1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KFENCE guarded object allocator and fault handling. 4 * 5 * Copyright (C) 2020, Google LLC. 6 */ 7 8 #define pr_fmt(fmt) "kfence: " fmt 9 10 #include <linux/atomic.h> 11 #include <linux/bug.h> 12 #include <linux/debugfs.h> 13 #include <linux/hash.h> 14 #include <linux/irq_work.h> 15 #include <linux/jhash.h> 16 #include <linux/kcsan-checks.h> 17 #include <linux/kfence.h> 18 #include <linux/kmemleak.h> 19 #include <linux/list.h> 20 #include <linux/lockdep.h> 21 #include <linux/log2.h> 22 #include <linux/memblock.h> 23 #include <linux/moduleparam.h> 24 #include <linux/nodemask.h> 25 #include <linux/notifier.h> 26 #include <linux/panic_notifier.h> 27 #include <linux/random.h> 28 #include <linux/rcupdate.h> 29 #include <linux/reboot.h> 30 #include <linux/sched/clock.h> 31 #include <linux/seq_file.h> 32 #include <linux/slab.h> 33 #include <linux/spinlock.h> 34 #include <linux/string.h> 35 36 #include <asm/kfence.h> 37 38 #include "kfence.h" 39 40 /* Disables KFENCE on the first warning assuming an irrecoverable error. */ 41 #define KFENCE_WARN_ON(cond) \ 42 ({ \ 43 const bool __cond = WARN_ON(cond); \ 44 if (unlikely(__cond)) { \ 45 WRITE_ONCE(kfence_enabled, false); \ 46 disabled_by_warn = true; \ 47 } \ 48 __cond; \ 49 }) 50 51 /* === Data ================================================================= */ 52 53 static bool kfence_enabled __read_mostly; 54 static bool disabled_by_warn __read_mostly; 55 56 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL; 57 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */ 58 59 #ifdef MODULE_PARAM_PREFIX 60 #undef MODULE_PARAM_PREFIX 61 #endif 62 #define MODULE_PARAM_PREFIX "kfence." 63 64 static int kfence_enable_late(void); 65 static int param_set_sample_interval(const char *val, const struct kernel_param *kp) 66 { 67 unsigned long num; 68 int ret = kstrtoul(val, 0, &num); 69 70 if (ret < 0) 71 return ret; 72 73 /* Using 0 to indicate KFENCE is disabled. */ 74 if (!num && READ_ONCE(kfence_enabled)) { 75 pr_info("disabled\n"); 76 WRITE_ONCE(kfence_enabled, false); 77 } 78 79 *((unsigned long *)kp->arg) = num; 80 81 if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING) 82 return disabled_by_warn ? -EINVAL : kfence_enable_late(); 83 return 0; 84 } 85 86 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp) 87 { 88 if (!READ_ONCE(kfence_enabled)) 89 return sprintf(buffer, "0\n"); 90 91 return param_get_ulong(buffer, kp); 92 } 93 94 static const struct kernel_param_ops sample_interval_param_ops = { 95 .set = param_set_sample_interval, 96 .get = param_get_sample_interval, 97 }; 98 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600); 99 100 /* Pool usage% threshold when currently covered allocations are skipped. */ 101 static unsigned long kfence_skip_covered_thresh __read_mostly = 75; 102 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644); 103 104 /* Allocation burst count: number of excess KFENCE allocations per sample. */ 105 static unsigned int kfence_burst __read_mostly; 106 module_param_named(burst, kfence_burst, uint, 0644); 107 108 /* If true, use a deferrable timer. */ 109 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE); 110 module_param_named(deferrable, kfence_deferrable, bool, 0444); 111 112 /* If true, check all canary bytes on panic. */ 113 static bool kfence_check_on_panic __read_mostly; 114 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444); 115 116 /* The pool of pages used for guard pages and objects. */ 117 char *__kfence_pool __read_mostly; 118 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */ 119 120 /* 121 * Per-object metadata, with one-to-one mapping of object metadata to 122 * backing pages (in __kfence_pool). 123 */ 124 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0); 125 struct kfence_metadata *kfence_metadata __read_mostly; 126 127 /* 128 * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache(). 129 * So introduce kfence_metadata_init to initialize metadata, and then make 130 * kfence_metadata visible after initialization is successful. This prevents 131 * potential UAF or access to uninitialized metadata. 132 */ 133 static struct kfence_metadata *kfence_metadata_init __read_mostly; 134 135 /* Freelist with available objects. */ 136 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist); 137 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */ 138 139 /* 140 * The static key to set up a KFENCE allocation; or if static keys are not used 141 * to gate allocations, to avoid a load and compare if KFENCE is disabled. 142 */ 143 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key); 144 145 /* Gates the allocation, ensuring only one succeeds in a given period. */ 146 atomic_t kfence_allocation_gate = ATOMIC_INIT(1); 147 148 /* 149 * A Counting Bloom filter of allocation coverage: limits currently covered 150 * allocations of the same source filling up the pool. 151 * 152 * Assuming a range of 15%-85% unique allocations in the pool at any point in 153 * time, the below parameters provide a probablity of 0.02-0.33 for false 154 * positive hits respectively: 155 * 156 * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM 157 */ 158 #define ALLOC_COVERED_HNUM 2 159 #define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2) 160 #define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER) 161 #define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER) 162 #define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1) 163 static atomic_t alloc_covered[ALLOC_COVERED_SIZE]; 164 165 /* Stack depth used to determine uniqueness of an allocation. */ 166 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8) 167 168 /* 169 * Randomness for stack hashes, making the same collisions across reboots and 170 * different machines less likely. 171 */ 172 static u32 stack_hash_seed __ro_after_init; 173 174 /* Statistics counters for debugfs. */ 175 enum kfence_counter_id { 176 KFENCE_COUNTER_ALLOCATED, 177 KFENCE_COUNTER_ALLOCS, 178 KFENCE_COUNTER_FREES, 179 KFENCE_COUNTER_ZOMBIES, 180 KFENCE_COUNTER_BUGS, 181 KFENCE_COUNTER_SKIP_INCOMPAT, 182 KFENCE_COUNTER_SKIP_CAPACITY, 183 KFENCE_COUNTER_SKIP_COVERED, 184 KFENCE_COUNTER_COUNT, 185 }; 186 static atomic_long_t counters[KFENCE_COUNTER_COUNT]; 187 static const char *const counter_names[] = { 188 [KFENCE_COUNTER_ALLOCATED] = "currently allocated", 189 [KFENCE_COUNTER_ALLOCS] = "total allocations", 190 [KFENCE_COUNTER_FREES] = "total frees", 191 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations", 192 [KFENCE_COUNTER_BUGS] = "total bugs", 193 [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)", 194 [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)", 195 [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)", 196 }; 197 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT); 198 199 /* === Internals ============================================================ */ 200 201 static inline bool should_skip_covered(void) 202 { 203 unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100; 204 205 return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh; 206 } 207 208 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries) 209 { 210 num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH); 211 num_entries = filter_irq_stacks(stack_entries, num_entries); 212 return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed); 213 } 214 215 /* 216 * Adds (or subtracts) count @val for allocation stack trace hash 217 * @alloc_stack_hash from Counting Bloom filter. 218 */ 219 static void alloc_covered_add(u32 alloc_stack_hash, int val) 220 { 221 int i; 222 223 for (i = 0; i < ALLOC_COVERED_HNUM; i++) { 224 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]); 225 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); 226 } 227 } 228 229 /* 230 * Returns true if the allocation stack trace hash @alloc_stack_hash is 231 * currently contained (non-zero count) in Counting Bloom filter. 232 */ 233 static bool alloc_covered_contains(u32 alloc_stack_hash) 234 { 235 int i; 236 237 for (i = 0; i < ALLOC_COVERED_HNUM; i++) { 238 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK])) 239 return false; 240 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); 241 } 242 243 return true; 244 } 245 246 static bool kfence_protect(unsigned long addr) 247 { 248 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true)); 249 } 250 251 static bool kfence_unprotect(unsigned long addr) 252 { 253 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false)); 254 } 255 256 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta) 257 { 258 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2; 259 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset]; 260 261 /* The checks do not affect performance; only called from slow-paths. */ 262 263 /* Only call with a pointer into kfence_metadata. */ 264 if (KFENCE_WARN_ON(meta < kfence_metadata || 265 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS)) 266 return 0; 267 268 /* 269 * This metadata object only ever maps to 1 page; verify that the stored 270 * address is in the expected range. 271 */ 272 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr)) 273 return 0; 274 275 return pageaddr; 276 } 277 278 static inline bool kfence_obj_allocated(const struct kfence_metadata *meta) 279 { 280 enum kfence_object_state state = READ_ONCE(meta->state); 281 282 return state == KFENCE_OBJECT_ALLOCATED || state == KFENCE_OBJECT_RCU_FREEING; 283 } 284 285 /* 286 * Update the object's metadata state, including updating the alloc/free stacks 287 * depending on the state transition. 288 */ 289 static noinline void 290 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next, 291 unsigned long *stack_entries, size_t num_stack_entries) 292 { 293 struct kfence_track *track = 294 next == KFENCE_OBJECT_ALLOCATED ? &meta->alloc_track : &meta->free_track; 295 296 lockdep_assert_held(&meta->lock); 297 298 /* Stack has been saved when calling rcu, skip. */ 299 if (READ_ONCE(meta->state) == KFENCE_OBJECT_RCU_FREEING) 300 goto out; 301 302 if (stack_entries) { 303 memcpy(track->stack_entries, stack_entries, 304 num_stack_entries * sizeof(stack_entries[0])); 305 } else { 306 /* 307 * Skip over 1 (this) functions; noinline ensures we do not 308 * accidentally skip over the caller by never inlining. 309 */ 310 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1); 311 } 312 track->num_stack_entries = num_stack_entries; 313 track->pid = task_pid_nr(current); 314 track->cpu = raw_smp_processor_id(); 315 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */ 316 317 out: 318 /* 319 * Pairs with READ_ONCE() in 320 * kfence_shutdown_cache(), 321 * kfence_handle_page_fault(). 322 */ 323 WRITE_ONCE(meta->state, next); 324 } 325 326 #ifdef CONFIG_KMSAN 327 #define check_canary_attributes noinline __no_kmsan_checks 328 #else 329 #define check_canary_attributes inline 330 #endif 331 332 /* Check canary byte at @addr. */ 333 static check_canary_attributes bool check_canary_byte(u8 *addr) 334 { 335 struct kfence_metadata *meta; 336 unsigned long flags; 337 338 if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr))) 339 return true; 340 341 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 342 343 meta = addr_to_metadata((unsigned long)addr); 344 raw_spin_lock_irqsave(&meta->lock, flags); 345 kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION); 346 raw_spin_unlock_irqrestore(&meta->lock, flags); 347 348 return false; 349 } 350 351 static inline void set_canary(const struct kfence_metadata *meta) 352 { 353 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); 354 unsigned long addr = pageaddr; 355 356 /* 357 * The canary may be written to part of the object memory, but it does 358 * not affect it. The user should initialize the object before using it. 359 */ 360 for (; addr < meta->addr; addr += sizeof(u64)) 361 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64; 362 363 addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64)); 364 for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) 365 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64; 366 } 367 368 static check_canary_attributes void 369 check_canary(const struct kfence_metadata *meta) 370 { 371 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); 372 unsigned long addr = pageaddr; 373 374 /* 375 * We'll iterate over each canary byte per-side until a corrupted byte 376 * is found. However, we'll still iterate over the canary bytes to the 377 * right of the object even if there was an error in the canary bytes to 378 * the left of the object. Specifically, if check_canary_byte() 379 * generates an error, showing both sides might give more clues as to 380 * what the error is about when displaying which bytes were corrupted. 381 */ 382 383 /* Apply to left of object. */ 384 for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) { 385 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) 386 break; 387 } 388 389 /* 390 * If the canary is corrupted in a certain 64 bytes, or the canary 391 * memory cannot be completely covered by multiple consecutive 64 bytes, 392 * it needs to be checked one by one. 393 */ 394 for (; addr < meta->addr; addr++) { 395 if (unlikely(!check_canary_byte((u8 *)addr))) 396 break; 397 } 398 399 /* Apply to right of object. */ 400 for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) { 401 if (unlikely(!check_canary_byte((u8 *)addr))) 402 return; 403 } 404 for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) { 405 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) { 406 407 for (; addr - pageaddr < PAGE_SIZE; addr++) { 408 if (!check_canary_byte((u8 *)addr)) 409 return; 410 } 411 } 412 } 413 } 414 415 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp, 416 unsigned long *stack_entries, size_t num_stack_entries, 417 u32 alloc_stack_hash) 418 { 419 struct kfence_metadata *meta = NULL; 420 unsigned long flags; 421 struct slab *slab; 422 void *addr; 423 const bool random_right_allocate = get_random_u32_below(2); 424 const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS && 425 !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS); 426 427 /* Try to obtain a free object. */ 428 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 429 if (!list_empty(&kfence_freelist)) { 430 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list); 431 list_del_init(&meta->list); 432 } 433 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 434 if (!meta) { 435 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]); 436 return NULL; 437 } 438 439 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) { 440 /* 441 * This is extremely unlikely -- we are reporting on a 442 * use-after-free, which locked meta->lock, and the reporting 443 * code via printk calls kmalloc() which ends up in 444 * kfence_alloc() and tries to grab the same object that we're 445 * reporting on. While it has never been observed, lockdep does 446 * report that there is a possibility of deadlock. Fix it by 447 * using trylock and bailing out gracefully. 448 */ 449 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 450 /* Put the object back on the freelist. */ 451 list_add_tail(&meta->list, &kfence_freelist); 452 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 453 454 return NULL; 455 } 456 457 meta->addr = metadata_to_pageaddr(meta); 458 /* Unprotect if we're reusing this page. */ 459 if (meta->state == KFENCE_OBJECT_FREED) 460 kfence_unprotect(meta->addr); 461 462 /* 463 * Note: for allocations made before RNG initialization, will always 464 * return zero. We still benefit from enabling KFENCE as early as 465 * possible, even when the RNG is not yet available, as this will allow 466 * KFENCE to detect bugs due to earlier allocations. The only downside 467 * is that the out-of-bounds accesses detected are deterministic for 468 * such allocations. 469 */ 470 if (random_right_allocate) { 471 /* Allocate on the "right" side, re-calculate address. */ 472 meta->addr += PAGE_SIZE - size; 473 meta->addr = ALIGN_DOWN(meta->addr, cache->align); 474 } 475 476 addr = (void *)meta->addr; 477 478 /* Update remaining metadata. */ 479 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries); 480 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ 481 WRITE_ONCE(meta->cache, cache); 482 meta->size = size; 483 meta->alloc_stack_hash = alloc_stack_hash; 484 raw_spin_unlock_irqrestore(&meta->lock, flags); 485 486 alloc_covered_add(alloc_stack_hash, 1); 487 488 /* Set required slab fields. */ 489 slab = virt_to_slab((void *)meta->addr); 490 slab->slab_cache = cache; 491 slab->objects = 1; 492 493 /* Memory initialization. */ 494 set_canary(meta); 495 496 /* 497 * We check slab_want_init_on_alloc() ourselves, rather than letting 498 * SL*B do the initialization, as otherwise we might overwrite KFENCE's 499 * redzone. 500 */ 501 if (unlikely(slab_want_init_on_alloc(gfp, cache))) 502 memzero_explicit(addr, size); 503 if (cache->ctor) 504 cache->ctor(addr); 505 506 if (random_fault) 507 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ 508 509 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); 510 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]); 511 512 return addr; 513 } 514 515 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie) 516 { 517 struct kcsan_scoped_access assert_page_exclusive; 518 unsigned long flags; 519 bool init; 520 521 raw_spin_lock_irqsave(&meta->lock, flags); 522 523 if (!kfence_obj_allocated(meta) || meta->addr != (unsigned long)addr) { 524 /* Invalid or double-free, bail out. */ 525 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 526 kfence_report_error((unsigned long)addr, false, NULL, meta, 527 KFENCE_ERROR_INVALID_FREE); 528 raw_spin_unlock_irqrestore(&meta->lock, flags); 529 return; 530 } 531 532 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ 533 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, 534 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, 535 &assert_page_exclusive); 536 537 if (CONFIG_KFENCE_STRESS_TEST_FAULTS) 538 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ 539 540 /* Restore page protection if there was an OOB access. */ 541 if (meta->unprotected_page) { 542 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE); 543 kfence_protect(meta->unprotected_page); 544 meta->unprotected_page = 0; 545 } 546 547 /* Mark the object as freed. */ 548 metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0); 549 init = slab_want_init_on_free(meta->cache); 550 raw_spin_unlock_irqrestore(&meta->lock, flags); 551 552 alloc_covered_add(meta->alloc_stack_hash, -1); 553 554 /* Check canary bytes for memory corruption. */ 555 check_canary(meta); 556 557 /* 558 * Clear memory if init-on-free is set. While we protect the page, the 559 * data is still there, and after a use-after-free is detected, we 560 * unprotect the page, so the data is still accessible. 561 */ 562 if (!zombie && unlikely(init)) 563 memzero_explicit(addr, meta->size); 564 565 /* Protect to detect use-after-frees. */ 566 kfence_protect((unsigned long)addr); 567 568 kcsan_end_scoped_access(&assert_page_exclusive); 569 if (!zombie) { 570 /* Add it to the tail of the freelist for reuse. */ 571 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 572 KFENCE_WARN_ON(!list_empty(&meta->list)); 573 list_add_tail(&meta->list, &kfence_freelist); 574 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 575 576 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); 577 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); 578 } else { 579 /* See kfence_shutdown_cache(). */ 580 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]); 581 } 582 } 583 584 static void rcu_guarded_free(struct rcu_head *h) 585 { 586 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); 587 588 kfence_guarded_free((void *)meta->addr, meta, false); 589 } 590 591 /* 592 * Initialization of the KFENCE pool after its allocation. 593 * Returns 0 on success; otherwise returns the address up to 594 * which partial initialization succeeded. 595 */ 596 static unsigned long kfence_init_pool(void) 597 { 598 unsigned long addr, start_pfn; 599 int i, rand; 600 601 if (!arch_kfence_init_pool()) 602 return (unsigned long)__kfence_pool; 603 604 addr = (unsigned long)__kfence_pool; 605 start_pfn = PHYS_PFN(virt_to_phys(__kfence_pool)); 606 607 /* 608 * Set up object pages: they must have PGTY_slab set to avoid freeing 609 * them as real pages. 610 * 611 * We also want to avoid inserting kfence_free() in the kfree() 612 * fast-path in SLUB, and therefore need to ensure kfree() correctly 613 * enters __slab_free() slow-path. 614 */ 615 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { 616 struct page *page; 617 618 if (!i || (i % 2)) 619 continue; 620 621 page = pfn_to_page(start_pfn + i); 622 __SetPageSlab(page); 623 #ifdef CONFIG_MEMCG 624 struct slab *slab = page_slab(page); 625 slab->obj_exts = (unsigned long)&kfence_metadata_init[i / 2 - 1].obj_exts | 626 MEMCG_DATA_OBJEXTS; 627 #endif 628 } 629 630 /* 631 * Protect the first 2 pages. The first page is mostly unnecessary, and 632 * merely serves as an extended guard page. However, adding one 633 * additional page in the beginning gives us an even number of pages, 634 * which simplifies the mapping of address to metadata index. 635 */ 636 for (i = 0; i < 2; i++) { 637 if (unlikely(!kfence_protect(addr))) 638 return addr; 639 640 addr += PAGE_SIZE; 641 } 642 643 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 644 struct kfence_metadata *meta = &kfence_metadata_init[i]; 645 646 /* Initialize metadata. */ 647 INIT_LIST_HEAD(&meta->list); 648 raw_spin_lock_init(&meta->lock); 649 meta->state = KFENCE_OBJECT_UNUSED; 650 /* Use addr to randomize the freelist. */ 651 meta->addr = i; 652 653 /* Protect the right redzone. */ 654 if (unlikely(!kfence_protect(addr + 2 * i * PAGE_SIZE + PAGE_SIZE))) 655 goto reset_slab; 656 } 657 658 for (i = CONFIG_KFENCE_NUM_OBJECTS; i > 0; i--) { 659 rand = get_random_u32_below(i); 660 swap(kfence_metadata_init[i - 1].addr, kfence_metadata_init[rand].addr); 661 } 662 663 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 664 struct kfence_metadata *meta_1 = &kfence_metadata_init[i]; 665 struct kfence_metadata *meta_2 = &kfence_metadata_init[meta_1->addr]; 666 667 list_add_tail(&meta_2->list, &kfence_freelist); 668 } 669 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 670 kfence_metadata_init[i].addr = addr; 671 addr += 2 * PAGE_SIZE; 672 } 673 674 /* 675 * Make kfence_metadata visible only when initialization is successful. 676 * Otherwise, if the initialization fails and kfence_metadata is freed, 677 * it may cause UAF in kfence_shutdown_cache(). 678 */ 679 smp_store_release(&kfence_metadata, kfence_metadata_init); 680 return 0; 681 682 reset_slab: 683 addr += 2 * i * PAGE_SIZE; 684 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { 685 struct page *page; 686 687 if (!i || (i % 2)) 688 continue; 689 690 page = pfn_to_page(start_pfn + i); 691 #ifdef CONFIG_MEMCG 692 struct slab *slab = page_slab(page); 693 slab->obj_exts = 0; 694 #endif 695 __ClearPageSlab(page); 696 } 697 698 return addr; 699 } 700 701 static bool __init kfence_init_pool_early(void) 702 { 703 unsigned long addr; 704 705 if (!__kfence_pool) 706 return false; 707 708 addr = kfence_init_pool(); 709 710 if (!addr) { 711 /* 712 * The pool is live and will never be deallocated from this point on. 713 * Ignore the pool object from the kmemleak phys object tree, as it would 714 * otherwise overlap with allocations returned by kfence_alloc(), which 715 * are registered with kmemleak through the slab post-alloc hook. 716 */ 717 kmemleak_ignore_phys(__pa(__kfence_pool)); 718 return true; 719 } 720 721 /* 722 * Only release unprotected pages, and do not try to go back and change 723 * page attributes due to risk of failing to do so as well. If changing 724 * page attributes for some pages fails, it is very likely that it also 725 * fails for the first page, and therefore expect addr==__kfence_pool in 726 * most failure cases. 727 */ 728 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool)); 729 __kfence_pool = NULL; 730 731 memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE); 732 kfence_metadata_init = NULL; 733 734 return false; 735 } 736 737 /* === DebugFS Interface ==================================================== */ 738 739 static int stats_show(struct seq_file *seq, void *v) 740 { 741 int i; 742 743 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); 744 for (i = 0; i < KFENCE_COUNTER_COUNT; i++) 745 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); 746 747 return 0; 748 } 749 DEFINE_SHOW_ATTRIBUTE(stats); 750 751 /* 752 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. 753 * start_object() and next_object() return the object index + 1, because NULL is used 754 * to stop iteration. 755 */ 756 static void *start_object(struct seq_file *seq, loff_t *pos) 757 { 758 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 759 return (void *)((long)*pos + 1); 760 return NULL; 761 } 762 763 static void stop_object(struct seq_file *seq, void *v) 764 { 765 } 766 767 static void *next_object(struct seq_file *seq, void *v, loff_t *pos) 768 { 769 ++*pos; 770 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 771 return (void *)((long)*pos + 1); 772 return NULL; 773 } 774 775 static int show_object(struct seq_file *seq, void *v) 776 { 777 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; 778 unsigned long flags; 779 780 raw_spin_lock_irqsave(&meta->lock, flags); 781 kfence_print_object(seq, meta); 782 raw_spin_unlock_irqrestore(&meta->lock, flags); 783 seq_puts(seq, "---------------------------------\n"); 784 785 return 0; 786 } 787 788 static const struct seq_operations objects_sops = { 789 .start = start_object, 790 .next = next_object, 791 .stop = stop_object, 792 .show = show_object, 793 }; 794 DEFINE_SEQ_ATTRIBUTE(objects); 795 796 static int kfence_debugfs_init(void) 797 { 798 struct dentry *kfence_dir; 799 800 if (!READ_ONCE(kfence_enabled)) 801 return 0; 802 803 kfence_dir = debugfs_create_dir("kfence", NULL); 804 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops); 805 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); 806 return 0; 807 } 808 809 late_initcall(kfence_debugfs_init); 810 811 /* === Panic Notifier ====================================================== */ 812 813 static void kfence_check_all_canary(void) 814 { 815 int i; 816 817 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 818 struct kfence_metadata *meta = &kfence_metadata[i]; 819 820 if (kfence_obj_allocated(meta)) 821 check_canary(meta); 822 } 823 } 824 825 static int kfence_check_canary_callback(struct notifier_block *nb, 826 unsigned long reason, void *arg) 827 { 828 kfence_check_all_canary(); 829 return NOTIFY_OK; 830 } 831 832 static struct notifier_block kfence_check_canary_notifier = { 833 .notifier_call = kfence_check_canary_callback, 834 }; 835 836 /* === Allocation Gate Timer ================================================ */ 837 838 static struct delayed_work kfence_timer; 839 840 #ifdef CONFIG_KFENCE_STATIC_KEYS 841 /* Wait queue to wake up allocation-gate timer task. */ 842 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait); 843 844 static int kfence_reboot_callback(struct notifier_block *nb, 845 unsigned long action, void *data) 846 { 847 /* 848 * Disable kfence to avoid static keys IPI synchronization during 849 * late shutdown/kexec 850 */ 851 WRITE_ONCE(kfence_enabled, false); 852 /* Cancel any pending timer work */ 853 cancel_delayed_work(&kfence_timer); 854 /* 855 * Wake up any blocked toggle_allocation_gate() so it can complete 856 * early while the system is still able to handle IPIs. 857 */ 858 wake_up(&allocation_wait); 859 860 return NOTIFY_OK; 861 } 862 863 static struct notifier_block kfence_reboot_notifier = { 864 .notifier_call = kfence_reboot_callback, 865 .priority = INT_MAX, /* Run early to stop timers ASAP */ 866 }; 867 868 static void wake_up_kfence_timer(struct irq_work *work) 869 { 870 wake_up(&allocation_wait); 871 } 872 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer); 873 #endif 874 875 /* 876 * Set up delayed work, which will enable and disable the static key. We need to 877 * use a work queue (rather than a simple timer), since enabling and disabling a 878 * static key cannot be done from an interrupt. 879 * 880 * Note: Toggling a static branch currently causes IPIs, and here we'll end up 881 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with 882 * more aggressive sampling intervals), we could get away with a variant that 883 * avoids IPIs, at the cost of not immediately capturing allocations if the 884 * instructions remain cached. 885 */ 886 static void toggle_allocation_gate(struct work_struct *work) 887 { 888 if (!READ_ONCE(kfence_enabled)) 889 return; 890 891 atomic_set(&kfence_allocation_gate, -kfence_burst); 892 #ifdef CONFIG_KFENCE_STATIC_KEYS 893 /* Enable static key, and await allocation to happen. */ 894 static_branch_enable(&kfence_allocation_key); 895 896 wait_event_idle(allocation_wait, 897 atomic_read(&kfence_allocation_gate) > 0 || 898 !READ_ONCE(kfence_enabled)); 899 900 /* Disable static key and reset timer. */ 901 static_branch_disable(&kfence_allocation_key); 902 #endif 903 queue_delayed_work(system_unbound_wq, &kfence_timer, 904 msecs_to_jiffies(kfence_sample_interval)); 905 } 906 907 /* === Public interface ===================================================== */ 908 909 void __init kfence_alloc_pool_and_metadata(void) 910 { 911 if (!kfence_sample_interval) 912 return; 913 914 /* 915 * If the pool has already been initialized by arch, there is no need to 916 * re-allocate the memory pool. 917 */ 918 if (!__kfence_pool) 919 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 920 921 if (!__kfence_pool) { 922 pr_err("failed to allocate pool\n"); 923 return; 924 } 925 926 /* The memory allocated by memblock has been zeroed out. */ 927 kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE); 928 if (!kfence_metadata_init) { 929 pr_err("failed to allocate metadata\n"); 930 memblock_free(__kfence_pool, KFENCE_POOL_SIZE); 931 __kfence_pool = NULL; 932 } 933 } 934 935 static void kfence_init_enable(void) 936 { 937 if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS)) 938 static_branch_enable(&kfence_allocation_key); 939 940 if (kfence_deferrable) 941 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate); 942 else 943 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate); 944 945 if (kfence_check_on_panic) 946 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier); 947 948 #ifdef CONFIG_KFENCE_STATIC_KEYS 949 register_reboot_notifier(&kfence_reboot_notifier); 950 #endif 951 952 WRITE_ONCE(kfence_enabled, true); 953 queue_delayed_work(system_unbound_wq, &kfence_timer, 0); 954 955 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE, 956 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool, 957 (void *)(__kfence_pool + KFENCE_POOL_SIZE)); 958 } 959 960 void __init kfence_init(void) 961 { 962 stack_hash_seed = get_random_u32(); 963 964 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ 965 if (!kfence_sample_interval) 966 return; 967 968 if (!kfence_init_pool_early()) { 969 pr_err("%s failed\n", __func__); 970 return; 971 } 972 973 kfence_init_enable(); 974 } 975 976 static int kfence_init_late(void) 977 { 978 const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE; 979 const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE; 980 unsigned long addr = (unsigned long)__kfence_pool; 981 unsigned long free_size = KFENCE_POOL_SIZE; 982 int err = -ENOMEM; 983 984 #ifdef CONFIG_CONTIG_ALLOC 985 struct page *pages; 986 987 pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node, 988 NULL); 989 if (!pages) 990 return -ENOMEM; 991 992 __kfence_pool = page_to_virt(pages); 993 pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node, 994 NULL); 995 if (pages) 996 kfence_metadata_init = page_to_virt(pages); 997 #else 998 if (nr_pages_pool > MAX_ORDER_NR_PAGES || 999 nr_pages_meta > MAX_ORDER_NR_PAGES) { 1000 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n"); 1001 return -EINVAL; 1002 } 1003 1004 __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL); 1005 if (!__kfence_pool) 1006 return -ENOMEM; 1007 1008 kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL); 1009 #endif 1010 1011 if (!kfence_metadata_init) 1012 goto free_pool; 1013 1014 memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE); 1015 addr = kfence_init_pool(); 1016 if (!addr) { 1017 kfence_init_enable(); 1018 kfence_debugfs_init(); 1019 return 0; 1020 } 1021 1022 pr_err("%s failed\n", __func__); 1023 free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool); 1024 err = -EBUSY; 1025 1026 #ifdef CONFIG_CONTIG_ALLOC 1027 free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)), 1028 nr_pages_meta); 1029 free_pool: 1030 free_contig_range(page_to_pfn(virt_to_page((void *)addr)), 1031 free_size / PAGE_SIZE); 1032 #else 1033 free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE); 1034 free_pool: 1035 free_pages_exact((void *)addr, free_size); 1036 #endif 1037 1038 kfence_metadata_init = NULL; 1039 __kfence_pool = NULL; 1040 return err; 1041 } 1042 1043 static int kfence_enable_late(void) 1044 { 1045 if (!__kfence_pool) 1046 return kfence_init_late(); 1047 1048 WRITE_ONCE(kfence_enabled, true); 1049 queue_delayed_work(system_unbound_wq, &kfence_timer, 0); 1050 pr_info("re-enabled\n"); 1051 return 0; 1052 } 1053 1054 void kfence_shutdown_cache(struct kmem_cache *s) 1055 { 1056 unsigned long flags; 1057 struct kfence_metadata *meta; 1058 int i; 1059 1060 /* Pairs with release in kfence_init_pool(). */ 1061 if (!smp_load_acquire(&kfence_metadata)) 1062 return; 1063 1064 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 1065 bool in_use; 1066 1067 meta = &kfence_metadata[i]; 1068 1069 /* 1070 * If we observe some inconsistent cache and state pair where we 1071 * should have returned false here, cache destruction is racing 1072 * with either kmem_cache_alloc() or kmem_cache_free(). Taking 1073 * the lock will not help, as different critical section 1074 * serialization will have the same outcome. 1075 */ 1076 if (READ_ONCE(meta->cache) != s || !kfence_obj_allocated(meta)) 1077 continue; 1078 1079 raw_spin_lock_irqsave(&meta->lock, flags); 1080 in_use = meta->cache == s && kfence_obj_allocated(meta); 1081 raw_spin_unlock_irqrestore(&meta->lock, flags); 1082 1083 if (in_use) { 1084 /* 1085 * This cache still has allocations, and we should not 1086 * release them back into the freelist so they can still 1087 * safely be used and retain the kernel's default 1088 * behaviour of keeping the allocations alive (leak the 1089 * cache); however, they effectively become "zombie 1090 * allocations" as the KFENCE objects are the only ones 1091 * still in use and the owning cache is being destroyed. 1092 * 1093 * We mark them freed, so that any subsequent use shows 1094 * more useful error messages that will include stack 1095 * traces of the user of the object, the original 1096 * allocation, and caller to shutdown_cache(). 1097 */ 1098 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true); 1099 } 1100 } 1101 1102 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 1103 meta = &kfence_metadata[i]; 1104 1105 /* See above. */ 1106 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) 1107 continue; 1108 1109 raw_spin_lock_irqsave(&meta->lock, flags); 1110 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) 1111 meta->cache = NULL; 1112 raw_spin_unlock_irqrestore(&meta->lock, flags); 1113 } 1114 } 1115 1116 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) 1117 { 1118 unsigned long stack_entries[KFENCE_STACK_DEPTH]; 1119 size_t num_stack_entries; 1120 u32 alloc_stack_hash; 1121 int allocation_gate; 1122 1123 /* 1124 * Perform size check before switching kfence_allocation_gate, so that 1125 * we don't disable KFENCE without making an allocation. 1126 */ 1127 if (size > PAGE_SIZE) { 1128 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); 1129 return NULL; 1130 } 1131 1132 /* 1133 * Skip allocations from non-default zones, including DMA. We cannot 1134 * guarantee that pages in the KFENCE pool will have the requested 1135 * properties (e.g. reside in DMAable memory). 1136 */ 1137 if ((flags & GFP_ZONEMASK) || 1138 ((flags & __GFP_THISNODE) && num_online_nodes() > 1) || 1139 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) { 1140 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); 1141 return NULL; 1142 } 1143 1144 /* 1145 * Skip allocations for this slab, if KFENCE has been disabled for 1146 * this slab. 1147 */ 1148 if (s->flags & SLAB_SKIP_KFENCE) 1149 return NULL; 1150 1151 allocation_gate = atomic_inc_return(&kfence_allocation_gate); 1152 if (allocation_gate > 1) 1153 return NULL; 1154 #ifdef CONFIG_KFENCE_STATIC_KEYS 1155 /* 1156 * waitqueue_active() is fully ordered after the update of 1157 * kfence_allocation_gate per atomic_inc_return(). 1158 */ 1159 if (allocation_gate == 1 && waitqueue_active(&allocation_wait)) { 1160 /* 1161 * Calling wake_up() here may deadlock when allocations happen 1162 * from within timer code. Use an irq_work to defer it. 1163 */ 1164 irq_work_queue(&wake_up_kfence_timer_work); 1165 } 1166 #endif 1167 1168 if (!READ_ONCE(kfence_enabled)) 1169 return NULL; 1170 1171 num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0); 1172 1173 /* 1174 * Do expensive check for coverage of allocation in slow-path after 1175 * allocation_gate has already become non-zero, even though it might 1176 * mean not making any allocation within a given sample interval. 1177 * 1178 * This ensures reasonable allocation coverage when the pool is almost 1179 * full, including avoiding long-lived allocations of the same source 1180 * filling up the pool (e.g. pagecache allocations). 1181 */ 1182 alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries); 1183 if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) { 1184 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]); 1185 return NULL; 1186 } 1187 1188 return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries, 1189 alloc_stack_hash); 1190 } 1191 1192 size_t kfence_ksize(const void *addr) 1193 { 1194 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 1195 1196 /* 1197 * Read locklessly -- if there is a race with __kfence_alloc(), this is 1198 * either a use-after-free or invalid access. 1199 */ 1200 return meta ? meta->size : 0; 1201 } 1202 1203 void *kfence_object_start(const void *addr) 1204 { 1205 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 1206 1207 /* 1208 * Read locklessly -- if there is a race with __kfence_alloc(), this is 1209 * either a use-after-free or invalid access. 1210 */ 1211 return meta ? (void *)meta->addr : NULL; 1212 } 1213 1214 void __kfence_free(void *addr) 1215 { 1216 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 1217 1218 #ifdef CONFIG_MEMCG 1219 KFENCE_WARN_ON(meta->obj_exts.objcg); 1220 #endif 1221 /* 1222 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing 1223 * the object, as the object page may be recycled for other-typed 1224 * objects once it has been freed. meta->cache may be NULL if the cache 1225 * was destroyed. 1226 * Save the stack trace here so that reports show where the user freed 1227 * the object. 1228 */ 1229 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) { 1230 unsigned long flags; 1231 1232 raw_spin_lock_irqsave(&meta->lock, flags); 1233 metadata_update_state(meta, KFENCE_OBJECT_RCU_FREEING, NULL, 0); 1234 raw_spin_unlock_irqrestore(&meta->lock, flags); 1235 call_rcu(&meta->rcu_head, rcu_guarded_free); 1236 } else { 1237 kfence_guarded_free(addr, meta, false); 1238 } 1239 } 1240 1241 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs) 1242 { 1243 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; 1244 struct kfence_metadata *to_report = NULL; 1245 enum kfence_error_type error_type; 1246 unsigned long flags; 1247 1248 if (!is_kfence_address((void *)addr)) 1249 return false; 1250 1251 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ 1252 return kfence_unprotect(addr); /* ... unprotect and proceed. */ 1253 1254 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 1255 1256 if (page_index % 2) { 1257 /* This is a redzone, report a buffer overflow. */ 1258 struct kfence_metadata *meta; 1259 int distance = 0; 1260 1261 meta = addr_to_metadata(addr - PAGE_SIZE); 1262 if (meta && kfence_obj_allocated(meta)) { 1263 to_report = meta; 1264 /* Data race ok; distance calculation approximate. */ 1265 distance = addr - data_race(meta->addr + meta->size); 1266 } 1267 1268 meta = addr_to_metadata(addr + PAGE_SIZE); 1269 if (meta && kfence_obj_allocated(meta)) { 1270 /* Data race ok; distance calculation approximate. */ 1271 if (!to_report || distance > data_race(meta->addr) - addr) 1272 to_report = meta; 1273 } 1274 1275 if (!to_report) 1276 goto out; 1277 1278 raw_spin_lock_irqsave(&to_report->lock, flags); 1279 to_report->unprotected_page = addr; 1280 error_type = KFENCE_ERROR_OOB; 1281 1282 /* 1283 * If the object was freed before we took the look we can still 1284 * report this as an OOB -- the report will simply show the 1285 * stacktrace of the free as well. 1286 */ 1287 } else { 1288 to_report = addr_to_metadata(addr); 1289 if (!to_report) 1290 goto out; 1291 1292 raw_spin_lock_irqsave(&to_report->lock, flags); 1293 error_type = KFENCE_ERROR_UAF; 1294 /* 1295 * We may race with __kfence_alloc(), and it is possible that a 1296 * freed object may be reallocated. We simply report this as a 1297 * use-after-free, with the stack trace showing the place where 1298 * the object was re-allocated. 1299 */ 1300 } 1301 1302 out: 1303 if (to_report) { 1304 kfence_report_error(addr, is_write, regs, to_report, error_type); 1305 raw_spin_unlock_irqrestore(&to_report->lock, flags); 1306 } else { 1307 /* This may be a UAF or OOB access, but we can't be sure. */ 1308 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID); 1309 } 1310 1311 return kfence_unprotect(addr); /* Unprotect and let access proceed. */ 1312 } 1313