1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/tlb.h> 24 #include <asm/pgalloc.h> 25 #include "internal.h" 26 #include "mm_slot.h" 27 28 enum scan_result { 29 SCAN_FAIL, 30 SCAN_SUCCEED, 31 SCAN_PMD_NULL, 32 SCAN_PMD_NONE, 33 SCAN_PMD_MAPPED, 34 SCAN_EXCEED_NONE_PTE, 35 SCAN_EXCEED_SWAP_PTE, 36 SCAN_EXCEED_SHARED_PTE, 37 SCAN_PTE_NON_PRESENT, 38 SCAN_PTE_UFFD_WP, 39 SCAN_PTE_MAPPED_HUGEPAGE, 40 SCAN_PAGE_RO, 41 SCAN_LACK_REFERENCED_PAGE, 42 SCAN_PAGE_NULL, 43 SCAN_SCAN_ABORT, 44 SCAN_PAGE_COUNT, 45 SCAN_PAGE_LRU, 46 SCAN_PAGE_LOCK, 47 SCAN_PAGE_ANON, 48 SCAN_PAGE_COMPOUND, 49 SCAN_ANY_PROCESS, 50 SCAN_VMA_NULL, 51 SCAN_VMA_CHECK, 52 SCAN_ADDRESS_RANGE, 53 SCAN_DEL_PAGE_LRU, 54 SCAN_ALLOC_HUGE_PAGE_FAIL, 55 SCAN_CGROUP_CHARGE_FAIL, 56 SCAN_TRUNCATED, 57 SCAN_PAGE_HAS_PRIVATE, 58 }; 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/huge_memory.h> 62 63 static struct task_struct *khugepaged_thread __read_mostly; 64 static DEFINE_MUTEX(khugepaged_mutex); 65 66 /* default scan 8*512 pte (or vmas) every 30 second */ 67 static unsigned int khugepaged_pages_to_scan __read_mostly; 68 static unsigned int khugepaged_pages_collapsed; 69 static unsigned int khugepaged_full_scans; 70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 71 /* during fragmentation poll the hugepage allocator once every minute */ 72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 73 static unsigned long khugepaged_sleep_expire; 74 static DEFINE_SPINLOCK(khugepaged_mm_lock); 75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 76 /* 77 * default collapse hugepages if there is at least one pte mapped like 78 * it would have happened if the vma was large enough during page 79 * fault. 80 * 81 * Note that these are only respected if collapse was initiated by khugepaged. 82 */ 83 static unsigned int khugepaged_max_ptes_none __read_mostly; 84 static unsigned int khugepaged_max_ptes_swap __read_mostly; 85 static unsigned int khugepaged_max_ptes_shared __read_mostly; 86 87 #define MM_SLOTS_HASH_BITS 10 88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 89 90 static struct kmem_cache *mm_slot_cache __read_mostly; 91 92 #define MAX_PTE_MAPPED_THP 8 93 94 struct collapse_control { 95 bool is_khugepaged; 96 97 /* Num pages scanned per node */ 98 u32 node_load[MAX_NUMNODES]; 99 100 /* nodemask for allocation fallback */ 101 nodemask_t alloc_nmask; 102 }; 103 104 /** 105 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 106 * @slot: hash lookup from mm to mm_slot 107 * @nr_pte_mapped_thp: number of pte mapped THP 108 * @pte_mapped_thp: address array corresponding pte mapped THP 109 */ 110 struct khugepaged_mm_slot { 111 struct mm_slot slot; 112 113 /* pte-mapped THP in this mm */ 114 int nr_pte_mapped_thp; 115 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 116 }; 117 118 /** 119 * struct khugepaged_scan - cursor for scanning 120 * @mm_head: the head of the mm list to scan 121 * @mm_slot: the current mm_slot we are scanning 122 * @address: the next address inside that to be scanned 123 * 124 * There is only the one khugepaged_scan instance of this cursor structure. 125 */ 126 struct khugepaged_scan { 127 struct list_head mm_head; 128 struct khugepaged_mm_slot *mm_slot; 129 unsigned long address; 130 }; 131 132 static struct khugepaged_scan khugepaged_scan = { 133 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 134 }; 135 136 #ifdef CONFIG_SYSFS 137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 138 struct kobj_attribute *attr, 139 char *buf) 140 { 141 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 142 } 143 144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 145 struct kobj_attribute *attr, 146 const char *buf, size_t count) 147 { 148 unsigned int msecs; 149 int err; 150 151 err = kstrtouint(buf, 10, &msecs); 152 if (err) 153 return -EINVAL; 154 155 khugepaged_scan_sleep_millisecs = msecs; 156 khugepaged_sleep_expire = 0; 157 wake_up_interruptible(&khugepaged_wait); 158 159 return count; 160 } 161 static struct kobj_attribute scan_sleep_millisecs_attr = 162 __ATTR_RW(scan_sleep_millisecs); 163 164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 165 struct kobj_attribute *attr, 166 char *buf) 167 { 168 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 169 } 170 171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 172 struct kobj_attribute *attr, 173 const char *buf, size_t count) 174 { 175 unsigned int msecs; 176 int err; 177 178 err = kstrtouint(buf, 10, &msecs); 179 if (err) 180 return -EINVAL; 181 182 khugepaged_alloc_sleep_millisecs = msecs; 183 khugepaged_sleep_expire = 0; 184 wake_up_interruptible(&khugepaged_wait); 185 186 return count; 187 } 188 static struct kobj_attribute alloc_sleep_millisecs_attr = 189 __ATTR_RW(alloc_sleep_millisecs); 190 191 static ssize_t pages_to_scan_show(struct kobject *kobj, 192 struct kobj_attribute *attr, 193 char *buf) 194 { 195 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 196 } 197 static ssize_t pages_to_scan_store(struct kobject *kobj, 198 struct kobj_attribute *attr, 199 const char *buf, size_t count) 200 { 201 unsigned int pages; 202 int err; 203 204 err = kstrtouint(buf, 10, &pages); 205 if (err || !pages) 206 return -EINVAL; 207 208 khugepaged_pages_to_scan = pages; 209 210 return count; 211 } 212 static struct kobj_attribute pages_to_scan_attr = 213 __ATTR_RW(pages_to_scan); 214 215 static ssize_t pages_collapsed_show(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 char *buf) 218 { 219 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 220 } 221 static struct kobj_attribute pages_collapsed_attr = 222 __ATTR_RO(pages_collapsed); 223 224 static ssize_t full_scans_show(struct kobject *kobj, 225 struct kobj_attribute *attr, 226 char *buf) 227 { 228 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 229 } 230 static struct kobj_attribute full_scans_attr = 231 __ATTR_RO(full_scans); 232 233 static ssize_t defrag_show(struct kobject *kobj, 234 struct kobj_attribute *attr, char *buf) 235 { 236 return single_hugepage_flag_show(kobj, attr, buf, 237 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 238 } 239 static ssize_t defrag_store(struct kobject *kobj, 240 struct kobj_attribute *attr, 241 const char *buf, size_t count) 242 { 243 return single_hugepage_flag_store(kobj, attr, buf, count, 244 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 245 } 246 static struct kobj_attribute khugepaged_defrag_attr = 247 __ATTR_RW(defrag); 248 249 /* 250 * max_ptes_none controls if khugepaged should collapse hugepages over 251 * any unmapped ptes in turn potentially increasing the memory 252 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 253 * reduce the available free memory in the system as it 254 * runs. Increasing max_ptes_none will instead potentially reduce the 255 * free memory in the system during the khugepaged scan. 256 */ 257 static ssize_t max_ptes_none_show(struct kobject *kobj, 258 struct kobj_attribute *attr, 259 char *buf) 260 { 261 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 262 } 263 static ssize_t max_ptes_none_store(struct kobject *kobj, 264 struct kobj_attribute *attr, 265 const char *buf, size_t count) 266 { 267 int err; 268 unsigned long max_ptes_none; 269 270 err = kstrtoul(buf, 10, &max_ptes_none); 271 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 272 return -EINVAL; 273 274 khugepaged_max_ptes_none = max_ptes_none; 275 276 return count; 277 } 278 static struct kobj_attribute khugepaged_max_ptes_none_attr = 279 __ATTR_RW(max_ptes_none); 280 281 static ssize_t max_ptes_swap_show(struct kobject *kobj, 282 struct kobj_attribute *attr, 283 char *buf) 284 { 285 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 286 } 287 288 static ssize_t max_ptes_swap_store(struct kobject *kobj, 289 struct kobj_attribute *attr, 290 const char *buf, size_t count) 291 { 292 int err; 293 unsigned long max_ptes_swap; 294 295 err = kstrtoul(buf, 10, &max_ptes_swap); 296 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 297 return -EINVAL; 298 299 khugepaged_max_ptes_swap = max_ptes_swap; 300 301 return count; 302 } 303 304 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 305 __ATTR_RW(max_ptes_swap); 306 307 static ssize_t max_ptes_shared_show(struct kobject *kobj, 308 struct kobj_attribute *attr, 309 char *buf) 310 { 311 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 312 } 313 314 static ssize_t max_ptes_shared_store(struct kobject *kobj, 315 struct kobj_attribute *attr, 316 const char *buf, size_t count) 317 { 318 int err; 319 unsigned long max_ptes_shared; 320 321 err = kstrtoul(buf, 10, &max_ptes_shared); 322 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 323 return -EINVAL; 324 325 khugepaged_max_ptes_shared = max_ptes_shared; 326 327 return count; 328 } 329 330 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 331 __ATTR_RW(max_ptes_shared); 332 333 static struct attribute *khugepaged_attr[] = { 334 &khugepaged_defrag_attr.attr, 335 &khugepaged_max_ptes_none_attr.attr, 336 &khugepaged_max_ptes_swap_attr.attr, 337 &khugepaged_max_ptes_shared_attr.attr, 338 &pages_to_scan_attr.attr, 339 &pages_collapsed_attr.attr, 340 &full_scans_attr.attr, 341 &scan_sleep_millisecs_attr.attr, 342 &alloc_sleep_millisecs_attr.attr, 343 NULL, 344 }; 345 346 struct attribute_group khugepaged_attr_group = { 347 .attrs = khugepaged_attr, 348 .name = "khugepaged", 349 }; 350 #endif /* CONFIG_SYSFS */ 351 352 int hugepage_madvise(struct vm_area_struct *vma, 353 unsigned long *vm_flags, int advice) 354 { 355 switch (advice) { 356 case MADV_HUGEPAGE: 357 #ifdef CONFIG_S390 358 /* 359 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 360 * can't handle this properly after s390_enable_sie, so we simply 361 * ignore the madvise to prevent qemu from causing a SIGSEGV. 362 */ 363 if (mm_has_pgste(vma->vm_mm)) 364 return 0; 365 #endif 366 *vm_flags &= ~VM_NOHUGEPAGE; 367 *vm_flags |= VM_HUGEPAGE; 368 /* 369 * If the vma become good for khugepaged to scan, 370 * register it here without waiting a page fault that 371 * may not happen any time soon. 372 */ 373 khugepaged_enter_vma(vma, *vm_flags); 374 break; 375 case MADV_NOHUGEPAGE: 376 *vm_flags &= ~VM_HUGEPAGE; 377 *vm_flags |= VM_NOHUGEPAGE; 378 /* 379 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 380 * this vma even if we leave the mm registered in khugepaged if 381 * it got registered before VM_NOHUGEPAGE was set. 382 */ 383 break; 384 } 385 386 return 0; 387 } 388 389 int __init khugepaged_init(void) 390 { 391 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 392 sizeof(struct khugepaged_mm_slot), 393 __alignof__(struct khugepaged_mm_slot), 394 0, NULL); 395 if (!mm_slot_cache) 396 return -ENOMEM; 397 398 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 399 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 400 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 401 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 402 403 return 0; 404 } 405 406 void __init khugepaged_destroy(void) 407 { 408 kmem_cache_destroy(mm_slot_cache); 409 } 410 411 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 412 { 413 return atomic_read(&mm->mm_users) == 0; 414 } 415 416 void __khugepaged_enter(struct mm_struct *mm) 417 { 418 struct khugepaged_mm_slot *mm_slot; 419 struct mm_slot *slot; 420 int wakeup; 421 422 mm_slot = mm_slot_alloc(mm_slot_cache); 423 if (!mm_slot) 424 return; 425 426 slot = &mm_slot->slot; 427 428 /* __khugepaged_exit() must not run from under us */ 429 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 430 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 431 mm_slot_free(mm_slot_cache, mm_slot); 432 return; 433 } 434 435 spin_lock(&khugepaged_mm_lock); 436 mm_slot_insert(mm_slots_hash, mm, slot); 437 /* 438 * Insert just behind the scanning cursor, to let the area settle 439 * down a little. 440 */ 441 wakeup = list_empty(&khugepaged_scan.mm_head); 442 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 443 spin_unlock(&khugepaged_mm_lock); 444 445 mmgrab(mm); 446 if (wakeup) 447 wake_up_interruptible(&khugepaged_wait); 448 } 449 450 void khugepaged_enter_vma(struct vm_area_struct *vma, 451 unsigned long vm_flags) 452 { 453 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 454 hugepage_flags_enabled()) { 455 if (hugepage_vma_check(vma, vm_flags, false, false, true)) 456 __khugepaged_enter(vma->vm_mm); 457 } 458 } 459 460 void __khugepaged_exit(struct mm_struct *mm) 461 { 462 struct khugepaged_mm_slot *mm_slot; 463 struct mm_slot *slot; 464 int free = 0; 465 466 spin_lock(&khugepaged_mm_lock); 467 slot = mm_slot_lookup(mm_slots_hash, mm); 468 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 469 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 470 hash_del(&slot->hash); 471 list_del(&slot->mm_node); 472 free = 1; 473 } 474 spin_unlock(&khugepaged_mm_lock); 475 476 if (free) { 477 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 478 mm_slot_free(mm_slot_cache, mm_slot); 479 mmdrop(mm); 480 } else if (mm_slot) { 481 /* 482 * This is required to serialize against 483 * hpage_collapse_test_exit() (which is guaranteed to run 484 * under mmap sem read mode). Stop here (after we return all 485 * pagetables will be destroyed) until khugepaged has finished 486 * working on the pagetables under the mmap_lock. 487 */ 488 mmap_write_lock(mm); 489 mmap_write_unlock(mm); 490 } 491 } 492 493 static void release_pte_page(struct page *page) 494 { 495 mod_node_page_state(page_pgdat(page), 496 NR_ISOLATED_ANON + page_is_file_lru(page), 497 -compound_nr(page)); 498 unlock_page(page); 499 putback_lru_page(page); 500 } 501 502 static void release_pte_pages(pte_t *pte, pte_t *_pte, 503 struct list_head *compound_pagelist) 504 { 505 struct page *page, *tmp; 506 507 while (--_pte >= pte) { 508 pte_t pteval = *_pte; 509 510 page = pte_page(pteval); 511 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && 512 !PageCompound(page)) 513 release_pte_page(page); 514 } 515 516 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { 517 list_del(&page->lru); 518 release_pte_page(page); 519 } 520 } 521 522 static bool is_refcount_suitable(struct page *page) 523 { 524 int expected_refcount; 525 526 expected_refcount = total_mapcount(page); 527 if (PageSwapCache(page)) 528 expected_refcount += compound_nr(page); 529 530 return page_count(page) == expected_refcount; 531 } 532 533 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 534 unsigned long address, 535 pte_t *pte, 536 struct collapse_control *cc, 537 struct list_head *compound_pagelist) 538 { 539 struct page *page = NULL; 540 pte_t *_pte; 541 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 542 bool writable = false; 543 544 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 545 _pte++, address += PAGE_SIZE) { 546 pte_t pteval = *_pte; 547 if (pte_none(pteval) || (pte_present(pteval) && 548 is_zero_pfn(pte_pfn(pteval)))) { 549 ++none_or_zero; 550 if (!userfaultfd_armed(vma) && 551 (!cc->is_khugepaged || 552 none_or_zero <= khugepaged_max_ptes_none)) { 553 continue; 554 } else { 555 result = SCAN_EXCEED_NONE_PTE; 556 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 557 goto out; 558 } 559 } 560 if (!pte_present(pteval)) { 561 result = SCAN_PTE_NON_PRESENT; 562 goto out; 563 } 564 page = vm_normal_page(vma, address, pteval); 565 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 566 result = SCAN_PAGE_NULL; 567 goto out; 568 } 569 570 VM_BUG_ON_PAGE(!PageAnon(page), page); 571 572 if (page_mapcount(page) > 1) { 573 ++shared; 574 if (cc->is_khugepaged && 575 shared > khugepaged_max_ptes_shared) { 576 result = SCAN_EXCEED_SHARED_PTE; 577 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 578 goto out; 579 } 580 } 581 582 if (PageCompound(page)) { 583 struct page *p; 584 page = compound_head(page); 585 586 /* 587 * Check if we have dealt with the compound page 588 * already 589 */ 590 list_for_each_entry(p, compound_pagelist, lru) { 591 if (page == p) 592 goto next; 593 } 594 } 595 596 /* 597 * We can do it before isolate_lru_page because the 598 * page can't be freed from under us. NOTE: PG_lock 599 * is needed to serialize against split_huge_page 600 * when invoked from the VM. 601 */ 602 if (!trylock_page(page)) { 603 result = SCAN_PAGE_LOCK; 604 goto out; 605 } 606 607 /* 608 * Check if the page has any GUP (or other external) pins. 609 * 610 * The page table that maps the page has been already unlinked 611 * from the page table tree and this process cannot get 612 * an additional pin on the page. 613 * 614 * New pins can come later if the page is shared across fork, 615 * but not from this process. The other process cannot write to 616 * the page, only trigger CoW. 617 */ 618 if (!is_refcount_suitable(page)) { 619 unlock_page(page); 620 result = SCAN_PAGE_COUNT; 621 goto out; 622 } 623 624 /* 625 * Isolate the page to avoid collapsing an hugepage 626 * currently in use by the VM. 627 */ 628 if (isolate_lru_page(page)) { 629 unlock_page(page); 630 result = SCAN_DEL_PAGE_LRU; 631 goto out; 632 } 633 mod_node_page_state(page_pgdat(page), 634 NR_ISOLATED_ANON + page_is_file_lru(page), 635 compound_nr(page)); 636 VM_BUG_ON_PAGE(!PageLocked(page), page); 637 VM_BUG_ON_PAGE(PageLRU(page), page); 638 639 if (PageCompound(page)) 640 list_add_tail(&page->lru, compound_pagelist); 641 next: 642 /* 643 * If collapse was initiated by khugepaged, check that there is 644 * enough young pte to justify collapsing the page 645 */ 646 if (cc->is_khugepaged && 647 (pte_young(pteval) || page_is_young(page) || 648 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 649 address))) 650 referenced++; 651 652 if (pte_write(pteval)) 653 writable = true; 654 } 655 656 if (unlikely(!writable)) { 657 result = SCAN_PAGE_RO; 658 } else if (unlikely(cc->is_khugepaged && !referenced)) { 659 result = SCAN_LACK_REFERENCED_PAGE; 660 } else { 661 result = SCAN_SUCCEED; 662 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 663 referenced, writable, result); 664 return result; 665 } 666 out: 667 release_pte_pages(pte, _pte, compound_pagelist); 668 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 669 referenced, writable, result); 670 return result; 671 } 672 673 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 674 struct vm_area_struct *vma, 675 unsigned long address, 676 spinlock_t *ptl, 677 struct list_head *compound_pagelist) 678 { 679 struct page *src_page, *tmp; 680 pte_t *_pte; 681 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 682 _pte++, page++, address += PAGE_SIZE) { 683 pte_t pteval = *_pte; 684 685 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 686 clear_user_highpage(page, address); 687 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 688 if (is_zero_pfn(pte_pfn(pteval))) { 689 /* 690 * ptl mostly unnecessary. 691 */ 692 spin_lock(ptl); 693 ptep_clear(vma->vm_mm, address, _pte); 694 spin_unlock(ptl); 695 } 696 } else { 697 src_page = pte_page(pteval); 698 copy_user_highpage(page, src_page, address, vma); 699 if (!PageCompound(src_page)) 700 release_pte_page(src_page); 701 /* 702 * ptl mostly unnecessary, but preempt has to 703 * be disabled to update the per-cpu stats 704 * inside page_remove_rmap(). 705 */ 706 spin_lock(ptl); 707 ptep_clear(vma->vm_mm, address, _pte); 708 page_remove_rmap(src_page, vma, false); 709 spin_unlock(ptl); 710 free_page_and_swap_cache(src_page); 711 } 712 } 713 714 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 715 list_del(&src_page->lru); 716 mod_node_page_state(page_pgdat(src_page), 717 NR_ISOLATED_ANON + page_is_file_lru(src_page), 718 -compound_nr(src_page)); 719 unlock_page(src_page); 720 free_swap_cache(src_page); 721 putback_lru_page(src_page); 722 } 723 } 724 725 static void khugepaged_alloc_sleep(void) 726 { 727 DEFINE_WAIT(wait); 728 729 add_wait_queue(&khugepaged_wait, &wait); 730 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 731 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 732 remove_wait_queue(&khugepaged_wait, &wait); 733 } 734 735 struct collapse_control khugepaged_collapse_control = { 736 .is_khugepaged = true, 737 }; 738 739 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 740 { 741 int i; 742 743 /* 744 * If node_reclaim_mode is disabled, then no extra effort is made to 745 * allocate memory locally. 746 */ 747 if (!node_reclaim_enabled()) 748 return false; 749 750 /* If there is a count for this node already, it must be acceptable */ 751 if (cc->node_load[nid]) 752 return false; 753 754 for (i = 0; i < MAX_NUMNODES; i++) { 755 if (!cc->node_load[i]) 756 continue; 757 if (node_distance(nid, i) > node_reclaim_distance) 758 return true; 759 } 760 return false; 761 } 762 763 #define khugepaged_defrag() \ 764 (transparent_hugepage_flags & \ 765 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 766 767 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 768 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 769 { 770 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 771 } 772 773 #ifdef CONFIG_NUMA 774 static int hpage_collapse_find_target_node(struct collapse_control *cc) 775 { 776 int nid, target_node = 0, max_value = 0; 777 778 /* find first node with max normal pages hit */ 779 for (nid = 0; nid < MAX_NUMNODES; nid++) 780 if (cc->node_load[nid] > max_value) { 781 max_value = cc->node_load[nid]; 782 target_node = nid; 783 } 784 785 for_each_online_node(nid) { 786 if (max_value == cc->node_load[nid]) 787 node_set(nid, cc->alloc_nmask); 788 } 789 790 return target_node; 791 } 792 #else 793 static int hpage_collapse_find_target_node(struct collapse_control *cc) 794 { 795 return 0; 796 } 797 #endif 798 799 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node, 800 nodemask_t *nmask) 801 { 802 *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask); 803 if (unlikely(!*hpage)) { 804 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 805 return false; 806 } 807 808 prep_transhuge_page(*hpage); 809 count_vm_event(THP_COLLAPSE_ALLOC); 810 return true; 811 } 812 813 /* 814 * If mmap_lock temporarily dropped, revalidate vma 815 * before taking mmap_lock. 816 * Returns enum scan_result value. 817 */ 818 819 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 820 bool expect_anon, 821 struct vm_area_struct **vmap, 822 struct collapse_control *cc) 823 { 824 struct vm_area_struct *vma; 825 826 if (unlikely(hpage_collapse_test_exit(mm))) 827 return SCAN_ANY_PROCESS; 828 829 *vmap = vma = find_vma(mm, address); 830 if (!vma) 831 return SCAN_VMA_NULL; 832 833 if (!transhuge_vma_suitable(vma, address)) 834 return SCAN_ADDRESS_RANGE; 835 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, 836 cc->is_khugepaged)) 837 return SCAN_VMA_CHECK; 838 /* 839 * Anon VMA expected, the address may be unmapped then 840 * remapped to file after khugepaged reaquired the mmap_lock. 841 * 842 * hugepage_vma_check may return true for qualified file 843 * vmas. 844 */ 845 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 846 return SCAN_PAGE_ANON; 847 return SCAN_SUCCEED; 848 } 849 850 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 851 unsigned long address, 852 pmd_t **pmd) 853 { 854 pmd_t pmde; 855 856 *pmd = mm_find_pmd(mm, address); 857 if (!*pmd) 858 return SCAN_PMD_NULL; 859 860 pmde = pmdp_get_lockless(*pmd); 861 862 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 863 /* See comments in pmd_none_or_trans_huge_or_clear_bad() */ 864 barrier(); 865 #endif 866 if (pmd_none(pmde)) 867 return SCAN_PMD_NONE; 868 if (pmd_trans_huge(pmde)) 869 return SCAN_PMD_MAPPED; 870 if (pmd_bad(pmde)) 871 return SCAN_PMD_NULL; 872 return SCAN_SUCCEED; 873 } 874 875 static int check_pmd_still_valid(struct mm_struct *mm, 876 unsigned long address, 877 pmd_t *pmd) 878 { 879 pmd_t *new_pmd; 880 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 881 882 if (result != SCAN_SUCCEED) 883 return result; 884 if (new_pmd != pmd) 885 return SCAN_FAIL; 886 return SCAN_SUCCEED; 887 } 888 889 /* 890 * Bring missing pages in from swap, to complete THP collapse. 891 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 892 * 893 * Called and returns without pte mapped or spinlocks held. 894 * Note that if false is returned, mmap_lock will be released. 895 */ 896 897 static int __collapse_huge_page_swapin(struct mm_struct *mm, 898 struct vm_area_struct *vma, 899 unsigned long haddr, pmd_t *pmd, 900 int referenced) 901 { 902 int swapped_in = 0; 903 vm_fault_t ret = 0; 904 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 905 906 for (address = haddr; address < end; address += PAGE_SIZE) { 907 struct vm_fault vmf = { 908 .vma = vma, 909 .address = address, 910 .pgoff = linear_page_index(vma, haddr), 911 .flags = FAULT_FLAG_ALLOW_RETRY, 912 .pmd = pmd, 913 }; 914 915 vmf.pte = pte_offset_map(pmd, address); 916 vmf.orig_pte = *vmf.pte; 917 if (!is_swap_pte(vmf.orig_pte)) { 918 pte_unmap(vmf.pte); 919 continue; 920 } 921 ret = do_swap_page(&vmf); 922 923 /* 924 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 925 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 926 * we do not retry here and swap entry will remain in pagetable 927 * resulting in later failure. 928 */ 929 if (ret & VM_FAULT_RETRY) { 930 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 931 /* Likely, but not guaranteed, that page lock failed */ 932 return SCAN_PAGE_LOCK; 933 } 934 if (ret & VM_FAULT_ERROR) { 935 mmap_read_unlock(mm); 936 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 937 return SCAN_FAIL; 938 } 939 swapped_in++; 940 } 941 942 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 943 if (swapped_in) 944 lru_add_drain(); 945 946 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 947 return SCAN_SUCCEED; 948 } 949 950 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, 951 struct collapse_control *cc) 952 { 953 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 954 GFP_TRANSHUGE); 955 int node = hpage_collapse_find_target_node(cc); 956 957 if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask)) 958 return SCAN_ALLOC_HUGE_PAGE_FAIL; 959 if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp))) 960 return SCAN_CGROUP_CHARGE_FAIL; 961 count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC); 962 return SCAN_SUCCEED; 963 } 964 965 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 966 int referenced, int unmapped, 967 struct collapse_control *cc) 968 { 969 LIST_HEAD(compound_pagelist); 970 pmd_t *pmd, _pmd; 971 pte_t *pte; 972 pgtable_t pgtable; 973 struct page *hpage; 974 spinlock_t *pmd_ptl, *pte_ptl; 975 int result = SCAN_FAIL; 976 struct vm_area_struct *vma; 977 struct mmu_notifier_range range; 978 979 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 980 981 /* 982 * Before allocating the hugepage, release the mmap_lock read lock. 983 * The allocation can take potentially a long time if it involves 984 * sync compaction, and we do not need to hold the mmap_lock during 985 * that. We will recheck the vma after taking it again in write mode. 986 */ 987 mmap_read_unlock(mm); 988 989 result = alloc_charge_hpage(&hpage, mm, cc); 990 if (result != SCAN_SUCCEED) 991 goto out_nolock; 992 993 mmap_read_lock(mm); 994 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 995 if (result != SCAN_SUCCEED) { 996 mmap_read_unlock(mm); 997 goto out_nolock; 998 } 999 1000 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1001 if (result != SCAN_SUCCEED) { 1002 mmap_read_unlock(mm); 1003 goto out_nolock; 1004 } 1005 1006 if (unmapped) { 1007 /* 1008 * __collapse_huge_page_swapin will return with mmap_lock 1009 * released when it fails. So we jump out_nolock directly in 1010 * that case. Continuing to collapse causes inconsistency. 1011 */ 1012 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1013 referenced); 1014 if (result != SCAN_SUCCEED) 1015 goto out_nolock; 1016 } 1017 1018 mmap_read_unlock(mm); 1019 /* 1020 * Prevent all access to pagetables with the exception of 1021 * gup_fast later handled by the ptep_clear_flush and the VM 1022 * handled by the anon_vma lock + PG_lock. 1023 */ 1024 mmap_write_lock(mm); 1025 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1026 if (result != SCAN_SUCCEED) 1027 goto out_up_write; 1028 /* check if the pmd is still valid */ 1029 result = check_pmd_still_valid(mm, address, pmd); 1030 if (result != SCAN_SUCCEED) 1031 goto out_up_write; 1032 1033 anon_vma_lock_write(vma->anon_vma); 1034 1035 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 1036 address, address + HPAGE_PMD_SIZE); 1037 mmu_notifier_invalidate_range_start(&range); 1038 1039 pte = pte_offset_map(pmd, address); 1040 pte_ptl = pte_lockptr(mm, pmd); 1041 1042 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1043 /* 1044 * This removes any huge TLB entry from the CPU so we won't allow 1045 * huge and small TLB entries for the same virtual address to 1046 * avoid the risk of CPU bugs in that area. 1047 * 1048 * Parallel fast GUP is fine since fast GUP will back off when 1049 * it detects PMD is changed. 1050 */ 1051 _pmd = pmdp_collapse_flush(vma, address, pmd); 1052 spin_unlock(pmd_ptl); 1053 mmu_notifier_invalidate_range_end(&range); 1054 tlb_remove_table_sync_one(); 1055 1056 spin_lock(pte_ptl); 1057 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1058 &compound_pagelist); 1059 spin_unlock(pte_ptl); 1060 1061 if (unlikely(result != SCAN_SUCCEED)) { 1062 pte_unmap(pte); 1063 spin_lock(pmd_ptl); 1064 BUG_ON(!pmd_none(*pmd)); 1065 /* 1066 * We can only use set_pmd_at when establishing 1067 * hugepmds and never for establishing regular pmds that 1068 * points to regular pagetables. Use pmd_populate for that 1069 */ 1070 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1071 spin_unlock(pmd_ptl); 1072 anon_vma_unlock_write(vma->anon_vma); 1073 goto out_up_write; 1074 } 1075 1076 /* 1077 * All pages are isolated and locked so anon_vma rmap 1078 * can't run anymore. 1079 */ 1080 anon_vma_unlock_write(vma->anon_vma); 1081 1082 __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl, 1083 &compound_pagelist); 1084 pte_unmap(pte); 1085 /* 1086 * spin_lock() below is not the equivalent of smp_wmb(), but 1087 * the smp_wmb() inside __SetPageUptodate() can be reused to 1088 * avoid the copy_huge_page writes to become visible after 1089 * the set_pmd_at() write. 1090 */ 1091 __SetPageUptodate(hpage); 1092 pgtable = pmd_pgtable(_pmd); 1093 1094 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); 1095 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1096 1097 spin_lock(pmd_ptl); 1098 BUG_ON(!pmd_none(*pmd)); 1099 page_add_new_anon_rmap(hpage, vma, address); 1100 lru_cache_add_inactive_or_unevictable(hpage, vma); 1101 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1102 set_pmd_at(mm, address, pmd, _pmd); 1103 update_mmu_cache_pmd(vma, address, pmd); 1104 spin_unlock(pmd_ptl); 1105 1106 hpage = NULL; 1107 1108 result = SCAN_SUCCEED; 1109 out_up_write: 1110 mmap_write_unlock(mm); 1111 out_nolock: 1112 if (hpage) { 1113 mem_cgroup_uncharge(page_folio(hpage)); 1114 put_page(hpage); 1115 } 1116 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1117 return result; 1118 } 1119 1120 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1121 struct vm_area_struct *vma, 1122 unsigned long address, bool *mmap_locked, 1123 struct collapse_control *cc) 1124 { 1125 pmd_t *pmd; 1126 pte_t *pte, *_pte; 1127 int result = SCAN_FAIL, referenced = 0; 1128 int none_or_zero = 0, shared = 0; 1129 struct page *page = NULL; 1130 unsigned long _address; 1131 spinlock_t *ptl; 1132 int node = NUMA_NO_NODE, unmapped = 0; 1133 bool writable = false; 1134 1135 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1136 1137 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1138 if (result != SCAN_SUCCEED) 1139 goto out; 1140 1141 memset(cc->node_load, 0, sizeof(cc->node_load)); 1142 nodes_clear(cc->alloc_nmask); 1143 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1144 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1145 _pte++, _address += PAGE_SIZE) { 1146 pte_t pteval = *_pte; 1147 if (is_swap_pte(pteval)) { 1148 ++unmapped; 1149 if (!cc->is_khugepaged || 1150 unmapped <= khugepaged_max_ptes_swap) { 1151 /* 1152 * Always be strict with uffd-wp 1153 * enabled swap entries. Please see 1154 * comment below for pte_uffd_wp(). 1155 */ 1156 if (pte_swp_uffd_wp(pteval)) { 1157 result = SCAN_PTE_UFFD_WP; 1158 goto out_unmap; 1159 } 1160 continue; 1161 } else { 1162 result = SCAN_EXCEED_SWAP_PTE; 1163 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1164 goto out_unmap; 1165 } 1166 } 1167 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1168 ++none_or_zero; 1169 if (!userfaultfd_armed(vma) && 1170 (!cc->is_khugepaged || 1171 none_or_zero <= khugepaged_max_ptes_none)) { 1172 continue; 1173 } else { 1174 result = SCAN_EXCEED_NONE_PTE; 1175 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1176 goto out_unmap; 1177 } 1178 } 1179 if (pte_uffd_wp(pteval)) { 1180 /* 1181 * Don't collapse the page if any of the small 1182 * PTEs are armed with uffd write protection. 1183 * Here we can also mark the new huge pmd as 1184 * write protected if any of the small ones is 1185 * marked but that could bring unknown 1186 * userfault messages that falls outside of 1187 * the registered range. So, just be simple. 1188 */ 1189 result = SCAN_PTE_UFFD_WP; 1190 goto out_unmap; 1191 } 1192 if (pte_write(pteval)) 1193 writable = true; 1194 1195 page = vm_normal_page(vma, _address, pteval); 1196 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1197 result = SCAN_PAGE_NULL; 1198 goto out_unmap; 1199 } 1200 1201 if (page_mapcount(page) > 1) { 1202 ++shared; 1203 if (cc->is_khugepaged && 1204 shared > khugepaged_max_ptes_shared) { 1205 result = SCAN_EXCEED_SHARED_PTE; 1206 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1207 goto out_unmap; 1208 } 1209 } 1210 1211 page = compound_head(page); 1212 1213 /* 1214 * Record which node the original page is from and save this 1215 * information to cc->node_load[]. 1216 * Khugepaged will allocate hugepage from the node has the max 1217 * hit record. 1218 */ 1219 node = page_to_nid(page); 1220 if (hpage_collapse_scan_abort(node, cc)) { 1221 result = SCAN_SCAN_ABORT; 1222 goto out_unmap; 1223 } 1224 cc->node_load[node]++; 1225 if (!PageLRU(page)) { 1226 result = SCAN_PAGE_LRU; 1227 goto out_unmap; 1228 } 1229 if (PageLocked(page)) { 1230 result = SCAN_PAGE_LOCK; 1231 goto out_unmap; 1232 } 1233 if (!PageAnon(page)) { 1234 result = SCAN_PAGE_ANON; 1235 goto out_unmap; 1236 } 1237 1238 /* 1239 * Check if the page has any GUP (or other external) pins. 1240 * 1241 * Here the check may be racy: 1242 * it may see total_mapcount > refcount in some cases? 1243 * But such case is ephemeral we could always retry collapse 1244 * later. However it may report false positive if the page 1245 * has excessive GUP pins (i.e. 512). Anyway the same check 1246 * will be done again later the risk seems low. 1247 */ 1248 if (!is_refcount_suitable(page)) { 1249 result = SCAN_PAGE_COUNT; 1250 goto out_unmap; 1251 } 1252 1253 /* 1254 * If collapse was initiated by khugepaged, check that there is 1255 * enough young pte to justify collapsing the page 1256 */ 1257 if (cc->is_khugepaged && 1258 (pte_young(pteval) || page_is_young(page) || 1259 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 1260 address))) 1261 referenced++; 1262 } 1263 if (!writable) { 1264 result = SCAN_PAGE_RO; 1265 } else if (cc->is_khugepaged && 1266 (!referenced || 1267 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1268 result = SCAN_LACK_REFERENCED_PAGE; 1269 } else { 1270 result = SCAN_SUCCEED; 1271 } 1272 out_unmap: 1273 pte_unmap_unlock(pte, ptl); 1274 if (result == SCAN_SUCCEED) { 1275 result = collapse_huge_page(mm, address, referenced, 1276 unmapped, cc); 1277 /* collapse_huge_page will return with the mmap_lock released */ 1278 *mmap_locked = false; 1279 } 1280 out: 1281 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1282 none_or_zero, result, unmapped); 1283 return result; 1284 } 1285 1286 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1287 { 1288 struct mm_slot *slot = &mm_slot->slot; 1289 struct mm_struct *mm = slot->mm; 1290 1291 lockdep_assert_held(&khugepaged_mm_lock); 1292 1293 if (hpage_collapse_test_exit(mm)) { 1294 /* free mm_slot */ 1295 hash_del(&slot->hash); 1296 list_del(&slot->mm_node); 1297 1298 /* 1299 * Not strictly needed because the mm exited already. 1300 * 1301 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1302 */ 1303 1304 /* khugepaged_mm_lock actually not necessary for the below */ 1305 mm_slot_free(mm_slot_cache, mm_slot); 1306 mmdrop(mm); 1307 } 1308 } 1309 1310 #ifdef CONFIG_SHMEM 1311 /* 1312 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1313 * khugepaged should try to collapse the page table. 1314 * 1315 * Note that following race exists: 1316 * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A, 1317 * emptying the A's ->pte_mapped_thp[] array. 1318 * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and 1319 * retract_page_tables() finds a VMA in mm_struct A mapping the same extent 1320 * (at virtual address X) and adds an entry (for X) into mm_struct A's 1321 * ->pte-mapped_thp[] array. 1322 * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X, 1323 * sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry 1324 * (for X) into mm_struct A's ->pte-mapped_thp[] array. 1325 * Thus, it's possible the same address is added multiple times for the same 1326 * mm_struct. Should this happen, we'll simply attempt 1327 * collapse_pte_mapped_thp() multiple times for the same address, under the same 1328 * exclusive mmap_lock, and assuming the first call is successful, subsequent 1329 * attempts will return quickly (without grabbing any additional locks) when 1330 * a huge pmd is found in find_pmd_or_thp_or_none(). Since this is a cheap 1331 * check, and since this is a rare occurrence, the cost of preventing this 1332 * "multiple-add" is thought to be more expensive than just handling it, should 1333 * it occur. 1334 */ 1335 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1336 unsigned long addr) 1337 { 1338 struct khugepaged_mm_slot *mm_slot; 1339 struct mm_slot *slot; 1340 bool ret = false; 1341 1342 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1343 1344 spin_lock(&khugepaged_mm_lock); 1345 slot = mm_slot_lookup(mm_slots_hash, mm); 1346 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 1347 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) { 1348 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1349 ret = true; 1350 } 1351 spin_unlock(&khugepaged_mm_lock); 1352 return ret; 1353 } 1354 1355 /* hpage must be locked, and mmap_lock must be held in write */ 1356 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1357 pmd_t *pmdp, struct page *hpage) 1358 { 1359 struct vm_fault vmf = { 1360 .vma = vma, 1361 .address = addr, 1362 .flags = 0, 1363 .pmd = pmdp, 1364 }; 1365 1366 VM_BUG_ON(!PageTransHuge(hpage)); 1367 mmap_assert_write_locked(vma->vm_mm); 1368 1369 if (do_set_pmd(&vmf, hpage)) 1370 return SCAN_FAIL; 1371 1372 get_page(hpage); 1373 return SCAN_SUCCEED; 1374 } 1375 1376 /* 1377 * A note about locking: 1378 * Trying to take the page table spinlocks would be useless here because those 1379 * are only used to synchronize: 1380 * 1381 * - modifying terminal entries (ones that point to a data page, not to another 1382 * page table) 1383 * - installing *new* non-terminal entries 1384 * 1385 * Instead, we need roughly the same kind of protection as free_pgtables() or 1386 * mm_take_all_locks() (but only for a single VMA): 1387 * The mmap lock together with this VMA's rmap locks covers all paths towards 1388 * the page table entries we're messing with here, except for hardware page 1389 * table walks and lockless_pages_from_mm(). 1390 */ 1391 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 1392 unsigned long addr, pmd_t *pmdp) 1393 { 1394 pmd_t pmd; 1395 struct mmu_notifier_range range; 1396 1397 mmap_assert_write_locked(mm); 1398 if (vma->vm_file) 1399 lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem); 1400 /* 1401 * All anon_vmas attached to the VMA have the same root and are 1402 * therefore locked by the same lock. 1403 */ 1404 if (vma->anon_vma) 1405 lockdep_assert_held_write(&vma->anon_vma->root->rwsem); 1406 1407 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, addr, 1408 addr + HPAGE_PMD_SIZE); 1409 mmu_notifier_invalidate_range_start(&range); 1410 pmd = pmdp_collapse_flush(vma, addr, pmdp); 1411 tlb_remove_table_sync_one(); 1412 mmu_notifier_invalidate_range_end(&range); 1413 mm_dec_nr_ptes(mm); 1414 page_table_check_pte_clear_range(mm, addr, pmd); 1415 pte_free(mm, pmd_pgtable(pmd)); 1416 } 1417 1418 /** 1419 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1420 * address haddr. 1421 * 1422 * @mm: process address space where collapse happens 1423 * @addr: THP collapse address 1424 * @install_pmd: If a huge PMD should be installed 1425 * 1426 * This function checks whether all the PTEs in the PMD are pointing to the 1427 * right THP. If so, retract the page table so the THP can refault in with 1428 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1429 */ 1430 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1431 bool install_pmd) 1432 { 1433 unsigned long haddr = addr & HPAGE_PMD_MASK; 1434 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1435 struct page *hpage; 1436 pte_t *start_pte, *pte; 1437 pmd_t *pmd; 1438 spinlock_t *ptl; 1439 int count = 0, result = SCAN_FAIL; 1440 int i; 1441 1442 mmap_assert_write_locked(mm); 1443 1444 /* Fast check before locking page if already PMD-mapped */ 1445 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1446 if (result == SCAN_PMD_MAPPED) 1447 return result; 1448 1449 if (!vma || !vma->vm_file || 1450 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1451 return SCAN_VMA_CHECK; 1452 1453 /* 1454 * If we are here, we've succeeded in replacing all the native pages 1455 * in the page cache with a single hugepage. If a mm were to fault-in 1456 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1457 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1458 * analogously elide sysfs THP settings here. 1459 */ 1460 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 1461 return SCAN_VMA_CHECK; 1462 1463 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1464 if (userfaultfd_wp(vma)) 1465 return SCAN_PTE_UFFD_WP; 1466 1467 hpage = find_lock_page(vma->vm_file->f_mapping, 1468 linear_page_index(vma, haddr)); 1469 if (!hpage) 1470 return SCAN_PAGE_NULL; 1471 1472 if (!PageHead(hpage)) { 1473 result = SCAN_FAIL; 1474 goto drop_hpage; 1475 } 1476 1477 if (compound_order(hpage) != HPAGE_PMD_ORDER) { 1478 result = SCAN_PAGE_COMPOUND; 1479 goto drop_hpage; 1480 } 1481 1482 switch (result) { 1483 case SCAN_SUCCEED: 1484 break; 1485 case SCAN_PMD_NONE: 1486 /* 1487 * In MADV_COLLAPSE path, possible race with khugepaged where 1488 * all pte entries have been removed and pmd cleared. If so, 1489 * skip all the pte checks and just update the pmd mapping. 1490 */ 1491 goto maybe_install_pmd; 1492 default: 1493 goto drop_hpage; 1494 } 1495 1496 /* 1497 * We need to lock the mapping so that from here on, only GUP-fast and 1498 * hardware page walks can access the parts of the page tables that 1499 * we're operating on. 1500 * See collapse_and_free_pmd(). 1501 */ 1502 i_mmap_lock_write(vma->vm_file->f_mapping); 1503 1504 /* 1505 * This spinlock should be unnecessary: Nobody else should be accessing 1506 * the page tables under spinlock protection here, only 1507 * lockless_pages_from_mm() and the hardware page walker can access page 1508 * tables while all the high-level locks are held in write mode. 1509 */ 1510 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1511 result = SCAN_FAIL; 1512 1513 /* step 1: check all mapped PTEs are to the right huge page */ 1514 for (i = 0, addr = haddr, pte = start_pte; 1515 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1516 struct page *page; 1517 1518 /* empty pte, skip */ 1519 if (pte_none(*pte)) 1520 continue; 1521 1522 /* page swapped out, abort */ 1523 if (!pte_present(*pte)) { 1524 result = SCAN_PTE_NON_PRESENT; 1525 goto abort; 1526 } 1527 1528 page = vm_normal_page(vma, addr, *pte); 1529 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1530 page = NULL; 1531 /* 1532 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1533 * page table, but the new page will not be a subpage of hpage. 1534 */ 1535 if (hpage + i != page) 1536 goto abort; 1537 count++; 1538 } 1539 1540 /* step 2: adjust rmap */ 1541 for (i = 0, addr = haddr, pte = start_pte; 1542 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1543 struct page *page; 1544 1545 if (pte_none(*pte)) 1546 continue; 1547 page = vm_normal_page(vma, addr, *pte); 1548 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1549 goto abort; 1550 page_remove_rmap(page, vma, false); 1551 } 1552 1553 pte_unmap_unlock(start_pte, ptl); 1554 1555 /* step 3: set proper refcount and mm_counters. */ 1556 if (count) { 1557 page_ref_sub(hpage, count); 1558 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1559 } 1560 1561 /* step 4: remove pte entries */ 1562 /* we make no change to anon, but protect concurrent anon page lookup */ 1563 if (vma->anon_vma) 1564 anon_vma_lock_write(vma->anon_vma); 1565 1566 collapse_and_free_pmd(mm, vma, haddr, pmd); 1567 1568 if (vma->anon_vma) 1569 anon_vma_unlock_write(vma->anon_vma); 1570 i_mmap_unlock_write(vma->vm_file->f_mapping); 1571 1572 maybe_install_pmd: 1573 /* step 5: install pmd entry */ 1574 result = install_pmd 1575 ? set_huge_pmd(vma, haddr, pmd, hpage) 1576 : SCAN_SUCCEED; 1577 1578 drop_hpage: 1579 unlock_page(hpage); 1580 put_page(hpage); 1581 return result; 1582 1583 abort: 1584 pte_unmap_unlock(start_pte, ptl); 1585 i_mmap_unlock_write(vma->vm_file->f_mapping); 1586 goto drop_hpage; 1587 } 1588 1589 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 1590 { 1591 struct mm_slot *slot = &mm_slot->slot; 1592 struct mm_struct *mm = slot->mm; 1593 int i; 1594 1595 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1596 return; 1597 1598 if (!mmap_write_trylock(mm)) 1599 return; 1600 1601 if (unlikely(hpage_collapse_test_exit(mm))) 1602 goto out; 1603 1604 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1605 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false); 1606 1607 out: 1608 mm_slot->nr_pte_mapped_thp = 0; 1609 mmap_write_unlock(mm); 1610 } 1611 1612 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff, 1613 struct mm_struct *target_mm, 1614 unsigned long target_addr, struct page *hpage, 1615 struct collapse_control *cc) 1616 { 1617 struct vm_area_struct *vma; 1618 int target_result = SCAN_FAIL; 1619 1620 i_mmap_lock_write(mapping); 1621 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1622 int result = SCAN_FAIL; 1623 struct mm_struct *mm = NULL; 1624 unsigned long addr = 0; 1625 pmd_t *pmd; 1626 bool is_target = false; 1627 1628 /* 1629 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1630 * got written to. These VMAs are likely not worth investing 1631 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1632 * later. 1633 * 1634 * Note that vma->anon_vma check is racy: it can be set up after 1635 * the check but before we took mmap_lock by the fault path. 1636 * But page lock would prevent establishing any new ptes of the 1637 * page, so we are safe. 1638 * 1639 * An alternative would be drop the check, but check that page 1640 * table is clear before calling pmdp_collapse_flush() under 1641 * ptl. It has higher chance to recover THP for the VMA, but 1642 * has higher cost too. It would also probably require locking 1643 * the anon_vma. 1644 */ 1645 if (vma->anon_vma) { 1646 result = SCAN_PAGE_ANON; 1647 goto next; 1648 } 1649 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1650 if (addr & ~HPAGE_PMD_MASK || 1651 vma->vm_end < addr + HPAGE_PMD_SIZE) { 1652 result = SCAN_VMA_CHECK; 1653 goto next; 1654 } 1655 mm = vma->vm_mm; 1656 is_target = mm == target_mm && addr == target_addr; 1657 result = find_pmd_or_thp_or_none(mm, addr, &pmd); 1658 if (result != SCAN_SUCCEED) 1659 goto next; 1660 /* 1661 * We need exclusive mmap_lock to retract page table. 1662 * 1663 * We use trylock due to lock inversion: we need to acquire 1664 * mmap_lock while holding page lock. Fault path does it in 1665 * reverse order. Trylock is a way to avoid deadlock. 1666 * 1667 * Also, it's not MADV_COLLAPSE's job to collapse other 1668 * mappings - let khugepaged take care of them later. 1669 */ 1670 result = SCAN_PTE_MAPPED_HUGEPAGE; 1671 if ((cc->is_khugepaged || is_target) && 1672 mmap_write_trylock(mm)) { 1673 /* 1674 * When a vma is registered with uffd-wp, we can't 1675 * recycle the pmd pgtable because there can be pte 1676 * markers installed. Skip it only, so the rest mm/vma 1677 * can still have the same file mapped hugely, however 1678 * it'll always mapped in small page size for uffd-wp 1679 * registered ranges. 1680 */ 1681 if (hpage_collapse_test_exit(mm)) { 1682 result = SCAN_ANY_PROCESS; 1683 goto unlock_next; 1684 } 1685 if (userfaultfd_wp(vma)) { 1686 result = SCAN_PTE_UFFD_WP; 1687 goto unlock_next; 1688 } 1689 collapse_and_free_pmd(mm, vma, addr, pmd); 1690 if (!cc->is_khugepaged && is_target) 1691 result = set_huge_pmd(vma, addr, pmd, hpage); 1692 else 1693 result = SCAN_SUCCEED; 1694 1695 unlock_next: 1696 mmap_write_unlock(mm); 1697 goto next; 1698 } 1699 /* 1700 * Calling context will handle target mm/addr. Otherwise, let 1701 * khugepaged try again later. 1702 */ 1703 if (!is_target) { 1704 khugepaged_add_pte_mapped_thp(mm, addr); 1705 continue; 1706 } 1707 next: 1708 if (is_target) 1709 target_result = result; 1710 } 1711 i_mmap_unlock_write(mapping); 1712 return target_result; 1713 } 1714 1715 /** 1716 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1717 * 1718 * @mm: process address space where collapse happens 1719 * @addr: virtual collapse start address 1720 * @file: file that collapse on 1721 * @start: collapse start address 1722 * @cc: collapse context and scratchpad 1723 * 1724 * Basic scheme is simple, details are more complex: 1725 * - allocate and lock a new huge page; 1726 * - scan page cache replacing old pages with the new one 1727 * + swap/gup in pages if necessary; 1728 * + fill in gaps; 1729 * + keep old pages around in case rollback is required; 1730 * - if replacing succeeds: 1731 * + copy data over; 1732 * + free old pages; 1733 * + unlock huge page; 1734 * - if replacing failed; 1735 * + put all pages back and unfreeze them; 1736 * + restore gaps in the page cache; 1737 * + unlock and free huge page; 1738 */ 1739 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1740 struct file *file, pgoff_t start, 1741 struct collapse_control *cc) 1742 { 1743 struct address_space *mapping = file->f_mapping; 1744 struct page *hpage; 1745 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1746 LIST_HEAD(pagelist); 1747 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1748 int nr_none = 0, result = SCAN_SUCCEED; 1749 bool is_shmem = shmem_file(file); 1750 int nr = 0; 1751 1752 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1753 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1754 1755 result = alloc_charge_hpage(&hpage, mm, cc); 1756 if (result != SCAN_SUCCEED) 1757 goto out; 1758 1759 /* 1760 * Ensure we have slots for all the pages in the range. This is 1761 * almost certainly a no-op because most of the pages must be present 1762 */ 1763 do { 1764 xas_lock_irq(&xas); 1765 xas_create_range(&xas); 1766 if (!xas_error(&xas)) 1767 break; 1768 xas_unlock_irq(&xas); 1769 if (!xas_nomem(&xas, GFP_KERNEL)) { 1770 result = SCAN_FAIL; 1771 goto out; 1772 } 1773 } while (1); 1774 1775 __SetPageLocked(hpage); 1776 if (is_shmem) 1777 __SetPageSwapBacked(hpage); 1778 hpage->index = start; 1779 hpage->mapping = mapping; 1780 1781 /* 1782 * At this point the hpage is locked and not up-to-date. 1783 * It's safe to insert it into the page cache, because nobody would 1784 * be able to map it or use it in another way until we unlock it. 1785 */ 1786 1787 xas_set(&xas, start); 1788 for (index = start; index < end; index++) { 1789 struct page *page = xas_next(&xas); 1790 struct folio *folio; 1791 1792 VM_BUG_ON(index != xas.xa_index); 1793 if (is_shmem) { 1794 if (!page) { 1795 /* 1796 * Stop if extent has been truncated or 1797 * hole-punched, and is now completely 1798 * empty. 1799 */ 1800 if (index == start) { 1801 if (!xas_next_entry(&xas, end - 1)) { 1802 result = SCAN_TRUNCATED; 1803 goto xa_locked; 1804 } 1805 xas_set(&xas, index); 1806 } 1807 if (!shmem_charge(mapping->host, 1)) { 1808 result = SCAN_FAIL; 1809 goto xa_locked; 1810 } 1811 xas_store(&xas, hpage); 1812 nr_none++; 1813 continue; 1814 } 1815 1816 if (xa_is_value(page) || !PageUptodate(page)) { 1817 xas_unlock_irq(&xas); 1818 /* swap in or instantiate fallocated page */ 1819 if (shmem_get_folio(mapping->host, index, 1820 &folio, SGP_NOALLOC)) { 1821 result = SCAN_FAIL; 1822 goto xa_unlocked; 1823 } 1824 page = folio_file_page(folio, index); 1825 } else if (trylock_page(page)) { 1826 get_page(page); 1827 xas_unlock_irq(&xas); 1828 } else { 1829 result = SCAN_PAGE_LOCK; 1830 goto xa_locked; 1831 } 1832 } else { /* !is_shmem */ 1833 if (!page || xa_is_value(page)) { 1834 xas_unlock_irq(&xas); 1835 page_cache_sync_readahead(mapping, &file->f_ra, 1836 file, index, 1837 end - index); 1838 /* drain pagevecs to help isolate_lru_page() */ 1839 lru_add_drain(); 1840 page = find_lock_page(mapping, index); 1841 if (unlikely(page == NULL)) { 1842 result = SCAN_FAIL; 1843 goto xa_unlocked; 1844 } 1845 } else if (PageDirty(page)) { 1846 /* 1847 * khugepaged only works on read-only fd, 1848 * so this page is dirty because it hasn't 1849 * been flushed since first write. There 1850 * won't be new dirty pages. 1851 * 1852 * Trigger async flush here and hope the 1853 * writeback is done when khugepaged 1854 * revisits this page. 1855 * 1856 * This is a one-off situation. We are not 1857 * forcing writeback in loop. 1858 */ 1859 xas_unlock_irq(&xas); 1860 filemap_flush(mapping); 1861 result = SCAN_FAIL; 1862 goto xa_unlocked; 1863 } else if (PageWriteback(page)) { 1864 xas_unlock_irq(&xas); 1865 result = SCAN_FAIL; 1866 goto xa_unlocked; 1867 } else if (trylock_page(page)) { 1868 get_page(page); 1869 xas_unlock_irq(&xas); 1870 } else { 1871 result = SCAN_PAGE_LOCK; 1872 goto xa_locked; 1873 } 1874 } 1875 1876 /* 1877 * The page must be locked, so we can drop the i_pages lock 1878 * without racing with truncate. 1879 */ 1880 VM_BUG_ON_PAGE(!PageLocked(page), page); 1881 1882 /* make sure the page is up to date */ 1883 if (unlikely(!PageUptodate(page))) { 1884 result = SCAN_FAIL; 1885 goto out_unlock; 1886 } 1887 1888 /* 1889 * If file was truncated then extended, or hole-punched, before 1890 * we locked the first page, then a THP might be there already. 1891 * This will be discovered on the first iteration. 1892 */ 1893 if (PageTransCompound(page)) { 1894 struct page *head = compound_head(page); 1895 1896 result = compound_order(head) == HPAGE_PMD_ORDER && 1897 head->index == start 1898 /* Maybe PMD-mapped */ 1899 ? SCAN_PTE_MAPPED_HUGEPAGE 1900 : SCAN_PAGE_COMPOUND; 1901 goto out_unlock; 1902 } 1903 1904 folio = page_folio(page); 1905 1906 if (folio_mapping(folio) != mapping) { 1907 result = SCAN_TRUNCATED; 1908 goto out_unlock; 1909 } 1910 1911 if (!is_shmem && (folio_test_dirty(folio) || 1912 folio_test_writeback(folio))) { 1913 /* 1914 * khugepaged only works on read-only fd, so this 1915 * page is dirty because it hasn't been flushed 1916 * since first write. 1917 */ 1918 result = SCAN_FAIL; 1919 goto out_unlock; 1920 } 1921 1922 if (folio_isolate_lru(folio)) { 1923 result = SCAN_DEL_PAGE_LRU; 1924 goto out_unlock; 1925 } 1926 1927 if (folio_has_private(folio) && 1928 !filemap_release_folio(folio, GFP_KERNEL)) { 1929 result = SCAN_PAGE_HAS_PRIVATE; 1930 folio_putback_lru(folio); 1931 goto out_unlock; 1932 } 1933 1934 if (folio_mapped(folio)) 1935 try_to_unmap(folio, 1936 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1937 1938 xas_lock_irq(&xas); 1939 xas_set(&xas, index); 1940 1941 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1942 1943 /* 1944 * The page is expected to have page_count() == 3: 1945 * - we hold a pin on it; 1946 * - one reference from page cache; 1947 * - one from isolate_lru_page; 1948 */ 1949 if (!page_ref_freeze(page, 3)) { 1950 result = SCAN_PAGE_COUNT; 1951 xas_unlock_irq(&xas); 1952 putback_lru_page(page); 1953 goto out_unlock; 1954 } 1955 1956 /* 1957 * Add the page to the list to be able to undo the collapse if 1958 * something go wrong. 1959 */ 1960 list_add_tail(&page->lru, &pagelist); 1961 1962 /* Finally, replace with the new page. */ 1963 xas_store(&xas, hpage); 1964 continue; 1965 out_unlock: 1966 unlock_page(page); 1967 put_page(page); 1968 goto xa_unlocked; 1969 } 1970 nr = thp_nr_pages(hpage); 1971 1972 if (is_shmem) 1973 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr); 1974 else { 1975 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr); 1976 filemap_nr_thps_inc(mapping); 1977 /* 1978 * Paired with smp_mb() in do_dentry_open() to ensure 1979 * i_writecount is up to date and the update to nr_thps is 1980 * visible. Ensures the page cache will be truncated if the 1981 * file is opened writable. 1982 */ 1983 smp_mb(); 1984 if (inode_is_open_for_write(mapping->host)) { 1985 result = SCAN_FAIL; 1986 __mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr); 1987 filemap_nr_thps_dec(mapping); 1988 goto xa_locked; 1989 } 1990 } 1991 1992 if (nr_none) { 1993 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none); 1994 /* nr_none is always 0 for non-shmem. */ 1995 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none); 1996 } 1997 1998 /* Join all the small entries into a single multi-index entry */ 1999 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2000 xas_store(&xas, hpage); 2001 xa_locked: 2002 xas_unlock_irq(&xas); 2003 xa_unlocked: 2004 2005 /* 2006 * If collapse is successful, flush must be done now before copying. 2007 * If collapse is unsuccessful, does flush actually need to be done? 2008 * Do it anyway, to clear the state. 2009 */ 2010 try_to_unmap_flush(); 2011 2012 if (result == SCAN_SUCCEED) { 2013 struct page *page, *tmp; 2014 struct folio *folio; 2015 2016 /* 2017 * Replacing old pages with new one has succeeded, now we 2018 * need to copy the content and free the old pages. 2019 */ 2020 index = start; 2021 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2022 while (index < page->index) { 2023 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2024 index++; 2025 } 2026 copy_highpage(hpage + (page->index % HPAGE_PMD_NR), 2027 page); 2028 list_del(&page->lru); 2029 page->mapping = NULL; 2030 page_ref_unfreeze(page, 1); 2031 ClearPageActive(page); 2032 ClearPageUnevictable(page); 2033 unlock_page(page); 2034 put_page(page); 2035 index++; 2036 } 2037 while (index < end) { 2038 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2039 index++; 2040 } 2041 2042 folio = page_folio(hpage); 2043 folio_mark_uptodate(folio); 2044 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2045 2046 if (is_shmem) 2047 folio_mark_dirty(folio); 2048 folio_add_lru(folio); 2049 2050 /* 2051 * Remove pte page tables, so we can re-fault the page as huge. 2052 */ 2053 result = retract_page_tables(mapping, start, mm, addr, hpage, 2054 cc); 2055 unlock_page(hpage); 2056 hpage = NULL; 2057 } else { 2058 struct page *page; 2059 2060 /* Something went wrong: roll back page cache changes */ 2061 xas_lock_irq(&xas); 2062 if (nr_none) { 2063 mapping->nrpages -= nr_none; 2064 shmem_uncharge(mapping->host, nr_none); 2065 } 2066 2067 xas_set(&xas, start); 2068 xas_for_each(&xas, page, end - 1) { 2069 page = list_first_entry_or_null(&pagelist, 2070 struct page, lru); 2071 if (!page || xas.xa_index < page->index) { 2072 if (!nr_none) 2073 break; 2074 nr_none--; 2075 /* Put holes back where they were */ 2076 xas_store(&xas, NULL); 2077 continue; 2078 } 2079 2080 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 2081 2082 /* Unfreeze the page. */ 2083 list_del(&page->lru); 2084 page_ref_unfreeze(page, 2); 2085 xas_store(&xas, page); 2086 xas_pause(&xas); 2087 xas_unlock_irq(&xas); 2088 unlock_page(page); 2089 putback_lru_page(page); 2090 xas_lock_irq(&xas); 2091 } 2092 VM_BUG_ON(nr_none); 2093 xas_unlock_irq(&xas); 2094 2095 hpage->mapping = NULL; 2096 } 2097 2098 if (hpage) 2099 unlock_page(hpage); 2100 out: 2101 VM_BUG_ON(!list_empty(&pagelist)); 2102 if (hpage) { 2103 mem_cgroup_uncharge(page_folio(hpage)); 2104 put_page(hpage); 2105 } 2106 2107 trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result); 2108 return result; 2109 } 2110 2111 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2112 struct file *file, pgoff_t start, 2113 struct collapse_control *cc) 2114 { 2115 struct page *page = NULL; 2116 struct address_space *mapping = file->f_mapping; 2117 XA_STATE(xas, &mapping->i_pages, start); 2118 int present, swap; 2119 int node = NUMA_NO_NODE; 2120 int result = SCAN_SUCCEED; 2121 2122 present = 0; 2123 swap = 0; 2124 memset(cc->node_load, 0, sizeof(cc->node_load)); 2125 nodes_clear(cc->alloc_nmask); 2126 rcu_read_lock(); 2127 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2128 if (xas_retry(&xas, page)) 2129 continue; 2130 2131 if (xa_is_value(page)) { 2132 ++swap; 2133 if (cc->is_khugepaged && 2134 swap > khugepaged_max_ptes_swap) { 2135 result = SCAN_EXCEED_SWAP_PTE; 2136 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2137 break; 2138 } 2139 continue; 2140 } 2141 2142 /* 2143 * TODO: khugepaged should compact smaller compound pages 2144 * into a PMD sized page 2145 */ 2146 if (PageTransCompound(page)) { 2147 struct page *head = compound_head(page); 2148 2149 result = compound_order(head) == HPAGE_PMD_ORDER && 2150 head->index == start 2151 /* Maybe PMD-mapped */ 2152 ? SCAN_PTE_MAPPED_HUGEPAGE 2153 : SCAN_PAGE_COMPOUND; 2154 /* 2155 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2156 * by the caller won't touch the page cache, and so 2157 * it's safe to skip LRU and refcount checks before 2158 * returning. 2159 */ 2160 break; 2161 } 2162 2163 node = page_to_nid(page); 2164 if (hpage_collapse_scan_abort(node, cc)) { 2165 result = SCAN_SCAN_ABORT; 2166 break; 2167 } 2168 cc->node_load[node]++; 2169 2170 if (!PageLRU(page)) { 2171 result = SCAN_PAGE_LRU; 2172 break; 2173 } 2174 2175 if (page_count(page) != 2176 1 + page_mapcount(page) + page_has_private(page)) { 2177 result = SCAN_PAGE_COUNT; 2178 break; 2179 } 2180 2181 /* 2182 * We probably should check if the page is referenced here, but 2183 * nobody would transfer pte_young() to PageReferenced() for us. 2184 * And rmap walk here is just too costly... 2185 */ 2186 2187 present++; 2188 2189 if (need_resched()) { 2190 xas_pause(&xas); 2191 cond_resched_rcu(); 2192 } 2193 } 2194 rcu_read_unlock(); 2195 2196 if (result == SCAN_SUCCEED) { 2197 if (cc->is_khugepaged && 2198 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2199 result = SCAN_EXCEED_NONE_PTE; 2200 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2201 } else { 2202 result = collapse_file(mm, addr, file, start, cc); 2203 } 2204 } 2205 2206 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result); 2207 return result; 2208 } 2209 #else 2210 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2211 struct file *file, pgoff_t start, 2212 struct collapse_control *cc) 2213 { 2214 BUILD_BUG(); 2215 } 2216 2217 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 2218 { 2219 } 2220 2221 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 2222 unsigned long addr) 2223 { 2224 return false; 2225 } 2226 #endif 2227 2228 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2229 struct collapse_control *cc) 2230 __releases(&khugepaged_mm_lock) 2231 __acquires(&khugepaged_mm_lock) 2232 { 2233 struct vma_iterator vmi; 2234 struct khugepaged_mm_slot *mm_slot; 2235 struct mm_slot *slot; 2236 struct mm_struct *mm; 2237 struct vm_area_struct *vma; 2238 int progress = 0; 2239 2240 VM_BUG_ON(!pages); 2241 lockdep_assert_held(&khugepaged_mm_lock); 2242 *result = SCAN_FAIL; 2243 2244 if (khugepaged_scan.mm_slot) { 2245 mm_slot = khugepaged_scan.mm_slot; 2246 slot = &mm_slot->slot; 2247 } else { 2248 slot = list_entry(khugepaged_scan.mm_head.next, 2249 struct mm_slot, mm_node); 2250 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2251 khugepaged_scan.address = 0; 2252 khugepaged_scan.mm_slot = mm_slot; 2253 } 2254 spin_unlock(&khugepaged_mm_lock); 2255 khugepaged_collapse_pte_mapped_thps(mm_slot); 2256 2257 mm = slot->mm; 2258 /* 2259 * Don't wait for semaphore (to avoid long wait times). Just move to 2260 * the next mm on the list. 2261 */ 2262 vma = NULL; 2263 if (unlikely(!mmap_read_trylock(mm))) 2264 goto breakouterloop_mmap_lock; 2265 2266 progress++; 2267 if (unlikely(hpage_collapse_test_exit(mm))) 2268 goto breakouterloop; 2269 2270 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2271 for_each_vma(vmi, vma) { 2272 unsigned long hstart, hend; 2273 2274 cond_resched(); 2275 if (unlikely(hpage_collapse_test_exit(mm))) { 2276 progress++; 2277 break; 2278 } 2279 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) { 2280 skip: 2281 progress++; 2282 continue; 2283 } 2284 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2285 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2286 if (khugepaged_scan.address > hend) 2287 goto skip; 2288 if (khugepaged_scan.address < hstart) 2289 khugepaged_scan.address = hstart; 2290 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2291 2292 while (khugepaged_scan.address < hend) { 2293 bool mmap_locked = true; 2294 2295 cond_resched(); 2296 if (unlikely(hpage_collapse_test_exit(mm))) 2297 goto breakouterloop; 2298 2299 VM_BUG_ON(khugepaged_scan.address < hstart || 2300 khugepaged_scan.address + HPAGE_PMD_SIZE > 2301 hend); 2302 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2303 struct file *file = get_file(vma->vm_file); 2304 pgoff_t pgoff = linear_page_index(vma, 2305 khugepaged_scan.address); 2306 2307 mmap_read_unlock(mm); 2308 *result = hpage_collapse_scan_file(mm, 2309 khugepaged_scan.address, 2310 file, pgoff, cc); 2311 mmap_locked = false; 2312 fput(file); 2313 } else { 2314 *result = hpage_collapse_scan_pmd(mm, vma, 2315 khugepaged_scan.address, 2316 &mmap_locked, 2317 cc); 2318 } 2319 switch (*result) { 2320 case SCAN_PTE_MAPPED_HUGEPAGE: { 2321 pmd_t *pmd; 2322 2323 *result = find_pmd_or_thp_or_none(mm, 2324 khugepaged_scan.address, 2325 &pmd); 2326 if (*result != SCAN_SUCCEED) 2327 break; 2328 if (!khugepaged_add_pte_mapped_thp(mm, 2329 khugepaged_scan.address)) 2330 break; 2331 } fallthrough; 2332 case SCAN_SUCCEED: 2333 ++khugepaged_pages_collapsed; 2334 break; 2335 default: 2336 break; 2337 } 2338 2339 /* move to next address */ 2340 khugepaged_scan.address += HPAGE_PMD_SIZE; 2341 progress += HPAGE_PMD_NR; 2342 if (!mmap_locked) 2343 /* 2344 * We released mmap_lock so break loop. Note 2345 * that we drop mmap_lock before all hugepage 2346 * allocations, so if allocation fails, we are 2347 * guaranteed to break here and report the 2348 * correct result back to caller. 2349 */ 2350 goto breakouterloop_mmap_lock; 2351 if (progress >= pages) 2352 goto breakouterloop; 2353 } 2354 } 2355 breakouterloop: 2356 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2357 breakouterloop_mmap_lock: 2358 2359 spin_lock(&khugepaged_mm_lock); 2360 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2361 /* 2362 * Release the current mm_slot if this mm is about to die, or 2363 * if we scanned all vmas of this mm. 2364 */ 2365 if (hpage_collapse_test_exit(mm) || !vma) { 2366 /* 2367 * Make sure that if mm_users is reaching zero while 2368 * khugepaged runs here, khugepaged_exit will find 2369 * mm_slot not pointing to the exiting mm. 2370 */ 2371 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2372 slot = list_entry(slot->mm_node.next, 2373 struct mm_slot, mm_node); 2374 khugepaged_scan.mm_slot = 2375 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2376 khugepaged_scan.address = 0; 2377 } else { 2378 khugepaged_scan.mm_slot = NULL; 2379 khugepaged_full_scans++; 2380 } 2381 2382 collect_mm_slot(mm_slot); 2383 } 2384 2385 return progress; 2386 } 2387 2388 static int khugepaged_has_work(void) 2389 { 2390 return !list_empty(&khugepaged_scan.mm_head) && 2391 hugepage_flags_enabled(); 2392 } 2393 2394 static int khugepaged_wait_event(void) 2395 { 2396 return !list_empty(&khugepaged_scan.mm_head) || 2397 kthread_should_stop(); 2398 } 2399 2400 static void khugepaged_do_scan(struct collapse_control *cc) 2401 { 2402 unsigned int progress = 0, pass_through_head = 0; 2403 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2404 bool wait = true; 2405 int result = SCAN_SUCCEED; 2406 2407 lru_add_drain_all(); 2408 2409 while (true) { 2410 cond_resched(); 2411 2412 if (unlikely(kthread_should_stop() || try_to_freeze())) 2413 break; 2414 2415 spin_lock(&khugepaged_mm_lock); 2416 if (!khugepaged_scan.mm_slot) 2417 pass_through_head++; 2418 if (khugepaged_has_work() && 2419 pass_through_head < 2) 2420 progress += khugepaged_scan_mm_slot(pages - progress, 2421 &result, cc); 2422 else 2423 progress = pages; 2424 spin_unlock(&khugepaged_mm_lock); 2425 2426 if (progress >= pages) 2427 break; 2428 2429 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2430 /* 2431 * If fail to allocate the first time, try to sleep for 2432 * a while. When hit again, cancel the scan. 2433 */ 2434 if (!wait) 2435 break; 2436 wait = false; 2437 khugepaged_alloc_sleep(); 2438 } 2439 } 2440 } 2441 2442 static bool khugepaged_should_wakeup(void) 2443 { 2444 return kthread_should_stop() || 2445 time_after_eq(jiffies, khugepaged_sleep_expire); 2446 } 2447 2448 static void khugepaged_wait_work(void) 2449 { 2450 if (khugepaged_has_work()) { 2451 const unsigned long scan_sleep_jiffies = 2452 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2453 2454 if (!scan_sleep_jiffies) 2455 return; 2456 2457 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2458 wait_event_freezable_timeout(khugepaged_wait, 2459 khugepaged_should_wakeup(), 2460 scan_sleep_jiffies); 2461 return; 2462 } 2463 2464 if (hugepage_flags_enabled()) 2465 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2466 } 2467 2468 static int khugepaged(void *none) 2469 { 2470 struct khugepaged_mm_slot *mm_slot; 2471 2472 set_freezable(); 2473 set_user_nice(current, MAX_NICE); 2474 2475 while (!kthread_should_stop()) { 2476 khugepaged_do_scan(&khugepaged_collapse_control); 2477 khugepaged_wait_work(); 2478 } 2479 2480 spin_lock(&khugepaged_mm_lock); 2481 mm_slot = khugepaged_scan.mm_slot; 2482 khugepaged_scan.mm_slot = NULL; 2483 if (mm_slot) 2484 collect_mm_slot(mm_slot); 2485 spin_unlock(&khugepaged_mm_lock); 2486 return 0; 2487 } 2488 2489 static void set_recommended_min_free_kbytes(void) 2490 { 2491 struct zone *zone; 2492 int nr_zones = 0; 2493 unsigned long recommended_min; 2494 2495 if (!hugepage_flags_enabled()) { 2496 calculate_min_free_kbytes(); 2497 goto update_wmarks; 2498 } 2499 2500 for_each_populated_zone(zone) { 2501 /* 2502 * We don't need to worry about fragmentation of 2503 * ZONE_MOVABLE since it only has movable pages. 2504 */ 2505 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2506 continue; 2507 2508 nr_zones++; 2509 } 2510 2511 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2512 recommended_min = pageblock_nr_pages * nr_zones * 2; 2513 2514 /* 2515 * Make sure that on average at least two pageblocks are almost free 2516 * of another type, one for a migratetype to fall back to and a 2517 * second to avoid subsequent fallbacks of other types There are 3 2518 * MIGRATE_TYPES we care about. 2519 */ 2520 recommended_min += pageblock_nr_pages * nr_zones * 2521 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2522 2523 /* don't ever allow to reserve more than 5% of the lowmem */ 2524 recommended_min = min(recommended_min, 2525 (unsigned long) nr_free_buffer_pages() / 20); 2526 recommended_min <<= (PAGE_SHIFT-10); 2527 2528 if (recommended_min > min_free_kbytes) { 2529 if (user_min_free_kbytes >= 0) 2530 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2531 min_free_kbytes, recommended_min); 2532 2533 min_free_kbytes = recommended_min; 2534 } 2535 2536 update_wmarks: 2537 setup_per_zone_wmarks(); 2538 } 2539 2540 int start_stop_khugepaged(void) 2541 { 2542 int err = 0; 2543 2544 mutex_lock(&khugepaged_mutex); 2545 if (hugepage_flags_enabled()) { 2546 if (!khugepaged_thread) 2547 khugepaged_thread = kthread_run(khugepaged, NULL, 2548 "khugepaged"); 2549 if (IS_ERR(khugepaged_thread)) { 2550 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2551 err = PTR_ERR(khugepaged_thread); 2552 khugepaged_thread = NULL; 2553 goto fail; 2554 } 2555 2556 if (!list_empty(&khugepaged_scan.mm_head)) 2557 wake_up_interruptible(&khugepaged_wait); 2558 } else if (khugepaged_thread) { 2559 kthread_stop(khugepaged_thread); 2560 khugepaged_thread = NULL; 2561 } 2562 set_recommended_min_free_kbytes(); 2563 fail: 2564 mutex_unlock(&khugepaged_mutex); 2565 return err; 2566 } 2567 2568 void khugepaged_min_free_kbytes_update(void) 2569 { 2570 mutex_lock(&khugepaged_mutex); 2571 if (hugepage_flags_enabled() && khugepaged_thread) 2572 set_recommended_min_free_kbytes(); 2573 mutex_unlock(&khugepaged_mutex); 2574 } 2575 2576 bool current_is_khugepaged(void) 2577 { 2578 return kthread_func(current) == khugepaged; 2579 } 2580 2581 static int madvise_collapse_errno(enum scan_result r) 2582 { 2583 /* 2584 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2585 * actionable feedback to caller, so they may take an appropriate 2586 * fallback measure depending on the nature of the failure. 2587 */ 2588 switch (r) { 2589 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2590 return -ENOMEM; 2591 case SCAN_CGROUP_CHARGE_FAIL: 2592 return -EBUSY; 2593 /* Resource temporary unavailable - trying again might succeed */ 2594 case SCAN_PAGE_LOCK: 2595 case SCAN_PAGE_LRU: 2596 case SCAN_DEL_PAGE_LRU: 2597 return -EAGAIN; 2598 /* 2599 * Other: Trying again likely not to succeed / error intrinsic to 2600 * specified memory range. khugepaged likely won't be able to collapse 2601 * either. 2602 */ 2603 default: 2604 return -EINVAL; 2605 } 2606 } 2607 2608 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2609 unsigned long start, unsigned long end) 2610 { 2611 struct collapse_control *cc; 2612 struct mm_struct *mm = vma->vm_mm; 2613 unsigned long hstart, hend, addr; 2614 int thps = 0, last_fail = SCAN_FAIL; 2615 bool mmap_locked = true; 2616 2617 BUG_ON(vma->vm_start > start); 2618 BUG_ON(vma->vm_end < end); 2619 2620 *prev = vma; 2621 2622 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 2623 return -EINVAL; 2624 2625 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2626 if (!cc) 2627 return -ENOMEM; 2628 cc->is_khugepaged = false; 2629 2630 mmgrab(mm); 2631 lru_add_drain_all(); 2632 2633 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2634 hend = end & HPAGE_PMD_MASK; 2635 2636 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2637 int result = SCAN_FAIL; 2638 2639 if (!mmap_locked) { 2640 cond_resched(); 2641 mmap_read_lock(mm); 2642 mmap_locked = true; 2643 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2644 cc); 2645 if (result != SCAN_SUCCEED) { 2646 last_fail = result; 2647 goto out_nolock; 2648 } 2649 2650 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2651 } 2652 mmap_assert_locked(mm); 2653 memset(cc->node_load, 0, sizeof(cc->node_load)); 2654 nodes_clear(cc->alloc_nmask); 2655 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2656 struct file *file = get_file(vma->vm_file); 2657 pgoff_t pgoff = linear_page_index(vma, addr); 2658 2659 mmap_read_unlock(mm); 2660 mmap_locked = false; 2661 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2662 cc); 2663 fput(file); 2664 } else { 2665 result = hpage_collapse_scan_pmd(mm, vma, addr, 2666 &mmap_locked, cc); 2667 } 2668 if (!mmap_locked) 2669 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2670 2671 handle_result: 2672 switch (result) { 2673 case SCAN_SUCCEED: 2674 case SCAN_PMD_MAPPED: 2675 ++thps; 2676 break; 2677 case SCAN_PTE_MAPPED_HUGEPAGE: 2678 BUG_ON(mmap_locked); 2679 BUG_ON(*prev); 2680 mmap_write_lock(mm); 2681 result = collapse_pte_mapped_thp(mm, addr, true); 2682 mmap_write_unlock(mm); 2683 goto handle_result; 2684 /* Whitelisted set of results where continuing OK */ 2685 case SCAN_PMD_NULL: 2686 case SCAN_PTE_NON_PRESENT: 2687 case SCAN_PTE_UFFD_WP: 2688 case SCAN_PAGE_RO: 2689 case SCAN_LACK_REFERENCED_PAGE: 2690 case SCAN_PAGE_NULL: 2691 case SCAN_PAGE_COUNT: 2692 case SCAN_PAGE_LOCK: 2693 case SCAN_PAGE_COMPOUND: 2694 case SCAN_PAGE_LRU: 2695 case SCAN_DEL_PAGE_LRU: 2696 last_fail = result; 2697 break; 2698 default: 2699 last_fail = result; 2700 /* Other error, exit */ 2701 goto out_maybelock; 2702 } 2703 } 2704 2705 out_maybelock: 2706 /* Caller expects us to hold mmap_lock on return */ 2707 if (!mmap_locked) 2708 mmap_read_lock(mm); 2709 out_nolock: 2710 mmap_assert_locked(mm); 2711 mmdrop(mm); 2712 kfree(cc); 2713 2714 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2715 : madvise_collapse_errno(last_fail); 2716 } 2717