1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 #include <linux/ksm.h> 23 24 #include <asm/tlb.h> 25 #include <asm/pgalloc.h> 26 #include "internal.h" 27 #include "mm_slot.h" 28 29 enum scan_result { 30 SCAN_FAIL, 31 SCAN_SUCCEED, 32 SCAN_PMD_NULL, 33 SCAN_PMD_NONE, 34 SCAN_PMD_MAPPED, 35 SCAN_EXCEED_NONE_PTE, 36 SCAN_EXCEED_SWAP_PTE, 37 SCAN_EXCEED_SHARED_PTE, 38 SCAN_PTE_NON_PRESENT, 39 SCAN_PTE_UFFD_WP, 40 SCAN_PTE_MAPPED_HUGEPAGE, 41 SCAN_PAGE_RO, 42 SCAN_LACK_REFERENCED_PAGE, 43 SCAN_PAGE_NULL, 44 SCAN_SCAN_ABORT, 45 SCAN_PAGE_COUNT, 46 SCAN_PAGE_LRU, 47 SCAN_PAGE_LOCK, 48 SCAN_PAGE_ANON, 49 SCAN_PAGE_COMPOUND, 50 SCAN_ANY_PROCESS, 51 SCAN_VMA_NULL, 52 SCAN_VMA_CHECK, 53 SCAN_ADDRESS_RANGE, 54 SCAN_DEL_PAGE_LRU, 55 SCAN_ALLOC_HUGE_PAGE_FAIL, 56 SCAN_CGROUP_CHARGE_FAIL, 57 SCAN_TRUNCATED, 58 SCAN_PAGE_HAS_PRIVATE, 59 SCAN_STORE_FAILED, 60 SCAN_COPY_MC, 61 SCAN_PAGE_FILLED, 62 }; 63 64 #define CREATE_TRACE_POINTS 65 #include <trace/events/huge_memory.h> 66 67 static struct task_struct *khugepaged_thread __read_mostly; 68 static DEFINE_MUTEX(khugepaged_mutex); 69 70 /* default scan 8*512 pte (or vmas) every 30 second */ 71 static unsigned int khugepaged_pages_to_scan __read_mostly; 72 static unsigned int khugepaged_pages_collapsed; 73 static unsigned int khugepaged_full_scans; 74 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 75 /* during fragmentation poll the hugepage allocator once every minute */ 76 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 77 static unsigned long khugepaged_sleep_expire; 78 static DEFINE_SPINLOCK(khugepaged_mm_lock); 79 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 80 /* 81 * default collapse hugepages if there is at least one pte mapped like 82 * it would have happened if the vma was large enough during page 83 * fault. 84 * 85 * Note that these are only respected if collapse was initiated by khugepaged. 86 */ 87 static unsigned int khugepaged_max_ptes_none __read_mostly; 88 static unsigned int khugepaged_max_ptes_swap __read_mostly; 89 static unsigned int khugepaged_max_ptes_shared __read_mostly; 90 91 #define MM_SLOTS_HASH_BITS 10 92 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 93 94 static struct kmem_cache *mm_slot_cache __ro_after_init; 95 96 struct collapse_control { 97 bool is_khugepaged; 98 99 /* Num pages scanned per node */ 100 u32 node_load[MAX_NUMNODES]; 101 102 /* nodemask for allocation fallback */ 103 nodemask_t alloc_nmask; 104 }; 105 106 /** 107 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 108 * @slot: hash lookup from mm to mm_slot 109 */ 110 struct khugepaged_mm_slot { 111 struct mm_slot slot; 112 }; 113 114 /** 115 * struct khugepaged_scan - cursor for scanning 116 * @mm_head: the head of the mm list to scan 117 * @mm_slot: the current mm_slot we are scanning 118 * @address: the next address inside that to be scanned 119 * 120 * There is only the one khugepaged_scan instance of this cursor structure. 121 */ 122 struct khugepaged_scan { 123 struct list_head mm_head; 124 struct khugepaged_mm_slot *mm_slot; 125 unsigned long address; 126 }; 127 128 static struct khugepaged_scan khugepaged_scan = { 129 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 130 }; 131 132 #ifdef CONFIG_SYSFS 133 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 134 struct kobj_attribute *attr, 135 char *buf) 136 { 137 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 138 } 139 140 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 141 struct kobj_attribute *attr, 142 const char *buf, size_t count) 143 { 144 unsigned int msecs; 145 int err; 146 147 err = kstrtouint(buf, 10, &msecs); 148 if (err) 149 return -EINVAL; 150 151 khugepaged_scan_sleep_millisecs = msecs; 152 khugepaged_sleep_expire = 0; 153 wake_up_interruptible(&khugepaged_wait); 154 155 return count; 156 } 157 static struct kobj_attribute scan_sleep_millisecs_attr = 158 __ATTR_RW(scan_sleep_millisecs); 159 160 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 161 struct kobj_attribute *attr, 162 char *buf) 163 { 164 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 165 } 166 167 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 168 struct kobj_attribute *attr, 169 const char *buf, size_t count) 170 { 171 unsigned int msecs; 172 int err; 173 174 err = kstrtouint(buf, 10, &msecs); 175 if (err) 176 return -EINVAL; 177 178 khugepaged_alloc_sleep_millisecs = msecs; 179 khugepaged_sleep_expire = 0; 180 wake_up_interruptible(&khugepaged_wait); 181 182 return count; 183 } 184 static struct kobj_attribute alloc_sleep_millisecs_attr = 185 __ATTR_RW(alloc_sleep_millisecs); 186 187 static ssize_t pages_to_scan_show(struct kobject *kobj, 188 struct kobj_attribute *attr, 189 char *buf) 190 { 191 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 192 } 193 static ssize_t pages_to_scan_store(struct kobject *kobj, 194 struct kobj_attribute *attr, 195 const char *buf, size_t count) 196 { 197 unsigned int pages; 198 int err; 199 200 err = kstrtouint(buf, 10, &pages); 201 if (err || !pages) 202 return -EINVAL; 203 204 khugepaged_pages_to_scan = pages; 205 206 return count; 207 } 208 static struct kobj_attribute pages_to_scan_attr = 209 __ATTR_RW(pages_to_scan); 210 211 static ssize_t pages_collapsed_show(struct kobject *kobj, 212 struct kobj_attribute *attr, 213 char *buf) 214 { 215 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 216 } 217 static struct kobj_attribute pages_collapsed_attr = 218 __ATTR_RO(pages_collapsed); 219 220 static ssize_t full_scans_show(struct kobject *kobj, 221 struct kobj_attribute *attr, 222 char *buf) 223 { 224 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 225 } 226 static struct kobj_attribute full_scans_attr = 227 __ATTR_RO(full_scans); 228 229 static ssize_t defrag_show(struct kobject *kobj, 230 struct kobj_attribute *attr, char *buf) 231 { 232 return single_hugepage_flag_show(kobj, attr, buf, 233 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 234 } 235 static ssize_t defrag_store(struct kobject *kobj, 236 struct kobj_attribute *attr, 237 const char *buf, size_t count) 238 { 239 return single_hugepage_flag_store(kobj, attr, buf, count, 240 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 241 } 242 static struct kobj_attribute khugepaged_defrag_attr = 243 __ATTR_RW(defrag); 244 245 /* 246 * max_ptes_none controls if khugepaged should collapse hugepages over 247 * any unmapped ptes in turn potentially increasing the memory 248 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 249 * reduce the available free memory in the system as it 250 * runs. Increasing max_ptes_none will instead potentially reduce the 251 * free memory in the system during the khugepaged scan. 252 */ 253 static ssize_t max_ptes_none_show(struct kobject *kobj, 254 struct kobj_attribute *attr, 255 char *buf) 256 { 257 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 258 } 259 static ssize_t max_ptes_none_store(struct kobject *kobj, 260 struct kobj_attribute *attr, 261 const char *buf, size_t count) 262 { 263 int err; 264 unsigned long max_ptes_none; 265 266 err = kstrtoul(buf, 10, &max_ptes_none); 267 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 268 return -EINVAL; 269 270 khugepaged_max_ptes_none = max_ptes_none; 271 272 return count; 273 } 274 static struct kobj_attribute khugepaged_max_ptes_none_attr = 275 __ATTR_RW(max_ptes_none); 276 277 static ssize_t max_ptes_swap_show(struct kobject *kobj, 278 struct kobj_attribute *attr, 279 char *buf) 280 { 281 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 282 } 283 284 static ssize_t max_ptes_swap_store(struct kobject *kobj, 285 struct kobj_attribute *attr, 286 const char *buf, size_t count) 287 { 288 int err; 289 unsigned long max_ptes_swap; 290 291 err = kstrtoul(buf, 10, &max_ptes_swap); 292 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 293 return -EINVAL; 294 295 khugepaged_max_ptes_swap = max_ptes_swap; 296 297 return count; 298 } 299 300 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 301 __ATTR_RW(max_ptes_swap); 302 303 static ssize_t max_ptes_shared_show(struct kobject *kobj, 304 struct kobj_attribute *attr, 305 char *buf) 306 { 307 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 308 } 309 310 static ssize_t max_ptes_shared_store(struct kobject *kobj, 311 struct kobj_attribute *attr, 312 const char *buf, size_t count) 313 { 314 int err; 315 unsigned long max_ptes_shared; 316 317 err = kstrtoul(buf, 10, &max_ptes_shared); 318 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 319 return -EINVAL; 320 321 khugepaged_max_ptes_shared = max_ptes_shared; 322 323 return count; 324 } 325 326 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 327 __ATTR_RW(max_ptes_shared); 328 329 static struct attribute *khugepaged_attr[] = { 330 &khugepaged_defrag_attr.attr, 331 &khugepaged_max_ptes_none_attr.attr, 332 &khugepaged_max_ptes_swap_attr.attr, 333 &khugepaged_max_ptes_shared_attr.attr, 334 &pages_to_scan_attr.attr, 335 &pages_collapsed_attr.attr, 336 &full_scans_attr.attr, 337 &scan_sleep_millisecs_attr.attr, 338 &alloc_sleep_millisecs_attr.attr, 339 NULL, 340 }; 341 342 struct attribute_group khugepaged_attr_group = { 343 .attrs = khugepaged_attr, 344 .name = "khugepaged", 345 }; 346 #endif /* CONFIG_SYSFS */ 347 348 int hugepage_madvise(struct vm_area_struct *vma, 349 unsigned long *vm_flags, int advice) 350 { 351 switch (advice) { 352 case MADV_HUGEPAGE: 353 #ifdef CONFIG_S390 354 /* 355 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 356 * can't handle this properly after s390_enable_sie, so we simply 357 * ignore the madvise to prevent qemu from causing a SIGSEGV. 358 */ 359 if (mm_has_pgste(vma->vm_mm)) 360 return 0; 361 #endif 362 *vm_flags &= ~VM_NOHUGEPAGE; 363 *vm_flags |= VM_HUGEPAGE; 364 /* 365 * If the vma become good for khugepaged to scan, 366 * register it here without waiting a page fault that 367 * may not happen any time soon. 368 */ 369 khugepaged_enter_vma(vma, *vm_flags); 370 break; 371 case MADV_NOHUGEPAGE: 372 *vm_flags &= ~VM_HUGEPAGE; 373 *vm_flags |= VM_NOHUGEPAGE; 374 /* 375 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 376 * this vma even if we leave the mm registered in khugepaged if 377 * it got registered before VM_NOHUGEPAGE was set. 378 */ 379 break; 380 } 381 382 return 0; 383 } 384 385 int __init khugepaged_init(void) 386 { 387 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 388 sizeof(struct khugepaged_mm_slot), 389 __alignof__(struct khugepaged_mm_slot), 390 0, NULL); 391 if (!mm_slot_cache) 392 return -ENOMEM; 393 394 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 395 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 396 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 397 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 398 399 return 0; 400 } 401 402 void __init khugepaged_destroy(void) 403 { 404 kmem_cache_destroy(mm_slot_cache); 405 } 406 407 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 408 { 409 return atomic_read(&mm->mm_users) == 0; 410 } 411 412 void __khugepaged_enter(struct mm_struct *mm) 413 { 414 struct khugepaged_mm_slot *mm_slot; 415 struct mm_slot *slot; 416 int wakeup; 417 418 /* __khugepaged_exit() must not run from under us */ 419 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 420 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) 421 return; 422 423 mm_slot = mm_slot_alloc(mm_slot_cache); 424 if (!mm_slot) 425 return; 426 427 slot = &mm_slot->slot; 428 429 spin_lock(&khugepaged_mm_lock); 430 mm_slot_insert(mm_slots_hash, mm, slot); 431 /* 432 * Insert just behind the scanning cursor, to let the area settle 433 * down a little. 434 */ 435 wakeup = list_empty(&khugepaged_scan.mm_head); 436 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 437 spin_unlock(&khugepaged_mm_lock); 438 439 mmgrab(mm); 440 if (wakeup) 441 wake_up_interruptible(&khugepaged_wait); 442 } 443 444 void khugepaged_enter_vma(struct vm_area_struct *vma, 445 unsigned long vm_flags) 446 { 447 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 448 hugepage_flags_enabled()) { 449 if (hugepage_vma_check(vma, vm_flags, false, false, true)) 450 __khugepaged_enter(vma->vm_mm); 451 } 452 } 453 454 void __khugepaged_exit(struct mm_struct *mm) 455 { 456 struct khugepaged_mm_slot *mm_slot; 457 struct mm_slot *slot; 458 int free = 0; 459 460 spin_lock(&khugepaged_mm_lock); 461 slot = mm_slot_lookup(mm_slots_hash, mm); 462 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 463 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 464 hash_del(&slot->hash); 465 list_del(&slot->mm_node); 466 free = 1; 467 } 468 spin_unlock(&khugepaged_mm_lock); 469 470 if (free) { 471 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 472 mm_slot_free(mm_slot_cache, mm_slot); 473 mmdrop(mm); 474 } else if (mm_slot) { 475 /* 476 * This is required to serialize against 477 * hpage_collapse_test_exit() (which is guaranteed to run 478 * under mmap sem read mode). Stop here (after we return all 479 * pagetables will be destroyed) until khugepaged has finished 480 * working on the pagetables under the mmap_lock. 481 */ 482 mmap_write_lock(mm); 483 mmap_write_unlock(mm); 484 } 485 } 486 487 static void release_pte_folio(struct folio *folio) 488 { 489 node_stat_mod_folio(folio, 490 NR_ISOLATED_ANON + folio_is_file_lru(folio), 491 -folio_nr_pages(folio)); 492 folio_unlock(folio); 493 folio_putback_lru(folio); 494 } 495 496 static void release_pte_page(struct page *page) 497 { 498 release_pte_folio(page_folio(page)); 499 } 500 501 static void release_pte_pages(pte_t *pte, pte_t *_pte, 502 struct list_head *compound_pagelist) 503 { 504 struct folio *folio, *tmp; 505 506 while (--_pte >= pte) { 507 pte_t pteval = ptep_get(_pte); 508 unsigned long pfn; 509 510 if (pte_none(pteval)) 511 continue; 512 pfn = pte_pfn(pteval); 513 if (is_zero_pfn(pfn)) 514 continue; 515 folio = pfn_folio(pfn); 516 if (folio_test_large(folio)) 517 continue; 518 release_pte_folio(folio); 519 } 520 521 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) { 522 list_del(&folio->lru); 523 release_pte_folio(folio); 524 } 525 } 526 527 static bool is_refcount_suitable(struct folio *folio) 528 { 529 int expected_refcount; 530 531 expected_refcount = folio_mapcount(folio); 532 if (folio_test_swapcache(folio)) 533 expected_refcount += folio_nr_pages(folio); 534 535 return folio_ref_count(folio) == expected_refcount; 536 } 537 538 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 539 unsigned long address, 540 pte_t *pte, 541 struct collapse_control *cc, 542 struct list_head *compound_pagelist) 543 { 544 struct page *page = NULL; 545 struct folio *folio = NULL; 546 pte_t *_pte; 547 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 548 bool writable = false; 549 550 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 551 _pte++, address += PAGE_SIZE) { 552 pte_t pteval = ptep_get(_pte); 553 if (pte_none(pteval) || (pte_present(pteval) && 554 is_zero_pfn(pte_pfn(pteval)))) { 555 ++none_or_zero; 556 if (!userfaultfd_armed(vma) && 557 (!cc->is_khugepaged || 558 none_or_zero <= khugepaged_max_ptes_none)) { 559 continue; 560 } else { 561 result = SCAN_EXCEED_NONE_PTE; 562 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 563 goto out; 564 } 565 } 566 if (!pte_present(pteval)) { 567 result = SCAN_PTE_NON_PRESENT; 568 goto out; 569 } 570 if (pte_uffd_wp(pteval)) { 571 result = SCAN_PTE_UFFD_WP; 572 goto out; 573 } 574 page = vm_normal_page(vma, address, pteval); 575 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 576 result = SCAN_PAGE_NULL; 577 goto out; 578 } 579 580 folio = page_folio(page); 581 VM_BUG_ON_FOLIO(!folio_test_anon(folio), folio); 582 583 if (page_mapcount(page) > 1) { 584 ++shared; 585 if (cc->is_khugepaged && 586 shared > khugepaged_max_ptes_shared) { 587 result = SCAN_EXCEED_SHARED_PTE; 588 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 589 goto out; 590 } 591 } 592 593 if (folio_test_large(folio)) { 594 struct folio *f; 595 596 /* 597 * Check if we have dealt with the compound page 598 * already 599 */ 600 list_for_each_entry(f, compound_pagelist, lru) { 601 if (folio == f) 602 goto next; 603 } 604 } 605 606 /* 607 * We can do it before isolate_lru_page because the 608 * page can't be freed from under us. NOTE: PG_lock 609 * is needed to serialize against split_huge_page 610 * when invoked from the VM. 611 */ 612 if (!folio_trylock(folio)) { 613 result = SCAN_PAGE_LOCK; 614 goto out; 615 } 616 617 /* 618 * Check if the page has any GUP (or other external) pins. 619 * 620 * The page table that maps the page has been already unlinked 621 * from the page table tree and this process cannot get 622 * an additional pin on the page. 623 * 624 * New pins can come later if the page is shared across fork, 625 * but not from this process. The other process cannot write to 626 * the page, only trigger CoW. 627 */ 628 if (!is_refcount_suitable(folio)) { 629 folio_unlock(folio); 630 result = SCAN_PAGE_COUNT; 631 goto out; 632 } 633 634 /* 635 * Isolate the page to avoid collapsing an hugepage 636 * currently in use by the VM. 637 */ 638 if (!folio_isolate_lru(folio)) { 639 folio_unlock(folio); 640 result = SCAN_DEL_PAGE_LRU; 641 goto out; 642 } 643 node_stat_mod_folio(folio, 644 NR_ISOLATED_ANON + folio_is_file_lru(folio), 645 folio_nr_pages(folio)); 646 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 647 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio); 648 649 if (folio_test_large(folio)) 650 list_add_tail(&folio->lru, compound_pagelist); 651 next: 652 /* 653 * If collapse was initiated by khugepaged, check that there is 654 * enough young pte to justify collapsing the page 655 */ 656 if (cc->is_khugepaged && 657 (pte_young(pteval) || folio_test_young(folio) || 658 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 659 address))) 660 referenced++; 661 662 if (pte_write(pteval)) 663 writable = true; 664 } 665 666 if (unlikely(!writable)) { 667 result = SCAN_PAGE_RO; 668 } else if (unlikely(cc->is_khugepaged && !referenced)) { 669 result = SCAN_LACK_REFERENCED_PAGE; 670 } else { 671 result = SCAN_SUCCEED; 672 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 673 referenced, writable, result); 674 return result; 675 } 676 out: 677 release_pte_pages(pte, _pte, compound_pagelist); 678 trace_mm_collapse_huge_page_isolate(&folio->page, none_or_zero, 679 referenced, writable, result); 680 return result; 681 } 682 683 static void __collapse_huge_page_copy_succeeded(pte_t *pte, 684 struct vm_area_struct *vma, 685 unsigned long address, 686 spinlock_t *ptl, 687 struct list_head *compound_pagelist) 688 { 689 struct page *src_page; 690 struct page *tmp; 691 pte_t *_pte; 692 pte_t pteval; 693 694 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 695 _pte++, address += PAGE_SIZE) { 696 pteval = ptep_get(_pte); 697 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 698 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 699 if (is_zero_pfn(pte_pfn(pteval))) { 700 /* 701 * ptl mostly unnecessary. 702 */ 703 spin_lock(ptl); 704 ptep_clear(vma->vm_mm, address, _pte); 705 spin_unlock(ptl); 706 ksm_might_unmap_zero_page(vma->vm_mm, pteval); 707 } 708 } else { 709 src_page = pte_page(pteval); 710 if (!PageCompound(src_page)) 711 release_pte_page(src_page); 712 /* 713 * ptl mostly unnecessary, but preempt has to 714 * be disabled to update the per-cpu stats 715 * inside page_remove_rmap(). 716 */ 717 spin_lock(ptl); 718 ptep_clear(vma->vm_mm, address, _pte); 719 page_remove_rmap(src_page, vma, false); 720 spin_unlock(ptl); 721 free_page_and_swap_cache(src_page); 722 } 723 } 724 725 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 726 list_del(&src_page->lru); 727 mod_node_page_state(page_pgdat(src_page), 728 NR_ISOLATED_ANON + page_is_file_lru(src_page), 729 -compound_nr(src_page)); 730 unlock_page(src_page); 731 free_swap_cache(src_page); 732 putback_lru_page(src_page); 733 } 734 } 735 736 static void __collapse_huge_page_copy_failed(pte_t *pte, 737 pmd_t *pmd, 738 pmd_t orig_pmd, 739 struct vm_area_struct *vma, 740 struct list_head *compound_pagelist) 741 { 742 spinlock_t *pmd_ptl; 743 744 /* 745 * Re-establish the PMD to point to the original page table 746 * entry. Restoring PMD needs to be done prior to releasing 747 * pages. Since pages are still isolated and locked here, 748 * acquiring anon_vma_lock_write is unnecessary. 749 */ 750 pmd_ptl = pmd_lock(vma->vm_mm, pmd); 751 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd)); 752 spin_unlock(pmd_ptl); 753 /* 754 * Release both raw and compound pages isolated 755 * in __collapse_huge_page_isolate. 756 */ 757 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist); 758 } 759 760 /* 761 * __collapse_huge_page_copy - attempts to copy memory contents from raw 762 * pages to a hugepage. Cleans up the raw pages if copying succeeds; 763 * otherwise restores the original page table and releases isolated raw pages. 764 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC. 765 * 766 * @pte: starting of the PTEs to copy from 767 * @page: the new hugepage to copy contents to 768 * @pmd: pointer to the new hugepage's PMD 769 * @orig_pmd: the original raw pages' PMD 770 * @vma: the original raw pages' virtual memory area 771 * @address: starting address to copy 772 * @ptl: lock on raw pages' PTEs 773 * @compound_pagelist: list that stores compound pages 774 */ 775 static int __collapse_huge_page_copy(pte_t *pte, 776 struct page *page, 777 pmd_t *pmd, 778 pmd_t orig_pmd, 779 struct vm_area_struct *vma, 780 unsigned long address, 781 spinlock_t *ptl, 782 struct list_head *compound_pagelist) 783 { 784 struct page *src_page; 785 pte_t *_pte; 786 pte_t pteval; 787 unsigned long _address; 788 int result = SCAN_SUCCEED; 789 790 /* 791 * Copying pages' contents is subject to memory poison at any iteration. 792 */ 793 for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR; 794 _pte++, page++, _address += PAGE_SIZE) { 795 pteval = ptep_get(_pte); 796 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 797 clear_user_highpage(page, _address); 798 continue; 799 } 800 src_page = pte_page(pteval); 801 if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) { 802 result = SCAN_COPY_MC; 803 break; 804 } 805 } 806 807 if (likely(result == SCAN_SUCCEED)) 808 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl, 809 compound_pagelist); 810 else 811 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma, 812 compound_pagelist); 813 814 return result; 815 } 816 817 static void khugepaged_alloc_sleep(void) 818 { 819 DEFINE_WAIT(wait); 820 821 add_wait_queue(&khugepaged_wait, &wait); 822 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 823 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 824 remove_wait_queue(&khugepaged_wait, &wait); 825 } 826 827 struct collapse_control khugepaged_collapse_control = { 828 .is_khugepaged = true, 829 }; 830 831 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 832 { 833 int i; 834 835 /* 836 * If node_reclaim_mode is disabled, then no extra effort is made to 837 * allocate memory locally. 838 */ 839 if (!node_reclaim_enabled()) 840 return false; 841 842 /* If there is a count for this node already, it must be acceptable */ 843 if (cc->node_load[nid]) 844 return false; 845 846 for (i = 0; i < MAX_NUMNODES; i++) { 847 if (!cc->node_load[i]) 848 continue; 849 if (node_distance(nid, i) > node_reclaim_distance) 850 return true; 851 } 852 return false; 853 } 854 855 #define khugepaged_defrag() \ 856 (transparent_hugepage_flags & \ 857 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 858 859 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 860 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 861 { 862 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 863 } 864 865 #ifdef CONFIG_NUMA 866 static int hpage_collapse_find_target_node(struct collapse_control *cc) 867 { 868 int nid, target_node = 0, max_value = 0; 869 870 /* find first node with max normal pages hit */ 871 for (nid = 0; nid < MAX_NUMNODES; nid++) 872 if (cc->node_load[nid] > max_value) { 873 max_value = cc->node_load[nid]; 874 target_node = nid; 875 } 876 877 for_each_online_node(nid) { 878 if (max_value == cc->node_load[nid]) 879 node_set(nid, cc->alloc_nmask); 880 } 881 882 return target_node; 883 } 884 #else 885 static int hpage_collapse_find_target_node(struct collapse_control *cc) 886 { 887 return 0; 888 } 889 #endif 890 891 static bool hpage_collapse_alloc_folio(struct folio **folio, gfp_t gfp, int node, 892 nodemask_t *nmask) 893 { 894 *folio = __folio_alloc(gfp, HPAGE_PMD_ORDER, node, nmask); 895 896 if (unlikely(!*folio)) { 897 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 898 return false; 899 } 900 901 count_vm_event(THP_COLLAPSE_ALLOC); 902 return true; 903 } 904 905 /* 906 * If mmap_lock temporarily dropped, revalidate vma 907 * before taking mmap_lock. 908 * Returns enum scan_result value. 909 */ 910 911 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 912 bool expect_anon, 913 struct vm_area_struct **vmap, 914 struct collapse_control *cc) 915 { 916 struct vm_area_struct *vma; 917 918 if (unlikely(hpage_collapse_test_exit(mm))) 919 return SCAN_ANY_PROCESS; 920 921 *vmap = vma = find_vma(mm, address); 922 if (!vma) 923 return SCAN_VMA_NULL; 924 925 if (!transhuge_vma_suitable(vma, address)) 926 return SCAN_ADDRESS_RANGE; 927 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, 928 cc->is_khugepaged)) 929 return SCAN_VMA_CHECK; 930 /* 931 * Anon VMA expected, the address may be unmapped then 932 * remapped to file after khugepaged reaquired the mmap_lock. 933 * 934 * hugepage_vma_check may return true for qualified file 935 * vmas. 936 */ 937 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 938 return SCAN_PAGE_ANON; 939 return SCAN_SUCCEED; 940 } 941 942 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 943 unsigned long address, 944 pmd_t **pmd) 945 { 946 pmd_t pmde; 947 948 *pmd = mm_find_pmd(mm, address); 949 if (!*pmd) 950 return SCAN_PMD_NULL; 951 952 pmde = pmdp_get_lockless(*pmd); 953 if (pmd_none(pmde)) 954 return SCAN_PMD_NONE; 955 if (!pmd_present(pmde)) 956 return SCAN_PMD_NULL; 957 if (pmd_trans_huge(pmde)) 958 return SCAN_PMD_MAPPED; 959 if (pmd_devmap(pmde)) 960 return SCAN_PMD_NULL; 961 if (pmd_bad(pmde)) 962 return SCAN_PMD_NULL; 963 return SCAN_SUCCEED; 964 } 965 966 static int check_pmd_still_valid(struct mm_struct *mm, 967 unsigned long address, 968 pmd_t *pmd) 969 { 970 pmd_t *new_pmd; 971 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 972 973 if (result != SCAN_SUCCEED) 974 return result; 975 if (new_pmd != pmd) 976 return SCAN_FAIL; 977 return SCAN_SUCCEED; 978 } 979 980 /* 981 * Bring missing pages in from swap, to complete THP collapse. 982 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 983 * 984 * Called and returns without pte mapped or spinlocks held. 985 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released. 986 */ 987 static int __collapse_huge_page_swapin(struct mm_struct *mm, 988 struct vm_area_struct *vma, 989 unsigned long haddr, pmd_t *pmd, 990 int referenced) 991 { 992 int swapped_in = 0; 993 vm_fault_t ret = 0; 994 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 995 int result; 996 pte_t *pte = NULL; 997 spinlock_t *ptl; 998 999 for (address = haddr; address < end; address += PAGE_SIZE) { 1000 struct vm_fault vmf = { 1001 .vma = vma, 1002 .address = address, 1003 .pgoff = linear_page_index(vma, address), 1004 .flags = FAULT_FLAG_ALLOW_RETRY, 1005 .pmd = pmd, 1006 }; 1007 1008 if (!pte++) { 1009 pte = pte_offset_map_nolock(mm, pmd, address, &ptl); 1010 if (!pte) { 1011 mmap_read_unlock(mm); 1012 result = SCAN_PMD_NULL; 1013 goto out; 1014 } 1015 } 1016 1017 vmf.orig_pte = ptep_get_lockless(pte); 1018 if (!is_swap_pte(vmf.orig_pte)) 1019 continue; 1020 1021 vmf.pte = pte; 1022 vmf.ptl = ptl; 1023 ret = do_swap_page(&vmf); 1024 /* Which unmaps pte (after perhaps re-checking the entry) */ 1025 pte = NULL; 1026 1027 /* 1028 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 1029 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 1030 * we do not retry here and swap entry will remain in pagetable 1031 * resulting in later failure. 1032 */ 1033 if (ret & VM_FAULT_RETRY) { 1034 /* Likely, but not guaranteed, that page lock failed */ 1035 result = SCAN_PAGE_LOCK; 1036 goto out; 1037 } 1038 if (ret & VM_FAULT_ERROR) { 1039 mmap_read_unlock(mm); 1040 result = SCAN_FAIL; 1041 goto out; 1042 } 1043 swapped_in++; 1044 } 1045 1046 if (pte) 1047 pte_unmap(pte); 1048 1049 /* Drain LRU cache to remove extra pin on the swapped in pages */ 1050 if (swapped_in) 1051 lru_add_drain(); 1052 1053 result = SCAN_SUCCEED; 1054 out: 1055 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result); 1056 return result; 1057 } 1058 1059 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, 1060 struct collapse_control *cc) 1061 { 1062 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 1063 GFP_TRANSHUGE); 1064 int node = hpage_collapse_find_target_node(cc); 1065 struct folio *folio; 1066 1067 if (!hpage_collapse_alloc_folio(&folio, gfp, node, &cc->alloc_nmask)) { 1068 *hpage = NULL; 1069 return SCAN_ALLOC_HUGE_PAGE_FAIL; 1070 } 1071 1072 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) { 1073 folio_put(folio); 1074 *hpage = NULL; 1075 return SCAN_CGROUP_CHARGE_FAIL; 1076 } 1077 1078 count_memcg_folio_events(folio, THP_COLLAPSE_ALLOC, 1); 1079 1080 *hpage = folio_page(folio, 0); 1081 return SCAN_SUCCEED; 1082 } 1083 1084 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 1085 int referenced, int unmapped, 1086 struct collapse_control *cc) 1087 { 1088 LIST_HEAD(compound_pagelist); 1089 pmd_t *pmd, _pmd; 1090 pte_t *pte; 1091 pgtable_t pgtable; 1092 struct page *hpage; 1093 spinlock_t *pmd_ptl, *pte_ptl; 1094 int result = SCAN_FAIL; 1095 struct vm_area_struct *vma; 1096 struct mmu_notifier_range range; 1097 1098 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1099 1100 /* 1101 * Before allocating the hugepage, release the mmap_lock read lock. 1102 * The allocation can take potentially a long time if it involves 1103 * sync compaction, and we do not need to hold the mmap_lock during 1104 * that. We will recheck the vma after taking it again in write mode. 1105 */ 1106 mmap_read_unlock(mm); 1107 1108 result = alloc_charge_hpage(&hpage, mm, cc); 1109 if (result != SCAN_SUCCEED) 1110 goto out_nolock; 1111 1112 mmap_read_lock(mm); 1113 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1114 if (result != SCAN_SUCCEED) { 1115 mmap_read_unlock(mm); 1116 goto out_nolock; 1117 } 1118 1119 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1120 if (result != SCAN_SUCCEED) { 1121 mmap_read_unlock(mm); 1122 goto out_nolock; 1123 } 1124 1125 if (unmapped) { 1126 /* 1127 * __collapse_huge_page_swapin will return with mmap_lock 1128 * released when it fails. So we jump out_nolock directly in 1129 * that case. Continuing to collapse causes inconsistency. 1130 */ 1131 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1132 referenced); 1133 if (result != SCAN_SUCCEED) 1134 goto out_nolock; 1135 } 1136 1137 mmap_read_unlock(mm); 1138 /* 1139 * Prevent all access to pagetables with the exception of 1140 * gup_fast later handled by the ptep_clear_flush and the VM 1141 * handled by the anon_vma lock + PG_lock. 1142 */ 1143 mmap_write_lock(mm); 1144 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1145 if (result != SCAN_SUCCEED) 1146 goto out_up_write; 1147 /* check if the pmd is still valid */ 1148 result = check_pmd_still_valid(mm, address, pmd); 1149 if (result != SCAN_SUCCEED) 1150 goto out_up_write; 1151 1152 vma_start_write(vma); 1153 anon_vma_lock_write(vma->anon_vma); 1154 1155 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address, 1156 address + HPAGE_PMD_SIZE); 1157 mmu_notifier_invalidate_range_start(&range); 1158 1159 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1160 /* 1161 * This removes any huge TLB entry from the CPU so we won't allow 1162 * huge and small TLB entries for the same virtual address to 1163 * avoid the risk of CPU bugs in that area. 1164 * 1165 * Parallel fast GUP is fine since fast GUP will back off when 1166 * it detects PMD is changed. 1167 */ 1168 _pmd = pmdp_collapse_flush(vma, address, pmd); 1169 spin_unlock(pmd_ptl); 1170 mmu_notifier_invalidate_range_end(&range); 1171 tlb_remove_table_sync_one(); 1172 1173 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl); 1174 if (pte) { 1175 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1176 &compound_pagelist); 1177 spin_unlock(pte_ptl); 1178 } else { 1179 result = SCAN_PMD_NULL; 1180 } 1181 1182 if (unlikely(result != SCAN_SUCCEED)) { 1183 if (pte) 1184 pte_unmap(pte); 1185 spin_lock(pmd_ptl); 1186 BUG_ON(!pmd_none(*pmd)); 1187 /* 1188 * We can only use set_pmd_at when establishing 1189 * hugepmds and never for establishing regular pmds that 1190 * points to regular pagetables. Use pmd_populate for that 1191 */ 1192 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1193 spin_unlock(pmd_ptl); 1194 anon_vma_unlock_write(vma->anon_vma); 1195 goto out_up_write; 1196 } 1197 1198 /* 1199 * All pages are isolated and locked so anon_vma rmap 1200 * can't run anymore. 1201 */ 1202 anon_vma_unlock_write(vma->anon_vma); 1203 1204 result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd, 1205 vma, address, pte_ptl, 1206 &compound_pagelist); 1207 pte_unmap(pte); 1208 if (unlikely(result != SCAN_SUCCEED)) 1209 goto out_up_write; 1210 1211 /* 1212 * spin_lock() below is not the equivalent of smp_wmb(), but 1213 * the smp_wmb() inside __SetPageUptodate() can be reused to 1214 * avoid the copy_huge_page writes to become visible after 1215 * the set_pmd_at() write. 1216 */ 1217 __SetPageUptodate(hpage); 1218 pgtable = pmd_pgtable(_pmd); 1219 1220 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); 1221 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1222 1223 spin_lock(pmd_ptl); 1224 BUG_ON(!pmd_none(*pmd)); 1225 page_add_new_anon_rmap(hpage, vma, address); 1226 lru_cache_add_inactive_or_unevictable(hpage, vma); 1227 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1228 set_pmd_at(mm, address, pmd, _pmd); 1229 update_mmu_cache_pmd(vma, address, pmd); 1230 spin_unlock(pmd_ptl); 1231 1232 hpage = NULL; 1233 1234 result = SCAN_SUCCEED; 1235 out_up_write: 1236 mmap_write_unlock(mm); 1237 out_nolock: 1238 if (hpage) 1239 put_page(hpage); 1240 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1241 return result; 1242 } 1243 1244 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1245 struct vm_area_struct *vma, 1246 unsigned long address, bool *mmap_locked, 1247 struct collapse_control *cc) 1248 { 1249 pmd_t *pmd; 1250 pte_t *pte, *_pte; 1251 int result = SCAN_FAIL, referenced = 0; 1252 int none_or_zero = 0, shared = 0; 1253 struct page *page = NULL; 1254 struct folio *folio = NULL; 1255 unsigned long _address; 1256 spinlock_t *ptl; 1257 int node = NUMA_NO_NODE, unmapped = 0; 1258 bool writable = false; 1259 1260 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1261 1262 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1263 if (result != SCAN_SUCCEED) 1264 goto out; 1265 1266 memset(cc->node_load, 0, sizeof(cc->node_load)); 1267 nodes_clear(cc->alloc_nmask); 1268 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1269 if (!pte) { 1270 result = SCAN_PMD_NULL; 1271 goto out; 1272 } 1273 1274 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1275 _pte++, _address += PAGE_SIZE) { 1276 pte_t pteval = ptep_get(_pte); 1277 if (is_swap_pte(pteval)) { 1278 ++unmapped; 1279 if (!cc->is_khugepaged || 1280 unmapped <= khugepaged_max_ptes_swap) { 1281 /* 1282 * Always be strict with uffd-wp 1283 * enabled swap entries. Please see 1284 * comment below for pte_uffd_wp(). 1285 */ 1286 if (pte_swp_uffd_wp_any(pteval)) { 1287 result = SCAN_PTE_UFFD_WP; 1288 goto out_unmap; 1289 } 1290 continue; 1291 } else { 1292 result = SCAN_EXCEED_SWAP_PTE; 1293 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1294 goto out_unmap; 1295 } 1296 } 1297 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1298 ++none_or_zero; 1299 if (!userfaultfd_armed(vma) && 1300 (!cc->is_khugepaged || 1301 none_or_zero <= khugepaged_max_ptes_none)) { 1302 continue; 1303 } else { 1304 result = SCAN_EXCEED_NONE_PTE; 1305 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1306 goto out_unmap; 1307 } 1308 } 1309 if (pte_uffd_wp(pteval)) { 1310 /* 1311 * Don't collapse the page if any of the small 1312 * PTEs are armed with uffd write protection. 1313 * Here we can also mark the new huge pmd as 1314 * write protected if any of the small ones is 1315 * marked but that could bring unknown 1316 * userfault messages that falls outside of 1317 * the registered range. So, just be simple. 1318 */ 1319 result = SCAN_PTE_UFFD_WP; 1320 goto out_unmap; 1321 } 1322 if (pte_write(pteval)) 1323 writable = true; 1324 1325 page = vm_normal_page(vma, _address, pteval); 1326 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1327 result = SCAN_PAGE_NULL; 1328 goto out_unmap; 1329 } 1330 1331 if (page_mapcount(page) > 1) { 1332 ++shared; 1333 if (cc->is_khugepaged && 1334 shared > khugepaged_max_ptes_shared) { 1335 result = SCAN_EXCEED_SHARED_PTE; 1336 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1337 goto out_unmap; 1338 } 1339 } 1340 1341 folio = page_folio(page); 1342 /* 1343 * Record which node the original page is from and save this 1344 * information to cc->node_load[]. 1345 * Khugepaged will allocate hugepage from the node has the max 1346 * hit record. 1347 */ 1348 node = folio_nid(folio); 1349 if (hpage_collapse_scan_abort(node, cc)) { 1350 result = SCAN_SCAN_ABORT; 1351 goto out_unmap; 1352 } 1353 cc->node_load[node]++; 1354 if (!folio_test_lru(folio)) { 1355 result = SCAN_PAGE_LRU; 1356 goto out_unmap; 1357 } 1358 if (folio_test_locked(folio)) { 1359 result = SCAN_PAGE_LOCK; 1360 goto out_unmap; 1361 } 1362 if (!folio_test_anon(folio)) { 1363 result = SCAN_PAGE_ANON; 1364 goto out_unmap; 1365 } 1366 1367 /* 1368 * Check if the page has any GUP (or other external) pins. 1369 * 1370 * Here the check may be racy: 1371 * it may see total_mapcount > refcount in some cases? 1372 * But such case is ephemeral we could always retry collapse 1373 * later. However it may report false positive if the page 1374 * has excessive GUP pins (i.e. 512). Anyway the same check 1375 * will be done again later the risk seems low. 1376 */ 1377 if (!is_refcount_suitable(folio)) { 1378 result = SCAN_PAGE_COUNT; 1379 goto out_unmap; 1380 } 1381 1382 /* 1383 * If collapse was initiated by khugepaged, check that there is 1384 * enough young pte to justify collapsing the page 1385 */ 1386 if (cc->is_khugepaged && 1387 (pte_young(pteval) || folio_test_young(folio) || 1388 folio_test_referenced(folio) || mmu_notifier_test_young(vma->vm_mm, 1389 address))) 1390 referenced++; 1391 } 1392 if (!writable) { 1393 result = SCAN_PAGE_RO; 1394 } else if (cc->is_khugepaged && 1395 (!referenced || 1396 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1397 result = SCAN_LACK_REFERENCED_PAGE; 1398 } else { 1399 result = SCAN_SUCCEED; 1400 } 1401 out_unmap: 1402 pte_unmap_unlock(pte, ptl); 1403 if (result == SCAN_SUCCEED) { 1404 result = collapse_huge_page(mm, address, referenced, 1405 unmapped, cc); 1406 /* collapse_huge_page will return with the mmap_lock released */ 1407 *mmap_locked = false; 1408 } 1409 out: 1410 trace_mm_khugepaged_scan_pmd(mm, &folio->page, writable, referenced, 1411 none_or_zero, result, unmapped); 1412 return result; 1413 } 1414 1415 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1416 { 1417 struct mm_slot *slot = &mm_slot->slot; 1418 struct mm_struct *mm = slot->mm; 1419 1420 lockdep_assert_held(&khugepaged_mm_lock); 1421 1422 if (hpage_collapse_test_exit(mm)) { 1423 /* free mm_slot */ 1424 hash_del(&slot->hash); 1425 list_del(&slot->mm_node); 1426 1427 /* 1428 * Not strictly needed because the mm exited already. 1429 * 1430 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1431 */ 1432 1433 /* khugepaged_mm_lock actually not necessary for the below */ 1434 mm_slot_free(mm_slot_cache, mm_slot); 1435 mmdrop(mm); 1436 } 1437 } 1438 1439 #ifdef CONFIG_SHMEM 1440 /* hpage must be locked, and mmap_lock must be held */ 1441 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1442 pmd_t *pmdp, struct page *hpage) 1443 { 1444 struct vm_fault vmf = { 1445 .vma = vma, 1446 .address = addr, 1447 .flags = 0, 1448 .pmd = pmdp, 1449 }; 1450 1451 VM_BUG_ON(!PageTransHuge(hpage)); 1452 mmap_assert_locked(vma->vm_mm); 1453 1454 if (do_set_pmd(&vmf, hpage)) 1455 return SCAN_FAIL; 1456 1457 get_page(hpage); 1458 return SCAN_SUCCEED; 1459 } 1460 1461 /** 1462 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1463 * address haddr. 1464 * 1465 * @mm: process address space where collapse happens 1466 * @addr: THP collapse address 1467 * @install_pmd: If a huge PMD should be installed 1468 * 1469 * This function checks whether all the PTEs in the PMD are pointing to the 1470 * right THP. If so, retract the page table so the THP can refault in with 1471 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1472 */ 1473 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1474 bool install_pmd) 1475 { 1476 struct mmu_notifier_range range; 1477 bool notified = false; 1478 unsigned long haddr = addr & HPAGE_PMD_MASK; 1479 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1480 struct folio *folio; 1481 pte_t *start_pte, *pte; 1482 pmd_t *pmd, pgt_pmd; 1483 spinlock_t *pml = NULL, *ptl; 1484 int nr_ptes = 0, result = SCAN_FAIL; 1485 int i; 1486 1487 mmap_assert_locked(mm); 1488 1489 /* First check VMA found, in case page tables are being torn down */ 1490 if (!vma || !vma->vm_file || 1491 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1492 return SCAN_VMA_CHECK; 1493 1494 /* Fast check before locking page if already PMD-mapped */ 1495 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1496 if (result == SCAN_PMD_MAPPED) 1497 return result; 1498 1499 /* 1500 * If we are here, we've succeeded in replacing all the native pages 1501 * in the page cache with a single hugepage. If a mm were to fault-in 1502 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1503 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1504 * analogously elide sysfs THP settings here. 1505 */ 1506 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 1507 return SCAN_VMA_CHECK; 1508 1509 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1510 if (userfaultfd_wp(vma)) 1511 return SCAN_PTE_UFFD_WP; 1512 1513 folio = filemap_lock_folio(vma->vm_file->f_mapping, 1514 linear_page_index(vma, haddr)); 1515 if (IS_ERR(folio)) 1516 return SCAN_PAGE_NULL; 1517 1518 if (folio_order(folio) != HPAGE_PMD_ORDER) { 1519 result = SCAN_PAGE_COMPOUND; 1520 goto drop_folio; 1521 } 1522 1523 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1524 switch (result) { 1525 case SCAN_SUCCEED: 1526 break; 1527 case SCAN_PMD_NONE: 1528 /* 1529 * All pte entries have been removed and pmd cleared. 1530 * Skip all the pte checks and just update the pmd mapping. 1531 */ 1532 goto maybe_install_pmd; 1533 default: 1534 goto drop_folio; 1535 } 1536 1537 result = SCAN_FAIL; 1538 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1539 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1540 goto drop_folio; 1541 1542 /* step 1: check all mapped PTEs are to the right huge page */ 1543 for (i = 0, addr = haddr, pte = start_pte; 1544 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1545 struct page *page; 1546 pte_t ptent = ptep_get(pte); 1547 1548 /* empty pte, skip */ 1549 if (pte_none(ptent)) 1550 continue; 1551 1552 /* page swapped out, abort */ 1553 if (!pte_present(ptent)) { 1554 result = SCAN_PTE_NON_PRESENT; 1555 goto abort; 1556 } 1557 1558 page = vm_normal_page(vma, addr, ptent); 1559 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1560 page = NULL; 1561 /* 1562 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1563 * page table, but the new page will not be a subpage of hpage. 1564 */ 1565 if (folio_page(folio, i) != page) 1566 goto abort; 1567 } 1568 1569 pte_unmap_unlock(start_pte, ptl); 1570 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1571 haddr, haddr + HPAGE_PMD_SIZE); 1572 mmu_notifier_invalidate_range_start(&range); 1573 notified = true; 1574 1575 /* 1576 * pmd_lock covers a wider range than ptl, and (if split from mm's 1577 * page_table_lock) ptl nests inside pml. The less time we hold pml, 1578 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA 1579 * inserts a valid as-if-COWed PTE without even looking up page cache. 1580 * So page lock of folio does not protect from it, so we must not drop 1581 * ptl before pgt_pmd is removed, so uffd private needs pml taken now. 1582 */ 1583 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED)) 1584 pml = pmd_lock(mm, pmd); 1585 1586 start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl); 1587 if (!start_pte) /* mmap_lock + page lock should prevent this */ 1588 goto abort; 1589 if (!pml) 1590 spin_lock(ptl); 1591 else if (ptl != pml) 1592 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1593 1594 /* step 2: clear page table and adjust rmap */ 1595 for (i = 0, addr = haddr, pte = start_pte; 1596 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1597 struct page *page; 1598 pte_t ptent = ptep_get(pte); 1599 1600 if (pte_none(ptent)) 1601 continue; 1602 /* 1603 * We dropped ptl after the first scan, to do the mmu_notifier: 1604 * page lock stops more PTEs of the folio being faulted in, but 1605 * does not stop write faults COWing anon copies from existing 1606 * PTEs; and does not stop those being swapped out or migrated. 1607 */ 1608 if (!pte_present(ptent)) { 1609 result = SCAN_PTE_NON_PRESENT; 1610 goto abort; 1611 } 1612 page = vm_normal_page(vma, addr, ptent); 1613 if (folio_page(folio, i) != page) 1614 goto abort; 1615 1616 /* 1617 * Must clear entry, or a racing truncate may re-remove it. 1618 * TLB flush can be left until pmdp_collapse_flush() does it. 1619 * PTE dirty? Shmem page is already dirty; file is read-only. 1620 */ 1621 ptep_clear(mm, addr, pte); 1622 page_remove_rmap(page, vma, false); 1623 nr_ptes++; 1624 } 1625 1626 pte_unmap(start_pte); 1627 if (!pml) 1628 spin_unlock(ptl); 1629 1630 /* step 3: set proper refcount and mm_counters. */ 1631 if (nr_ptes) { 1632 folio_ref_sub(folio, nr_ptes); 1633 add_mm_counter(mm, mm_counter_file(&folio->page), -nr_ptes); 1634 } 1635 1636 /* step 4: remove empty page table */ 1637 if (!pml) { 1638 pml = pmd_lock(mm, pmd); 1639 if (ptl != pml) 1640 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1641 } 1642 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd); 1643 pmdp_get_lockless_sync(); 1644 if (ptl != pml) 1645 spin_unlock(ptl); 1646 spin_unlock(pml); 1647 1648 mmu_notifier_invalidate_range_end(&range); 1649 1650 mm_dec_nr_ptes(mm); 1651 page_table_check_pte_clear_range(mm, haddr, pgt_pmd); 1652 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1653 1654 maybe_install_pmd: 1655 /* step 5: install pmd entry */ 1656 result = install_pmd 1657 ? set_huge_pmd(vma, haddr, pmd, &folio->page) 1658 : SCAN_SUCCEED; 1659 goto drop_folio; 1660 abort: 1661 if (nr_ptes) { 1662 flush_tlb_mm(mm); 1663 folio_ref_sub(folio, nr_ptes); 1664 add_mm_counter(mm, mm_counter_file(&folio->page), -nr_ptes); 1665 } 1666 if (start_pte) 1667 pte_unmap_unlock(start_pte, ptl); 1668 if (pml && pml != ptl) 1669 spin_unlock(pml); 1670 if (notified) 1671 mmu_notifier_invalidate_range_end(&range); 1672 drop_folio: 1673 folio_unlock(folio); 1674 folio_put(folio); 1675 return result; 1676 } 1677 1678 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff) 1679 { 1680 struct vm_area_struct *vma; 1681 1682 i_mmap_lock_read(mapping); 1683 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1684 struct mmu_notifier_range range; 1685 struct mm_struct *mm; 1686 unsigned long addr; 1687 pmd_t *pmd, pgt_pmd; 1688 spinlock_t *pml; 1689 spinlock_t *ptl; 1690 bool skipped_uffd = false; 1691 1692 /* 1693 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1694 * got written to. These VMAs are likely not worth removing 1695 * page tables from, as PMD-mapping is likely to be split later. 1696 */ 1697 if (READ_ONCE(vma->anon_vma)) 1698 continue; 1699 1700 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1701 if (addr & ~HPAGE_PMD_MASK || 1702 vma->vm_end < addr + HPAGE_PMD_SIZE) 1703 continue; 1704 1705 mm = vma->vm_mm; 1706 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED) 1707 continue; 1708 1709 if (hpage_collapse_test_exit(mm)) 1710 continue; 1711 /* 1712 * When a vma is registered with uffd-wp, we cannot recycle 1713 * the page table because there may be pte markers installed. 1714 * Other vmas can still have the same file mapped hugely, but 1715 * skip this one: it will always be mapped in small page size 1716 * for uffd-wp registered ranges. 1717 */ 1718 if (userfaultfd_wp(vma)) 1719 continue; 1720 1721 /* PTEs were notified when unmapped; but now for the PMD? */ 1722 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 1723 addr, addr + HPAGE_PMD_SIZE); 1724 mmu_notifier_invalidate_range_start(&range); 1725 1726 pml = pmd_lock(mm, pmd); 1727 ptl = pte_lockptr(mm, pmd); 1728 if (ptl != pml) 1729 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING); 1730 1731 /* 1732 * Huge page lock is still held, so normally the page table 1733 * must remain empty; and we have already skipped anon_vma 1734 * and userfaultfd_wp() vmas. But since the mmap_lock is not 1735 * held, it is still possible for a racing userfaultfd_ioctl() 1736 * to have inserted ptes or markers. Now that we hold ptlock, 1737 * repeating the anon_vma check protects from one category, 1738 * and repeating the userfaultfd_wp() check from another. 1739 */ 1740 if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) { 1741 skipped_uffd = true; 1742 } else { 1743 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd); 1744 pmdp_get_lockless_sync(); 1745 } 1746 1747 if (ptl != pml) 1748 spin_unlock(ptl); 1749 spin_unlock(pml); 1750 1751 mmu_notifier_invalidate_range_end(&range); 1752 1753 if (!skipped_uffd) { 1754 mm_dec_nr_ptes(mm); 1755 page_table_check_pte_clear_range(mm, addr, pgt_pmd); 1756 pte_free_defer(mm, pmd_pgtable(pgt_pmd)); 1757 } 1758 } 1759 i_mmap_unlock_read(mapping); 1760 } 1761 1762 /** 1763 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1764 * 1765 * @mm: process address space where collapse happens 1766 * @addr: virtual collapse start address 1767 * @file: file that collapse on 1768 * @start: collapse start address 1769 * @cc: collapse context and scratchpad 1770 * 1771 * Basic scheme is simple, details are more complex: 1772 * - allocate and lock a new huge page; 1773 * - scan page cache, locking old pages 1774 * + swap/gup in pages if necessary; 1775 * - copy data to new page 1776 * - handle shmem holes 1777 * + re-validate that holes weren't filled by someone else 1778 * + check for userfaultfd 1779 * - finalize updates to the page cache; 1780 * - if replacing succeeds: 1781 * + unlock huge page; 1782 * + free old pages; 1783 * - if replacing failed; 1784 * + unlock old pages 1785 * + unlock and free huge page; 1786 */ 1787 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1788 struct file *file, pgoff_t start, 1789 struct collapse_control *cc) 1790 { 1791 struct address_space *mapping = file->f_mapping; 1792 struct page *hpage; 1793 struct page *page; 1794 struct page *tmp; 1795 struct folio *folio; 1796 pgoff_t index = 0, end = start + HPAGE_PMD_NR; 1797 LIST_HEAD(pagelist); 1798 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1799 int nr_none = 0, result = SCAN_SUCCEED; 1800 bool is_shmem = shmem_file(file); 1801 int nr = 0; 1802 1803 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1804 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1805 1806 result = alloc_charge_hpage(&hpage, mm, cc); 1807 if (result != SCAN_SUCCEED) 1808 goto out; 1809 1810 __SetPageLocked(hpage); 1811 if (is_shmem) 1812 __SetPageSwapBacked(hpage); 1813 hpage->index = start; 1814 hpage->mapping = mapping; 1815 1816 /* 1817 * Ensure we have slots for all the pages in the range. This is 1818 * almost certainly a no-op because most of the pages must be present 1819 */ 1820 do { 1821 xas_lock_irq(&xas); 1822 xas_create_range(&xas); 1823 if (!xas_error(&xas)) 1824 break; 1825 xas_unlock_irq(&xas); 1826 if (!xas_nomem(&xas, GFP_KERNEL)) { 1827 result = SCAN_FAIL; 1828 goto rollback; 1829 } 1830 } while (1); 1831 1832 for (index = start; index < end; index++) { 1833 xas_set(&xas, index); 1834 page = xas_load(&xas); 1835 1836 VM_BUG_ON(index != xas.xa_index); 1837 if (is_shmem) { 1838 if (!page) { 1839 /* 1840 * Stop if extent has been truncated or 1841 * hole-punched, and is now completely 1842 * empty. 1843 */ 1844 if (index == start) { 1845 if (!xas_next_entry(&xas, end - 1)) { 1846 result = SCAN_TRUNCATED; 1847 goto xa_locked; 1848 } 1849 } 1850 nr_none++; 1851 continue; 1852 } 1853 1854 if (xa_is_value(page) || !PageUptodate(page)) { 1855 xas_unlock_irq(&xas); 1856 /* swap in or instantiate fallocated page */ 1857 if (shmem_get_folio(mapping->host, index, 1858 &folio, SGP_NOALLOC)) { 1859 result = SCAN_FAIL; 1860 goto xa_unlocked; 1861 } 1862 /* drain lru cache to help isolate_lru_page() */ 1863 lru_add_drain(); 1864 page = folio_file_page(folio, index); 1865 } else if (trylock_page(page)) { 1866 get_page(page); 1867 xas_unlock_irq(&xas); 1868 } else { 1869 result = SCAN_PAGE_LOCK; 1870 goto xa_locked; 1871 } 1872 } else { /* !is_shmem */ 1873 if (!page || xa_is_value(page)) { 1874 xas_unlock_irq(&xas); 1875 page_cache_sync_readahead(mapping, &file->f_ra, 1876 file, index, 1877 end - index); 1878 /* drain lru cache to help isolate_lru_page() */ 1879 lru_add_drain(); 1880 page = find_lock_page(mapping, index); 1881 if (unlikely(page == NULL)) { 1882 result = SCAN_FAIL; 1883 goto xa_unlocked; 1884 } 1885 } else if (PageDirty(page)) { 1886 /* 1887 * khugepaged only works on read-only fd, 1888 * so this page is dirty because it hasn't 1889 * been flushed since first write. There 1890 * won't be new dirty pages. 1891 * 1892 * Trigger async flush here and hope the 1893 * writeback is done when khugepaged 1894 * revisits this page. 1895 * 1896 * This is a one-off situation. We are not 1897 * forcing writeback in loop. 1898 */ 1899 xas_unlock_irq(&xas); 1900 filemap_flush(mapping); 1901 result = SCAN_FAIL; 1902 goto xa_unlocked; 1903 } else if (PageWriteback(page)) { 1904 xas_unlock_irq(&xas); 1905 result = SCAN_FAIL; 1906 goto xa_unlocked; 1907 } else if (trylock_page(page)) { 1908 get_page(page); 1909 xas_unlock_irq(&xas); 1910 } else { 1911 result = SCAN_PAGE_LOCK; 1912 goto xa_locked; 1913 } 1914 } 1915 1916 /* 1917 * The page must be locked, so we can drop the i_pages lock 1918 * without racing with truncate. 1919 */ 1920 VM_BUG_ON_PAGE(!PageLocked(page), page); 1921 1922 /* make sure the page is up to date */ 1923 if (unlikely(!PageUptodate(page))) { 1924 result = SCAN_FAIL; 1925 goto out_unlock; 1926 } 1927 1928 /* 1929 * If file was truncated then extended, or hole-punched, before 1930 * we locked the first page, then a THP might be there already. 1931 * This will be discovered on the first iteration. 1932 */ 1933 if (PageTransCompound(page)) { 1934 struct page *head = compound_head(page); 1935 1936 result = compound_order(head) == HPAGE_PMD_ORDER && 1937 head->index == start 1938 /* Maybe PMD-mapped */ 1939 ? SCAN_PTE_MAPPED_HUGEPAGE 1940 : SCAN_PAGE_COMPOUND; 1941 goto out_unlock; 1942 } 1943 1944 folio = page_folio(page); 1945 1946 if (folio_mapping(folio) != mapping) { 1947 result = SCAN_TRUNCATED; 1948 goto out_unlock; 1949 } 1950 1951 if (!is_shmem && (folio_test_dirty(folio) || 1952 folio_test_writeback(folio))) { 1953 /* 1954 * khugepaged only works on read-only fd, so this 1955 * page is dirty because it hasn't been flushed 1956 * since first write. 1957 */ 1958 result = SCAN_FAIL; 1959 goto out_unlock; 1960 } 1961 1962 if (!folio_isolate_lru(folio)) { 1963 result = SCAN_DEL_PAGE_LRU; 1964 goto out_unlock; 1965 } 1966 1967 if (!filemap_release_folio(folio, GFP_KERNEL)) { 1968 result = SCAN_PAGE_HAS_PRIVATE; 1969 folio_putback_lru(folio); 1970 goto out_unlock; 1971 } 1972 1973 if (folio_mapped(folio)) 1974 try_to_unmap(folio, 1975 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1976 1977 xas_lock_irq(&xas); 1978 1979 VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page); 1980 1981 /* 1982 * We control three references to the page: 1983 * - we hold a pin on it; 1984 * - one reference from page cache; 1985 * - one from isolate_lru_page; 1986 * If those are the only references, then any new usage of the 1987 * page will have to fetch it from the page cache. That requires 1988 * locking the page to handle truncate, so any new usage will be 1989 * blocked until we unlock page after collapse/during rollback. 1990 */ 1991 if (page_count(page) != 3) { 1992 result = SCAN_PAGE_COUNT; 1993 xas_unlock_irq(&xas); 1994 putback_lru_page(page); 1995 goto out_unlock; 1996 } 1997 1998 /* 1999 * Accumulate the pages that are being collapsed. 2000 */ 2001 list_add_tail(&page->lru, &pagelist); 2002 continue; 2003 out_unlock: 2004 unlock_page(page); 2005 put_page(page); 2006 goto xa_unlocked; 2007 } 2008 2009 if (!is_shmem) { 2010 filemap_nr_thps_inc(mapping); 2011 /* 2012 * Paired with smp_mb() in do_dentry_open() to ensure 2013 * i_writecount is up to date and the update to nr_thps is 2014 * visible. Ensures the page cache will be truncated if the 2015 * file is opened writable. 2016 */ 2017 smp_mb(); 2018 if (inode_is_open_for_write(mapping->host)) { 2019 result = SCAN_FAIL; 2020 filemap_nr_thps_dec(mapping); 2021 } 2022 } 2023 2024 xa_locked: 2025 xas_unlock_irq(&xas); 2026 xa_unlocked: 2027 2028 /* 2029 * If collapse is successful, flush must be done now before copying. 2030 * If collapse is unsuccessful, does flush actually need to be done? 2031 * Do it anyway, to clear the state. 2032 */ 2033 try_to_unmap_flush(); 2034 2035 if (result == SCAN_SUCCEED && nr_none && 2036 !shmem_charge(mapping->host, nr_none)) 2037 result = SCAN_FAIL; 2038 if (result != SCAN_SUCCEED) { 2039 nr_none = 0; 2040 goto rollback; 2041 } 2042 2043 /* 2044 * The old pages are locked, so they won't change anymore. 2045 */ 2046 index = start; 2047 list_for_each_entry(page, &pagelist, lru) { 2048 while (index < page->index) { 2049 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2050 index++; 2051 } 2052 if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) { 2053 result = SCAN_COPY_MC; 2054 goto rollback; 2055 } 2056 index++; 2057 } 2058 while (index < end) { 2059 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 2060 index++; 2061 } 2062 2063 if (nr_none) { 2064 struct vm_area_struct *vma; 2065 int nr_none_check = 0; 2066 2067 i_mmap_lock_read(mapping); 2068 xas_lock_irq(&xas); 2069 2070 xas_set(&xas, start); 2071 for (index = start; index < end; index++) { 2072 if (!xas_next(&xas)) { 2073 xas_store(&xas, XA_RETRY_ENTRY); 2074 if (xas_error(&xas)) { 2075 result = SCAN_STORE_FAILED; 2076 goto immap_locked; 2077 } 2078 nr_none_check++; 2079 } 2080 } 2081 2082 if (nr_none != nr_none_check) { 2083 result = SCAN_PAGE_FILLED; 2084 goto immap_locked; 2085 } 2086 2087 /* 2088 * If userspace observed a missing page in a VMA with a MODE_MISSING 2089 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that 2090 * page. If so, we need to roll back to avoid suppressing such an 2091 * event. Since wp/minor userfaultfds don't give userspace any 2092 * guarantees that the kernel doesn't fill a missing page with a zero 2093 * page, so they don't matter here. 2094 * 2095 * Any userfaultfds registered after this point will not be able to 2096 * observe any missing pages due to the previously inserted retry 2097 * entries. 2098 */ 2099 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) { 2100 if (userfaultfd_missing(vma)) { 2101 result = SCAN_EXCEED_NONE_PTE; 2102 goto immap_locked; 2103 } 2104 } 2105 2106 immap_locked: 2107 i_mmap_unlock_read(mapping); 2108 if (result != SCAN_SUCCEED) { 2109 xas_set(&xas, start); 2110 for (index = start; index < end; index++) { 2111 if (xas_next(&xas) == XA_RETRY_ENTRY) 2112 xas_store(&xas, NULL); 2113 } 2114 2115 xas_unlock_irq(&xas); 2116 goto rollback; 2117 } 2118 } else { 2119 xas_lock_irq(&xas); 2120 } 2121 2122 nr = thp_nr_pages(hpage); 2123 if (is_shmem) 2124 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr); 2125 else 2126 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr); 2127 2128 if (nr_none) { 2129 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none); 2130 /* nr_none is always 0 for non-shmem. */ 2131 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none); 2132 } 2133 2134 /* 2135 * Mark hpage as uptodate before inserting it into the page cache so 2136 * that it isn't mistaken for an fallocated but unwritten page. 2137 */ 2138 folio = page_folio(hpage); 2139 folio_mark_uptodate(folio); 2140 folio_ref_add(folio, HPAGE_PMD_NR - 1); 2141 2142 if (is_shmem) 2143 folio_mark_dirty(folio); 2144 folio_add_lru(folio); 2145 2146 /* Join all the small entries into a single multi-index entry. */ 2147 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 2148 xas_store(&xas, hpage); 2149 WARN_ON_ONCE(xas_error(&xas)); 2150 xas_unlock_irq(&xas); 2151 2152 /* 2153 * Remove pte page tables, so we can re-fault the page as huge. 2154 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp(). 2155 */ 2156 retract_page_tables(mapping, start); 2157 if (cc && !cc->is_khugepaged) 2158 result = SCAN_PTE_MAPPED_HUGEPAGE; 2159 unlock_page(hpage); 2160 2161 /* 2162 * The collapse has succeeded, so free the old pages. 2163 */ 2164 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2165 list_del(&page->lru); 2166 page->mapping = NULL; 2167 ClearPageActive(page); 2168 ClearPageUnevictable(page); 2169 unlock_page(page); 2170 folio_put_refs(page_folio(page), 3); 2171 } 2172 2173 goto out; 2174 2175 rollback: 2176 /* Something went wrong: roll back page cache changes */ 2177 if (nr_none) { 2178 xas_lock_irq(&xas); 2179 mapping->nrpages -= nr_none; 2180 xas_unlock_irq(&xas); 2181 shmem_uncharge(mapping->host, nr_none); 2182 } 2183 2184 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 2185 list_del(&page->lru); 2186 unlock_page(page); 2187 putback_lru_page(page); 2188 put_page(page); 2189 } 2190 /* 2191 * Undo the updates of filemap_nr_thps_inc for non-SHMEM 2192 * file only. This undo is not needed unless failure is 2193 * due to SCAN_COPY_MC. 2194 */ 2195 if (!is_shmem && result == SCAN_COPY_MC) { 2196 filemap_nr_thps_dec(mapping); 2197 /* 2198 * Paired with smp_mb() in do_dentry_open() to 2199 * ensure the update to nr_thps is visible. 2200 */ 2201 smp_mb(); 2202 } 2203 2204 hpage->mapping = NULL; 2205 2206 unlock_page(hpage); 2207 put_page(hpage); 2208 out: 2209 VM_BUG_ON(!list_empty(&pagelist)); 2210 trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result); 2211 return result; 2212 } 2213 2214 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2215 struct file *file, pgoff_t start, 2216 struct collapse_control *cc) 2217 { 2218 struct page *page = NULL; 2219 struct address_space *mapping = file->f_mapping; 2220 XA_STATE(xas, &mapping->i_pages, start); 2221 int present, swap; 2222 int node = NUMA_NO_NODE; 2223 int result = SCAN_SUCCEED; 2224 2225 present = 0; 2226 swap = 0; 2227 memset(cc->node_load, 0, sizeof(cc->node_load)); 2228 nodes_clear(cc->alloc_nmask); 2229 rcu_read_lock(); 2230 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2231 if (xas_retry(&xas, page)) 2232 continue; 2233 2234 if (xa_is_value(page)) { 2235 ++swap; 2236 if (cc->is_khugepaged && 2237 swap > khugepaged_max_ptes_swap) { 2238 result = SCAN_EXCEED_SWAP_PTE; 2239 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2240 break; 2241 } 2242 continue; 2243 } 2244 2245 /* 2246 * TODO: khugepaged should compact smaller compound pages 2247 * into a PMD sized page 2248 */ 2249 if (PageTransCompound(page)) { 2250 struct page *head = compound_head(page); 2251 2252 result = compound_order(head) == HPAGE_PMD_ORDER && 2253 head->index == start 2254 /* Maybe PMD-mapped */ 2255 ? SCAN_PTE_MAPPED_HUGEPAGE 2256 : SCAN_PAGE_COMPOUND; 2257 /* 2258 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2259 * by the caller won't touch the page cache, and so 2260 * it's safe to skip LRU and refcount checks before 2261 * returning. 2262 */ 2263 break; 2264 } 2265 2266 node = page_to_nid(page); 2267 if (hpage_collapse_scan_abort(node, cc)) { 2268 result = SCAN_SCAN_ABORT; 2269 break; 2270 } 2271 cc->node_load[node]++; 2272 2273 if (!PageLRU(page)) { 2274 result = SCAN_PAGE_LRU; 2275 break; 2276 } 2277 2278 if (page_count(page) != 2279 1 + page_mapcount(page) + page_has_private(page)) { 2280 result = SCAN_PAGE_COUNT; 2281 break; 2282 } 2283 2284 /* 2285 * We probably should check if the page is referenced here, but 2286 * nobody would transfer pte_young() to PageReferenced() for us. 2287 * And rmap walk here is just too costly... 2288 */ 2289 2290 present++; 2291 2292 if (need_resched()) { 2293 xas_pause(&xas); 2294 cond_resched_rcu(); 2295 } 2296 } 2297 rcu_read_unlock(); 2298 2299 if (result == SCAN_SUCCEED) { 2300 if (cc->is_khugepaged && 2301 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2302 result = SCAN_EXCEED_NONE_PTE; 2303 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2304 } else { 2305 result = collapse_file(mm, addr, file, start, cc); 2306 } 2307 } 2308 2309 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result); 2310 return result; 2311 } 2312 #else 2313 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2314 struct file *file, pgoff_t start, 2315 struct collapse_control *cc) 2316 { 2317 BUILD_BUG(); 2318 } 2319 #endif 2320 2321 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2322 struct collapse_control *cc) 2323 __releases(&khugepaged_mm_lock) 2324 __acquires(&khugepaged_mm_lock) 2325 { 2326 struct vma_iterator vmi; 2327 struct khugepaged_mm_slot *mm_slot; 2328 struct mm_slot *slot; 2329 struct mm_struct *mm; 2330 struct vm_area_struct *vma; 2331 int progress = 0; 2332 2333 VM_BUG_ON(!pages); 2334 lockdep_assert_held(&khugepaged_mm_lock); 2335 *result = SCAN_FAIL; 2336 2337 if (khugepaged_scan.mm_slot) { 2338 mm_slot = khugepaged_scan.mm_slot; 2339 slot = &mm_slot->slot; 2340 } else { 2341 slot = list_entry(khugepaged_scan.mm_head.next, 2342 struct mm_slot, mm_node); 2343 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2344 khugepaged_scan.address = 0; 2345 khugepaged_scan.mm_slot = mm_slot; 2346 } 2347 spin_unlock(&khugepaged_mm_lock); 2348 2349 mm = slot->mm; 2350 /* 2351 * Don't wait for semaphore (to avoid long wait times). Just move to 2352 * the next mm on the list. 2353 */ 2354 vma = NULL; 2355 if (unlikely(!mmap_read_trylock(mm))) 2356 goto breakouterloop_mmap_lock; 2357 2358 progress++; 2359 if (unlikely(hpage_collapse_test_exit(mm))) 2360 goto breakouterloop; 2361 2362 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2363 for_each_vma(vmi, vma) { 2364 unsigned long hstart, hend; 2365 2366 cond_resched(); 2367 if (unlikely(hpage_collapse_test_exit(mm))) { 2368 progress++; 2369 break; 2370 } 2371 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) { 2372 skip: 2373 progress++; 2374 continue; 2375 } 2376 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2377 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2378 if (khugepaged_scan.address > hend) 2379 goto skip; 2380 if (khugepaged_scan.address < hstart) 2381 khugepaged_scan.address = hstart; 2382 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2383 2384 while (khugepaged_scan.address < hend) { 2385 bool mmap_locked = true; 2386 2387 cond_resched(); 2388 if (unlikely(hpage_collapse_test_exit(mm))) 2389 goto breakouterloop; 2390 2391 VM_BUG_ON(khugepaged_scan.address < hstart || 2392 khugepaged_scan.address + HPAGE_PMD_SIZE > 2393 hend); 2394 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2395 struct file *file = get_file(vma->vm_file); 2396 pgoff_t pgoff = linear_page_index(vma, 2397 khugepaged_scan.address); 2398 2399 mmap_read_unlock(mm); 2400 mmap_locked = false; 2401 *result = hpage_collapse_scan_file(mm, 2402 khugepaged_scan.address, file, pgoff, cc); 2403 fput(file); 2404 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) { 2405 mmap_read_lock(mm); 2406 if (hpage_collapse_test_exit(mm)) 2407 goto breakouterloop; 2408 *result = collapse_pte_mapped_thp(mm, 2409 khugepaged_scan.address, false); 2410 if (*result == SCAN_PMD_MAPPED) 2411 *result = SCAN_SUCCEED; 2412 mmap_read_unlock(mm); 2413 } 2414 } else { 2415 *result = hpage_collapse_scan_pmd(mm, vma, 2416 khugepaged_scan.address, &mmap_locked, cc); 2417 } 2418 2419 if (*result == SCAN_SUCCEED) 2420 ++khugepaged_pages_collapsed; 2421 2422 /* move to next address */ 2423 khugepaged_scan.address += HPAGE_PMD_SIZE; 2424 progress += HPAGE_PMD_NR; 2425 if (!mmap_locked) 2426 /* 2427 * We released mmap_lock so break loop. Note 2428 * that we drop mmap_lock before all hugepage 2429 * allocations, so if allocation fails, we are 2430 * guaranteed to break here and report the 2431 * correct result back to caller. 2432 */ 2433 goto breakouterloop_mmap_lock; 2434 if (progress >= pages) 2435 goto breakouterloop; 2436 } 2437 } 2438 breakouterloop: 2439 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2440 breakouterloop_mmap_lock: 2441 2442 spin_lock(&khugepaged_mm_lock); 2443 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2444 /* 2445 * Release the current mm_slot if this mm is about to die, or 2446 * if we scanned all vmas of this mm. 2447 */ 2448 if (hpage_collapse_test_exit(mm) || !vma) { 2449 /* 2450 * Make sure that if mm_users is reaching zero while 2451 * khugepaged runs here, khugepaged_exit will find 2452 * mm_slot not pointing to the exiting mm. 2453 */ 2454 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2455 slot = list_entry(slot->mm_node.next, 2456 struct mm_slot, mm_node); 2457 khugepaged_scan.mm_slot = 2458 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2459 khugepaged_scan.address = 0; 2460 } else { 2461 khugepaged_scan.mm_slot = NULL; 2462 khugepaged_full_scans++; 2463 } 2464 2465 collect_mm_slot(mm_slot); 2466 } 2467 2468 return progress; 2469 } 2470 2471 static int khugepaged_has_work(void) 2472 { 2473 return !list_empty(&khugepaged_scan.mm_head) && 2474 hugepage_flags_enabled(); 2475 } 2476 2477 static int khugepaged_wait_event(void) 2478 { 2479 return !list_empty(&khugepaged_scan.mm_head) || 2480 kthread_should_stop(); 2481 } 2482 2483 static void khugepaged_do_scan(struct collapse_control *cc) 2484 { 2485 unsigned int progress = 0, pass_through_head = 0; 2486 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2487 bool wait = true; 2488 int result = SCAN_SUCCEED; 2489 2490 lru_add_drain_all(); 2491 2492 while (true) { 2493 cond_resched(); 2494 2495 if (unlikely(kthread_should_stop() || try_to_freeze())) 2496 break; 2497 2498 spin_lock(&khugepaged_mm_lock); 2499 if (!khugepaged_scan.mm_slot) 2500 pass_through_head++; 2501 if (khugepaged_has_work() && 2502 pass_through_head < 2) 2503 progress += khugepaged_scan_mm_slot(pages - progress, 2504 &result, cc); 2505 else 2506 progress = pages; 2507 spin_unlock(&khugepaged_mm_lock); 2508 2509 if (progress >= pages) 2510 break; 2511 2512 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2513 /* 2514 * If fail to allocate the first time, try to sleep for 2515 * a while. When hit again, cancel the scan. 2516 */ 2517 if (!wait) 2518 break; 2519 wait = false; 2520 khugepaged_alloc_sleep(); 2521 } 2522 } 2523 } 2524 2525 static bool khugepaged_should_wakeup(void) 2526 { 2527 return kthread_should_stop() || 2528 time_after_eq(jiffies, khugepaged_sleep_expire); 2529 } 2530 2531 static void khugepaged_wait_work(void) 2532 { 2533 if (khugepaged_has_work()) { 2534 const unsigned long scan_sleep_jiffies = 2535 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2536 2537 if (!scan_sleep_jiffies) 2538 return; 2539 2540 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2541 wait_event_freezable_timeout(khugepaged_wait, 2542 khugepaged_should_wakeup(), 2543 scan_sleep_jiffies); 2544 return; 2545 } 2546 2547 if (hugepage_flags_enabled()) 2548 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2549 } 2550 2551 static int khugepaged(void *none) 2552 { 2553 struct khugepaged_mm_slot *mm_slot; 2554 2555 set_freezable(); 2556 set_user_nice(current, MAX_NICE); 2557 2558 while (!kthread_should_stop()) { 2559 khugepaged_do_scan(&khugepaged_collapse_control); 2560 khugepaged_wait_work(); 2561 } 2562 2563 spin_lock(&khugepaged_mm_lock); 2564 mm_slot = khugepaged_scan.mm_slot; 2565 khugepaged_scan.mm_slot = NULL; 2566 if (mm_slot) 2567 collect_mm_slot(mm_slot); 2568 spin_unlock(&khugepaged_mm_lock); 2569 return 0; 2570 } 2571 2572 static void set_recommended_min_free_kbytes(void) 2573 { 2574 struct zone *zone; 2575 int nr_zones = 0; 2576 unsigned long recommended_min; 2577 2578 if (!hugepage_flags_enabled()) { 2579 calculate_min_free_kbytes(); 2580 goto update_wmarks; 2581 } 2582 2583 for_each_populated_zone(zone) { 2584 /* 2585 * We don't need to worry about fragmentation of 2586 * ZONE_MOVABLE since it only has movable pages. 2587 */ 2588 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2589 continue; 2590 2591 nr_zones++; 2592 } 2593 2594 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2595 recommended_min = pageblock_nr_pages * nr_zones * 2; 2596 2597 /* 2598 * Make sure that on average at least two pageblocks are almost free 2599 * of another type, one for a migratetype to fall back to and a 2600 * second to avoid subsequent fallbacks of other types There are 3 2601 * MIGRATE_TYPES we care about. 2602 */ 2603 recommended_min += pageblock_nr_pages * nr_zones * 2604 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2605 2606 /* don't ever allow to reserve more than 5% of the lowmem */ 2607 recommended_min = min(recommended_min, 2608 (unsigned long) nr_free_buffer_pages() / 20); 2609 recommended_min <<= (PAGE_SHIFT-10); 2610 2611 if (recommended_min > min_free_kbytes) { 2612 if (user_min_free_kbytes >= 0) 2613 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2614 min_free_kbytes, recommended_min); 2615 2616 min_free_kbytes = recommended_min; 2617 } 2618 2619 update_wmarks: 2620 setup_per_zone_wmarks(); 2621 } 2622 2623 int start_stop_khugepaged(void) 2624 { 2625 int err = 0; 2626 2627 mutex_lock(&khugepaged_mutex); 2628 if (hugepage_flags_enabled()) { 2629 if (!khugepaged_thread) 2630 khugepaged_thread = kthread_run(khugepaged, NULL, 2631 "khugepaged"); 2632 if (IS_ERR(khugepaged_thread)) { 2633 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2634 err = PTR_ERR(khugepaged_thread); 2635 khugepaged_thread = NULL; 2636 goto fail; 2637 } 2638 2639 if (!list_empty(&khugepaged_scan.mm_head)) 2640 wake_up_interruptible(&khugepaged_wait); 2641 } else if (khugepaged_thread) { 2642 kthread_stop(khugepaged_thread); 2643 khugepaged_thread = NULL; 2644 } 2645 set_recommended_min_free_kbytes(); 2646 fail: 2647 mutex_unlock(&khugepaged_mutex); 2648 return err; 2649 } 2650 2651 void khugepaged_min_free_kbytes_update(void) 2652 { 2653 mutex_lock(&khugepaged_mutex); 2654 if (hugepage_flags_enabled() && khugepaged_thread) 2655 set_recommended_min_free_kbytes(); 2656 mutex_unlock(&khugepaged_mutex); 2657 } 2658 2659 bool current_is_khugepaged(void) 2660 { 2661 return kthread_func(current) == khugepaged; 2662 } 2663 2664 static int madvise_collapse_errno(enum scan_result r) 2665 { 2666 /* 2667 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2668 * actionable feedback to caller, so they may take an appropriate 2669 * fallback measure depending on the nature of the failure. 2670 */ 2671 switch (r) { 2672 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2673 return -ENOMEM; 2674 case SCAN_CGROUP_CHARGE_FAIL: 2675 case SCAN_EXCEED_NONE_PTE: 2676 return -EBUSY; 2677 /* Resource temporary unavailable - trying again might succeed */ 2678 case SCAN_PAGE_COUNT: 2679 case SCAN_PAGE_LOCK: 2680 case SCAN_PAGE_LRU: 2681 case SCAN_DEL_PAGE_LRU: 2682 case SCAN_PAGE_FILLED: 2683 return -EAGAIN; 2684 /* 2685 * Other: Trying again likely not to succeed / error intrinsic to 2686 * specified memory range. khugepaged likely won't be able to collapse 2687 * either. 2688 */ 2689 default: 2690 return -EINVAL; 2691 } 2692 } 2693 2694 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2695 unsigned long start, unsigned long end) 2696 { 2697 struct collapse_control *cc; 2698 struct mm_struct *mm = vma->vm_mm; 2699 unsigned long hstart, hend, addr; 2700 int thps = 0, last_fail = SCAN_FAIL; 2701 bool mmap_locked = true; 2702 2703 BUG_ON(vma->vm_start > start); 2704 BUG_ON(vma->vm_end < end); 2705 2706 *prev = vma; 2707 2708 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 2709 return -EINVAL; 2710 2711 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2712 if (!cc) 2713 return -ENOMEM; 2714 cc->is_khugepaged = false; 2715 2716 mmgrab(mm); 2717 lru_add_drain_all(); 2718 2719 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2720 hend = end & HPAGE_PMD_MASK; 2721 2722 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2723 int result = SCAN_FAIL; 2724 2725 if (!mmap_locked) { 2726 cond_resched(); 2727 mmap_read_lock(mm); 2728 mmap_locked = true; 2729 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2730 cc); 2731 if (result != SCAN_SUCCEED) { 2732 last_fail = result; 2733 goto out_nolock; 2734 } 2735 2736 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK); 2737 } 2738 mmap_assert_locked(mm); 2739 memset(cc->node_load, 0, sizeof(cc->node_load)); 2740 nodes_clear(cc->alloc_nmask); 2741 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2742 struct file *file = get_file(vma->vm_file); 2743 pgoff_t pgoff = linear_page_index(vma, addr); 2744 2745 mmap_read_unlock(mm); 2746 mmap_locked = false; 2747 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2748 cc); 2749 fput(file); 2750 } else { 2751 result = hpage_collapse_scan_pmd(mm, vma, addr, 2752 &mmap_locked, cc); 2753 } 2754 if (!mmap_locked) 2755 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2756 2757 handle_result: 2758 switch (result) { 2759 case SCAN_SUCCEED: 2760 case SCAN_PMD_MAPPED: 2761 ++thps; 2762 break; 2763 case SCAN_PTE_MAPPED_HUGEPAGE: 2764 BUG_ON(mmap_locked); 2765 BUG_ON(*prev); 2766 mmap_read_lock(mm); 2767 result = collapse_pte_mapped_thp(mm, addr, true); 2768 mmap_read_unlock(mm); 2769 goto handle_result; 2770 /* Whitelisted set of results where continuing OK */ 2771 case SCAN_PMD_NULL: 2772 case SCAN_PTE_NON_PRESENT: 2773 case SCAN_PTE_UFFD_WP: 2774 case SCAN_PAGE_RO: 2775 case SCAN_LACK_REFERENCED_PAGE: 2776 case SCAN_PAGE_NULL: 2777 case SCAN_PAGE_COUNT: 2778 case SCAN_PAGE_LOCK: 2779 case SCAN_PAGE_COMPOUND: 2780 case SCAN_PAGE_LRU: 2781 case SCAN_DEL_PAGE_LRU: 2782 last_fail = result; 2783 break; 2784 default: 2785 last_fail = result; 2786 /* Other error, exit */ 2787 goto out_maybelock; 2788 } 2789 } 2790 2791 out_maybelock: 2792 /* Caller expects us to hold mmap_lock on return */ 2793 if (!mmap_locked) 2794 mmap_read_lock(mm); 2795 out_nolock: 2796 mmap_assert_locked(mm); 2797 mmdrop(mm); 2798 kfree(cc); 2799 2800 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2801 : madvise_collapse_errno(last_fail); 2802 } 2803