xref: /linux/mm/kfence/core.c (revision dafdba0964bd10913fbaa5537201cbbe05df5b9c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kfence: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/nodemask.h>
25 #include <linux/notifier.h>
26 #include <linux/panic_notifier.h>
27 #include <linux/random.h>
28 #include <linux/rcupdate.h>
29 #include <linux/reboot.h>
30 #include <linux/sched/clock.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33 #include <linux/spinlock.h>
34 #include <linux/string.h>
35 
36 #include <asm/kfence.h>
37 
38 #include "kfence.h"
39 
40 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
41 #define KFENCE_WARN_ON(cond)                                                   \
42 	({                                                                     \
43 		const bool __cond = WARN_ON(cond);                             \
44 		if (unlikely(__cond)) {                                        \
45 			WRITE_ONCE(kfence_enabled, false);                     \
46 			disabled_by_warn = true;                               \
47 		}                                                              \
48 		__cond;                                                        \
49 	})
50 
51 /* === Data ================================================================= */
52 
53 static bool kfence_enabled __read_mostly;
54 static bool disabled_by_warn __read_mostly;
55 
56 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
57 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
58 
59 #ifdef MODULE_PARAM_PREFIX
60 #undef MODULE_PARAM_PREFIX
61 #endif
62 #define MODULE_PARAM_PREFIX "kfence."
63 
64 static int kfence_enable_late(void);
65 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
66 {
67 	unsigned long num;
68 	int ret = kstrtoul(val, 0, &num);
69 
70 	if (ret < 0)
71 		return ret;
72 
73 	/* Using 0 to indicate KFENCE is disabled. */
74 	if (!num && READ_ONCE(kfence_enabled)) {
75 		pr_info("disabled\n");
76 		WRITE_ONCE(kfence_enabled, false);
77 	}
78 
79 	*((unsigned long *)kp->arg) = num;
80 
81 	if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
82 		return disabled_by_warn ? -EINVAL : kfence_enable_late();
83 	return 0;
84 }
85 
86 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
87 {
88 	if (!READ_ONCE(kfence_enabled))
89 		return sprintf(buffer, "0\n");
90 
91 	return param_get_ulong(buffer, kp);
92 }
93 
94 static const struct kernel_param_ops sample_interval_param_ops = {
95 	.set = param_set_sample_interval,
96 	.get = param_get_sample_interval,
97 };
98 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
99 
100 /* Pool usage% threshold when currently covered allocations are skipped. */
101 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
102 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
103 
104 /* Allocation burst count: number of excess KFENCE allocations per sample. */
105 static unsigned int kfence_burst __read_mostly;
106 module_param_named(burst, kfence_burst, uint, 0644);
107 
108 /* If true, use a deferrable timer. */
109 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
110 module_param_named(deferrable, kfence_deferrable, bool, 0444);
111 
112 /* If true, check all canary bytes on panic. */
113 static bool kfence_check_on_panic __read_mostly;
114 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
115 
116 /* The pool of pages used for guard pages and objects. */
117 char *__kfence_pool __read_mostly;
118 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
119 
120 /*
121  * Per-object metadata, with one-to-one mapping of object metadata to
122  * backing pages (in __kfence_pool).
123  */
124 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
125 struct kfence_metadata *kfence_metadata __read_mostly;
126 
127 /*
128  * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
129  * So introduce kfence_metadata_init to initialize metadata, and then make
130  * kfence_metadata visible after initialization is successful. This prevents
131  * potential UAF or access to uninitialized metadata.
132  */
133 static struct kfence_metadata *kfence_metadata_init __read_mostly;
134 
135 /* Freelist with available objects. */
136 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
137 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
138 
139 /*
140  * The static key to set up a KFENCE allocation; or if static keys are not used
141  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
142  */
143 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
144 
145 /* Gates the allocation, ensuring only one succeeds in a given period. */
146 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
147 
148 /*
149  * A Counting Bloom filter of allocation coverage: limits currently covered
150  * allocations of the same source filling up the pool.
151  *
152  * Assuming a range of 15%-85% unique allocations in the pool at any point in
153  * time, the below parameters provide a probablity of 0.02-0.33 for false
154  * positive hits respectively:
155  *
156  *	P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
157  */
158 #define ALLOC_COVERED_HNUM	2
159 #define ALLOC_COVERED_ORDER	(const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
160 #define ALLOC_COVERED_SIZE	(1 << ALLOC_COVERED_ORDER)
161 #define ALLOC_COVERED_HNEXT(h)	hash_32(h, ALLOC_COVERED_ORDER)
162 #define ALLOC_COVERED_MASK	(ALLOC_COVERED_SIZE - 1)
163 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
164 
165 /* Stack depth used to determine uniqueness of an allocation. */
166 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
167 
168 /*
169  * Randomness for stack hashes, making the same collisions across reboots and
170  * different machines less likely.
171  */
172 static u32 stack_hash_seed __ro_after_init;
173 
174 /* Statistics counters for debugfs. */
175 enum kfence_counter_id {
176 	KFENCE_COUNTER_ALLOCATED,
177 	KFENCE_COUNTER_ALLOCS,
178 	KFENCE_COUNTER_FREES,
179 	KFENCE_COUNTER_ZOMBIES,
180 	KFENCE_COUNTER_BUGS,
181 	KFENCE_COUNTER_SKIP_INCOMPAT,
182 	KFENCE_COUNTER_SKIP_CAPACITY,
183 	KFENCE_COUNTER_SKIP_COVERED,
184 	KFENCE_COUNTER_COUNT,
185 };
186 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
187 static const char *const counter_names[] = {
188 	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
189 	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
190 	[KFENCE_COUNTER_FREES]		= "total frees",
191 	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
192 	[KFENCE_COUNTER_BUGS]		= "total bugs",
193 	[KFENCE_COUNTER_SKIP_INCOMPAT]	= "skipped allocations (incompatible)",
194 	[KFENCE_COUNTER_SKIP_CAPACITY]	= "skipped allocations (capacity)",
195 	[KFENCE_COUNTER_SKIP_COVERED]	= "skipped allocations (covered)",
196 };
197 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
198 
199 /* === Internals ============================================================ */
200 
201 static inline bool should_skip_covered(void)
202 {
203 	unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
204 
205 	return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
206 }
207 
208 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
209 {
210 	num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
211 	num_entries = filter_irq_stacks(stack_entries, num_entries);
212 	return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
213 }
214 
215 /*
216  * Adds (or subtracts) count @val for allocation stack trace hash
217  * @alloc_stack_hash from Counting Bloom filter.
218  */
219 static void alloc_covered_add(u32 alloc_stack_hash, int val)
220 {
221 	int i;
222 
223 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
224 		atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
225 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
226 	}
227 }
228 
229 /*
230  * Returns true if the allocation stack trace hash @alloc_stack_hash is
231  * currently contained (non-zero count) in Counting Bloom filter.
232  */
233 static bool alloc_covered_contains(u32 alloc_stack_hash)
234 {
235 	int i;
236 
237 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
238 		if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
239 			return false;
240 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
241 	}
242 
243 	return true;
244 }
245 
246 static bool kfence_protect(unsigned long addr)
247 {
248 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
249 }
250 
251 static bool kfence_unprotect(unsigned long addr)
252 {
253 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
254 }
255 
256 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
257 {
258 	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
259 	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
260 
261 	/* The checks do not affect performance; only called from slow-paths. */
262 
263 	/* Only call with a pointer into kfence_metadata. */
264 	if (KFENCE_WARN_ON(meta < kfence_metadata ||
265 			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
266 		return 0;
267 
268 	/*
269 	 * This metadata object only ever maps to 1 page; verify that the stored
270 	 * address is in the expected range.
271 	 */
272 	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
273 		return 0;
274 
275 	return pageaddr;
276 }
277 
278 static inline bool kfence_obj_allocated(const struct kfence_metadata *meta)
279 {
280 	enum kfence_object_state state = READ_ONCE(meta->state);
281 
282 	return state == KFENCE_OBJECT_ALLOCATED || state == KFENCE_OBJECT_RCU_FREEING;
283 }
284 
285 /*
286  * Update the object's metadata state, including updating the alloc/free stacks
287  * depending on the state transition.
288  */
289 static noinline void
290 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
291 		      unsigned long *stack_entries, size_t num_stack_entries)
292 {
293 	struct kfence_track *track =
294 		next == KFENCE_OBJECT_ALLOCATED ? &meta->alloc_track : &meta->free_track;
295 
296 	lockdep_assert_held(&meta->lock);
297 
298 	/* Stack has been saved when calling rcu, skip. */
299 	if (READ_ONCE(meta->state) == KFENCE_OBJECT_RCU_FREEING)
300 		goto out;
301 
302 	if (stack_entries) {
303 		memcpy(track->stack_entries, stack_entries,
304 		       num_stack_entries * sizeof(stack_entries[0]));
305 	} else {
306 		/*
307 		 * Skip over 1 (this) functions; noinline ensures we do not
308 		 * accidentally skip over the caller by never inlining.
309 		 */
310 		num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
311 	}
312 	track->num_stack_entries = num_stack_entries;
313 	track->pid = task_pid_nr(current);
314 	track->cpu = raw_smp_processor_id();
315 	track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
316 
317 out:
318 	/*
319 	 * Pairs with READ_ONCE() in
320 	 *	kfence_shutdown_cache(),
321 	 *	kfence_handle_page_fault().
322 	 */
323 	WRITE_ONCE(meta->state, next);
324 }
325 
326 #ifdef CONFIG_KMSAN
327 #define check_canary_attributes noinline __no_kmsan_checks
328 #else
329 #define check_canary_attributes inline
330 #endif
331 
332 /* Check canary byte at @addr. */
333 static check_canary_attributes bool check_canary_byte(u8 *addr)
334 {
335 	struct kfence_metadata *meta;
336 	unsigned long flags;
337 
338 	if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
339 		return true;
340 
341 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
342 
343 	meta = addr_to_metadata((unsigned long)addr);
344 	raw_spin_lock_irqsave(&meta->lock, flags);
345 	kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
346 	raw_spin_unlock_irqrestore(&meta->lock, flags);
347 
348 	return false;
349 }
350 
351 static inline void set_canary(const struct kfence_metadata *meta)
352 {
353 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
354 	unsigned long addr = pageaddr;
355 
356 	/*
357 	 * The canary may be written to part of the object memory, but it does
358 	 * not affect it. The user should initialize the object before using it.
359 	 */
360 	for (; addr < meta->addr; addr += sizeof(u64))
361 		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
362 
363 	addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
364 	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
365 		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
366 }
367 
368 static check_canary_attributes void
369 check_canary(const struct kfence_metadata *meta)
370 {
371 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
372 	unsigned long addr = pageaddr;
373 
374 	/*
375 	 * We'll iterate over each canary byte per-side until a corrupted byte
376 	 * is found. However, we'll still iterate over the canary bytes to the
377 	 * right of the object even if there was an error in the canary bytes to
378 	 * the left of the object. Specifically, if check_canary_byte()
379 	 * generates an error, showing both sides might give more clues as to
380 	 * what the error is about when displaying which bytes were corrupted.
381 	 */
382 
383 	/* Apply to left of object. */
384 	for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
385 		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
386 			break;
387 	}
388 
389 	/*
390 	 * If the canary is corrupted in a certain 64 bytes, or the canary
391 	 * memory cannot be completely covered by multiple consecutive 64 bytes,
392 	 * it needs to be checked one by one.
393 	 */
394 	for (; addr < meta->addr; addr++) {
395 		if (unlikely(!check_canary_byte((u8 *)addr)))
396 			break;
397 	}
398 
399 	/* Apply to right of object. */
400 	for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
401 		if (unlikely(!check_canary_byte((u8 *)addr)))
402 			return;
403 	}
404 	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
405 		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
406 
407 			for (; addr - pageaddr < PAGE_SIZE; addr++) {
408 				if (!check_canary_byte((u8 *)addr))
409 					return;
410 			}
411 		}
412 	}
413 }
414 
415 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
416 				  unsigned long *stack_entries, size_t num_stack_entries,
417 				  u32 alloc_stack_hash)
418 {
419 	struct kfence_metadata *meta = NULL;
420 	unsigned long flags;
421 	struct slab *slab;
422 	void *addr;
423 	const bool random_right_allocate = get_random_u32_below(2);
424 	const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
425 				  !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
426 
427 	/* Try to obtain a free object. */
428 	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
429 	if (!list_empty(&kfence_freelist)) {
430 		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
431 		list_del_init(&meta->list);
432 	}
433 	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
434 	if (!meta) {
435 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
436 		return NULL;
437 	}
438 
439 	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
440 		/*
441 		 * This is extremely unlikely -- we are reporting on a
442 		 * use-after-free, which locked meta->lock, and the reporting
443 		 * code via printk calls kmalloc() which ends up in
444 		 * kfence_alloc() and tries to grab the same object that we're
445 		 * reporting on. While it has never been observed, lockdep does
446 		 * report that there is a possibility of deadlock. Fix it by
447 		 * using trylock and bailing out gracefully.
448 		 */
449 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
450 		/* Put the object back on the freelist. */
451 		list_add_tail(&meta->list, &kfence_freelist);
452 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
453 
454 		return NULL;
455 	}
456 
457 	meta->addr = metadata_to_pageaddr(meta);
458 	/* Unprotect if we're reusing this page. */
459 	if (meta->state == KFENCE_OBJECT_FREED)
460 		kfence_unprotect(meta->addr);
461 
462 	/*
463 	 * Note: for allocations made before RNG initialization, will always
464 	 * return zero. We still benefit from enabling KFENCE as early as
465 	 * possible, even when the RNG is not yet available, as this will allow
466 	 * KFENCE to detect bugs due to earlier allocations. The only downside
467 	 * is that the out-of-bounds accesses detected are deterministic for
468 	 * such allocations.
469 	 */
470 	if (random_right_allocate) {
471 		/* Allocate on the "right" side, re-calculate address. */
472 		meta->addr += PAGE_SIZE - size;
473 		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
474 	}
475 
476 	addr = (void *)meta->addr;
477 
478 	/* Update remaining metadata. */
479 	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
480 	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
481 	WRITE_ONCE(meta->cache, cache);
482 	meta->size = size;
483 	meta->alloc_stack_hash = alloc_stack_hash;
484 	raw_spin_unlock_irqrestore(&meta->lock, flags);
485 
486 	alloc_covered_add(alloc_stack_hash, 1);
487 
488 	/* Set required slab fields. */
489 	slab = virt_to_slab((void *)meta->addr);
490 	slab->slab_cache = cache;
491 	slab->objects = 1;
492 
493 	/* Memory initialization. */
494 	set_canary(meta);
495 
496 	/*
497 	 * We check slab_want_init_on_alloc() ourselves, rather than letting
498 	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
499 	 * redzone.
500 	 */
501 	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
502 		memzero_explicit(addr, size);
503 	if (cache->ctor)
504 		cache->ctor(addr);
505 
506 	if (random_fault)
507 		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
508 
509 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
510 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
511 
512 	return addr;
513 }
514 
515 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
516 {
517 	struct kcsan_scoped_access assert_page_exclusive;
518 	unsigned long flags;
519 	bool init;
520 
521 	raw_spin_lock_irqsave(&meta->lock, flags);
522 
523 	if (!kfence_obj_allocated(meta) || meta->addr != (unsigned long)addr) {
524 		/* Invalid or double-free, bail out. */
525 		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
526 		kfence_report_error((unsigned long)addr, false, NULL, meta,
527 				    KFENCE_ERROR_INVALID_FREE);
528 		raw_spin_unlock_irqrestore(&meta->lock, flags);
529 		return;
530 	}
531 
532 	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
533 	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
534 				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
535 				  &assert_page_exclusive);
536 
537 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
538 		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
539 
540 	/* Restore page protection if there was an OOB access. */
541 	if (meta->unprotected_page) {
542 		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
543 		kfence_protect(meta->unprotected_page);
544 		meta->unprotected_page = 0;
545 	}
546 
547 	/* Mark the object as freed. */
548 	metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
549 	init = slab_want_init_on_free(meta->cache);
550 	raw_spin_unlock_irqrestore(&meta->lock, flags);
551 
552 	alloc_covered_add(meta->alloc_stack_hash, -1);
553 
554 	/* Check canary bytes for memory corruption. */
555 	check_canary(meta);
556 
557 	/*
558 	 * Clear memory if init-on-free is set. While we protect the page, the
559 	 * data is still there, and after a use-after-free is detected, we
560 	 * unprotect the page, so the data is still accessible.
561 	 */
562 	if (!zombie && unlikely(init))
563 		memzero_explicit(addr, meta->size);
564 
565 	/* Protect to detect use-after-frees. */
566 	kfence_protect((unsigned long)addr);
567 
568 	kcsan_end_scoped_access(&assert_page_exclusive);
569 	if (!zombie) {
570 		/* Add it to the tail of the freelist for reuse. */
571 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
572 		KFENCE_WARN_ON(!list_empty(&meta->list));
573 		list_add_tail(&meta->list, &kfence_freelist);
574 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
575 
576 		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
577 		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
578 	} else {
579 		/* See kfence_shutdown_cache(). */
580 		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
581 	}
582 }
583 
584 static void rcu_guarded_free(struct rcu_head *h)
585 {
586 	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
587 
588 	kfence_guarded_free((void *)meta->addr, meta, false);
589 }
590 
591 /*
592  * Initialization of the KFENCE pool after its allocation.
593  * Returns 0 on success; otherwise returns the address up to
594  * which partial initialization succeeded.
595  */
596 static unsigned long kfence_init_pool(void)
597 {
598 	unsigned long addr, start_pfn;
599 	int i;
600 
601 	if (!arch_kfence_init_pool())
602 		return (unsigned long)__kfence_pool;
603 
604 	addr = (unsigned long)__kfence_pool;
605 	start_pfn = PHYS_PFN(virt_to_phys(__kfence_pool));
606 
607 	/*
608 	 * Set up object pages: they must have PGTY_slab set to avoid freeing
609 	 * them as real pages.
610 	 *
611 	 * We also want to avoid inserting kfence_free() in the kfree()
612 	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
613 	 * enters __slab_free() slow-path.
614 	 */
615 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
616 		struct slab *slab;
617 
618 		if (!i || (i % 2))
619 			continue;
620 
621 		slab = page_slab(pfn_to_page(start_pfn + i));
622 		__folio_set_slab(slab_folio(slab));
623 #ifdef CONFIG_MEMCG
624 		slab->obj_exts = (unsigned long)&kfence_metadata_init[i / 2 - 1].obj_exts |
625 				 MEMCG_DATA_OBJEXTS;
626 #endif
627 	}
628 
629 	/*
630 	 * Protect the first 2 pages. The first page is mostly unnecessary, and
631 	 * merely serves as an extended guard page. However, adding one
632 	 * additional page in the beginning gives us an even number of pages,
633 	 * which simplifies the mapping of address to metadata index.
634 	 */
635 	for (i = 0; i < 2; i++) {
636 		if (unlikely(!kfence_protect(addr)))
637 			return addr;
638 
639 		addr += PAGE_SIZE;
640 	}
641 
642 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
643 		struct kfence_metadata *meta = &kfence_metadata_init[i];
644 
645 		/* Initialize metadata. */
646 		INIT_LIST_HEAD(&meta->list);
647 		raw_spin_lock_init(&meta->lock);
648 		meta->state = KFENCE_OBJECT_UNUSED;
649 		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
650 		list_add_tail(&meta->list, &kfence_freelist);
651 
652 		/* Protect the right redzone. */
653 		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
654 			goto reset_slab;
655 
656 		addr += 2 * PAGE_SIZE;
657 	}
658 
659 	/*
660 	 * Make kfence_metadata visible only when initialization is successful.
661 	 * Otherwise, if the initialization fails and kfence_metadata is freed,
662 	 * it may cause UAF in kfence_shutdown_cache().
663 	 */
664 	smp_store_release(&kfence_metadata, kfence_metadata_init);
665 	return 0;
666 
667 reset_slab:
668 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
669 		struct slab *slab;
670 
671 		if (!i || (i % 2))
672 			continue;
673 
674 		slab = page_slab(pfn_to_page(start_pfn + i));
675 #ifdef CONFIG_MEMCG
676 		slab->obj_exts = 0;
677 #endif
678 		__folio_clear_slab(slab_folio(slab));
679 	}
680 
681 	return addr;
682 }
683 
684 static bool __init kfence_init_pool_early(void)
685 {
686 	unsigned long addr;
687 
688 	if (!__kfence_pool)
689 		return false;
690 
691 	addr = kfence_init_pool();
692 
693 	if (!addr) {
694 		/*
695 		 * The pool is live and will never be deallocated from this point on.
696 		 * Ignore the pool object from the kmemleak phys object tree, as it would
697 		 * otherwise overlap with allocations returned by kfence_alloc(), which
698 		 * are registered with kmemleak through the slab post-alloc hook.
699 		 */
700 		kmemleak_ignore_phys(__pa(__kfence_pool));
701 		return true;
702 	}
703 
704 	/*
705 	 * Only release unprotected pages, and do not try to go back and change
706 	 * page attributes due to risk of failing to do so as well. If changing
707 	 * page attributes for some pages fails, it is very likely that it also
708 	 * fails for the first page, and therefore expect addr==__kfence_pool in
709 	 * most failure cases.
710 	 */
711 	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
712 	__kfence_pool = NULL;
713 
714 	memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
715 	kfence_metadata_init = NULL;
716 
717 	return false;
718 }
719 
720 /* === DebugFS Interface ==================================================== */
721 
722 static int stats_show(struct seq_file *seq, void *v)
723 {
724 	int i;
725 
726 	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
727 	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
728 		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
729 
730 	return 0;
731 }
732 DEFINE_SHOW_ATTRIBUTE(stats);
733 
734 /*
735  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
736  * start_object() and next_object() return the object index + 1, because NULL is used
737  * to stop iteration.
738  */
739 static void *start_object(struct seq_file *seq, loff_t *pos)
740 {
741 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
742 		return (void *)((long)*pos + 1);
743 	return NULL;
744 }
745 
746 static void stop_object(struct seq_file *seq, void *v)
747 {
748 }
749 
750 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
751 {
752 	++*pos;
753 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
754 		return (void *)((long)*pos + 1);
755 	return NULL;
756 }
757 
758 static int show_object(struct seq_file *seq, void *v)
759 {
760 	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
761 	unsigned long flags;
762 
763 	raw_spin_lock_irqsave(&meta->lock, flags);
764 	kfence_print_object(seq, meta);
765 	raw_spin_unlock_irqrestore(&meta->lock, flags);
766 	seq_puts(seq, "---------------------------------\n");
767 
768 	return 0;
769 }
770 
771 static const struct seq_operations objects_sops = {
772 	.start = start_object,
773 	.next = next_object,
774 	.stop = stop_object,
775 	.show = show_object,
776 };
777 DEFINE_SEQ_ATTRIBUTE(objects);
778 
779 static int kfence_debugfs_init(void)
780 {
781 	struct dentry *kfence_dir;
782 
783 	if (!READ_ONCE(kfence_enabled))
784 		return 0;
785 
786 	kfence_dir = debugfs_create_dir("kfence", NULL);
787 	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
788 	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
789 	return 0;
790 }
791 
792 late_initcall(kfence_debugfs_init);
793 
794 /* === Panic Notifier ====================================================== */
795 
796 static void kfence_check_all_canary(void)
797 {
798 	int i;
799 
800 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
801 		struct kfence_metadata *meta = &kfence_metadata[i];
802 
803 		if (kfence_obj_allocated(meta))
804 			check_canary(meta);
805 	}
806 }
807 
808 static int kfence_check_canary_callback(struct notifier_block *nb,
809 					unsigned long reason, void *arg)
810 {
811 	kfence_check_all_canary();
812 	return NOTIFY_OK;
813 }
814 
815 static struct notifier_block kfence_check_canary_notifier = {
816 	.notifier_call = kfence_check_canary_callback,
817 };
818 
819 /* === Allocation Gate Timer ================================================ */
820 
821 static struct delayed_work kfence_timer;
822 
823 #ifdef CONFIG_KFENCE_STATIC_KEYS
824 static int kfence_reboot_callback(struct notifier_block *nb,
825 				  unsigned long action, void *data)
826 {
827 	/*
828 	 * Disable kfence to avoid static keys IPI synchronization during
829 	 * late shutdown/kexec
830 	 */
831 	WRITE_ONCE(kfence_enabled, false);
832 	/* Cancel any pending timer work */
833 	cancel_delayed_work_sync(&kfence_timer);
834 
835 	return NOTIFY_OK;
836 }
837 
838 static struct notifier_block kfence_reboot_notifier = {
839 	.notifier_call = kfence_reboot_callback,
840 	.priority = INT_MAX, /* Run early to stop timers ASAP */
841 };
842 
843 /* Wait queue to wake up allocation-gate timer task. */
844 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
845 
846 static void wake_up_kfence_timer(struct irq_work *work)
847 {
848 	wake_up(&allocation_wait);
849 }
850 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
851 #endif
852 
853 /*
854  * Set up delayed work, which will enable and disable the static key. We need to
855  * use a work queue (rather than a simple timer), since enabling and disabling a
856  * static key cannot be done from an interrupt.
857  *
858  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
859  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
860  * more aggressive sampling intervals), we could get away with a variant that
861  * avoids IPIs, at the cost of not immediately capturing allocations if the
862  * instructions remain cached.
863  */
864 static void toggle_allocation_gate(struct work_struct *work)
865 {
866 	if (!READ_ONCE(kfence_enabled))
867 		return;
868 
869 	atomic_set(&kfence_allocation_gate, -kfence_burst);
870 #ifdef CONFIG_KFENCE_STATIC_KEYS
871 	/* Enable static key, and await allocation to happen. */
872 	static_branch_enable(&kfence_allocation_key);
873 
874 	wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate) > 0);
875 
876 	/* Disable static key and reset timer. */
877 	static_branch_disable(&kfence_allocation_key);
878 #endif
879 	queue_delayed_work(system_unbound_wq, &kfence_timer,
880 			   msecs_to_jiffies(kfence_sample_interval));
881 }
882 
883 /* === Public interface ===================================================== */
884 
885 void __init kfence_alloc_pool_and_metadata(void)
886 {
887 	if (!kfence_sample_interval)
888 		return;
889 
890 	/*
891 	 * If the pool has already been initialized by arch, there is no need to
892 	 * re-allocate the memory pool.
893 	 */
894 	if (!__kfence_pool)
895 		__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
896 
897 	if (!__kfence_pool) {
898 		pr_err("failed to allocate pool\n");
899 		return;
900 	}
901 
902 	/* The memory allocated by memblock has been zeroed out. */
903 	kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
904 	if (!kfence_metadata_init) {
905 		pr_err("failed to allocate metadata\n");
906 		memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
907 		__kfence_pool = NULL;
908 	}
909 }
910 
911 static void kfence_init_enable(void)
912 {
913 	if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
914 		static_branch_enable(&kfence_allocation_key);
915 
916 	if (kfence_deferrable)
917 		INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
918 	else
919 		INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
920 
921 	if (kfence_check_on_panic)
922 		atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
923 
924 #ifdef CONFIG_KFENCE_STATIC_KEYS
925 	register_reboot_notifier(&kfence_reboot_notifier);
926 #endif
927 
928 	WRITE_ONCE(kfence_enabled, true);
929 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
930 
931 	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
932 		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
933 		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
934 }
935 
936 void __init kfence_init(void)
937 {
938 	stack_hash_seed = get_random_u32();
939 
940 	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
941 	if (!kfence_sample_interval)
942 		return;
943 
944 	if (!kfence_init_pool_early()) {
945 		pr_err("%s failed\n", __func__);
946 		return;
947 	}
948 
949 	kfence_init_enable();
950 }
951 
952 static int kfence_init_late(void)
953 {
954 	const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
955 	const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
956 	unsigned long addr = (unsigned long)__kfence_pool;
957 	unsigned long free_size = KFENCE_POOL_SIZE;
958 	int err = -ENOMEM;
959 
960 #ifdef CONFIG_CONTIG_ALLOC
961 	struct page *pages;
962 
963 	pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
964 				   NULL);
965 	if (!pages)
966 		return -ENOMEM;
967 
968 	__kfence_pool = page_to_virt(pages);
969 	pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
970 				   NULL);
971 	if (pages)
972 		kfence_metadata_init = page_to_virt(pages);
973 #else
974 	if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
975 	    nr_pages_meta > MAX_ORDER_NR_PAGES) {
976 		pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
977 		return -EINVAL;
978 	}
979 
980 	__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
981 	if (!__kfence_pool)
982 		return -ENOMEM;
983 
984 	kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
985 #endif
986 
987 	if (!kfence_metadata_init)
988 		goto free_pool;
989 
990 	memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
991 	addr = kfence_init_pool();
992 	if (!addr) {
993 		kfence_init_enable();
994 		kfence_debugfs_init();
995 		return 0;
996 	}
997 
998 	pr_err("%s failed\n", __func__);
999 	free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
1000 	err = -EBUSY;
1001 
1002 #ifdef CONFIG_CONTIG_ALLOC
1003 	free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
1004 			  nr_pages_meta);
1005 free_pool:
1006 	free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
1007 			  free_size / PAGE_SIZE);
1008 #else
1009 	free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
1010 free_pool:
1011 	free_pages_exact((void *)addr, free_size);
1012 #endif
1013 
1014 	kfence_metadata_init = NULL;
1015 	__kfence_pool = NULL;
1016 	return err;
1017 }
1018 
1019 static int kfence_enable_late(void)
1020 {
1021 	if (!__kfence_pool)
1022 		return kfence_init_late();
1023 
1024 	WRITE_ONCE(kfence_enabled, true);
1025 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
1026 	pr_info("re-enabled\n");
1027 	return 0;
1028 }
1029 
1030 void kfence_shutdown_cache(struct kmem_cache *s)
1031 {
1032 	unsigned long flags;
1033 	struct kfence_metadata *meta;
1034 	int i;
1035 
1036 	/* Pairs with release in kfence_init_pool(). */
1037 	if (!smp_load_acquire(&kfence_metadata))
1038 		return;
1039 
1040 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1041 		bool in_use;
1042 
1043 		meta = &kfence_metadata[i];
1044 
1045 		/*
1046 		 * If we observe some inconsistent cache and state pair where we
1047 		 * should have returned false here, cache destruction is racing
1048 		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
1049 		 * the lock will not help, as different critical section
1050 		 * serialization will have the same outcome.
1051 		 */
1052 		if (READ_ONCE(meta->cache) != s || !kfence_obj_allocated(meta))
1053 			continue;
1054 
1055 		raw_spin_lock_irqsave(&meta->lock, flags);
1056 		in_use = meta->cache == s && kfence_obj_allocated(meta);
1057 		raw_spin_unlock_irqrestore(&meta->lock, flags);
1058 
1059 		if (in_use) {
1060 			/*
1061 			 * This cache still has allocations, and we should not
1062 			 * release them back into the freelist so they can still
1063 			 * safely be used and retain the kernel's default
1064 			 * behaviour of keeping the allocations alive (leak the
1065 			 * cache); however, they effectively become "zombie
1066 			 * allocations" as the KFENCE objects are the only ones
1067 			 * still in use and the owning cache is being destroyed.
1068 			 *
1069 			 * We mark them freed, so that any subsequent use shows
1070 			 * more useful error messages that will include stack
1071 			 * traces of the user of the object, the original
1072 			 * allocation, and caller to shutdown_cache().
1073 			 */
1074 			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
1075 		}
1076 	}
1077 
1078 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1079 		meta = &kfence_metadata[i];
1080 
1081 		/* See above. */
1082 		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
1083 			continue;
1084 
1085 		raw_spin_lock_irqsave(&meta->lock, flags);
1086 		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
1087 			meta->cache = NULL;
1088 		raw_spin_unlock_irqrestore(&meta->lock, flags);
1089 	}
1090 }
1091 
1092 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
1093 {
1094 	unsigned long stack_entries[KFENCE_STACK_DEPTH];
1095 	size_t num_stack_entries;
1096 	u32 alloc_stack_hash;
1097 	int allocation_gate;
1098 
1099 	/*
1100 	 * Perform size check before switching kfence_allocation_gate, so that
1101 	 * we don't disable KFENCE without making an allocation.
1102 	 */
1103 	if (size > PAGE_SIZE) {
1104 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1105 		return NULL;
1106 	}
1107 
1108 	/*
1109 	 * Skip allocations from non-default zones, including DMA. We cannot
1110 	 * guarantee that pages in the KFENCE pool will have the requested
1111 	 * properties (e.g. reside in DMAable memory).
1112 	 */
1113 	if ((flags & GFP_ZONEMASK) ||
1114 	    ((flags & __GFP_THISNODE) && num_online_nodes() > 1) ||
1115 	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1116 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1117 		return NULL;
1118 	}
1119 
1120 	/*
1121 	 * Skip allocations for this slab, if KFENCE has been disabled for
1122 	 * this slab.
1123 	 */
1124 	if (s->flags & SLAB_SKIP_KFENCE)
1125 		return NULL;
1126 
1127 	allocation_gate = atomic_inc_return(&kfence_allocation_gate);
1128 	if (allocation_gate > 1)
1129 		return NULL;
1130 #ifdef CONFIG_KFENCE_STATIC_KEYS
1131 	/*
1132 	 * waitqueue_active() is fully ordered after the update of
1133 	 * kfence_allocation_gate per atomic_inc_return().
1134 	 */
1135 	if (allocation_gate == 1 && waitqueue_active(&allocation_wait)) {
1136 		/*
1137 		 * Calling wake_up() here may deadlock when allocations happen
1138 		 * from within timer code. Use an irq_work to defer it.
1139 		 */
1140 		irq_work_queue(&wake_up_kfence_timer_work);
1141 	}
1142 #endif
1143 
1144 	if (!READ_ONCE(kfence_enabled))
1145 		return NULL;
1146 
1147 	num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1148 
1149 	/*
1150 	 * Do expensive check for coverage of allocation in slow-path after
1151 	 * allocation_gate has already become non-zero, even though it might
1152 	 * mean not making any allocation within a given sample interval.
1153 	 *
1154 	 * This ensures reasonable allocation coverage when the pool is almost
1155 	 * full, including avoiding long-lived allocations of the same source
1156 	 * filling up the pool (e.g. pagecache allocations).
1157 	 */
1158 	alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1159 	if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1160 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1161 		return NULL;
1162 	}
1163 
1164 	return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1165 				    alloc_stack_hash);
1166 }
1167 
1168 size_t kfence_ksize(const void *addr)
1169 {
1170 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1171 
1172 	/*
1173 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1174 	 * either a use-after-free or invalid access.
1175 	 */
1176 	return meta ? meta->size : 0;
1177 }
1178 
1179 void *kfence_object_start(const void *addr)
1180 {
1181 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1182 
1183 	/*
1184 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1185 	 * either a use-after-free or invalid access.
1186 	 */
1187 	return meta ? (void *)meta->addr : NULL;
1188 }
1189 
1190 void __kfence_free(void *addr)
1191 {
1192 	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1193 
1194 #ifdef CONFIG_MEMCG
1195 	KFENCE_WARN_ON(meta->obj_exts.objcg);
1196 #endif
1197 	/*
1198 	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1199 	 * the object, as the object page may be recycled for other-typed
1200 	 * objects once it has been freed. meta->cache may be NULL if the cache
1201 	 * was destroyed.
1202 	 * Save the stack trace here so that reports show where the user freed
1203 	 * the object.
1204 	 */
1205 	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) {
1206 		unsigned long flags;
1207 
1208 		raw_spin_lock_irqsave(&meta->lock, flags);
1209 		metadata_update_state(meta, KFENCE_OBJECT_RCU_FREEING, NULL, 0);
1210 		raw_spin_unlock_irqrestore(&meta->lock, flags);
1211 		call_rcu(&meta->rcu_head, rcu_guarded_free);
1212 	} else {
1213 		kfence_guarded_free(addr, meta, false);
1214 	}
1215 }
1216 
1217 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1218 {
1219 	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1220 	struct kfence_metadata *to_report = NULL;
1221 	enum kfence_error_type error_type;
1222 	unsigned long flags;
1223 
1224 	if (!is_kfence_address((void *)addr))
1225 		return false;
1226 
1227 	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1228 		return kfence_unprotect(addr); /* ... unprotect and proceed. */
1229 
1230 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1231 
1232 	if (page_index % 2) {
1233 		/* This is a redzone, report a buffer overflow. */
1234 		struct kfence_metadata *meta;
1235 		int distance = 0;
1236 
1237 		meta = addr_to_metadata(addr - PAGE_SIZE);
1238 		if (meta && kfence_obj_allocated(meta)) {
1239 			to_report = meta;
1240 			/* Data race ok; distance calculation approximate. */
1241 			distance = addr - data_race(meta->addr + meta->size);
1242 		}
1243 
1244 		meta = addr_to_metadata(addr + PAGE_SIZE);
1245 		if (meta && kfence_obj_allocated(meta)) {
1246 			/* Data race ok; distance calculation approximate. */
1247 			if (!to_report || distance > data_race(meta->addr) - addr)
1248 				to_report = meta;
1249 		}
1250 
1251 		if (!to_report)
1252 			goto out;
1253 
1254 		raw_spin_lock_irqsave(&to_report->lock, flags);
1255 		to_report->unprotected_page = addr;
1256 		error_type = KFENCE_ERROR_OOB;
1257 
1258 		/*
1259 		 * If the object was freed before we took the look we can still
1260 		 * report this as an OOB -- the report will simply show the
1261 		 * stacktrace of the free as well.
1262 		 */
1263 	} else {
1264 		to_report = addr_to_metadata(addr);
1265 		if (!to_report)
1266 			goto out;
1267 
1268 		raw_spin_lock_irqsave(&to_report->lock, flags);
1269 		error_type = KFENCE_ERROR_UAF;
1270 		/*
1271 		 * We may race with __kfence_alloc(), and it is possible that a
1272 		 * freed object may be reallocated. We simply report this as a
1273 		 * use-after-free, with the stack trace showing the place where
1274 		 * the object was re-allocated.
1275 		 */
1276 	}
1277 
1278 out:
1279 	if (to_report) {
1280 		kfence_report_error(addr, is_write, regs, to_report, error_type);
1281 		raw_spin_unlock_irqrestore(&to_report->lock, flags);
1282 	} else {
1283 		/* This may be a UAF or OOB access, but we can't be sure. */
1284 		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1285 	}
1286 
1287 	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1288 }
1289