1 // SPDX-License-Identifier: GPL-2.0 2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 3 4 #include <linux/mm.h> 5 #include <linux/sched.h> 6 #include <linux/sched/mm.h> 7 #include <linux/sched/coredump.h> 8 #include <linux/mmu_notifier.h> 9 #include <linux/rmap.h> 10 #include <linux/swap.h> 11 #include <linux/mm_inline.h> 12 #include <linux/kthread.h> 13 #include <linux/khugepaged.h> 14 #include <linux/freezer.h> 15 #include <linux/mman.h> 16 #include <linux/hashtable.h> 17 #include <linux/userfaultfd_k.h> 18 #include <linux/page_idle.h> 19 #include <linux/page_table_check.h> 20 #include <linux/swapops.h> 21 #include <linux/shmem_fs.h> 22 23 #include <asm/tlb.h> 24 #include <asm/pgalloc.h> 25 #include "internal.h" 26 #include "mm_slot.h" 27 28 enum scan_result { 29 SCAN_FAIL, 30 SCAN_SUCCEED, 31 SCAN_PMD_NULL, 32 SCAN_PMD_NONE, 33 SCAN_PMD_MAPPED, 34 SCAN_EXCEED_NONE_PTE, 35 SCAN_EXCEED_SWAP_PTE, 36 SCAN_EXCEED_SHARED_PTE, 37 SCAN_PTE_NON_PRESENT, 38 SCAN_PTE_UFFD_WP, 39 SCAN_PTE_MAPPED_HUGEPAGE, 40 SCAN_PAGE_RO, 41 SCAN_LACK_REFERENCED_PAGE, 42 SCAN_PAGE_NULL, 43 SCAN_SCAN_ABORT, 44 SCAN_PAGE_COUNT, 45 SCAN_PAGE_LRU, 46 SCAN_PAGE_LOCK, 47 SCAN_PAGE_ANON, 48 SCAN_PAGE_COMPOUND, 49 SCAN_ANY_PROCESS, 50 SCAN_VMA_NULL, 51 SCAN_VMA_CHECK, 52 SCAN_ADDRESS_RANGE, 53 SCAN_DEL_PAGE_LRU, 54 SCAN_ALLOC_HUGE_PAGE_FAIL, 55 SCAN_CGROUP_CHARGE_FAIL, 56 SCAN_TRUNCATED, 57 SCAN_PAGE_HAS_PRIVATE, 58 }; 59 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/huge_memory.h> 62 63 static struct task_struct *khugepaged_thread __read_mostly; 64 static DEFINE_MUTEX(khugepaged_mutex); 65 66 /* default scan 8*512 pte (or vmas) every 30 second */ 67 static unsigned int khugepaged_pages_to_scan __read_mostly; 68 static unsigned int khugepaged_pages_collapsed; 69 static unsigned int khugepaged_full_scans; 70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000; 71 /* during fragmentation poll the hugepage allocator once every minute */ 72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000; 73 static unsigned long khugepaged_sleep_expire; 74 static DEFINE_SPINLOCK(khugepaged_mm_lock); 75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait); 76 /* 77 * default collapse hugepages if there is at least one pte mapped like 78 * it would have happened if the vma was large enough during page 79 * fault. 80 * 81 * Note that these are only respected if collapse was initiated by khugepaged. 82 */ 83 static unsigned int khugepaged_max_ptes_none __read_mostly; 84 static unsigned int khugepaged_max_ptes_swap __read_mostly; 85 static unsigned int khugepaged_max_ptes_shared __read_mostly; 86 87 #define MM_SLOTS_HASH_BITS 10 88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS); 89 90 static struct kmem_cache *mm_slot_cache __read_mostly; 91 92 #define MAX_PTE_MAPPED_THP 8 93 94 struct collapse_control { 95 bool is_khugepaged; 96 97 /* Num pages scanned per node */ 98 u32 node_load[MAX_NUMNODES]; 99 100 /* Last target selected in hpage_collapse_find_target_node() */ 101 int last_target_node; 102 }; 103 104 /** 105 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned 106 * @slot: hash lookup from mm to mm_slot 107 * @nr_pte_mapped_thp: number of pte mapped THP 108 * @pte_mapped_thp: address array corresponding pte mapped THP 109 */ 110 struct khugepaged_mm_slot { 111 struct mm_slot slot; 112 113 /* pte-mapped THP in this mm */ 114 int nr_pte_mapped_thp; 115 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP]; 116 }; 117 118 /** 119 * struct khugepaged_scan - cursor for scanning 120 * @mm_head: the head of the mm list to scan 121 * @mm_slot: the current mm_slot we are scanning 122 * @address: the next address inside that to be scanned 123 * 124 * There is only the one khugepaged_scan instance of this cursor structure. 125 */ 126 struct khugepaged_scan { 127 struct list_head mm_head; 128 struct khugepaged_mm_slot *mm_slot; 129 unsigned long address; 130 }; 131 132 static struct khugepaged_scan khugepaged_scan = { 133 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head), 134 }; 135 136 #ifdef CONFIG_SYSFS 137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj, 138 struct kobj_attribute *attr, 139 char *buf) 140 { 141 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs); 142 } 143 144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj, 145 struct kobj_attribute *attr, 146 const char *buf, size_t count) 147 { 148 unsigned int msecs; 149 int err; 150 151 err = kstrtouint(buf, 10, &msecs); 152 if (err) 153 return -EINVAL; 154 155 khugepaged_scan_sleep_millisecs = msecs; 156 khugepaged_sleep_expire = 0; 157 wake_up_interruptible(&khugepaged_wait); 158 159 return count; 160 } 161 static struct kobj_attribute scan_sleep_millisecs_attr = 162 __ATTR_RW(scan_sleep_millisecs); 163 164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj, 165 struct kobj_attribute *attr, 166 char *buf) 167 { 168 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs); 169 } 170 171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj, 172 struct kobj_attribute *attr, 173 const char *buf, size_t count) 174 { 175 unsigned int msecs; 176 int err; 177 178 err = kstrtouint(buf, 10, &msecs); 179 if (err) 180 return -EINVAL; 181 182 khugepaged_alloc_sleep_millisecs = msecs; 183 khugepaged_sleep_expire = 0; 184 wake_up_interruptible(&khugepaged_wait); 185 186 return count; 187 } 188 static struct kobj_attribute alloc_sleep_millisecs_attr = 189 __ATTR_RW(alloc_sleep_millisecs); 190 191 static ssize_t pages_to_scan_show(struct kobject *kobj, 192 struct kobj_attribute *attr, 193 char *buf) 194 { 195 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan); 196 } 197 static ssize_t pages_to_scan_store(struct kobject *kobj, 198 struct kobj_attribute *attr, 199 const char *buf, size_t count) 200 { 201 unsigned int pages; 202 int err; 203 204 err = kstrtouint(buf, 10, &pages); 205 if (err || !pages) 206 return -EINVAL; 207 208 khugepaged_pages_to_scan = pages; 209 210 return count; 211 } 212 static struct kobj_attribute pages_to_scan_attr = 213 __ATTR_RW(pages_to_scan); 214 215 static ssize_t pages_collapsed_show(struct kobject *kobj, 216 struct kobj_attribute *attr, 217 char *buf) 218 { 219 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed); 220 } 221 static struct kobj_attribute pages_collapsed_attr = 222 __ATTR_RO(pages_collapsed); 223 224 static ssize_t full_scans_show(struct kobject *kobj, 225 struct kobj_attribute *attr, 226 char *buf) 227 { 228 return sysfs_emit(buf, "%u\n", khugepaged_full_scans); 229 } 230 static struct kobj_attribute full_scans_attr = 231 __ATTR_RO(full_scans); 232 233 static ssize_t defrag_show(struct kobject *kobj, 234 struct kobj_attribute *attr, char *buf) 235 { 236 return single_hugepage_flag_show(kobj, attr, buf, 237 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 238 } 239 static ssize_t defrag_store(struct kobject *kobj, 240 struct kobj_attribute *attr, 241 const char *buf, size_t count) 242 { 243 return single_hugepage_flag_store(kobj, attr, buf, count, 244 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG); 245 } 246 static struct kobj_attribute khugepaged_defrag_attr = 247 __ATTR_RW(defrag); 248 249 /* 250 * max_ptes_none controls if khugepaged should collapse hugepages over 251 * any unmapped ptes in turn potentially increasing the memory 252 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not 253 * reduce the available free memory in the system as it 254 * runs. Increasing max_ptes_none will instead potentially reduce the 255 * free memory in the system during the khugepaged scan. 256 */ 257 static ssize_t max_ptes_none_show(struct kobject *kobj, 258 struct kobj_attribute *attr, 259 char *buf) 260 { 261 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none); 262 } 263 static ssize_t max_ptes_none_store(struct kobject *kobj, 264 struct kobj_attribute *attr, 265 const char *buf, size_t count) 266 { 267 int err; 268 unsigned long max_ptes_none; 269 270 err = kstrtoul(buf, 10, &max_ptes_none); 271 if (err || max_ptes_none > HPAGE_PMD_NR - 1) 272 return -EINVAL; 273 274 khugepaged_max_ptes_none = max_ptes_none; 275 276 return count; 277 } 278 static struct kobj_attribute khugepaged_max_ptes_none_attr = 279 __ATTR_RW(max_ptes_none); 280 281 static ssize_t max_ptes_swap_show(struct kobject *kobj, 282 struct kobj_attribute *attr, 283 char *buf) 284 { 285 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap); 286 } 287 288 static ssize_t max_ptes_swap_store(struct kobject *kobj, 289 struct kobj_attribute *attr, 290 const char *buf, size_t count) 291 { 292 int err; 293 unsigned long max_ptes_swap; 294 295 err = kstrtoul(buf, 10, &max_ptes_swap); 296 if (err || max_ptes_swap > HPAGE_PMD_NR - 1) 297 return -EINVAL; 298 299 khugepaged_max_ptes_swap = max_ptes_swap; 300 301 return count; 302 } 303 304 static struct kobj_attribute khugepaged_max_ptes_swap_attr = 305 __ATTR_RW(max_ptes_swap); 306 307 static ssize_t max_ptes_shared_show(struct kobject *kobj, 308 struct kobj_attribute *attr, 309 char *buf) 310 { 311 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared); 312 } 313 314 static ssize_t max_ptes_shared_store(struct kobject *kobj, 315 struct kobj_attribute *attr, 316 const char *buf, size_t count) 317 { 318 int err; 319 unsigned long max_ptes_shared; 320 321 err = kstrtoul(buf, 10, &max_ptes_shared); 322 if (err || max_ptes_shared > HPAGE_PMD_NR - 1) 323 return -EINVAL; 324 325 khugepaged_max_ptes_shared = max_ptes_shared; 326 327 return count; 328 } 329 330 static struct kobj_attribute khugepaged_max_ptes_shared_attr = 331 __ATTR_RW(max_ptes_shared); 332 333 static struct attribute *khugepaged_attr[] = { 334 &khugepaged_defrag_attr.attr, 335 &khugepaged_max_ptes_none_attr.attr, 336 &khugepaged_max_ptes_swap_attr.attr, 337 &khugepaged_max_ptes_shared_attr.attr, 338 &pages_to_scan_attr.attr, 339 &pages_collapsed_attr.attr, 340 &full_scans_attr.attr, 341 &scan_sleep_millisecs_attr.attr, 342 &alloc_sleep_millisecs_attr.attr, 343 NULL, 344 }; 345 346 struct attribute_group khugepaged_attr_group = { 347 .attrs = khugepaged_attr, 348 .name = "khugepaged", 349 }; 350 #endif /* CONFIG_SYSFS */ 351 352 int hugepage_madvise(struct vm_area_struct *vma, 353 unsigned long *vm_flags, int advice) 354 { 355 switch (advice) { 356 case MADV_HUGEPAGE: 357 #ifdef CONFIG_S390 358 /* 359 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390 360 * can't handle this properly after s390_enable_sie, so we simply 361 * ignore the madvise to prevent qemu from causing a SIGSEGV. 362 */ 363 if (mm_has_pgste(vma->vm_mm)) 364 return 0; 365 #endif 366 *vm_flags &= ~VM_NOHUGEPAGE; 367 *vm_flags |= VM_HUGEPAGE; 368 /* 369 * If the vma become good for khugepaged to scan, 370 * register it here without waiting a page fault that 371 * may not happen any time soon. 372 */ 373 khugepaged_enter_vma(vma, *vm_flags); 374 break; 375 case MADV_NOHUGEPAGE: 376 *vm_flags &= ~VM_HUGEPAGE; 377 *vm_flags |= VM_NOHUGEPAGE; 378 /* 379 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning 380 * this vma even if we leave the mm registered in khugepaged if 381 * it got registered before VM_NOHUGEPAGE was set. 382 */ 383 break; 384 } 385 386 return 0; 387 } 388 389 int __init khugepaged_init(void) 390 { 391 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot", 392 sizeof(struct khugepaged_mm_slot), 393 __alignof__(struct khugepaged_mm_slot), 394 0, NULL); 395 if (!mm_slot_cache) 396 return -ENOMEM; 397 398 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8; 399 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1; 400 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8; 401 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2; 402 403 return 0; 404 } 405 406 void __init khugepaged_destroy(void) 407 { 408 kmem_cache_destroy(mm_slot_cache); 409 } 410 411 static inline int hpage_collapse_test_exit(struct mm_struct *mm) 412 { 413 return atomic_read(&mm->mm_users) == 0; 414 } 415 416 void __khugepaged_enter(struct mm_struct *mm) 417 { 418 struct khugepaged_mm_slot *mm_slot; 419 struct mm_slot *slot; 420 int wakeup; 421 422 mm_slot = mm_slot_alloc(mm_slot_cache); 423 if (!mm_slot) 424 return; 425 426 slot = &mm_slot->slot; 427 428 /* __khugepaged_exit() must not run from under us */ 429 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm); 430 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) { 431 mm_slot_free(mm_slot_cache, mm_slot); 432 return; 433 } 434 435 spin_lock(&khugepaged_mm_lock); 436 mm_slot_insert(mm_slots_hash, mm, slot); 437 /* 438 * Insert just behind the scanning cursor, to let the area settle 439 * down a little. 440 */ 441 wakeup = list_empty(&khugepaged_scan.mm_head); 442 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head); 443 spin_unlock(&khugepaged_mm_lock); 444 445 mmgrab(mm); 446 if (wakeup) 447 wake_up_interruptible(&khugepaged_wait); 448 } 449 450 void khugepaged_enter_vma(struct vm_area_struct *vma, 451 unsigned long vm_flags) 452 { 453 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) && 454 hugepage_flags_enabled()) { 455 if (hugepage_vma_check(vma, vm_flags, false, false, true)) 456 __khugepaged_enter(vma->vm_mm); 457 } 458 } 459 460 void __khugepaged_exit(struct mm_struct *mm) 461 { 462 struct khugepaged_mm_slot *mm_slot; 463 struct mm_slot *slot; 464 int free = 0; 465 466 spin_lock(&khugepaged_mm_lock); 467 slot = mm_slot_lookup(mm_slots_hash, mm); 468 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 469 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) { 470 hash_del(&slot->hash); 471 list_del(&slot->mm_node); 472 free = 1; 473 } 474 spin_unlock(&khugepaged_mm_lock); 475 476 if (free) { 477 clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 478 mm_slot_free(mm_slot_cache, mm_slot); 479 mmdrop(mm); 480 } else if (mm_slot) { 481 /* 482 * This is required to serialize against 483 * hpage_collapse_test_exit() (which is guaranteed to run 484 * under mmap sem read mode). Stop here (after we return all 485 * pagetables will be destroyed) until khugepaged has finished 486 * working on the pagetables under the mmap_lock. 487 */ 488 mmap_write_lock(mm); 489 mmap_write_unlock(mm); 490 } 491 } 492 493 static void release_pte_page(struct page *page) 494 { 495 mod_node_page_state(page_pgdat(page), 496 NR_ISOLATED_ANON + page_is_file_lru(page), 497 -compound_nr(page)); 498 unlock_page(page); 499 putback_lru_page(page); 500 } 501 502 static void release_pte_pages(pte_t *pte, pte_t *_pte, 503 struct list_head *compound_pagelist) 504 { 505 struct page *page, *tmp; 506 507 while (--_pte >= pte) { 508 pte_t pteval = *_pte; 509 510 page = pte_page(pteval); 511 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) && 512 !PageCompound(page)) 513 release_pte_page(page); 514 } 515 516 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) { 517 list_del(&page->lru); 518 release_pte_page(page); 519 } 520 } 521 522 static bool is_refcount_suitable(struct page *page) 523 { 524 int expected_refcount; 525 526 expected_refcount = total_mapcount(page); 527 if (PageSwapCache(page)) 528 expected_refcount += compound_nr(page); 529 530 return page_count(page) == expected_refcount; 531 } 532 533 static int __collapse_huge_page_isolate(struct vm_area_struct *vma, 534 unsigned long address, 535 pte_t *pte, 536 struct collapse_control *cc, 537 struct list_head *compound_pagelist) 538 { 539 struct page *page = NULL; 540 pte_t *_pte; 541 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0; 542 bool writable = false; 543 544 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 545 _pte++, address += PAGE_SIZE) { 546 pte_t pteval = *_pte; 547 if (pte_none(pteval) || (pte_present(pteval) && 548 is_zero_pfn(pte_pfn(pteval)))) { 549 ++none_or_zero; 550 if (!userfaultfd_armed(vma) && 551 (!cc->is_khugepaged || 552 none_or_zero <= khugepaged_max_ptes_none)) { 553 continue; 554 } else { 555 result = SCAN_EXCEED_NONE_PTE; 556 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 557 goto out; 558 } 559 } 560 if (!pte_present(pteval)) { 561 result = SCAN_PTE_NON_PRESENT; 562 goto out; 563 } 564 page = vm_normal_page(vma, address, pteval); 565 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 566 result = SCAN_PAGE_NULL; 567 goto out; 568 } 569 570 VM_BUG_ON_PAGE(!PageAnon(page), page); 571 572 if (page_mapcount(page) > 1) { 573 ++shared; 574 if (cc->is_khugepaged && 575 shared > khugepaged_max_ptes_shared) { 576 result = SCAN_EXCEED_SHARED_PTE; 577 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 578 goto out; 579 } 580 } 581 582 if (PageCompound(page)) { 583 struct page *p; 584 page = compound_head(page); 585 586 /* 587 * Check if we have dealt with the compound page 588 * already 589 */ 590 list_for_each_entry(p, compound_pagelist, lru) { 591 if (page == p) 592 goto next; 593 } 594 } 595 596 /* 597 * We can do it before isolate_lru_page because the 598 * page can't be freed from under us. NOTE: PG_lock 599 * is needed to serialize against split_huge_page 600 * when invoked from the VM. 601 */ 602 if (!trylock_page(page)) { 603 result = SCAN_PAGE_LOCK; 604 goto out; 605 } 606 607 /* 608 * Check if the page has any GUP (or other external) pins. 609 * 610 * The page table that maps the page has been already unlinked 611 * from the page table tree and this process cannot get 612 * an additional pin on the page. 613 * 614 * New pins can come later if the page is shared across fork, 615 * but not from this process. The other process cannot write to 616 * the page, only trigger CoW. 617 */ 618 if (!is_refcount_suitable(page)) { 619 unlock_page(page); 620 result = SCAN_PAGE_COUNT; 621 goto out; 622 } 623 624 /* 625 * Isolate the page to avoid collapsing an hugepage 626 * currently in use by the VM. 627 */ 628 if (isolate_lru_page(page)) { 629 unlock_page(page); 630 result = SCAN_DEL_PAGE_LRU; 631 goto out; 632 } 633 mod_node_page_state(page_pgdat(page), 634 NR_ISOLATED_ANON + page_is_file_lru(page), 635 compound_nr(page)); 636 VM_BUG_ON_PAGE(!PageLocked(page), page); 637 VM_BUG_ON_PAGE(PageLRU(page), page); 638 639 if (PageCompound(page)) 640 list_add_tail(&page->lru, compound_pagelist); 641 next: 642 /* 643 * If collapse was initiated by khugepaged, check that there is 644 * enough young pte to justify collapsing the page 645 */ 646 if (cc->is_khugepaged && 647 (pte_young(pteval) || page_is_young(page) || 648 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 649 address))) 650 referenced++; 651 652 if (pte_write(pteval)) 653 writable = true; 654 } 655 656 if (unlikely(!writable)) { 657 result = SCAN_PAGE_RO; 658 } else if (unlikely(cc->is_khugepaged && !referenced)) { 659 result = SCAN_LACK_REFERENCED_PAGE; 660 } else { 661 result = SCAN_SUCCEED; 662 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 663 referenced, writable, result); 664 return result; 665 } 666 out: 667 release_pte_pages(pte, _pte, compound_pagelist); 668 trace_mm_collapse_huge_page_isolate(page, none_or_zero, 669 referenced, writable, result); 670 return result; 671 } 672 673 static void __collapse_huge_page_copy(pte_t *pte, struct page *page, 674 struct vm_area_struct *vma, 675 unsigned long address, 676 spinlock_t *ptl, 677 struct list_head *compound_pagelist) 678 { 679 struct page *src_page, *tmp; 680 pte_t *_pte; 681 for (_pte = pte; _pte < pte + HPAGE_PMD_NR; 682 _pte++, page++, address += PAGE_SIZE) { 683 pte_t pteval = *_pte; 684 685 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 686 clear_user_highpage(page, address); 687 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1); 688 if (is_zero_pfn(pte_pfn(pteval))) { 689 /* 690 * ptl mostly unnecessary. 691 */ 692 spin_lock(ptl); 693 ptep_clear(vma->vm_mm, address, _pte); 694 spin_unlock(ptl); 695 } 696 } else { 697 src_page = pte_page(pteval); 698 copy_user_highpage(page, src_page, address, vma); 699 if (!PageCompound(src_page)) 700 release_pte_page(src_page); 701 /* 702 * ptl mostly unnecessary, but preempt has to 703 * be disabled to update the per-cpu stats 704 * inside page_remove_rmap(). 705 */ 706 spin_lock(ptl); 707 ptep_clear(vma->vm_mm, address, _pte); 708 page_remove_rmap(src_page, vma, false); 709 spin_unlock(ptl); 710 free_page_and_swap_cache(src_page); 711 } 712 } 713 714 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) { 715 list_del(&src_page->lru); 716 mod_node_page_state(page_pgdat(src_page), 717 NR_ISOLATED_ANON + page_is_file_lru(src_page), 718 -compound_nr(src_page)); 719 unlock_page(src_page); 720 free_swap_cache(src_page); 721 putback_lru_page(src_page); 722 } 723 } 724 725 static void khugepaged_alloc_sleep(void) 726 { 727 DEFINE_WAIT(wait); 728 729 add_wait_queue(&khugepaged_wait, &wait); 730 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 731 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs)); 732 remove_wait_queue(&khugepaged_wait, &wait); 733 } 734 735 struct collapse_control khugepaged_collapse_control = { 736 .is_khugepaged = true, 737 .last_target_node = NUMA_NO_NODE, 738 }; 739 740 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc) 741 { 742 int i; 743 744 /* 745 * If node_reclaim_mode is disabled, then no extra effort is made to 746 * allocate memory locally. 747 */ 748 if (!node_reclaim_enabled()) 749 return false; 750 751 /* If there is a count for this node already, it must be acceptable */ 752 if (cc->node_load[nid]) 753 return false; 754 755 for (i = 0; i < MAX_NUMNODES; i++) { 756 if (!cc->node_load[i]) 757 continue; 758 if (node_distance(nid, i) > node_reclaim_distance) 759 return true; 760 } 761 return false; 762 } 763 764 #define khugepaged_defrag() \ 765 (transparent_hugepage_flags & \ 766 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)) 767 768 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */ 769 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void) 770 { 771 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT; 772 } 773 774 #ifdef CONFIG_NUMA 775 static int hpage_collapse_find_target_node(struct collapse_control *cc) 776 { 777 int nid, target_node = 0, max_value = 0; 778 779 /* find first node with max normal pages hit */ 780 for (nid = 0; nid < MAX_NUMNODES; nid++) 781 if (cc->node_load[nid] > max_value) { 782 max_value = cc->node_load[nid]; 783 target_node = nid; 784 } 785 786 /* do some balance if several nodes have the same hit record */ 787 if (target_node <= cc->last_target_node) 788 for (nid = cc->last_target_node + 1; nid < MAX_NUMNODES; 789 nid++) 790 if (max_value == cc->node_load[nid]) { 791 target_node = nid; 792 break; 793 } 794 795 cc->last_target_node = target_node; 796 return target_node; 797 } 798 #else 799 static int hpage_collapse_find_target_node(struct collapse_control *cc) 800 { 801 return 0; 802 } 803 #endif 804 805 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node) 806 { 807 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER); 808 if (unlikely(!*hpage)) { 809 count_vm_event(THP_COLLAPSE_ALLOC_FAILED); 810 return false; 811 } 812 813 prep_transhuge_page(*hpage); 814 count_vm_event(THP_COLLAPSE_ALLOC); 815 return true; 816 } 817 818 /* 819 * If mmap_lock temporarily dropped, revalidate vma 820 * before taking mmap_lock. 821 * Returns enum scan_result value. 822 */ 823 824 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address, 825 bool expect_anon, 826 struct vm_area_struct **vmap, 827 struct collapse_control *cc) 828 { 829 struct vm_area_struct *vma; 830 831 if (unlikely(hpage_collapse_test_exit(mm))) 832 return SCAN_ANY_PROCESS; 833 834 *vmap = vma = find_vma(mm, address); 835 if (!vma) 836 return SCAN_VMA_NULL; 837 838 if (!transhuge_vma_suitable(vma, address)) 839 return SCAN_ADDRESS_RANGE; 840 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, 841 cc->is_khugepaged)) 842 return SCAN_VMA_CHECK; 843 /* 844 * Anon VMA expected, the address may be unmapped then 845 * remapped to file after khugepaged reaquired the mmap_lock. 846 * 847 * hugepage_vma_check may return true for qualified file 848 * vmas. 849 */ 850 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap))) 851 return SCAN_PAGE_ANON; 852 return SCAN_SUCCEED; 853 } 854 855 static int find_pmd_or_thp_or_none(struct mm_struct *mm, 856 unsigned long address, 857 pmd_t **pmd) 858 { 859 pmd_t pmde; 860 861 *pmd = mm_find_pmd(mm, address); 862 if (!*pmd) 863 return SCAN_PMD_NULL; 864 865 pmde = pmd_read_atomic(*pmd); 866 867 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 868 /* See comments in pmd_none_or_trans_huge_or_clear_bad() */ 869 barrier(); 870 #endif 871 if (pmd_none(pmde)) 872 return SCAN_PMD_NONE; 873 if (pmd_trans_huge(pmde)) 874 return SCAN_PMD_MAPPED; 875 if (pmd_bad(pmde)) 876 return SCAN_PMD_NULL; 877 return SCAN_SUCCEED; 878 } 879 880 static int check_pmd_still_valid(struct mm_struct *mm, 881 unsigned long address, 882 pmd_t *pmd) 883 { 884 pmd_t *new_pmd; 885 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd); 886 887 if (result != SCAN_SUCCEED) 888 return result; 889 if (new_pmd != pmd) 890 return SCAN_FAIL; 891 return SCAN_SUCCEED; 892 } 893 894 /* 895 * Bring missing pages in from swap, to complete THP collapse. 896 * Only done if hpage_collapse_scan_pmd believes it is worthwhile. 897 * 898 * Called and returns without pte mapped or spinlocks held. 899 * Note that if false is returned, mmap_lock will be released. 900 */ 901 902 static int __collapse_huge_page_swapin(struct mm_struct *mm, 903 struct vm_area_struct *vma, 904 unsigned long haddr, pmd_t *pmd, 905 int referenced) 906 { 907 int swapped_in = 0; 908 vm_fault_t ret = 0; 909 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE); 910 911 for (address = haddr; address < end; address += PAGE_SIZE) { 912 struct vm_fault vmf = { 913 .vma = vma, 914 .address = address, 915 .pgoff = linear_page_index(vma, haddr), 916 .flags = FAULT_FLAG_ALLOW_RETRY, 917 .pmd = pmd, 918 }; 919 920 vmf.pte = pte_offset_map(pmd, address); 921 vmf.orig_pte = *vmf.pte; 922 if (!is_swap_pte(vmf.orig_pte)) { 923 pte_unmap(vmf.pte); 924 continue; 925 } 926 ret = do_swap_page(&vmf); 927 928 /* 929 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock. 930 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because 931 * we do not retry here and swap entry will remain in pagetable 932 * resulting in later failure. 933 */ 934 if (ret & VM_FAULT_RETRY) { 935 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 936 /* Likely, but not guaranteed, that page lock failed */ 937 return SCAN_PAGE_LOCK; 938 } 939 if (ret & VM_FAULT_ERROR) { 940 mmap_read_unlock(mm); 941 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0); 942 return SCAN_FAIL; 943 } 944 swapped_in++; 945 } 946 947 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */ 948 if (swapped_in) 949 lru_add_drain(); 950 951 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1); 952 return SCAN_SUCCEED; 953 } 954 955 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm, 956 struct collapse_control *cc) 957 { 958 /* Only allocate from the target node */ 959 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() : 960 GFP_TRANSHUGE) | __GFP_THISNODE; 961 int node = hpage_collapse_find_target_node(cc); 962 963 if (!hpage_collapse_alloc_page(hpage, gfp, node)) 964 return SCAN_ALLOC_HUGE_PAGE_FAIL; 965 if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp))) 966 return SCAN_CGROUP_CHARGE_FAIL; 967 count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC); 968 return SCAN_SUCCEED; 969 } 970 971 static int collapse_huge_page(struct mm_struct *mm, unsigned long address, 972 int referenced, int unmapped, 973 struct collapse_control *cc) 974 { 975 LIST_HEAD(compound_pagelist); 976 pmd_t *pmd, _pmd; 977 pte_t *pte; 978 pgtable_t pgtable; 979 struct page *hpage; 980 spinlock_t *pmd_ptl, *pte_ptl; 981 int result = SCAN_FAIL; 982 struct vm_area_struct *vma; 983 struct mmu_notifier_range range; 984 985 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 986 987 /* 988 * Before allocating the hugepage, release the mmap_lock read lock. 989 * The allocation can take potentially a long time if it involves 990 * sync compaction, and we do not need to hold the mmap_lock during 991 * that. We will recheck the vma after taking it again in write mode. 992 */ 993 mmap_read_unlock(mm); 994 995 result = alloc_charge_hpage(&hpage, mm, cc); 996 if (result != SCAN_SUCCEED) 997 goto out_nolock; 998 999 mmap_read_lock(mm); 1000 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1001 if (result != SCAN_SUCCEED) { 1002 mmap_read_unlock(mm); 1003 goto out_nolock; 1004 } 1005 1006 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1007 if (result != SCAN_SUCCEED) { 1008 mmap_read_unlock(mm); 1009 goto out_nolock; 1010 } 1011 1012 if (unmapped) { 1013 /* 1014 * __collapse_huge_page_swapin will return with mmap_lock 1015 * released when it fails. So we jump out_nolock directly in 1016 * that case. Continuing to collapse causes inconsistency. 1017 */ 1018 result = __collapse_huge_page_swapin(mm, vma, address, pmd, 1019 referenced); 1020 if (result != SCAN_SUCCEED) 1021 goto out_nolock; 1022 } 1023 1024 mmap_read_unlock(mm); 1025 /* 1026 * Prevent all access to pagetables with the exception of 1027 * gup_fast later handled by the ptep_clear_flush and the VM 1028 * handled by the anon_vma lock + PG_lock. 1029 */ 1030 mmap_write_lock(mm); 1031 result = hugepage_vma_revalidate(mm, address, true, &vma, cc); 1032 if (result != SCAN_SUCCEED) 1033 goto out_up_write; 1034 /* check if the pmd is still valid */ 1035 result = check_pmd_still_valid(mm, address, pmd); 1036 if (result != SCAN_SUCCEED) 1037 goto out_up_write; 1038 1039 anon_vma_lock_write(vma->anon_vma); 1040 1041 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 1042 address, address + HPAGE_PMD_SIZE); 1043 mmu_notifier_invalidate_range_start(&range); 1044 1045 pte = pte_offset_map(pmd, address); 1046 pte_ptl = pte_lockptr(mm, pmd); 1047 1048 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */ 1049 /* 1050 * This removes any huge TLB entry from the CPU so we won't allow 1051 * huge and small TLB entries for the same virtual address to 1052 * avoid the risk of CPU bugs in that area. 1053 * 1054 * Parallel fast GUP is fine since fast GUP will back off when 1055 * it detects PMD is changed. 1056 */ 1057 _pmd = pmdp_collapse_flush(vma, address, pmd); 1058 spin_unlock(pmd_ptl); 1059 mmu_notifier_invalidate_range_end(&range); 1060 1061 spin_lock(pte_ptl); 1062 result = __collapse_huge_page_isolate(vma, address, pte, cc, 1063 &compound_pagelist); 1064 spin_unlock(pte_ptl); 1065 1066 if (unlikely(result != SCAN_SUCCEED)) { 1067 pte_unmap(pte); 1068 spin_lock(pmd_ptl); 1069 BUG_ON(!pmd_none(*pmd)); 1070 /* 1071 * We can only use set_pmd_at when establishing 1072 * hugepmds and never for establishing regular pmds that 1073 * points to regular pagetables. Use pmd_populate for that 1074 */ 1075 pmd_populate(mm, pmd, pmd_pgtable(_pmd)); 1076 spin_unlock(pmd_ptl); 1077 anon_vma_unlock_write(vma->anon_vma); 1078 goto out_up_write; 1079 } 1080 1081 /* 1082 * All pages are isolated and locked so anon_vma rmap 1083 * can't run anymore. 1084 */ 1085 anon_vma_unlock_write(vma->anon_vma); 1086 1087 __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl, 1088 &compound_pagelist); 1089 pte_unmap(pte); 1090 /* 1091 * spin_lock() below is not the equivalent of smp_wmb(), but 1092 * the smp_wmb() inside __SetPageUptodate() can be reused to 1093 * avoid the copy_huge_page writes to become visible after 1094 * the set_pmd_at() write. 1095 */ 1096 __SetPageUptodate(hpage); 1097 pgtable = pmd_pgtable(_pmd); 1098 1099 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot); 1100 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma); 1101 1102 spin_lock(pmd_ptl); 1103 BUG_ON(!pmd_none(*pmd)); 1104 page_add_new_anon_rmap(hpage, vma, address); 1105 lru_cache_add_inactive_or_unevictable(hpage, vma); 1106 pgtable_trans_huge_deposit(mm, pmd, pgtable); 1107 set_pmd_at(mm, address, pmd, _pmd); 1108 update_mmu_cache_pmd(vma, address, pmd); 1109 spin_unlock(pmd_ptl); 1110 1111 hpage = NULL; 1112 1113 result = SCAN_SUCCEED; 1114 out_up_write: 1115 mmap_write_unlock(mm); 1116 out_nolock: 1117 if (hpage) { 1118 mem_cgroup_uncharge(page_folio(hpage)); 1119 put_page(hpage); 1120 } 1121 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result); 1122 return result; 1123 } 1124 1125 static int hpage_collapse_scan_pmd(struct mm_struct *mm, 1126 struct vm_area_struct *vma, 1127 unsigned long address, bool *mmap_locked, 1128 struct collapse_control *cc) 1129 { 1130 pmd_t *pmd; 1131 pte_t *pte, *_pte; 1132 int result = SCAN_FAIL, referenced = 0; 1133 int none_or_zero = 0, shared = 0; 1134 struct page *page = NULL; 1135 unsigned long _address; 1136 spinlock_t *ptl; 1137 int node = NUMA_NO_NODE, unmapped = 0; 1138 bool writable = false; 1139 1140 VM_BUG_ON(address & ~HPAGE_PMD_MASK); 1141 1142 result = find_pmd_or_thp_or_none(mm, address, &pmd); 1143 if (result != SCAN_SUCCEED) 1144 goto out; 1145 1146 memset(cc->node_load, 0, sizeof(cc->node_load)); 1147 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 1148 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR; 1149 _pte++, _address += PAGE_SIZE) { 1150 pte_t pteval = *_pte; 1151 if (is_swap_pte(pteval)) { 1152 ++unmapped; 1153 if (!cc->is_khugepaged || 1154 unmapped <= khugepaged_max_ptes_swap) { 1155 /* 1156 * Always be strict with uffd-wp 1157 * enabled swap entries. Please see 1158 * comment below for pte_uffd_wp(). 1159 */ 1160 if (pte_swp_uffd_wp(pteval)) { 1161 result = SCAN_PTE_UFFD_WP; 1162 goto out_unmap; 1163 } 1164 continue; 1165 } else { 1166 result = SCAN_EXCEED_SWAP_PTE; 1167 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 1168 goto out_unmap; 1169 } 1170 } 1171 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) { 1172 ++none_or_zero; 1173 if (!userfaultfd_armed(vma) && 1174 (!cc->is_khugepaged || 1175 none_or_zero <= khugepaged_max_ptes_none)) { 1176 continue; 1177 } else { 1178 result = SCAN_EXCEED_NONE_PTE; 1179 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 1180 goto out_unmap; 1181 } 1182 } 1183 if (pte_uffd_wp(pteval)) { 1184 /* 1185 * Don't collapse the page if any of the small 1186 * PTEs are armed with uffd write protection. 1187 * Here we can also mark the new huge pmd as 1188 * write protected if any of the small ones is 1189 * marked but that could bring unknown 1190 * userfault messages that falls outside of 1191 * the registered range. So, just be simple. 1192 */ 1193 result = SCAN_PTE_UFFD_WP; 1194 goto out_unmap; 1195 } 1196 if (pte_write(pteval)) 1197 writable = true; 1198 1199 page = vm_normal_page(vma, _address, pteval); 1200 if (unlikely(!page) || unlikely(is_zone_device_page(page))) { 1201 result = SCAN_PAGE_NULL; 1202 goto out_unmap; 1203 } 1204 1205 if (page_mapcount(page) > 1) { 1206 ++shared; 1207 if (cc->is_khugepaged && 1208 shared > khugepaged_max_ptes_shared) { 1209 result = SCAN_EXCEED_SHARED_PTE; 1210 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE); 1211 goto out_unmap; 1212 } 1213 } 1214 1215 page = compound_head(page); 1216 1217 /* 1218 * Record which node the original page is from and save this 1219 * information to cc->node_load[]. 1220 * Khugepaged will allocate hugepage from the node has the max 1221 * hit record. 1222 */ 1223 node = page_to_nid(page); 1224 if (hpage_collapse_scan_abort(node, cc)) { 1225 result = SCAN_SCAN_ABORT; 1226 goto out_unmap; 1227 } 1228 cc->node_load[node]++; 1229 if (!PageLRU(page)) { 1230 result = SCAN_PAGE_LRU; 1231 goto out_unmap; 1232 } 1233 if (PageLocked(page)) { 1234 result = SCAN_PAGE_LOCK; 1235 goto out_unmap; 1236 } 1237 if (!PageAnon(page)) { 1238 result = SCAN_PAGE_ANON; 1239 goto out_unmap; 1240 } 1241 1242 /* 1243 * Check if the page has any GUP (or other external) pins. 1244 * 1245 * Here the check is racy it may see total_mapcount > refcount 1246 * in some cases. 1247 * For example, one process with one forked child process. 1248 * The parent has the PMD split due to MADV_DONTNEED, then 1249 * the child is trying unmap the whole PMD, but khugepaged 1250 * may be scanning the parent between the child has 1251 * PageDoubleMap flag cleared and dec the mapcount. So 1252 * khugepaged may see total_mapcount > refcount. 1253 * 1254 * But such case is ephemeral we could always retry collapse 1255 * later. However it may report false positive if the page 1256 * has excessive GUP pins (i.e. 512). Anyway the same check 1257 * will be done again later the risk seems low. 1258 */ 1259 if (!is_refcount_suitable(page)) { 1260 result = SCAN_PAGE_COUNT; 1261 goto out_unmap; 1262 } 1263 1264 /* 1265 * If collapse was initiated by khugepaged, check that there is 1266 * enough young pte to justify collapsing the page 1267 */ 1268 if (cc->is_khugepaged && 1269 (pte_young(pteval) || page_is_young(page) || 1270 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm, 1271 address))) 1272 referenced++; 1273 } 1274 if (!writable) { 1275 result = SCAN_PAGE_RO; 1276 } else if (cc->is_khugepaged && 1277 (!referenced || 1278 (unmapped && referenced < HPAGE_PMD_NR / 2))) { 1279 result = SCAN_LACK_REFERENCED_PAGE; 1280 } else { 1281 result = SCAN_SUCCEED; 1282 } 1283 out_unmap: 1284 pte_unmap_unlock(pte, ptl); 1285 if (result == SCAN_SUCCEED) { 1286 result = collapse_huge_page(mm, address, referenced, 1287 unmapped, cc); 1288 /* collapse_huge_page will return with the mmap_lock released */ 1289 *mmap_locked = false; 1290 } 1291 out: 1292 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced, 1293 none_or_zero, result, unmapped); 1294 return result; 1295 } 1296 1297 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot) 1298 { 1299 struct mm_slot *slot = &mm_slot->slot; 1300 struct mm_struct *mm = slot->mm; 1301 1302 lockdep_assert_held(&khugepaged_mm_lock); 1303 1304 if (hpage_collapse_test_exit(mm)) { 1305 /* free mm_slot */ 1306 hash_del(&slot->hash); 1307 list_del(&slot->mm_node); 1308 1309 /* 1310 * Not strictly needed because the mm exited already. 1311 * 1312 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags); 1313 */ 1314 1315 /* khugepaged_mm_lock actually not necessary for the below */ 1316 mm_slot_free(mm_slot_cache, mm_slot); 1317 mmdrop(mm); 1318 } 1319 } 1320 1321 #ifdef CONFIG_SHMEM 1322 /* 1323 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then 1324 * khugepaged should try to collapse the page table. 1325 * 1326 * Note that following race exists: 1327 * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A, 1328 * emptying the A's ->pte_mapped_thp[] array. 1329 * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and 1330 * retract_page_tables() finds a VMA in mm_struct A mapping the same extent 1331 * (at virtual address X) and adds an entry (for X) into mm_struct A's 1332 * ->pte-mapped_thp[] array. 1333 * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X, 1334 * sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry 1335 * (for X) into mm_struct A's ->pte-mapped_thp[] array. 1336 * Thus, it's possible the same address is added multiple times for the same 1337 * mm_struct. Should this happen, we'll simply attempt 1338 * collapse_pte_mapped_thp() multiple times for the same address, under the same 1339 * exclusive mmap_lock, and assuming the first call is successful, subsequent 1340 * attempts will return quickly (without grabbing any additional locks) when 1341 * a huge pmd is found in find_pmd_or_thp_or_none(). Since this is a cheap 1342 * check, and since this is a rare occurrence, the cost of preventing this 1343 * "multiple-add" is thought to be more expensive than just handling it, should 1344 * it occur. 1345 */ 1346 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 1347 unsigned long addr) 1348 { 1349 struct khugepaged_mm_slot *mm_slot; 1350 struct mm_slot *slot; 1351 bool ret = false; 1352 1353 VM_BUG_ON(addr & ~HPAGE_PMD_MASK); 1354 1355 spin_lock(&khugepaged_mm_lock); 1356 slot = mm_slot_lookup(mm_slots_hash, mm); 1357 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 1358 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) { 1359 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr; 1360 ret = true; 1361 } 1362 spin_unlock(&khugepaged_mm_lock); 1363 return ret; 1364 } 1365 1366 /* hpage must be locked, and mmap_lock must be held in write */ 1367 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr, 1368 pmd_t *pmdp, struct page *hpage) 1369 { 1370 struct vm_fault vmf = { 1371 .vma = vma, 1372 .address = addr, 1373 .flags = 0, 1374 .pmd = pmdp, 1375 }; 1376 1377 VM_BUG_ON(!PageTransHuge(hpage)); 1378 mmap_assert_write_locked(vma->vm_mm); 1379 1380 if (do_set_pmd(&vmf, hpage)) 1381 return SCAN_FAIL; 1382 1383 get_page(hpage); 1384 return SCAN_SUCCEED; 1385 } 1386 1387 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma, 1388 unsigned long addr, pmd_t *pmdp) 1389 { 1390 spinlock_t *ptl; 1391 pmd_t pmd; 1392 1393 mmap_assert_write_locked(mm); 1394 ptl = pmd_lock(vma->vm_mm, pmdp); 1395 pmd = pmdp_collapse_flush(vma, addr, pmdp); 1396 spin_unlock(ptl); 1397 mm_dec_nr_ptes(mm); 1398 page_table_check_pte_clear_range(mm, addr, pmd); 1399 pte_free(mm, pmd_pgtable(pmd)); 1400 } 1401 1402 /** 1403 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at 1404 * address haddr. 1405 * 1406 * @mm: process address space where collapse happens 1407 * @addr: THP collapse address 1408 * @install_pmd: If a huge PMD should be installed 1409 * 1410 * This function checks whether all the PTEs in the PMD are pointing to the 1411 * right THP. If so, retract the page table so the THP can refault in with 1412 * as pmd-mapped. Possibly install a huge PMD mapping the THP. 1413 */ 1414 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr, 1415 bool install_pmd) 1416 { 1417 unsigned long haddr = addr & HPAGE_PMD_MASK; 1418 struct vm_area_struct *vma = vma_lookup(mm, haddr); 1419 struct page *hpage; 1420 pte_t *start_pte, *pte; 1421 pmd_t *pmd; 1422 spinlock_t *ptl; 1423 int count = 0, result = SCAN_FAIL; 1424 int i; 1425 1426 mmap_assert_write_locked(mm); 1427 1428 /* Fast check before locking page if already PMD-mapped */ 1429 result = find_pmd_or_thp_or_none(mm, haddr, &pmd); 1430 if (result == SCAN_PMD_MAPPED) 1431 return result; 1432 1433 if (!vma || !vma->vm_file || 1434 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE)) 1435 return SCAN_VMA_CHECK; 1436 1437 /* 1438 * If we are here, we've succeeded in replacing all the native pages 1439 * in the page cache with a single hugepage. If a mm were to fault-in 1440 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage 1441 * and map it by a PMD, regardless of sysfs THP settings. As such, let's 1442 * analogously elide sysfs THP settings here. 1443 */ 1444 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 1445 return SCAN_VMA_CHECK; 1446 1447 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */ 1448 if (userfaultfd_wp(vma)) 1449 return SCAN_PTE_UFFD_WP; 1450 1451 hpage = find_lock_page(vma->vm_file->f_mapping, 1452 linear_page_index(vma, haddr)); 1453 if (!hpage) 1454 return SCAN_PAGE_NULL; 1455 1456 if (!PageHead(hpage)) { 1457 result = SCAN_FAIL; 1458 goto drop_hpage; 1459 } 1460 1461 if (compound_order(hpage) != HPAGE_PMD_ORDER) { 1462 result = SCAN_PAGE_COMPOUND; 1463 goto drop_hpage; 1464 } 1465 1466 switch (result) { 1467 case SCAN_SUCCEED: 1468 break; 1469 case SCAN_PMD_NONE: 1470 /* 1471 * In MADV_COLLAPSE path, possible race with khugepaged where 1472 * all pte entries have been removed and pmd cleared. If so, 1473 * skip all the pte checks and just update the pmd mapping. 1474 */ 1475 goto maybe_install_pmd; 1476 default: 1477 goto drop_hpage; 1478 } 1479 1480 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl); 1481 result = SCAN_FAIL; 1482 1483 /* step 1: check all mapped PTEs are to the right huge page */ 1484 for (i = 0, addr = haddr, pte = start_pte; 1485 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1486 struct page *page; 1487 1488 /* empty pte, skip */ 1489 if (pte_none(*pte)) 1490 continue; 1491 1492 /* page swapped out, abort */ 1493 if (!pte_present(*pte)) { 1494 result = SCAN_PTE_NON_PRESENT; 1495 goto abort; 1496 } 1497 1498 page = vm_normal_page(vma, addr, *pte); 1499 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1500 page = NULL; 1501 /* 1502 * Note that uprobe, debugger, or MAP_PRIVATE may change the 1503 * page table, but the new page will not be a subpage of hpage. 1504 */ 1505 if (hpage + i != page) 1506 goto abort; 1507 count++; 1508 } 1509 1510 /* step 2: adjust rmap */ 1511 for (i = 0, addr = haddr, pte = start_pte; 1512 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) { 1513 struct page *page; 1514 1515 if (pte_none(*pte)) 1516 continue; 1517 page = vm_normal_page(vma, addr, *pte); 1518 if (WARN_ON_ONCE(page && is_zone_device_page(page))) 1519 goto abort; 1520 page_remove_rmap(page, vma, false); 1521 } 1522 1523 pte_unmap_unlock(start_pte, ptl); 1524 1525 /* step 3: set proper refcount and mm_counters. */ 1526 if (count) { 1527 page_ref_sub(hpage, count); 1528 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count); 1529 } 1530 1531 /* step 4: remove pte entries */ 1532 collapse_and_free_pmd(mm, vma, haddr, pmd); 1533 1534 maybe_install_pmd: 1535 /* step 5: install pmd entry */ 1536 result = install_pmd 1537 ? set_huge_pmd(vma, haddr, pmd, hpage) 1538 : SCAN_SUCCEED; 1539 1540 drop_hpage: 1541 unlock_page(hpage); 1542 put_page(hpage); 1543 return result; 1544 1545 abort: 1546 pte_unmap_unlock(start_pte, ptl); 1547 goto drop_hpage; 1548 } 1549 1550 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 1551 { 1552 struct mm_slot *slot = &mm_slot->slot; 1553 struct mm_struct *mm = slot->mm; 1554 int i; 1555 1556 if (likely(mm_slot->nr_pte_mapped_thp == 0)) 1557 return; 1558 1559 if (!mmap_write_trylock(mm)) 1560 return; 1561 1562 if (unlikely(hpage_collapse_test_exit(mm))) 1563 goto out; 1564 1565 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++) 1566 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false); 1567 1568 out: 1569 mm_slot->nr_pte_mapped_thp = 0; 1570 mmap_write_unlock(mm); 1571 } 1572 1573 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff, 1574 struct mm_struct *target_mm, 1575 unsigned long target_addr, struct page *hpage, 1576 struct collapse_control *cc) 1577 { 1578 struct vm_area_struct *vma; 1579 int target_result = SCAN_FAIL; 1580 1581 i_mmap_lock_write(mapping); 1582 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 1583 int result = SCAN_FAIL; 1584 struct mm_struct *mm = NULL; 1585 unsigned long addr = 0; 1586 pmd_t *pmd; 1587 bool is_target = false; 1588 1589 /* 1590 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that 1591 * got written to. These VMAs are likely not worth investing 1592 * mmap_write_lock(mm) as PMD-mapping is likely to be split 1593 * later. 1594 * 1595 * Note that vma->anon_vma check is racy: it can be set up after 1596 * the check but before we took mmap_lock by the fault path. 1597 * But page lock would prevent establishing any new ptes of the 1598 * page, so we are safe. 1599 * 1600 * An alternative would be drop the check, but check that page 1601 * table is clear before calling pmdp_collapse_flush() under 1602 * ptl. It has higher chance to recover THP for the VMA, but 1603 * has higher cost too. 1604 */ 1605 if (vma->anon_vma) { 1606 result = SCAN_PAGE_ANON; 1607 goto next; 1608 } 1609 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 1610 if (addr & ~HPAGE_PMD_MASK || 1611 vma->vm_end < addr + HPAGE_PMD_SIZE) { 1612 result = SCAN_VMA_CHECK; 1613 goto next; 1614 } 1615 mm = vma->vm_mm; 1616 is_target = mm == target_mm && addr == target_addr; 1617 result = find_pmd_or_thp_or_none(mm, addr, &pmd); 1618 if (result != SCAN_SUCCEED) 1619 goto next; 1620 /* 1621 * We need exclusive mmap_lock to retract page table. 1622 * 1623 * We use trylock due to lock inversion: we need to acquire 1624 * mmap_lock while holding page lock. Fault path does it in 1625 * reverse order. Trylock is a way to avoid deadlock. 1626 * 1627 * Also, it's not MADV_COLLAPSE's job to collapse other 1628 * mappings - let khugepaged take care of them later. 1629 */ 1630 result = SCAN_PTE_MAPPED_HUGEPAGE; 1631 if ((cc->is_khugepaged || is_target) && 1632 mmap_write_trylock(mm)) { 1633 /* 1634 * When a vma is registered with uffd-wp, we can't 1635 * recycle the pmd pgtable because there can be pte 1636 * markers installed. Skip it only, so the rest mm/vma 1637 * can still have the same file mapped hugely, however 1638 * it'll always mapped in small page size for uffd-wp 1639 * registered ranges. 1640 */ 1641 if (hpage_collapse_test_exit(mm)) { 1642 result = SCAN_ANY_PROCESS; 1643 goto unlock_next; 1644 } 1645 if (userfaultfd_wp(vma)) { 1646 result = SCAN_PTE_UFFD_WP; 1647 goto unlock_next; 1648 } 1649 collapse_and_free_pmd(mm, vma, addr, pmd); 1650 if (!cc->is_khugepaged && is_target) 1651 result = set_huge_pmd(vma, addr, pmd, hpage); 1652 else 1653 result = SCAN_SUCCEED; 1654 1655 unlock_next: 1656 mmap_write_unlock(mm); 1657 goto next; 1658 } 1659 /* 1660 * Calling context will handle target mm/addr. Otherwise, let 1661 * khugepaged try again later. 1662 */ 1663 if (!is_target) { 1664 khugepaged_add_pte_mapped_thp(mm, addr); 1665 continue; 1666 } 1667 next: 1668 if (is_target) 1669 target_result = result; 1670 } 1671 i_mmap_unlock_write(mapping); 1672 return target_result; 1673 } 1674 1675 /** 1676 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one. 1677 * 1678 * @mm: process address space where collapse happens 1679 * @addr: virtual collapse start address 1680 * @file: file that collapse on 1681 * @start: collapse start address 1682 * @cc: collapse context and scratchpad 1683 * 1684 * Basic scheme is simple, details are more complex: 1685 * - allocate and lock a new huge page; 1686 * - scan page cache replacing old pages with the new one 1687 * + swap/gup in pages if necessary; 1688 * + fill in gaps; 1689 * + keep old pages around in case rollback is required; 1690 * - if replacing succeeds: 1691 * + copy data over; 1692 * + free old pages; 1693 * + unlock huge page; 1694 * - if replacing failed; 1695 * + put all pages back and unfreeze them; 1696 * + restore gaps in the page cache; 1697 * + unlock and free huge page; 1698 */ 1699 static int collapse_file(struct mm_struct *mm, unsigned long addr, 1700 struct file *file, pgoff_t start, 1701 struct collapse_control *cc) 1702 { 1703 struct address_space *mapping = file->f_mapping; 1704 struct page *hpage; 1705 pgoff_t index, end = start + HPAGE_PMD_NR; 1706 LIST_HEAD(pagelist); 1707 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER); 1708 int nr_none = 0, result = SCAN_SUCCEED; 1709 bool is_shmem = shmem_file(file); 1710 int nr; 1711 1712 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem); 1713 VM_BUG_ON(start & (HPAGE_PMD_NR - 1)); 1714 1715 result = alloc_charge_hpage(&hpage, mm, cc); 1716 if (result != SCAN_SUCCEED) 1717 goto out; 1718 1719 /* 1720 * Ensure we have slots for all the pages in the range. This is 1721 * almost certainly a no-op because most of the pages must be present 1722 */ 1723 do { 1724 xas_lock_irq(&xas); 1725 xas_create_range(&xas); 1726 if (!xas_error(&xas)) 1727 break; 1728 xas_unlock_irq(&xas); 1729 if (!xas_nomem(&xas, GFP_KERNEL)) { 1730 result = SCAN_FAIL; 1731 goto out; 1732 } 1733 } while (1); 1734 1735 __SetPageLocked(hpage); 1736 if (is_shmem) 1737 __SetPageSwapBacked(hpage); 1738 hpage->index = start; 1739 hpage->mapping = mapping; 1740 1741 /* 1742 * At this point the hpage is locked and not up-to-date. 1743 * It's safe to insert it into the page cache, because nobody would 1744 * be able to map it or use it in another way until we unlock it. 1745 */ 1746 1747 xas_set(&xas, start); 1748 for (index = start; index < end; index++) { 1749 struct page *page = xas_next(&xas); 1750 1751 VM_BUG_ON(index != xas.xa_index); 1752 if (is_shmem) { 1753 if (!page) { 1754 /* 1755 * Stop if extent has been truncated or 1756 * hole-punched, and is now completely 1757 * empty. 1758 */ 1759 if (index == start) { 1760 if (!xas_next_entry(&xas, end - 1)) { 1761 result = SCAN_TRUNCATED; 1762 goto xa_locked; 1763 } 1764 xas_set(&xas, index); 1765 } 1766 if (!shmem_charge(mapping->host, 1)) { 1767 result = SCAN_FAIL; 1768 goto xa_locked; 1769 } 1770 xas_store(&xas, hpage); 1771 nr_none++; 1772 continue; 1773 } 1774 1775 if (xa_is_value(page) || !PageUptodate(page)) { 1776 struct folio *folio; 1777 1778 xas_unlock_irq(&xas); 1779 /* swap in or instantiate fallocated page */ 1780 if (shmem_get_folio(mapping->host, index, 1781 &folio, SGP_NOALLOC)) { 1782 result = SCAN_FAIL; 1783 goto xa_unlocked; 1784 } 1785 page = folio_file_page(folio, index); 1786 } else if (trylock_page(page)) { 1787 get_page(page); 1788 xas_unlock_irq(&xas); 1789 } else { 1790 result = SCAN_PAGE_LOCK; 1791 goto xa_locked; 1792 } 1793 } else { /* !is_shmem */ 1794 if (!page || xa_is_value(page)) { 1795 xas_unlock_irq(&xas); 1796 page_cache_sync_readahead(mapping, &file->f_ra, 1797 file, index, 1798 end - index); 1799 /* drain pagevecs to help isolate_lru_page() */ 1800 lru_add_drain(); 1801 page = find_lock_page(mapping, index); 1802 if (unlikely(page == NULL)) { 1803 result = SCAN_FAIL; 1804 goto xa_unlocked; 1805 } 1806 } else if (PageDirty(page)) { 1807 /* 1808 * khugepaged only works on read-only fd, 1809 * so this page is dirty because it hasn't 1810 * been flushed since first write. There 1811 * won't be new dirty pages. 1812 * 1813 * Trigger async flush here and hope the 1814 * writeback is done when khugepaged 1815 * revisits this page. 1816 * 1817 * This is a one-off situation. We are not 1818 * forcing writeback in loop. 1819 */ 1820 xas_unlock_irq(&xas); 1821 filemap_flush(mapping); 1822 result = SCAN_FAIL; 1823 goto xa_unlocked; 1824 } else if (PageWriteback(page)) { 1825 xas_unlock_irq(&xas); 1826 result = SCAN_FAIL; 1827 goto xa_unlocked; 1828 } else if (trylock_page(page)) { 1829 get_page(page); 1830 xas_unlock_irq(&xas); 1831 } else { 1832 result = SCAN_PAGE_LOCK; 1833 goto xa_locked; 1834 } 1835 } 1836 1837 /* 1838 * The page must be locked, so we can drop the i_pages lock 1839 * without racing with truncate. 1840 */ 1841 VM_BUG_ON_PAGE(!PageLocked(page), page); 1842 1843 /* make sure the page is up to date */ 1844 if (unlikely(!PageUptodate(page))) { 1845 result = SCAN_FAIL; 1846 goto out_unlock; 1847 } 1848 1849 /* 1850 * If file was truncated then extended, or hole-punched, before 1851 * we locked the first page, then a THP might be there already. 1852 * This will be discovered on the first iteration. 1853 */ 1854 if (PageTransCompound(page)) { 1855 struct page *head = compound_head(page); 1856 1857 result = compound_order(head) == HPAGE_PMD_ORDER && 1858 head->index == start 1859 /* Maybe PMD-mapped */ 1860 ? SCAN_PTE_MAPPED_HUGEPAGE 1861 : SCAN_PAGE_COMPOUND; 1862 goto out_unlock; 1863 } 1864 1865 if (page_mapping(page) != mapping) { 1866 result = SCAN_TRUNCATED; 1867 goto out_unlock; 1868 } 1869 1870 if (!is_shmem && (PageDirty(page) || 1871 PageWriteback(page))) { 1872 /* 1873 * khugepaged only works on read-only fd, so this 1874 * page is dirty because it hasn't been flushed 1875 * since first write. 1876 */ 1877 result = SCAN_FAIL; 1878 goto out_unlock; 1879 } 1880 1881 if (isolate_lru_page(page)) { 1882 result = SCAN_DEL_PAGE_LRU; 1883 goto out_unlock; 1884 } 1885 1886 if (page_has_private(page) && 1887 !try_to_release_page(page, GFP_KERNEL)) { 1888 result = SCAN_PAGE_HAS_PRIVATE; 1889 putback_lru_page(page); 1890 goto out_unlock; 1891 } 1892 1893 if (page_mapped(page)) 1894 try_to_unmap(page_folio(page), 1895 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH); 1896 1897 xas_lock_irq(&xas); 1898 xas_set(&xas, index); 1899 1900 VM_BUG_ON_PAGE(page != xas_load(&xas), page); 1901 1902 /* 1903 * The page is expected to have page_count() == 3: 1904 * - we hold a pin on it; 1905 * - one reference from page cache; 1906 * - one from isolate_lru_page; 1907 */ 1908 if (!page_ref_freeze(page, 3)) { 1909 result = SCAN_PAGE_COUNT; 1910 xas_unlock_irq(&xas); 1911 putback_lru_page(page); 1912 goto out_unlock; 1913 } 1914 1915 /* 1916 * Add the page to the list to be able to undo the collapse if 1917 * something go wrong. 1918 */ 1919 list_add_tail(&page->lru, &pagelist); 1920 1921 /* Finally, replace with the new page. */ 1922 xas_store(&xas, hpage); 1923 continue; 1924 out_unlock: 1925 unlock_page(page); 1926 put_page(page); 1927 goto xa_unlocked; 1928 } 1929 nr = thp_nr_pages(hpage); 1930 1931 if (is_shmem) 1932 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr); 1933 else { 1934 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr); 1935 filemap_nr_thps_inc(mapping); 1936 /* 1937 * Paired with smp_mb() in do_dentry_open() to ensure 1938 * i_writecount is up to date and the update to nr_thps is 1939 * visible. Ensures the page cache will be truncated if the 1940 * file is opened writable. 1941 */ 1942 smp_mb(); 1943 if (inode_is_open_for_write(mapping->host)) { 1944 result = SCAN_FAIL; 1945 __mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr); 1946 filemap_nr_thps_dec(mapping); 1947 goto xa_locked; 1948 } 1949 } 1950 1951 if (nr_none) { 1952 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none); 1953 /* nr_none is always 0 for non-shmem. */ 1954 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none); 1955 } 1956 1957 /* Join all the small entries into a single multi-index entry */ 1958 xas_set_order(&xas, start, HPAGE_PMD_ORDER); 1959 xas_store(&xas, hpage); 1960 xa_locked: 1961 xas_unlock_irq(&xas); 1962 xa_unlocked: 1963 1964 /* 1965 * If collapse is successful, flush must be done now before copying. 1966 * If collapse is unsuccessful, does flush actually need to be done? 1967 * Do it anyway, to clear the state. 1968 */ 1969 try_to_unmap_flush(); 1970 1971 if (result == SCAN_SUCCEED) { 1972 struct page *page, *tmp; 1973 1974 /* 1975 * Replacing old pages with new one has succeeded, now we 1976 * need to copy the content and free the old pages. 1977 */ 1978 index = start; 1979 list_for_each_entry_safe(page, tmp, &pagelist, lru) { 1980 while (index < page->index) { 1981 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 1982 index++; 1983 } 1984 copy_highpage(hpage + (page->index % HPAGE_PMD_NR), 1985 page); 1986 list_del(&page->lru); 1987 page->mapping = NULL; 1988 page_ref_unfreeze(page, 1); 1989 ClearPageActive(page); 1990 ClearPageUnevictable(page); 1991 unlock_page(page); 1992 put_page(page); 1993 index++; 1994 } 1995 while (index < end) { 1996 clear_highpage(hpage + (index % HPAGE_PMD_NR)); 1997 index++; 1998 } 1999 2000 SetPageUptodate(hpage); 2001 page_ref_add(hpage, HPAGE_PMD_NR - 1); 2002 if (is_shmem) 2003 set_page_dirty(hpage); 2004 lru_cache_add(hpage); 2005 2006 /* 2007 * Remove pte page tables, so we can re-fault the page as huge. 2008 */ 2009 result = retract_page_tables(mapping, start, mm, addr, hpage, 2010 cc); 2011 unlock_page(hpage); 2012 hpage = NULL; 2013 } else { 2014 struct page *page; 2015 2016 /* Something went wrong: roll back page cache changes */ 2017 xas_lock_irq(&xas); 2018 if (nr_none) { 2019 mapping->nrpages -= nr_none; 2020 shmem_uncharge(mapping->host, nr_none); 2021 } 2022 2023 xas_set(&xas, start); 2024 xas_for_each(&xas, page, end - 1) { 2025 page = list_first_entry_or_null(&pagelist, 2026 struct page, lru); 2027 if (!page || xas.xa_index < page->index) { 2028 if (!nr_none) 2029 break; 2030 nr_none--; 2031 /* Put holes back where they were */ 2032 xas_store(&xas, NULL); 2033 continue; 2034 } 2035 2036 VM_BUG_ON_PAGE(page->index != xas.xa_index, page); 2037 2038 /* Unfreeze the page. */ 2039 list_del(&page->lru); 2040 page_ref_unfreeze(page, 2); 2041 xas_store(&xas, page); 2042 xas_pause(&xas); 2043 xas_unlock_irq(&xas); 2044 unlock_page(page); 2045 putback_lru_page(page); 2046 xas_lock_irq(&xas); 2047 } 2048 VM_BUG_ON(nr_none); 2049 xas_unlock_irq(&xas); 2050 2051 hpage->mapping = NULL; 2052 } 2053 2054 if (hpage) 2055 unlock_page(hpage); 2056 out: 2057 VM_BUG_ON(!list_empty(&pagelist)); 2058 if (hpage) { 2059 mem_cgroup_uncharge(page_folio(hpage)); 2060 put_page(hpage); 2061 } 2062 /* TODO: tracepoints */ 2063 return result; 2064 } 2065 2066 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2067 struct file *file, pgoff_t start, 2068 struct collapse_control *cc) 2069 { 2070 struct page *page = NULL; 2071 struct address_space *mapping = file->f_mapping; 2072 XA_STATE(xas, &mapping->i_pages, start); 2073 int present, swap; 2074 int node = NUMA_NO_NODE; 2075 int result = SCAN_SUCCEED; 2076 2077 present = 0; 2078 swap = 0; 2079 memset(cc->node_load, 0, sizeof(cc->node_load)); 2080 rcu_read_lock(); 2081 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) { 2082 if (xas_retry(&xas, page)) 2083 continue; 2084 2085 if (xa_is_value(page)) { 2086 ++swap; 2087 if (cc->is_khugepaged && 2088 swap > khugepaged_max_ptes_swap) { 2089 result = SCAN_EXCEED_SWAP_PTE; 2090 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE); 2091 break; 2092 } 2093 continue; 2094 } 2095 2096 /* 2097 * TODO: khugepaged should compact smaller compound pages 2098 * into a PMD sized page 2099 */ 2100 if (PageTransCompound(page)) { 2101 struct page *head = compound_head(page); 2102 2103 result = compound_order(head) == HPAGE_PMD_ORDER && 2104 head->index == start 2105 /* Maybe PMD-mapped */ 2106 ? SCAN_PTE_MAPPED_HUGEPAGE 2107 : SCAN_PAGE_COMPOUND; 2108 /* 2109 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing 2110 * by the caller won't touch the page cache, and so 2111 * it's safe to skip LRU and refcount checks before 2112 * returning. 2113 */ 2114 break; 2115 } 2116 2117 node = page_to_nid(page); 2118 if (hpage_collapse_scan_abort(node, cc)) { 2119 result = SCAN_SCAN_ABORT; 2120 break; 2121 } 2122 cc->node_load[node]++; 2123 2124 if (!PageLRU(page)) { 2125 result = SCAN_PAGE_LRU; 2126 break; 2127 } 2128 2129 if (page_count(page) != 2130 1 + page_mapcount(page) + page_has_private(page)) { 2131 result = SCAN_PAGE_COUNT; 2132 break; 2133 } 2134 2135 /* 2136 * We probably should check if the page is referenced here, but 2137 * nobody would transfer pte_young() to PageReferenced() for us. 2138 * And rmap walk here is just too costly... 2139 */ 2140 2141 present++; 2142 2143 if (need_resched()) { 2144 xas_pause(&xas); 2145 cond_resched_rcu(); 2146 } 2147 } 2148 rcu_read_unlock(); 2149 2150 if (result == SCAN_SUCCEED) { 2151 if (cc->is_khugepaged && 2152 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) { 2153 result = SCAN_EXCEED_NONE_PTE; 2154 count_vm_event(THP_SCAN_EXCEED_NONE_PTE); 2155 } else { 2156 result = collapse_file(mm, addr, file, start, cc); 2157 } 2158 } 2159 2160 trace_mm_khugepaged_scan_file(mm, page, file->f_path.dentry->d_iname, 2161 present, swap, result); 2162 return result; 2163 } 2164 #else 2165 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr, 2166 struct file *file, pgoff_t start, 2167 struct collapse_control *cc) 2168 { 2169 BUILD_BUG(); 2170 } 2171 2172 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot) 2173 { 2174 } 2175 2176 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm, 2177 unsigned long addr) 2178 { 2179 return false; 2180 } 2181 #endif 2182 2183 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result, 2184 struct collapse_control *cc) 2185 __releases(&khugepaged_mm_lock) 2186 __acquires(&khugepaged_mm_lock) 2187 { 2188 struct vma_iterator vmi; 2189 struct khugepaged_mm_slot *mm_slot; 2190 struct mm_slot *slot; 2191 struct mm_struct *mm; 2192 struct vm_area_struct *vma; 2193 int progress = 0; 2194 2195 VM_BUG_ON(!pages); 2196 lockdep_assert_held(&khugepaged_mm_lock); 2197 *result = SCAN_FAIL; 2198 2199 if (khugepaged_scan.mm_slot) { 2200 mm_slot = khugepaged_scan.mm_slot; 2201 slot = &mm_slot->slot; 2202 } else { 2203 slot = list_entry(khugepaged_scan.mm_head.next, 2204 struct mm_slot, mm_node); 2205 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2206 khugepaged_scan.address = 0; 2207 khugepaged_scan.mm_slot = mm_slot; 2208 } 2209 spin_unlock(&khugepaged_mm_lock); 2210 khugepaged_collapse_pte_mapped_thps(mm_slot); 2211 2212 mm = slot->mm; 2213 /* 2214 * Don't wait for semaphore (to avoid long wait times). Just move to 2215 * the next mm on the list. 2216 */ 2217 vma = NULL; 2218 if (unlikely(!mmap_read_trylock(mm))) 2219 goto breakouterloop_mmap_lock; 2220 2221 progress++; 2222 if (unlikely(hpage_collapse_test_exit(mm))) 2223 goto breakouterloop; 2224 2225 vma_iter_init(&vmi, mm, khugepaged_scan.address); 2226 for_each_vma(vmi, vma) { 2227 unsigned long hstart, hend; 2228 2229 cond_resched(); 2230 if (unlikely(hpage_collapse_test_exit(mm))) { 2231 progress++; 2232 break; 2233 } 2234 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) { 2235 skip: 2236 progress++; 2237 continue; 2238 } 2239 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE); 2240 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE); 2241 if (khugepaged_scan.address > hend) 2242 goto skip; 2243 if (khugepaged_scan.address < hstart) 2244 khugepaged_scan.address = hstart; 2245 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK); 2246 2247 while (khugepaged_scan.address < hend) { 2248 bool mmap_locked = true; 2249 2250 cond_resched(); 2251 if (unlikely(hpage_collapse_test_exit(mm))) 2252 goto breakouterloop; 2253 2254 VM_BUG_ON(khugepaged_scan.address < hstart || 2255 khugepaged_scan.address + HPAGE_PMD_SIZE > 2256 hend); 2257 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2258 struct file *file = get_file(vma->vm_file); 2259 pgoff_t pgoff = linear_page_index(vma, 2260 khugepaged_scan.address); 2261 2262 mmap_read_unlock(mm); 2263 *result = hpage_collapse_scan_file(mm, 2264 khugepaged_scan.address, 2265 file, pgoff, cc); 2266 mmap_locked = false; 2267 fput(file); 2268 } else { 2269 *result = hpage_collapse_scan_pmd(mm, vma, 2270 khugepaged_scan.address, 2271 &mmap_locked, 2272 cc); 2273 } 2274 switch (*result) { 2275 case SCAN_PTE_MAPPED_HUGEPAGE: { 2276 pmd_t *pmd; 2277 2278 *result = find_pmd_or_thp_or_none(mm, 2279 khugepaged_scan.address, 2280 &pmd); 2281 if (*result != SCAN_SUCCEED) 2282 break; 2283 if (!khugepaged_add_pte_mapped_thp(mm, 2284 khugepaged_scan.address)) 2285 break; 2286 } fallthrough; 2287 case SCAN_SUCCEED: 2288 ++khugepaged_pages_collapsed; 2289 break; 2290 default: 2291 break; 2292 } 2293 2294 /* move to next address */ 2295 khugepaged_scan.address += HPAGE_PMD_SIZE; 2296 progress += HPAGE_PMD_NR; 2297 if (!mmap_locked) 2298 /* 2299 * We released mmap_lock so break loop. Note 2300 * that we drop mmap_lock before all hugepage 2301 * allocations, so if allocation fails, we are 2302 * guaranteed to break here and report the 2303 * correct result back to caller. 2304 */ 2305 goto breakouterloop_mmap_lock; 2306 if (progress >= pages) 2307 goto breakouterloop; 2308 } 2309 } 2310 breakouterloop: 2311 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */ 2312 breakouterloop_mmap_lock: 2313 2314 spin_lock(&khugepaged_mm_lock); 2315 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot); 2316 /* 2317 * Release the current mm_slot if this mm is about to die, or 2318 * if we scanned all vmas of this mm. 2319 */ 2320 if (hpage_collapse_test_exit(mm) || !vma) { 2321 /* 2322 * Make sure that if mm_users is reaching zero while 2323 * khugepaged runs here, khugepaged_exit will find 2324 * mm_slot not pointing to the exiting mm. 2325 */ 2326 if (slot->mm_node.next != &khugepaged_scan.mm_head) { 2327 slot = list_entry(slot->mm_node.next, 2328 struct mm_slot, mm_node); 2329 khugepaged_scan.mm_slot = 2330 mm_slot_entry(slot, struct khugepaged_mm_slot, slot); 2331 khugepaged_scan.address = 0; 2332 } else { 2333 khugepaged_scan.mm_slot = NULL; 2334 khugepaged_full_scans++; 2335 } 2336 2337 collect_mm_slot(mm_slot); 2338 } 2339 2340 return progress; 2341 } 2342 2343 static int khugepaged_has_work(void) 2344 { 2345 return !list_empty(&khugepaged_scan.mm_head) && 2346 hugepage_flags_enabled(); 2347 } 2348 2349 static int khugepaged_wait_event(void) 2350 { 2351 return !list_empty(&khugepaged_scan.mm_head) || 2352 kthread_should_stop(); 2353 } 2354 2355 static void khugepaged_do_scan(struct collapse_control *cc) 2356 { 2357 unsigned int progress = 0, pass_through_head = 0; 2358 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan); 2359 bool wait = true; 2360 int result = SCAN_SUCCEED; 2361 2362 lru_add_drain_all(); 2363 2364 while (true) { 2365 cond_resched(); 2366 2367 if (unlikely(kthread_should_stop() || try_to_freeze())) 2368 break; 2369 2370 spin_lock(&khugepaged_mm_lock); 2371 if (!khugepaged_scan.mm_slot) 2372 pass_through_head++; 2373 if (khugepaged_has_work() && 2374 pass_through_head < 2) 2375 progress += khugepaged_scan_mm_slot(pages - progress, 2376 &result, cc); 2377 else 2378 progress = pages; 2379 spin_unlock(&khugepaged_mm_lock); 2380 2381 if (progress >= pages) 2382 break; 2383 2384 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) { 2385 /* 2386 * If fail to allocate the first time, try to sleep for 2387 * a while. When hit again, cancel the scan. 2388 */ 2389 if (!wait) 2390 break; 2391 wait = false; 2392 khugepaged_alloc_sleep(); 2393 } 2394 } 2395 } 2396 2397 static bool khugepaged_should_wakeup(void) 2398 { 2399 return kthread_should_stop() || 2400 time_after_eq(jiffies, khugepaged_sleep_expire); 2401 } 2402 2403 static void khugepaged_wait_work(void) 2404 { 2405 if (khugepaged_has_work()) { 2406 const unsigned long scan_sleep_jiffies = 2407 msecs_to_jiffies(khugepaged_scan_sleep_millisecs); 2408 2409 if (!scan_sleep_jiffies) 2410 return; 2411 2412 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies; 2413 wait_event_freezable_timeout(khugepaged_wait, 2414 khugepaged_should_wakeup(), 2415 scan_sleep_jiffies); 2416 return; 2417 } 2418 2419 if (hugepage_flags_enabled()) 2420 wait_event_freezable(khugepaged_wait, khugepaged_wait_event()); 2421 } 2422 2423 static int khugepaged(void *none) 2424 { 2425 struct khugepaged_mm_slot *mm_slot; 2426 2427 set_freezable(); 2428 set_user_nice(current, MAX_NICE); 2429 2430 while (!kthread_should_stop()) { 2431 khugepaged_do_scan(&khugepaged_collapse_control); 2432 khugepaged_wait_work(); 2433 } 2434 2435 spin_lock(&khugepaged_mm_lock); 2436 mm_slot = khugepaged_scan.mm_slot; 2437 khugepaged_scan.mm_slot = NULL; 2438 if (mm_slot) 2439 collect_mm_slot(mm_slot); 2440 spin_unlock(&khugepaged_mm_lock); 2441 return 0; 2442 } 2443 2444 static void set_recommended_min_free_kbytes(void) 2445 { 2446 struct zone *zone; 2447 int nr_zones = 0; 2448 unsigned long recommended_min; 2449 2450 if (!hugepage_flags_enabled()) { 2451 calculate_min_free_kbytes(); 2452 goto update_wmarks; 2453 } 2454 2455 for_each_populated_zone(zone) { 2456 /* 2457 * We don't need to worry about fragmentation of 2458 * ZONE_MOVABLE since it only has movable pages. 2459 */ 2460 if (zone_idx(zone) > gfp_zone(GFP_USER)) 2461 continue; 2462 2463 nr_zones++; 2464 } 2465 2466 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */ 2467 recommended_min = pageblock_nr_pages * nr_zones * 2; 2468 2469 /* 2470 * Make sure that on average at least two pageblocks are almost free 2471 * of another type, one for a migratetype to fall back to and a 2472 * second to avoid subsequent fallbacks of other types There are 3 2473 * MIGRATE_TYPES we care about. 2474 */ 2475 recommended_min += pageblock_nr_pages * nr_zones * 2476 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES; 2477 2478 /* don't ever allow to reserve more than 5% of the lowmem */ 2479 recommended_min = min(recommended_min, 2480 (unsigned long) nr_free_buffer_pages() / 20); 2481 recommended_min <<= (PAGE_SHIFT-10); 2482 2483 if (recommended_min > min_free_kbytes) { 2484 if (user_min_free_kbytes >= 0) 2485 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n", 2486 min_free_kbytes, recommended_min); 2487 2488 min_free_kbytes = recommended_min; 2489 } 2490 2491 update_wmarks: 2492 setup_per_zone_wmarks(); 2493 } 2494 2495 int start_stop_khugepaged(void) 2496 { 2497 int err = 0; 2498 2499 mutex_lock(&khugepaged_mutex); 2500 if (hugepage_flags_enabled()) { 2501 if (!khugepaged_thread) 2502 khugepaged_thread = kthread_run(khugepaged, NULL, 2503 "khugepaged"); 2504 if (IS_ERR(khugepaged_thread)) { 2505 pr_err("khugepaged: kthread_run(khugepaged) failed\n"); 2506 err = PTR_ERR(khugepaged_thread); 2507 khugepaged_thread = NULL; 2508 goto fail; 2509 } 2510 2511 if (!list_empty(&khugepaged_scan.mm_head)) 2512 wake_up_interruptible(&khugepaged_wait); 2513 } else if (khugepaged_thread) { 2514 kthread_stop(khugepaged_thread); 2515 khugepaged_thread = NULL; 2516 } 2517 set_recommended_min_free_kbytes(); 2518 fail: 2519 mutex_unlock(&khugepaged_mutex); 2520 return err; 2521 } 2522 2523 void khugepaged_min_free_kbytes_update(void) 2524 { 2525 mutex_lock(&khugepaged_mutex); 2526 if (hugepage_flags_enabled() && khugepaged_thread) 2527 set_recommended_min_free_kbytes(); 2528 mutex_unlock(&khugepaged_mutex); 2529 } 2530 2531 static int madvise_collapse_errno(enum scan_result r) 2532 { 2533 /* 2534 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide 2535 * actionable feedback to caller, so they may take an appropriate 2536 * fallback measure depending on the nature of the failure. 2537 */ 2538 switch (r) { 2539 case SCAN_ALLOC_HUGE_PAGE_FAIL: 2540 return -ENOMEM; 2541 case SCAN_CGROUP_CHARGE_FAIL: 2542 return -EBUSY; 2543 /* Resource temporary unavailable - trying again might succeed */ 2544 case SCAN_PAGE_LOCK: 2545 case SCAN_PAGE_LRU: 2546 case SCAN_DEL_PAGE_LRU: 2547 return -EAGAIN; 2548 /* 2549 * Other: Trying again likely not to succeed / error intrinsic to 2550 * specified memory range. khugepaged likely won't be able to collapse 2551 * either. 2552 */ 2553 default: 2554 return -EINVAL; 2555 } 2556 } 2557 2558 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev, 2559 unsigned long start, unsigned long end) 2560 { 2561 struct collapse_control *cc; 2562 struct mm_struct *mm = vma->vm_mm; 2563 unsigned long hstart, hend, addr; 2564 int thps = 0, last_fail = SCAN_FAIL; 2565 bool mmap_locked = true; 2566 2567 BUG_ON(vma->vm_start > start); 2568 BUG_ON(vma->vm_end < end); 2569 2570 *prev = vma; 2571 2572 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false)) 2573 return -EINVAL; 2574 2575 cc = kmalloc(sizeof(*cc), GFP_KERNEL); 2576 if (!cc) 2577 return -ENOMEM; 2578 cc->is_khugepaged = false; 2579 cc->last_target_node = NUMA_NO_NODE; 2580 2581 mmgrab(mm); 2582 lru_add_drain_all(); 2583 2584 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK; 2585 hend = end & HPAGE_PMD_MASK; 2586 2587 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) { 2588 int result = SCAN_FAIL; 2589 2590 if (!mmap_locked) { 2591 cond_resched(); 2592 mmap_read_lock(mm); 2593 mmap_locked = true; 2594 result = hugepage_vma_revalidate(mm, addr, false, &vma, 2595 cc); 2596 if (result != SCAN_SUCCEED) { 2597 last_fail = result; 2598 goto out_nolock; 2599 } 2600 2601 hend = vma->vm_end & HPAGE_PMD_MASK; 2602 } 2603 mmap_assert_locked(mm); 2604 memset(cc->node_load, 0, sizeof(cc->node_load)); 2605 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) { 2606 struct file *file = get_file(vma->vm_file); 2607 pgoff_t pgoff = linear_page_index(vma, addr); 2608 2609 mmap_read_unlock(mm); 2610 mmap_locked = false; 2611 result = hpage_collapse_scan_file(mm, addr, file, pgoff, 2612 cc); 2613 fput(file); 2614 } else { 2615 result = hpage_collapse_scan_pmd(mm, vma, addr, 2616 &mmap_locked, cc); 2617 } 2618 if (!mmap_locked) 2619 *prev = NULL; /* Tell caller we dropped mmap_lock */ 2620 2621 handle_result: 2622 switch (result) { 2623 case SCAN_SUCCEED: 2624 case SCAN_PMD_MAPPED: 2625 ++thps; 2626 break; 2627 case SCAN_PTE_MAPPED_HUGEPAGE: 2628 BUG_ON(mmap_locked); 2629 BUG_ON(*prev); 2630 mmap_write_lock(mm); 2631 result = collapse_pte_mapped_thp(mm, addr, true); 2632 mmap_write_unlock(mm); 2633 goto handle_result; 2634 /* Whitelisted set of results where continuing OK */ 2635 case SCAN_PMD_NULL: 2636 case SCAN_PTE_NON_PRESENT: 2637 case SCAN_PTE_UFFD_WP: 2638 case SCAN_PAGE_RO: 2639 case SCAN_LACK_REFERENCED_PAGE: 2640 case SCAN_PAGE_NULL: 2641 case SCAN_PAGE_COUNT: 2642 case SCAN_PAGE_LOCK: 2643 case SCAN_PAGE_COMPOUND: 2644 case SCAN_PAGE_LRU: 2645 case SCAN_DEL_PAGE_LRU: 2646 last_fail = result; 2647 break; 2648 default: 2649 last_fail = result; 2650 /* Other error, exit */ 2651 goto out_maybelock; 2652 } 2653 } 2654 2655 out_maybelock: 2656 /* Caller expects us to hold mmap_lock on return */ 2657 if (!mmap_locked) 2658 mmap_read_lock(mm); 2659 out_nolock: 2660 mmap_assert_locked(mm); 2661 mmdrop(mm); 2662 kfree(cc); 2663 2664 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0 2665 : madvise_collapse_errno(last_fail); 2666 } 2667