pmd_t *pmd, pgt_pmd; 1722 spinlock_t *pml; 1723 spinlock_t *ptl; 1724 bool skipped_uffd = false; 1725 1726 /* 1727 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1728 * got written to. These VMAs are likely not worth removing 1729 * page tables from, as PMD-mapping is likely to be split later. 1730 */ 1731 if (READ_ONCE(vma->anon_vma)) 1732 continue; 1733 1734 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1735 if (addr & ~HPAGE_PMD_MASK || 1736 vma->vm_end < addr + HPAGE_PMD_SIZE) 1737 continue; 1738 1739 mm = vma->vm_mm; 1740 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1741 continue; 1742 1743 if (hpage_collapse_test_exit(mm)) 1744 continue; 1745 /* 1746 * When a vma is registered with uffd-wp, we cannot recycle 1747 * the page table because there may be pte markers installed. 1748 * Other vmas can still have the same file mapped hugely, but 1749 * skip this one: it will always be mapped in small page size 1750 * for uffd-wp registered ranges. 1751 */ 1752 if (userfaultfd_wp(vma)) 1753 continue; 1754 1755 /* PTEs were notified when unmapped; but now for the PMD? */ 1756 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1757 addr, addr + HPAGE_PMD_SIZE); 1758 mmu_notifier_invalidate_range_start(&range); 1759 1760 pml = pmd_lock(mm, pmd); 1761 ptl = pte_lockptr(mm, pmd); 1762 if (ptl != pml) 1763 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1764 1765 /* 1766 * Huge page lock is still held, so normally the page table 1767 * must remain empty; and we have already skipped anon_vma 1768 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1769 * held, it is still possible for a racing userfaultfd_ioctl() 1770 * to have inserted ptes or markers. Now that we hold ptlock, 1771 * repeating the anon_vma check protects from one category, 1772 * and repeating the userfaultfd_wp() check from another. 1773 */ 1774 if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) { 1775 skipped_uffd = true; 1776 } else { 1777 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1778 pmdp_get_lockless_sync(); 1779 } 1780 1781 if (ptl != pml) 1782 spin_unlock(ptl); 1783 spin_unlock(pml); 1784 1785 mmu_notifier_invalidate_range_end(&range); 1786 1787 if (!skipped_uffd) { 1788 mm_dec_nr_ptes(mm); 1789 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1790 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1791 } 1792 } 1793 i_mmap_unlock_read(mapping); 1794 } 1795 1796 /** 1797 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1798 * 1799 * @mm: process address space where collapse happens 1800 * @addr: virtual collapse start address 1801 * @file: file that collapse on 1802 * @start: collapse start address 1803 * @cc: collapse context and scratchpad 1804 * 1805 * Basic scheme is simple, details are more complex: 1806 * - allocate and lock a new huge page; 1807 * - scan page cache, locking old pages 1808 * + swap/gup in pages if necessary; 1809 * - copy data to new page 1810 * - handle shmem holes 1811 * + re-validate that holes weren't filled by someone else 1812 * + check for userfaultfd 1813 * - finalize updates to the page cache; 1814 * - if replacing succeeds: 1815 * + unlock huge page; 1816 * + free old pages; 1817 * - if replacing failed; 1818 * + unlock old pages 1819 * + unlock and free huge page; 1820 */ 1821 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1822 struct file *file, pgoff_t start, 1823 struct collapse_control *cc) 1824 { 1825 struct address_space *mapping = file->f_mapping; 1826 struct page *dst; 1827 struct folio *folio, *tmp, *new_folio; 1828 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1829 LIST_HEAD(pagelist); 1830 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1831 int nr_none = 0, result = SCAN_SUCCEED; 1832 bool is_shmem = shmem_file(file); 1833 1834 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1835 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1836 1837 result = alloc_charge_folio(&new_folio, mm, cc); 1838 if (result != SCAN_SUCCEED) 1839 goto out; 1840 1841 mapping_set_update(&xas, mapping); 1842 1843 __folio_set_locked(new_folio); 1844 if (is_shmem) 1845 __folio_set_swapbacked(new_folio); 1846 new_folio->index = start; 1847 new_folio->mapping = mapping; 1848 1849 /* 1850 * Ensure we have slots for all the pages in the range. This is 1851 * almost certainly a no-op because most of the pages must be present 1852 */ 1853 do { 1854 xas_lock_irq(&xas); 1855 xas_create_range(&xas); 1856 if (!xas_error(&xas)) 1857 break; 1858 xas_unlock_irq(&xas); 1859 if (!xas_nomem(&xas, GFP_KERNEL)) { 1860 result = SCAN_FAIL; 1861 goto rollback; 1862 } 1863 } while (1); 1864 1865 for (index = start; index < end;) { 1866 xas_set(&xas, index); 1867 folio = xas_load(&xas); 1868 1869 VM_BUG_ON(index != xas.xa_index); 1870 if (is_shmem) { 1871 if (!folio) { 1872 /* 1873 * Stop if extent has been truncated or 1874 * hole-punched, and is now completely 1875 * empty. 1876 */ 1877 if (index == start) { 1878 if (!xas_next_entry(&xas, end - 1)) { 1879 result = SCAN_TRUNCATED; 1880 goto xa_locked; 1881 } 1882 } 1883 nr_none++; 1884 index++; 1885 continue; 1886 } 1887 1888 if (xa_is_value(folio) || !folio_test_uptodate(folio)) { 1889 xas_unlock_irq(&xas); 1890 /* swap in or instantiate fallocated page */ 1891 if (shmem_get_folio(mapping->host, index, 0, 1892 &folio, SGP_NOALLOC)) { 1893 result = SCAN_FAIL; 1894 goto xa_unlocked; 1895 } 1896 /* drain lru cache to help folio_isolate_lru() */ 1897 lru_add_drain(); 1898 } else if (folio_trylock(folio)) { 1899 folio_get(folio); 1900 xas_unlock_irq(&xas); 1901 } else { 1902 result = SCAN_PAGE_LOCK; 1903 goto xa_locked; 1904 } 1905 } else { /* !is_shmem */ 1906 if (!folio || xa_is_value(folio)) { 1907 xas_unlock_irq(&xas); 1908 page_cache_sync_readahead(mapping, &file->f_ra, 1909 file, index, 1910 end - index); 1911 /* drain lru cache to help folio_isolate_lru() */ 1912 lru_add_drain(); 1913 folio = filemap_lock_folio(mapping, index); 1914 if (IS_ERR(folio)) { 1915 result = SCAN_FAIL; 1916 goto xa_unlocked; 1917 } 1918 } else if (folio_test_dirty(folio)) { 1919 /* 1920 * khugepaged only works on read-only fd, 1921 * so this page is dirty because it hasn't 1922 * been flushed since first write. There 1923 * won't be new dirty pages. 1924 * 1925 * Trigger async flush here and hope the 1926 * writeback is done when khugepaged 1927 * revisits this page. 1928 * 1929 * This is a one-off situation. We are not 1930 * forcing writeback in loop. 1931 */ 1932 xas_unlock_irq(&xas); 1933 filemap_flush(mapping); 1934 result = SCAN_FAIL; 1935 goto xa_unlocked; 1936 } else if (folio_test_writeback(folio)) { 1937 xas_unlock_irq(&xas); 1938 result = SCAN_FAIL; 1939 goto xa_unlocked; 1940 } else if (folio_trylock(folio)) { 1941 folio_get(folio); 1942 xas_unlock_irq(&xas); 1943 } else { 1944 result = SCAN_PAGE_LOCK; 1945 goto xa_locked; 1946 } 1947 } 1948 1949 /* 1950 * The folio must be locked, so we can drop the i_pages lock 1951 * without racing with truncate. 1952 */ 1953 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1954 1955 /* make sure the folio is up to date */ 1956 if (unlikely(!folio_test_uptodate(folio))) { 1957 result = SCAN_FAIL; 1958 goto out_unlock; 1959 } 1960 1961 /* 1962 * If file was truncated then extended, or hole-punched, before 1963 * we locked the first folio, then a THP might be there already. 1964 * This will be discovered on the first iteration. 1965 */ 1966 if (folio_order(folio) == HPAGE_PMD_ORDER && 1967 folio->index == start) { 1968 /* Maybe PMD-mapped */ 1969 result = SCAN_PTE_MAPPED_HUGEPAGE; 1970 goto out_unlock; 1971 } 1972 1973 if (folio_mapping(folio) != mapping) { 1974 result = SCAN_TRUNCATED; 1975 goto out_unlock; 1976 } 1977 1978 if (!is_shmem && (folio_test_dirty(folio) || 1979 folio_test_writeback(folio))) { 1980 /* 1981 * khugepaged only works on read-only fd, so this 1982 * folio is dirty because it hasn't been flushed 1983 * since first write. 1984 */ 1985 result = SCAN_FAIL; 1986 goto out_unlock; 1987 } 1988 1989 if (!folio_isolate_lru(folio)) { 1990 result = SCAN_DEL_PAGE_LRU; 1991 goto out_unlock; 1992 } 1993 1994 if (!filemap_release_folio(folio, GFP_KERNEL)) { 1995 result = SCAN_PAGE_HAS_PRIVATE; 1996 folio_putback_lru(folio); 1997 goto out_unlock; 1998 } 1999 2000 if (folio_mapped(folio)) 2001 try_to_unmap(folio, 2002 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 2003 2004 xas_lock_irq(&xas); 2005 2006 VM_BUG_ON_FOLIO(folio != xa_load(xas.xa, index), folio); 2007 2008 /* 2009 * We control 2 + nr_pages references to the folio: 2010 * - we hold a pin on it; 2011 * - nr_pages reference from page cache; 2012 * - one from lru_isolate_folio; 2013 * If those are the only references, then any new usage 2014 * of the folio will have to fetch it from the page 2015 * cache. That requires locking the folio to handle 2016 * truncate, so any new usage will be blocked until we 2017 * unlock folio after collapse/during rollback. 2018 */ 2019 if (folio_ref_count(folio) != 2 + folio_nr_pages(folio)) { 2020 result = SCAN_PAGE_COUNT; 2021 xas_unlock_irq(&xas); 2022 folio_putback_lru(folio); 2023 goto out_unlock; 2024 } 2025 2026 /* 2027 * Accumulate the folios that are being collapsed. 2028 */ 2029 list_add_tail(&folio->lru, &pagelist); 2030 index += folio_nr_pages(folio); 2031 continue; 2032 out_unlock: 2033 folio_unlock(folio); 2034 folio_put(folio); 2035 goto xa_unlocked; 2036 } 2037 2038 if (!is_shmem) { 2039 filemap_nr_thps_inc(mapping); 2040 /* 2041 * Paired with the fence in do_dentry_open() -> get_write_access() 2042 * to ensure i_writecount is up to date and the update to nr_thps 2043 * is visible. Ensures the page cache will be truncated if the 2044 * file is opened writable. 2045 */ 2046 smp_mb(); 2047 if (inode_is_open_for_write(mapping->host)) { 2048 result = SCAN_FAIL; 2049 filemap_nr_thps_dec(mapping); 2050 } 2051 } 2052 2053 xa_locked: 2054 xas_unlock_irq(&xas); 2055 xa_unlocked: 2056 2057 /* 2058 * If collapse is successful, flush must be done now before copying. 2059 * If collapse is unsuccessful, does flush actually need to be done? 2060 * Do it anyway, to clear the state. 2061 */ 2062 try_to_unmap_flush(); 2063 2064 if (result == SCAN_SUCCEED && nr_none && 2065 !shmem_charge(mapping->host, nr_none)) 2066 result = SCAN_FAIL; 2067 if (result != SCAN_SUCCEED) { 2068 nr_none = 0; 2069 goto rollback; 2070 } 2071 2072 /* 2073 * The old folios are locked, so they won't change anymore. 2074 */ 2075 index = start; 2076 dst = folio_page(new_folio, 0); 2077 list_for_each_entry(folio, &pagelist, lru) { 2078 int i, nr_pages = folio_nr_pages(folio); 2079 2080 while (index < folio->index) { 2081 clear_highpage(dst); 2082 index++; 2083 dst++; 2084 } 2085 2086 for (i = 0; i < nr_pages; i++) { 2087 if (copy_mc_highpage(dst, folio_page(folio, i)) > 0) { 2088 result = SCAN_COPY_MC; 2089 goto rollback; 2090 } 2091 index++; 2092 dst++; 2093 } 2094 } 2095 while (index < end) { 2096 clear_highpage(dst); 2097 index++; 2098 dst++; 2099 } 2100 2101 if (nr_none) { 2102 struct vm_area_struct *vma; 2103 int nr_none_check = 0; 2104 2105 i_mmap_lock_read(mapping); 2106 xas_lock_irq(&xas); 2107 2108 xas_set(&xas, start); 2109 for (index = start; index < end; index++) { 2110 if (!xas_next(&xas)) { 2111 xas_store(&xas, XA_RETRY_ENTRY); 2112 if (xas_error(&xas)) { 2113 result = SCAN_STORE_FAILED; 2114 goto immap_locked; 2115 } 2116 nr_none_check++; 2117 } 2118 } 2119 2120 if (nr_none != nr_none_check) { 2121 result = SCAN_PAGE_FILLED; 2122 goto immap_locked; 2123 } 2124 2125 /* 2126 * If userspace observed a missing page in a VMA with 2127 * a MODE_MISSING userfaultfd, then it might expect a 2128 * UFFD_EVENT_PAGEFAULT for that page. If so, we need to 2129 * roll back to avoid suppressing such an event. Since 2130 * wp/minor userfaultfds don't give userspace any 2131 * guarantees that the kernel doesn't fill a missing 2132 * page with a zero page, so they don't matter here. 2133 * 2134 * Any userfaultfds registered after this point will 2135 * not be able to observe any missing pages due to the 2136 * previously inserted retry entries. 2137 */ 2138 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2139 if (userfaultfd_missing(vma)) { 2140 result = SCAN_EXCEED_NONE_PTE; 2141 goto immap_locked; 2142 } 2143 } 2144 2145 immap_locked: 2146 i_mmap_unlock_read(mapping); 2147 if (result != SCAN_SUCCEED) { 2148 xas_set(&xas, start); 2149 for (index = start; index < end; index++) { 2150 if (xas_next(&xas) == XA_RETRY_ENTRY) 2151 xas_store(&xas, NULL); 2152 } 2153 2154 xas_unlock_irq(&xas); 2155 goto rollback; 2156 } 2157 } else { 2158 xas_lock_irq(&xas); 2159 } 2160 2161 if (is_shmem) 2162 __lruvec_stat_mod_folio(new_folio, NR_SHMEM_THPS, HPAGE_PMD_NR); 2163 else 2164 __lruvec_stat_mod_folio(new_folio, NR_FILE_THPS, HPAGE_PMD_NR); 2165 2166 if (nr_none) { 2167 __lruvec_stat_mod_folio(new_folio, NR_FILE_PAGES, nr_none); 2168 /* nr_none is always 0 for non-shmem. */ 2169 __lruvec_stat_mod_folio(new_folio, NR_SHMEM, nr_none); 2170 } 2171 2172 /* 2173 * Mark new_folio as uptodate before inserting it into the 2174 * page cache so that it isn't mistaken for an fallocated but 2175 * unwritten page. 2176 */ 2177 folio_mark_uptodate(new_folio); 2178 folio_ref_add(new_folio, HPAGE_PMD_NR - 1); 2179 2180 if (is_shmem) 2181 folio_mark_dirty(new_folio); 2182 folio_add_lru(new_folio); 2183 2184 /* Join all the small entries into a single multi-index entry. */ 2185 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2186 xas_store(&xas, new_folio); 2187 WARN_ON_ONCE(xas_error(&xas)); 2188 xas_unlock_irq(&xas); 2189 2190 /* 2191 * Remove pte page tables, so we can re-fault the page as huge. 2192 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2193 */ 2194 retract_page_tables(mapping, start); 2195 if (cc && !cc->is_khugepaged) 2196 result = SCAN_PTE_MAPPED_HUGEPAGE; 2197 folio_unlock(new_folio); 2198 2199 /* 2200 * The collapse has succeeded, so free the old folios. 2201 */ 2202 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2203 list_del(&folio->lru); 2204 folio->mapping = NULL; 2205 folio_clear_active(folio); 2206 folio_clear_unevictable(folio); 2207 folio_unlock(folio); 2208 folio_put_refs(folio, 2 + folio_nr_pages(folio)); 2209 } 2210 2211 goto out; 2212 2213 rollback: 2214 /* Something went wrong: roll back page cache changes */ 2215 if (nr_none) { 2216 xas_lock_irq(&xas); 2217 mapping->nrpages -= nr_none; 2218 xas_unlock_irq(&xas); 2219 shmem_uncharge(mapping->host, nr_none); 2220 } 2221 2222 list_for_each_entry_safe(folio, tmp, &pagelist, lru) { 2223 list_del(&folio->lru); 2224 folio_unlock(folio); 2225 folio_putback_lru(folio); 2226 folio_put(folio); 2227 } 2228 /* 2229 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2230 * file only. This undo is not needed unless failure is 2231 * due to SCAN_COPY_MC. 2232 */ 2233 if (!is_shmem && result == SCAN_COPY_MC) { 2234 filemap_nr_thps_dec(mapping); 2235 /* 2236 * Paired with the fence in do_dentry_open() -> get_write_access() 2237 * to ensure the update to nr_thps is visible. 2238 */ 2239 smp_mb(); 2240 } 2241 2242 new_folio->mapping = NULL; 2243 2244 folio_unlock(new_folio); 2245 folio_put(new_folio); 2246 out: 2247 VM_BUG_ON(!list_empty(&pagelist)); 2248 trace_mm_khugepaged_collapse_file(mm, new_folio, index, addr, is_shmem, file, HPAGE_PMD_NR, result); 2249 return result; 2250 } 2251 2252 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2253 struct file *file, pgoff_t start, 2254 struct collapse_control *cc) 2255 { 2256 struct folio *folio = NULL; 2257 struct address_space *mapping = file->f_mapping; 2258 XA_STATE(xas, &mapping->i_pages, start); 2259 int present, swap; 2260 int node = NUMA_NO_NODE; 2261 int result = SCAN_SUCCEED; 2262 2263 present = 0; 2264 swap = 0; 2265 memset(cc->node_load, 0, sizeof(cc->node_load)); 2266 nodes_clear(cc->alloc_nmask); 2267 rcu_read_lock(); 2268 xas_for_each(&xas, folio, start + HPAGE_PMD_NR - 1) { 2269 if (xas_retry(&xas, folio)) 2270 continue; 2271 2272 if (xa_is_value(folio)) { 2273 swap += 1 << xas_get_order(&xas); 2274 if (cc->is_khugepaged && 2275 swap > khugepaged_max_ptes_swap) { 2276 result = SCAN_EXCEED_SWAP_PTE; 2277 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2278 break; 2279 } 2280 continue; 2281 } 2282 2283 if (folio_order(folio) == HPAGE_PMD_ORDER && 2284 folio->index == start) { 2285 /* Maybe PMD-mapped */ 2286 result = SCAN_PTE_MAPPED_HUGEPAGE; 2287 /* 2288 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2289 * by the caller won't touch the page cache, and so 2290 * it's safe to skip LRU and refcount checks before 2291 * returning. 2292 */ 2293 break; 2294 } 2295 2296 node = folio_nid(folio); 2297 if (hpage_collapse_scan_abort(node, cc)) { 2298 result = SCAN_SCAN_ABORT; 2299 break; 2300 } 2301 cc->node_load[node]++; 2302 2303 if (!folio_test_lru(folio)) { 2304 result = SCAN_PAGE_LRU; 2305 break; 2306 } 2307 2308 if (!is_refcount_suitable(folio)) { 2309 result = SCAN_PAGE_COUNT; 2310 break; 2311 } 2312 2313 /* 2314 * We probably should check if the folio is referenced 2315 * here, but nobody would transfer pte_young() to 2316 * folio_test_referenced() for us. And rmap walk here 2317 * is just too costly... 2318 */ 2319 2320 present += folio_nr_pages(folio); 2321 2322 if (need_resched()) { 2323 xas_pause(&xas); 2324 cond_resched_rcu(); 2325 } 2326 } 2327 rcu_read_unlock(); 2328 2329 if (result == SCAN_SUCCEED) { 2330 if (cc->is_khugepaged && 2331 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2332 result = SCAN_EXCEED_NONE_PTE; 2333 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2334 } else { 2335 result = collapse_file(mm, addr, file, start, cc); 2336 } 2337 } 2338 2339 trace_mm_khugepaged_scan_file(mm, folio, file, present, swap, result); 2340 return result; 2341 } 2342 #else 2343 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2344 struct file *file, pgoff_t start, 2345 struct collapse_control *cc) 2346 { 2347 BUILD_BUG(); 2348 } 2349 #endif 2350 2351 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2352 struct collapse_control *cc) 2353 __releases(&khugepaged_mm_lock) 2354 __acquires(&khugepaged_mm_lock) 2355 { 2356 struct vma_iterator vmi; 2357 struct khugepaged_mm_slot *mm_slot; 2358 struct mm_slot *slot; 2359 struct mm_struct *mm; 2360 struct vm_area_struct *vma; 2361 int progress = 0; 2362 2363 VM_BUG_ON(!pages); 2364 lockdep_assert_held(&khugepaged_mm_lock); 2365 *result = SCAN_FAIL; 2366 2367 if (khugepaged_scan.mm_slot) { 2368 mm_slot = khugepaged_scan.mm_slot; 2369 slot = &mm_slot->slot; 2370 } else { 2371 slot = list_entry(khugepaged_scan.mm_head.next, 2372 struct mm_slot, mm_node); 2373 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2374 khugepaged_scan.address = 0; 2375 khugepaged_scan.mm_slot = mm_slot; 2376 } 2377 spin_unlock(&khugepaged_mm_lock); 2378 2379 mm = slot->mm; 2380 /* 2381 * Don't wait for semaphore (to avoid long wait times). Just move to 2382 * the next mm on the list. 2383 */ 2384 vma = NULL; 2385 if (unlikely(!mmap_read_trylock(mm))) 2386 goto breakouterloop_mmap_lock; 2387 2388 progress++; 2389 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2390 goto breakouterloop; 2391 2392 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2393 for_each_vma(vmi, vma) { 2394 unsigned long hstart, hend; 2395 2396 cond_resched(); 2397 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) { 2398 progress++; 2399 break; 2400 } 2401 if (!thp_vma_allowable_order(vma, vma->vm_flags, 2402 TVA_ENFORCE_SYSFS, PMD_ORDER)) { 2403 skip: 2404 progress++; 2405 continue; 2406 } 2407 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2408 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2409 if (khugepaged_scan.address > hend) 2410 goto skip; 2411 if (khugepaged_scan.address < hstart) 2412 khugepaged_scan.address = hstart; 2413 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2414 2415 while (khugepaged_scan.address < hend) { 2416 bool mmap_locked = true; 2417 2418 cond_resched(); 2419 if (unlikely(hpage_collapse_test_exit_or_disable(mm))) 2420 goto breakouterloop; 2421 2422 VM_BUG_ON(khugepaged_scan.address < hstart || 2423 khugepaged_scan.address + HPAGE_PMD_SIZE > 2424 hend); 2425 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2426 struct file *file = get_file(vma->vm_file); 2427 pgoff_t pgoff = linear_page_index(vma, 2428 khugepaged_scan.address); 2429 2430 mmap_read_unlock(mm); 2431 mmap_locked = false; 2432 *result = hpage_collapse_scan_file(mm, 2433 khugepaged_scan.address, file, pgoff, cc); 2434 fput(file); 2435 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2436 mmap_read_lock(mm); 2437 if (hpage_collapse_test_exit_or_disable(mm)) 2438 goto breakouterloop; 2439 *result = collapse_pte_mapped_thp(mm, 2440 khugepaged_scan.address, false); 2441 if (*result == SCAN_PMD_MAPPED) 2442 *result = SCAN_SUCCEED; 2443 mmap_read_unlock(mm); 2444 } 2445 } else { 2446 *result = hpage_collapse_scan_pmd(mm, vma, 2447 khugepaged_scan.address, &mmap_locked, cc); 2448 } 2449 2450 if (*result == SCAN_SUCCEED) 2451 ++khugepaged_pages_collapsed; 2452 2453 /* move to next address */ 2454 khugepaged_scan.address += HPAGE_PMD_SIZE; 2455 progress += HPAGE_PMD_NR; 2456 if (!mmap_locked) 2457 /* 2458 * We released mmap_lock so break loop. Note 2459 * that we drop mmap_lock before all hugepage 2460 * allocations, so if allocation fails, we are 2461 * guaranteed to break here and report the 2462 * correct result back to caller. 2463 */ 2464 goto breakouterloop_mmap_lock; 2465 if (progress >= pages) 2466 goto breakouterloop; 2467 } 2468 } 2469 breakouterloop: 2470 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2471 breakouterloop_mmap_lock: 2472 2473 spin_lock(&khugepaged_mm_lock); 2474 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2475 /* 2476 * Release the current mm_slot if this mm is about to die, or 2477 * if we scanned all vmas of this mm. 2478 */ 2479 if (hpage_collapse_test_exit(mm) || !vma) { 2480 /* 2481 * Make sure that if mm_users is reaching zero while 2482 * khugepaged runs here, khugepaged_exit will find 2483 * mm_slot not pointing to the exiting mm. 2484 */ 2485 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2486 slot = list_entry(slot->mm_node.next, 2487 struct mm_slot, mm_node); 2488 khugepaged_scan.mm_slot = 2489 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2490 khugepaged_scan.address = 0; 2491 } else { 2492 khugepaged_scan.mm_slot = NULL; 2493 khugepaged_full_scans++; 2494 } 2495 2496 collect_mm_slot(mm_slot); 2497 } 2498 2499 return progress; 2500 } 2501 2502 static int khugepaged_has_work(void) 2503 { 2504 return !list_empty(&khugepaged_scan.mm_head) && hugepage_pmd_enabled(); 2505 } 2506 2507 static int khugepaged_wait_event(void) 2508 { 2509 return !list_empty(&khugepaged_scan.mm_head) || 2510 kthread_should_stop(); 2511 } 2512 2513 static void khugepaged_do_scan(struct collapse_control *cc) 2514 { 2515 unsigned int progress = 0, pass_through_head = 0; 2516 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2517 bool wait = true; 2518 int result = SCAN_SUCCEED; 2519 2520 lru_add_drain_all(); 2521 2522 while (true) { 2523 cond_resched(); 2524 2525 if (unlikely(kthread_should_stop())) 2526 break; 2527 2528 spin_lock(&khugepaged_mm_lock); 2529 if (!khugepaged_scan.mm_slot) 2530 pass_through_head++; 2531 if (khugepaged_has_work() && 2532 pass_through_head < 2) 2533 progress += khugepaged_scan_mm_slot(pages - progress, 2534 &result, cc); 2535 else 2536 progress = pages; 2537 spin_unlock(&khugepaged_mm_lock); 2538 2539 if (progress >= pages) 2540 break; 2541 2542 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2543 /* 2544 * If fail to allocate the first time, try to sleep for 2545 * a while. When hit again, cancel the scan. 2546 */ 2547 if (!wait) 2548 break; 2549 wait = false; 2550 khugepaged_alloc_sleep(); 2551 } 2552 } 2553 } 2554 2555 static bool khugepaged_should_wakeup(void) 2556 { 2557 return kthread_should_stop() || 2558 time_after_eq(jiffies, khugepaged_sleep_expire); 2559 } 2560 2561 static void khugepaged_wait_work(void) 2562 { 2563 if (khugepaged_has_work()) { 2564 const unsigned long scan_sleep_jiffies = 2565 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2566 2567 if (!scan_sleep_jiffies) 2568 return; 2569 2570 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2571 wait_event_freezable_timeout(khugepaged_wait, 2572 khugepaged_should_wakeup(), 2573 scan_sleep_jiffies); 2574 return; 2575 } 2576 2577 if (hugepage_pmd_enabled()) 2578 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2579 } 2580 2581 static int khugepaged(void *none) 2582 { 2583 struct khugepaged_mm_slot *mm_slot; 2584 2585 set_freezable(); 2586 set_user_nice(current, MAX_NICE); 2587 2588 while (!kthread_should_stop()) { 2589 khugepaged_do_scan(&khugepaged_collapse_control); 2590 khugepaged_wait_work(); 2591 } 2592 2593 spin_lock(&khugepaged_mm_lock); 2594 mm_slot = khugepaged_scan.mm_slot; 2595 khugepaged_scan.mm_slot = NULL; 2596 if (mm_slot) 2597 collect_mm_slot(mm_slot); 2598 spin_unlock(&khugepaged_mm_lock); 2599 return 0; 2600 } 2601 2602 static void set_recommended_min_free_kbytes(void) 2603 { 2604 struct zone *zone; 2605 int nr_zones = 0; 2606 unsigned long recommended_min; 2607 2608 if (!hugepage_pmd_enabled()) { 2609 calculate_min_free_kbytes(); 2610 goto update_wmarks; 2611 } 2612 2613 for_each_populated_zone(zone) { 2614 /* 2615 * We don't need to worry about fragmentation of 2616 * ZONE_MOVABLE since it only has movable pages. 2617 */ 2618 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2619 continue; 2620 2621 nr_zones++; 2622 } 2623 2624 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2625 recommended_min = pageblock_nr_pages * nr_zones * 2; 2626 2627 /* 2628 * Make sure that on average at least two pageblocks are almost free 2629 * of another type, one for a migratetype to fall back to and a 2630 * second to avoid subsequent fallbacks of other types There are 3 2631 * MIGRATE_TYPES we care about. 2632 */ 2633 recommended_min += pageblock_nr_pages * nr_zones * 2634 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2635 2636 /* don't ever allow to reserve more than 5% of the lowmem */ 2637 recommended_min = min(recommended_min, 2638 (unsigned long) nr_free_buffer_pages() / 20); 2639 recommended_min <<= (PAGE_SHIFT-10); 2640 2641 if (recommended_min > min_free_kbytes) { 2642 if (user_min_free_kbytes >= 0) 2643 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2644 min_free_kbytes, recommended_min); 2645 2646 min_free_kbytes = recommended_min; 2647 } 2648 2649 update_wmarks: 2650 setup_per_zone_wmarks(); 2651 } 2652 2653 int start_stop_khugepaged(void) 2654 { 2655 int err = 0; 2656 2657 mutex_lock(&khugepaged_mutex); 2658 if (hugepage_pmd_enabled()) { 2659 if (!khugepaged_thread) 2660 khugepaged_thread = kthread_run(khugepaged, NULL, 2661 "khugepaged"); 2662 if (IS_ERR(khugepaged_thread)) { 2663 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2664 err = PTR_ERR(khugepaged_thread); 2665 khugepaged_thread = NULL; 2666 goto fail; 2667 } 2668 2669 if (!list_empty(&khugepaged_scan.mm_head)) 2670 wake_up_interruptible(&khugepaged_wait); 2671 } else if (khugepaged_thread) { 2672 kthread_stop(khugepaged_thread); 2673 khugepaged_thread = NULL; 2674 } 2675 set_recommended_min_free_kbytes(); 2676 fail: 2677 mutex_unlock(&khugepaged_mutex); 2678 return err; 2679 } 2680 2681 void khugepaged_min_free_kbytes_update(void) 2682 { 2683 mutex_lock(&khugepaged_mutex); 2684 if (hugepage_pmd_enabled() && khugepaged_thread) 2685 set_recommended_min_free_kbytes(); 2686 mutex_unlock(&khugepaged_mutex); 2687 } 2688 2689 bool current_is_khugepaged(void) 2690 { 2691 return kthread_func(current) == khugepaged; 2692 } 2693 2694 static int madvise_collapse_errno(enum scan_result r) 2695 { 2696 /* 2697 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2698 * actionable feedback to caller, so they may take an appropriate 2699 * fallback measure depending on the nature of the failure. 2700 */ 2701 switch (r) { 2702 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2703 return -ENOMEM; 2704 case SCAN_CGROUP_CHARGE_FAIL: 2705 case SCAN_EXCEED_NONE_PTE: 2706 return -EBUSY; 2707 /* Resource temporary unavailable - trying again might succeed */ 2708 case SCAN_PAGE_COUNT: 2709 case SCAN_PAGE_LOCK: 2710 case SCAN_PAGE_LRU: 2711 case SCAN_DEL_PAGE_LRU: 2712 case SCAN_PAGE_FILLED: 2713 return -EAGAIN; 2714 /* 2715 * Other: Trying again likely not to succeed / error intrinsic to 2716 * specified memory range. khugepaged likely won't be able to collapse 2717 * either. 2718 */ 2719 default: 2720 return -EINVAL; 2721 } 2722 } 2723 2724 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2725 unsigned long start, unsigned long end) 2726 { 2727 struct collapse_control *cc; 2728 struct mm_struct *mm = vma->vm_mm; 2729 unsigned long hstart, hend, addr; 2730 int thps = 0, last_fail = SCAN_FAIL; 2731 bool mmap_locked = true; 2732 2733 BUG_ON(vma->vm_start > start); 2734 BUG_ON(vma->vm_end < end); 2735 2736 *prev = vma; 2737 2738 if (!thp_vma_allowable_order(vma, vma->vm_flags, 0, PMD_ORDER)) 2739 return -EINVAL; 2740 2741 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2742 if (!cc) 2743 return -ENOMEM; 2744 cc->is_khugepaged = false; 2745 2746 mmgrab(mm); 2747 lru_add_drain_all(); 2748 2749 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2750 hend = end & HPAGE_PMD_MASK; 2751 2752 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2753 int result = SCAN_FAIL; 2754 2755 if (!mmap_locked) { 2756 cond_resched(); 2757 mmap_read_lock(mm); 2758 mmap_locked = true; 2759 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2760 cc); 2761 if (result != SCAN_SUCCEED) { 2762 last_fail = result; 2763 goto out_nolock; 2764 } 2765 2766 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2767 } 2768 mmap_assert_locked(mm); 2769 memset(cc->node_load, 0, sizeof(cc->node_load)); 2770 nodes_clear(cc->alloc_nmask); 2771 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2772 struct file *file = get_file(vma->vm_file); 2773 pgoff_t pgoff = linear_page_index(vma, addr); 2774 2775 mmap_read_unlock(mm); 2776 mmap_locked = false; 2777 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2778 cc); 2779 fput(file); 2780 } else { 2781 result = hpage_collapse_scan_pmd(mm, vma, addr, 2782 &mmap_locked, cc); 2783 } 2784 if (!mmap_locked) 2785 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2786 2787 handle_result: 2788 switch (result) { 2789 case SCAN_SUCCEED: 2790 case SCAN_PMD_MAPPED: 2791 ++thps; 2792 break; 2793 case SCAN_PTE_MAPPED_HUGEPAGE: 2794 BUG_ON(mmap_locked); 2795 BUG_ON(*prev); 2796 mmap_read_lock(mm); 2797 result = collapse_pte_mapped_thp(mm, addr, true); 2798 mmap_read_unlock(mm); 2799 goto handle_result; 2800 /* Whitelisted set of results where continuing OK */ 2801 case SCAN_PMD_NULL: 2802 case SCAN_PTE_NON_PRESENT: 2803 case SCAN_PTE_UFFD_WP: 2804 case SCAN_PAGE_RO: 2805 case SCAN_LACK_REFERENCED_PAGE: 2806 case SCAN_PAGE_NULL: 2807 case SCAN_PAGE_COUNT: 2808 case SCAN_PAGE_LOCK: 2809 case SCAN_PAGE_COMPOUND: 2810 case SCAN_PAGE_LRU: 2811 case SCAN_DEL_PAGE_LRU: 2812 last_fail = result; 2813 break; 2814 default: 2815 last_fail = result; 2816 /* Other error, exit */ 2817 goto out_maybelock; 2818 } 2819 } 2820 2821 out_maybelock: 2822 /* Caller expects us to hold mmap_lock on return */ 2823 if (!mmap_locked) 2824 mmap_read_lock(mm); 2825 out_nolock: 2826 mmap_assert_locked(mm); 2827 mmdrop(mm); 2828 kfree(cc); 2829 2830 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2831 : madvise_collapse_errno(last_fail); 2832 } 2833