1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KFENCE guarded object allocator and fault handling. 4 * 5 * Copyright (C) 2020, Google LLC. 6 */ 7 8 #define pr_fmt(fmt) "kfence: " fmt 9 10 #include <linux/atomic.h> 11 #include <linux/bug.h> 12 #include <linux/debugfs.h> 13 #include <linux/hash.h> 14 #include <linux/irq_work.h> 15 #include <linux/jhash.h> 16 #include <linux/kcsan-checks.h> 17 #include <linux/kfence.h> 18 #include <linux/kmemleak.h> 19 #include <linux/list.h> 20 #include <linux/lockdep.h> 21 #include <linux/log2.h> 22 #include <linux/memblock.h> 23 #include <linux/moduleparam.h> 24 #include <linux/notifier.h> 25 #include <linux/panic_notifier.h> 26 #include <linux/random.h> 27 #include <linux/rcupdate.h> 28 #include <linux/sched/clock.h> 29 #include <linux/seq_file.h> 30 #include <linux/slab.h> 31 #include <linux/spinlock.h> 32 #include <linux/string.h> 33 34 #include <asm/kfence.h> 35 36 #include "kfence.h" 37 38 /* Disables KFENCE on the first warning assuming an irrecoverable error. */ 39 #define KFENCE_WARN_ON(cond) \ 40 ({ \ 41 const bool __cond = WARN_ON(cond); \ 42 if (unlikely(__cond)) { \ 43 WRITE_ONCE(kfence_enabled, false); \ 44 disabled_by_warn = true; \ 45 } \ 46 __cond; \ 47 }) 48 49 /* === Data ================================================================= */ 50 51 static bool kfence_enabled __read_mostly; 52 static bool disabled_by_warn __read_mostly; 53 54 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL; 55 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */ 56 57 #ifdef MODULE_PARAM_PREFIX 58 #undef MODULE_PARAM_PREFIX 59 #endif 60 #define MODULE_PARAM_PREFIX "kfence." 61 62 static int kfence_enable_late(void); 63 static int param_set_sample_interval(const char *val, const struct kernel_param *kp) 64 { 65 unsigned long num; 66 int ret = kstrtoul(val, 0, &num); 67 68 if (ret < 0) 69 return ret; 70 71 /* Using 0 to indicate KFENCE is disabled. */ 72 if (!num && READ_ONCE(kfence_enabled)) { 73 pr_info("disabled\n"); 74 WRITE_ONCE(kfence_enabled, false); 75 } 76 77 *((unsigned long *)kp->arg) = num; 78 79 if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING) 80 return disabled_by_warn ? -EINVAL : kfence_enable_late(); 81 return 0; 82 } 83 84 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp) 85 { 86 if (!READ_ONCE(kfence_enabled)) 87 return sprintf(buffer, "0\n"); 88 89 return param_get_ulong(buffer, kp); 90 } 91 92 static const struct kernel_param_ops sample_interval_param_ops = { 93 .set = param_set_sample_interval, 94 .get = param_get_sample_interval, 95 }; 96 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600); 97 98 /* Pool usage% threshold when currently covered allocations are skipped. */ 99 static unsigned long kfence_skip_covered_thresh __read_mostly = 75; 100 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644); 101 102 /* If true, use a deferrable timer. */ 103 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE); 104 module_param_named(deferrable, kfence_deferrable, bool, 0444); 105 106 /* If true, check all canary bytes on panic. */ 107 static bool kfence_check_on_panic __read_mostly; 108 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444); 109 110 /* The pool of pages used for guard pages and objects. */ 111 char *__kfence_pool __read_mostly; 112 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */ 113 114 /* 115 * Per-object metadata, with one-to-one mapping of object metadata to 116 * backing pages (in __kfence_pool). 117 */ 118 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0); 119 struct kfence_metadata *kfence_metadata __read_mostly; 120 121 /* 122 * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache(). 123 * So introduce kfence_metadata_init to initialize metadata, and then make 124 * kfence_metadata visible after initialization is successful. This prevents 125 * potential UAF or access to uninitialized metadata. 126 */ 127 static struct kfence_metadata *kfence_metadata_init __read_mostly; 128 129 /* Freelist with available objects. */ 130 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist); 131 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */ 132 133 /* 134 * The static key to set up a KFENCE allocation; or if static keys are not used 135 * to gate allocations, to avoid a load and compare if KFENCE is disabled. 136 */ 137 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key); 138 139 /* Gates the allocation, ensuring only one succeeds in a given period. */ 140 atomic_t kfence_allocation_gate = ATOMIC_INIT(1); 141 142 /* 143 * A Counting Bloom filter of allocation coverage: limits currently covered 144 * allocations of the same source filling up the pool. 145 * 146 * Assuming a range of 15%-85% unique allocations in the pool at any point in 147 * time, the below parameters provide a probablity of 0.02-0.33 for false 148 * positive hits respectively: 149 * 150 * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM 151 */ 152 #define ALLOC_COVERED_HNUM 2 153 #define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2) 154 #define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER) 155 #define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER) 156 #define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1) 157 static atomic_t alloc_covered[ALLOC_COVERED_SIZE]; 158 159 /* Stack depth used to determine uniqueness of an allocation. */ 160 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8) 161 162 /* 163 * Randomness for stack hashes, making the same collisions across reboots and 164 * different machines less likely. 165 */ 166 static u32 stack_hash_seed __ro_after_init; 167 168 /* Statistics counters for debugfs. */ 169 enum kfence_counter_id { 170 KFENCE_COUNTER_ALLOCATED, 171 KFENCE_COUNTER_ALLOCS, 172 KFENCE_COUNTER_FREES, 173 KFENCE_COUNTER_ZOMBIES, 174 KFENCE_COUNTER_BUGS, 175 KFENCE_COUNTER_SKIP_INCOMPAT, 176 KFENCE_COUNTER_SKIP_CAPACITY, 177 KFENCE_COUNTER_SKIP_COVERED, 178 KFENCE_COUNTER_COUNT, 179 }; 180 static atomic_long_t counters[KFENCE_COUNTER_COUNT]; 181 static const char *const counter_names[] = { 182 [KFENCE_COUNTER_ALLOCATED] = "currently allocated", 183 [KFENCE_COUNTER_ALLOCS] = "total allocations", 184 [KFENCE_COUNTER_FREES] = "total frees", 185 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations", 186 [KFENCE_COUNTER_BUGS] = "total bugs", 187 [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)", 188 [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)", 189 [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)", 190 }; 191 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT); 192 193 /* === Internals ============================================================ */ 194 195 static inline bool should_skip_covered(void) 196 { 197 unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100; 198 199 return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh; 200 } 201 202 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries) 203 { 204 num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH); 205 num_entries = filter_irq_stacks(stack_entries, num_entries); 206 return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed); 207 } 208 209 /* 210 * Adds (or subtracts) count @val for allocation stack trace hash 211 * @alloc_stack_hash from Counting Bloom filter. 212 */ 213 static void alloc_covered_add(u32 alloc_stack_hash, int val) 214 { 215 int i; 216 217 for (i = 0; i < ALLOC_COVERED_HNUM; i++) { 218 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]); 219 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); 220 } 221 } 222 223 /* 224 * Returns true if the allocation stack trace hash @alloc_stack_hash is 225 * currently contained (non-zero count) in Counting Bloom filter. 226 */ 227 static bool alloc_covered_contains(u32 alloc_stack_hash) 228 { 229 int i; 230 231 for (i = 0; i < ALLOC_COVERED_HNUM; i++) { 232 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK])) 233 return false; 234 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash); 235 } 236 237 return true; 238 } 239 240 static bool kfence_protect(unsigned long addr) 241 { 242 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true)); 243 } 244 245 static bool kfence_unprotect(unsigned long addr) 246 { 247 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false)); 248 } 249 250 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta) 251 { 252 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2; 253 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset]; 254 255 /* The checks do not affect performance; only called from slow-paths. */ 256 257 /* Only call with a pointer into kfence_metadata. */ 258 if (KFENCE_WARN_ON(meta < kfence_metadata || 259 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS)) 260 return 0; 261 262 /* 263 * This metadata object only ever maps to 1 page; verify that the stored 264 * address is in the expected range. 265 */ 266 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr)) 267 return 0; 268 269 return pageaddr; 270 } 271 272 /* 273 * Update the object's metadata state, including updating the alloc/free stacks 274 * depending on the state transition. 275 */ 276 static noinline void 277 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next, 278 unsigned long *stack_entries, size_t num_stack_entries) 279 { 280 struct kfence_track *track = 281 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track; 282 283 lockdep_assert_held(&meta->lock); 284 285 if (stack_entries) { 286 memcpy(track->stack_entries, stack_entries, 287 num_stack_entries * sizeof(stack_entries[0])); 288 } else { 289 /* 290 * Skip over 1 (this) functions; noinline ensures we do not 291 * accidentally skip over the caller by never inlining. 292 */ 293 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1); 294 } 295 track->num_stack_entries = num_stack_entries; 296 track->pid = task_pid_nr(current); 297 track->cpu = raw_smp_processor_id(); 298 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */ 299 300 /* 301 * Pairs with READ_ONCE() in 302 * kfence_shutdown_cache(), 303 * kfence_handle_page_fault(). 304 */ 305 WRITE_ONCE(meta->state, next); 306 } 307 308 #ifdef CONFIG_KMSAN 309 #define check_canary_attributes noinline __no_kmsan_checks 310 #else 311 #define check_canary_attributes inline 312 #endif 313 314 /* Check canary byte at @addr. */ 315 static check_canary_attributes bool check_canary_byte(u8 *addr) 316 { 317 struct kfence_metadata *meta; 318 unsigned long flags; 319 320 if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr))) 321 return true; 322 323 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 324 325 meta = addr_to_metadata((unsigned long)addr); 326 raw_spin_lock_irqsave(&meta->lock, flags); 327 kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION); 328 raw_spin_unlock_irqrestore(&meta->lock, flags); 329 330 return false; 331 } 332 333 static inline void set_canary(const struct kfence_metadata *meta) 334 { 335 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); 336 unsigned long addr = pageaddr; 337 338 /* 339 * The canary may be written to part of the object memory, but it does 340 * not affect it. The user should initialize the object before using it. 341 */ 342 for (; addr < meta->addr; addr += sizeof(u64)) 343 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64; 344 345 addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64)); 346 for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) 347 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64; 348 } 349 350 static check_canary_attributes void 351 check_canary(const struct kfence_metadata *meta) 352 { 353 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); 354 unsigned long addr = pageaddr; 355 356 /* 357 * We'll iterate over each canary byte per-side until a corrupted byte 358 * is found. However, we'll still iterate over the canary bytes to the 359 * right of the object even if there was an error in the canary bytes to 360 * the left of the object. Specifically, if check_canary_byte() 361 * generates an error, showing both sides might give more clues as to 362 * what the error is about when displaying which bytes were corrupted. 363 */ 364 365 /* Apply to left of object. */ 366 for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) { 367 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) 368 break; 369 } 370 371 /* 372 * If the canary is corrupted in a certain 64 bytes, or the canary 373 * memory cannot be completely covered by multiple consecutive 64 bytes, 374 * it needs to be checked one by one. 375 */ 376 for (; addr < meta->addr; addr++) { 377 if (unlikely(!check_canary_byte((u8 *)addr))) 378 break; 379 } 380 381 /* Apply to right of object. */ 382 for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) { 383 if (unlikely(!check_canary_byte((u8 *)addr))) 384 return; 385 } 386 for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) { 387 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) { 388 389 for (; addr - pageaddr < PAGE_SIZE; addr++) { 390 if (!check_canary_byte((u8 *)addr)) 391 return; 392 } 393 } 394 } 395 } 396 397 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp, 398 unsigned long *stack_entries, size_t num_stack_entries, 399 u32 alloc_stack_hash) 400 { 401 struct kfence_metadata *meta = NULL; 402 unsigned long flags; 403 struct slab *slab; 404 void *addr; 405 const bool random_right_allocate = get_random_u32_below(2); 406 const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS && 407 !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS); 408 409 /* Try to obtain a free object. */ 410 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 411 if (!list_empty(&kfence_freelist)) { 412 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list); 413 list_del_init(&meta->list); 414 } 415 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 416 if (!meta) { 417 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]); 418 return NULL; 419 } 420 421 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) { 422 /* 423 * This is extremely unlikely -- we are reporting on a 424 * use-after-free, which locked meta->lock, and the reporting 425 * code via printk calls kmalloc() which ends up in 426 * kfence_alloc() and tries to grab the same object that we're 427 * reporting on. While it has never been observed, lockdep does 428 * report that there is a possibility of deadlock. Fix it by 429 * using trylock and bailing out gracefully. 430 */ 431 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 432 /* Put the object back on the freelist. */ 433 list_add_tail(&meta->list, &kfence_freelist); 434 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 435 436 return NULL; 437 } 438 439 meta->addr = metadata_to_pageaddr(meta); 440 /* Unprotect if we're reusing this page. */ 441 if (meta->state == KFENCE_OBJECT_FREED) 442 kfence_unprotect(meta->addr); 443 444 /* 445 * Note: for allocations made before RNG initialization, will always 446 * return zero. We still benefit from enabling KFENCE as early as 447 * possible, even when the RNG is not yet available, as this will allow 448 * KFENCE to detect bugs due to earlier allocations. The only downside 449 * is that the out-of-bounds accesses detected are deterministic for 450 * such allocations. 451 */ 452 if (random_right_allocate) { 453 /* Allocate on the "right" side, re-calculate address. */ 454 meta->addr += PAGE_SIZE - size; 455 meta->addr = ALIGN_DOWN(meta->addr, cache->align); 456 } 457 458 addr = (void *)meta->addr; 459 460 /* Update remaining metadata. */ 461 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries); 462 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ 463 WRITE_ONCE(meta->cache, cache); 464 meta->size = size; 465 meta->alloc_stack_hash = alloc_stack_hash; 466 raw_spin_unlock_irqrestore(&meta->lock, flags); 467 468 alloc_covered_add(alloc_stack_hash, 1); 469 470 /* Set required slab fields. */ 471 slab = virt_to_slab((void *)meta->addr); 472 slab->slab_cache = cache; 473 slab->objects = 1; 474 475 /* Memory initialization. */ 476 set_canary(meta); 477 478 /* 479 * We check slab_want_init_on_alloc() ourselves, rather than letting 480 * SL*B do the initialization, as otherwise we might overwrite KFENCE's 481 * redzone. 482 */ 483 if (unlikely(slab_want_init_on_alloc(gfp, cache))) 484 memzero_explicit(addr, size); 485 if (cache->ctor) 486 cache->ctor(addr); 487 488 if (random_fault) 489 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ 490 491 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); 492 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]); 493 494 return addr; 495 } 496 497 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie) 498 { 499 struct kcsan_scoped_access assert_page_exclusive; 500 unsigned long flags; 501 bool init; 502 503 raw_spin_lock_irqsave(&meta->lock, flags); 504 505 if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) { 506 /* Invalid or double-free, bail out. */ 507 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 508 kfence_report_error((unsigned long)addr, false, NULL, meta, 509 KFENCE_ERROR_INVALID_FREE); 510 raw_spin_unlock_irqrestore(&meta->lock, flags); 511 return; 512 } 513 514 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ 515 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, 516 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, 517 &assert_page_exclusive); 518 519 if (CONFIG_KFENCE_STRESS_TEST_FAULTS) 520 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ 521 522 /* Restore page protection if there was an OOB access. */ 523 if (meta->unprotected_page) { 524 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE); 525 kfence_protect(meta->unprotected_page); 526 meta->unprotected_page = 0; 527 } 528 529 /* Mark the object as freed. */ 530 metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0); 531 init = slab_want_init_on_free(meta->cache); 532 raw_spin_unlock_irqrestore(&meta->lock, flags); 533 534 alloc_covered_add(meta->alloc_stack_hash, -1); 535 536 /* Check canary bytes for memory corruption. */ 537 check_canary(meta); 538 539 /* 540 * Clear memory if init-on-free is set. While we protect the page, the 541 * data is still there, and after a use-after-free is detected, we 542 * unprotect the page, so the data is still accessible. 543 */ 544 if (!zombie && unlikely(init)) 545 memzero_explicit(addr, meta->size); 546 547 /* Protect to detect use-after-frees. */ 548 kfence_protect((unsigned long)addr); 549 550 kcsan_end_scoped_access(&assert_page_exclusive); 551 if (!zombie) { 552 /* Add it to the tail of the freelist for reuse. */ 553 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 554 KFENCE_WARN_ON(!list_empty(&meta->list)); 555 list_add_tail(&meta->list, &kfence_freelist); 556 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 557 558 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); 559 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); 560 } else { 561 /* See kfence_shutdown_cache(). */ 562 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]); 563 } 564 } 565 566 static void rcu_guarded_free(struct rcu_head *h) 567 { 568 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); 569 570 kfence_guarded_free((void *)meta->addr, meta, false); 571 } 572 573 /* 574 * Initialization of the KFENCE pool after its allocation. 575 * Returns 0 on success; otherwise returns the address up to 576 * which partial initialization succeeded. 577 */ 578 static unsigned long kfence_init_pool(void) 579 { 580 unsigned long addr; 581 struct page *pages; 582 int i; 583 584 if (!arch_kfence_init_pool()) 585 return (unsigned long)__kfence_pool; 586 587 addr = (unsigned long)__kfence_pool; 588 pages = virt_to_page(__kfence_pool); 589 590 /* 591 * Set up object pages: they must have PG_slab set, to avoid freeing 592 * these as real pages. 593 * 594 * We also want to avoid inserting kfence_free() in the kfree() 595 * fast-path in SLUB, and therefore need to ensure kfree() correctly 596 * enters __slab_free() slow-path. 597 */ 598 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { 599 struct slab *slab = page_slab(nth_page(pages, i)); 600 601 if (!i || (i % 2)) 602 continue; 603 604 __folio_set_slab(slab_folio(slab)); 605 #ifdef CONFIG_MEMCG 606 slab->obj_exts = (unsigned long)&kfence_metadata_init[i / 2 - 1].obj_exts | 607 MEMCG_DATA_OBJEXTS; 608 #endif 609 } 610 611 /* 612 * Protect the first 2 pages. The first page is mostly unnecessary, and 613 * merely serves as an extended guard page. However, adding one 614 * additional page in the beginning gives us an even number of pages, 615 * which simplifies the mapping of address to metadata index. 616 */ 617 for (i = 0; i < 2; i++) { 618 if (unlikely(!kfence_protect(addr))) 619 return addr; 620 621 addr += PAGE_SIZE; 622 } 623 624 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 625 struct kfence_metadata *meta = &kfence_metadata_init[i]; 626 627 /* Initialize metadata. */ 628 INIT_LIST_HEAD(&meta->list); 629 raw_spin_lock_init(&meta->lock); 630 meta->state = KFENCE_OBJECT_UNUSED; 631 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */ 632 list_add_tail(&meta->list, &kfence_freelist); 633 634 /* Protect the right redzone. */ 635 if (unlikely(!kfence_protect(addr + PAGE_SIZE))) 636 goto reset_slab; 637 638 addr += 2 * PAGE_SIZE; 639 } 640 641 /* 642 * Make kfence_metadata visible only when initialization is successful. 643 * Otherwise, if the initialization fails and kfence_metadata is freed, 644 * it may cause UAF in kfence_shutdown_cache(). 645 */ 646 smp_store_release(&kfence_metadata, kfence_metadata_init); 647 return 0; 648 649 reset_slab: 650 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { 651 struct slab *slab = page_slab(nth_page(pages, i)); 652 653 if (!i || (i % 2)) 654 continue; 655 #ifdef CONFIG_MEMCG 656 slab->obj_exts = 0; 657 #endif 658 __folio_clear_slab(slab_folio(slab)); 659 } 660 661 return addr; 662 } 663 664 static bool __init kfence_init_pool_early(void) 665 { 666 unsigned long addr; 667 668 if (!__kfence_pool) 669 return false; 670 671 addr = kfence_init_pool(); 672 673 if (!addr) { 674 /* 675 * The pool is live and will never be deallocated from this point on. 676 * Ignore the pool object from the kmemleak phys object tree, as it would 677 * otherwise overlap with allocations returned by kfence_alloc(), which 678 * are registered with kmemleak through the slab post-alloc hook. 679 */ 680 kmemleak_ignore_phys(__pa(__kfence_pool)); 681 return true; 682 } 683 684 /* 685 * Only release unprotected pages, and do not try to go back and change 686 * page attributes due to risk of failing to do so as well. If changing 687 * page attributes for some pages fails, it is very likely that it also 688 * fails for the first page, and therefore expect addr==__kfence_pool in 689 * most failure cases. 690 */ 691 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool)); 692 __kfence_pool = NULL; 693 694 memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE); 695 kfence_metadata_init = NULL; 696 697 return false; 698 } 699 700 /* === DebugFS Interface ==================================================== */ 701 702 static int stats_show(struct seq_file *seq, void *v) 703 { 704 int i; 705 706 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); 707 for (i = 0; i < KFENCE_COUNTER_COUNT; i++) 708 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); 709 710 return 0; 711 } 712 DEFINE_SHOW_ATTRIBUTE(stats); 713 714 /* 715 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. 716 * start_object() and next_object() return the object index + 1, because NULL is used 717 * to stop iteration. 718 */ 719 static void *start_object(struct seq_file *seq, loff_t *pos) 720 { 721 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 722 return (void *)((long)*pos + 1); 723 return NULL; 724 } 725 726 static void stop_object(struct seq_file *seq, void *v) 727 { 728 } 729 730 static void *next_object(struct seq_file *seq, void *v, loff_t *pos) 731 { 732 ++*pos; 733 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 734 return (void *)((long)*pos + 1); 735 return NULL; 736 } 737 738 static int show_object(struct seq_file *seq, void *v) 739 { 740 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; 741 unsigned long flags; 742 743 raw_spin_lock_irqsave(&meta->lock, flags); 744 kfence_print_object(seq, meta); 745 raw_spin_unlock_irqrestore(&meta->lock, flags); 746 seq_puts(seq, "---------------------------------\n"); 747 748 return 0; 749 } 750 751 static const struct seq_operations objects_sops = { 752 .start = start_object, 753 .next = next_object, 754 .stop = stop_object, 755 .show = show_object, 756 }; 757 DEFINE_SEQ_ATTRIBUTE(objects); 758 759 static int kfence_debugfs_init(void) 760 { 761 struct dentry *kfence_dir; 762 763 if (!READ_ONCE(kfence_enabled)) 764 return 0; 765 766 kfence_dir = debugfs_create_dir("kfence", NULL); 767 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops); 768 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); 769 return 0; 770 } 771 772 late_initcall(kfence_debugfs_init); 773 774 /* === Panic Notifier ====================================================== */ 775 776 static void kfence_check_all_canary(void) 777 { 778 int i; 779 780 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 781 struct kfence_metadata *meta = &kfence_metadata[i]; 782 783 if (meta->state == KFENCE_OBJECT_ALLOCATED) 784 check_canary(meta); 785 } 786 } 787 788 static int kfence_check_canary_callback(struct notifier_block *nb, 789 unsigned long reason, void *arg) 790 { 791 kfence_check_all_canary(); 792 return NOTIFY_OK; 793 } 794 795 static struct notifier_block kfence_check_canary_notifier = { 796 .notifier_call = kfence_check_canary_callback, 797 }; 798 799 /* === Allocation Gate Timer ================================================ */ 800 801 static struct delayed_work kfence_timer; 802 803 #ifdef CONFIG_KFENCE_STATIC_KEYS 804 /* Wait queue to wake up allocation-gate timer task. */ 805 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait); 806 807 static void wake_up_kfence_timer(struct irq_work *work) 808 { 809 wake_up(&allocation_wait); 810 } 811 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer); 812 #endif 813 814 /* 815 * Set up delayed work, which will enable and disable the static key. We need to 816 * use a work queue (rather than a simple timer), since enabling and disabling a 817 * static key cannot be done from an interrupt. 818 * 819 * Note: Toggling a static branch currently causes IPIs, and here we'll end up 820 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with 821 * more aggressive sampling intervals), we could get away with a variant that 822 * avoids IPIs, at the cost of not immediately capturing allocations if the 823 * instructions remain cached. 824 */ 825 static void toggle_allocation_gate(struct work_struct *work) 826 { 827 if (!READ_ONCE(kfence_enabled)) 828 return; 829 830 atomic_set(&kfence_allocation_gate, 0); 831 #ifdef CONFIG_KFENCE_STATIC_KEYS 832 /* Enable static key, and await allocation to happen. */ 833 static_branch_enable(&kfence_allocation_key); 834 835 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate)); 836 837 /* Disable static key and reset timer. */ 838 static_branch_disable(&kfence_allocation_key); 839 #endif 840 queue_delayed_work(system_unbound_wq, &kfence_timer, 841 msecs_to_jiffies(kfence_sample_interval)); 842 } 843 844 /* === Public interface ===================================================== */ 845 846 void __init kfence_alloc_pool_and_metadata(void) 847 { 848 if (!kfence_sample_interval) 849 return; 850 851 /* 852 * If the pool has already been initialized by arch, there is no need to 853 * re-allocate the memory pool. 854 */ 855 if (!__kfence_pool) 856 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 857 858 if (!__kfence_pool) { 859 pr_err("failed to allocate pool\n"); 860 return; 861 } 862 863 /* The memory allocated by memblock has been zeroed out. */ 864 kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE); 865 if (!kfence_metadata_init) { 866 pr_err("failed to allocate metadata\n"); 867 memblock_free(__kfence_pool, KFENCE_POOL_SIZE); 868 __kfence_pool = NULL; 869 } 870 } 871 872 static void kfence_init_enable(void) 873 { 874 if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS)) 875 static_branch_enable(&kfence_allocation_key); 876 877 if (kfence_deferrable) 878 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate); 879 else 880 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate); 881 882 if (kfence_check_on_panic) 883 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier); 884 885 WRITE_ONCE(kfence_enabled, true); 886 queue_delayed_work(system_unbound_wq, &kfence_timer, 0); 887 888 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE, 889 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool, 890 (void *)(__kfence_pool + KFENCE_POOL_SIZE)); 891 } 892 893 void __init kfence_init(void) 894 { 895 stack_hash_seed = get_random_u32(); 896 897 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ 898 if (!kfence_sample_interval) 899 return; 900 901 if (!kfence_init_pool_early()) { 902 pr_err("%s failed\n", __func__); 903 return; 904 } 905 906 kfence_init_enable(); 907 } 908 909 static int kfence_init_late(void) 910 { 911 const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE; 912 const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE; 913 unsigned long addr = (unsigned long)__kfence_pool; 914 unsigned long free_size = KFENCE_POOL_SIZE; 915 int err = -ENOMEM; 916 917 #ifdef CONFIG_CONTIG_ALLOC 918 struct page *pages; 919 920 pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node, 921 NULL); 922 if (!pages) 923 return -ENOMEM; 924 925 __kfence_pool = page_to_virt(pages); 926 pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node, 927 NULL); 928 if (pages) 929 kfence_metadata_init = page_to_virt(pages); 930 #else 931 if (nr_pages_pool > MAX_ORDER_NR_PAGES || 932 nr_pages_meta > MAX_ORDER_NR_PAGES) { 933 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n"); 934 return -EINVAL; 935 } 936 937 __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL); 938 if (!__kfence_pool) 939 return -ENOMEM; 940 941 kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL); 942 #endif 943 944 if (!kfence_metadata_init) 945 goto free_pool; 946 947 memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE); 948 addr = kfence_init_pool(); 949 if (!addr) { 950 kfence_init_enable(); 951 kfence_debugfs_init(); 952 return 0; 953 } 954 955 pr_err("%s failed\n", __func__); 956 free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool); 957 err = -EBUSY; 958 959 #ifdef CONFIG_CONTIG_ALLOC 960 free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)), 961 nr_pages_meta); 962 free_pool: 963 free_contig_range(page_to_pfn(virt_to_page((void *)addr)), 964 free_size / PAGE_SIZE); 965 #else 966 free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE); 967 free_pool: 968 free_pages_exact((void *)addr, free_size); 969 #endif 970 971 kfence_metadata_init = NULL; 972 __kfence_pool = NULL; 973 return err; 974 } 975 976 static int kfence_enable_late(void) 977 { 978 if (!__kfence_pool) 979 return kfence_init_late(); 980 981 WRITE_ONCE(kfence_enabled, true); 982 queue_delayed_work(system_unbound_wq, &kfence_timer, 0); 983 pr_info("re-enabled\n"); 984 return 0; 985 } 986 987 void kfence_shutdown_cache(struct kmem_cache *s) 988 { 989 unsigned long flags; 990 struct kfence_metadata *meta; 991 int i; 992 993 /* Pairs with release in kfence_init_pool(). */ 994 if (!smp_load_acquire(&kfence_metadata)) 995 return; 996 997 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 998 bool in_use; 999 1000 meta = &kfence_metadata[i]; 1001 1002 /* 1003 * If we observe some inconsistent cache and state pair where we 1004 * should have returned false here, cache destruction is racing 1005 * with either kmem_cache_alloc() or kmem_cache_free(). Taking 1006 * the lock will not help, as different critical section 1007 * serialization will have the same outcome. 1008 */ 1009 if (READ_ONCE(meta->cache) != s || 1010 READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED) 1011 continue; 1012 1013 raw_spin_lock_irqsave(&meta->lock, flags); 1014 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED; 1015 raw_spin_unlock_irqrestore(&meta->lock, flags); 1016 1017 if (in_use) { 1018 /* 1019 * This cache still has allocations, and we should not 1020 * release them back into the freelist so they can still 1021 * safely be used and retain the kernel's default 1022 * behaviour of keeping the allocations alive (leak the 1023 * cache); however, they effectively become "zombie 1024 * allocations" as the KFENCE objects are the only ones 1025 * still in use and the owning cache is being destroyed. 1026 * 1027 * We mark them freed, so that any subsequent use shows 1028 * more useful error messages that will include stack 1029 * traces of the user of the object, the original 1030 * allocation, and caller to shutdown_cache(). 1031 */ 1032 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true); 1033 } 1034 } 1035 1036 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 1037 meta = &kfence_metadata[i]; 1038 1039 /* See above. */ 1040 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) 1041 continue; 1042 1043 raw_spin_lock_irqsave(&meta->lock, flags); 1044 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) 1045 meta->cache = NULL; 1046 raw_spin_unlock_irqrestore(&meta->lock, flags); 1047 } 1048 } 1049 1050 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) 1051 { 1052 unsigned long stack_entries[KFENCE_STACK_DEPTH]; 1053 size_t num_stack_entries; 1054 u32 alloc_stack_hash; 1055 1056 /* 1057 * Perform size check before switching kfence_allocation_gate, so that 1058 * we don't disable KFENCE without making an allocation. 1059 */ 1060 if (size > PAGE_SIZE) { 1061 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); 1062 return NULL; 1063 } 1064 1065 /* 1066 * Skip allocations from non-default zones, including DMA. We cannot 1067 * guarantee that pages in the KFENCE pool will have the requested 1068 * properties (e.g. reside in DMAable memory). 1069 */ 1070 if ((flags & GFP_ZONEMASK) || 1071 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) { 1072 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]); 1073 return NULL; 1074 } 1075 1076 /* 1077 * Skip allocations for this slab, if KFENCE has been disabled for 1078 * this slab. 1079 */ 1080 if (s->flags & SLAB_SKIP_KFENCE) 1081 return NULL; 1082 1083 if (atomic_inc_return(&kfence_allocation_gate) > 1) 1084 return NULL; 1085 #ifdef CONFIG_KFENCE_STATIC_KEYS 1086 /* 1087 * waitqueue_active() is fully ordered after the update of 1088 * kfence_allocation_gate per atomic_inc_return(). 1089 */ 1090 if (waitqueue_active(&allocation_wait)) { 1091 /* 1092 * Calling wake_up() here may deadlock when allocations happen 1093 * from within timer code. Use an irq_work to defer it. 1094 */ 1095 irq_work_queue(&wake_up_kfence_timer_work); 1096 } 1097 #endif 1098 1099 if (!READ_ONCE(kfence_enabled)) 1100 return NULL; 1101 1102 num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0); 1103 1104 /* 1105 * Do expensive check for coverage of allocation in slow-path after 1106 * allocation_gate has already become non-zero, even though it might 1107 * mean not making any allocation within a given sample interval. 1108 * 1109 * This ensures reasonable allocation coverage when the pool is almost 1110 * full, including avoiding long-lived allocations of the same source 1111 * filling up the pool (e.g. pagecache allocations). 1112 */ 1113 alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries); 1114 if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) { 1115 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]); 1116 return NULL; 1117 } 1118 1119 return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries, 1120 alloc_stack_hash); 1121 } 1122 1123 size_t kfence_ksize(const void *addr) 1124 { 1125 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 1126 1127 /* 1128 * Read locklessly -- if there is a race with __kfence_alloc(), this is 1129 * either a use-after-free or invalid access. 1130 */ 1131 return meta ? meta->size : 0; 1132 } 1133 1134 void *kfence_object_start(const void *addr) 1135 { 1136 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 1137 1138 /* 1139 * Read locklessly -- if there is a race with __kfence_alloc(), this is 1140 * either a use-after-free or invalid access. 1141 */ 1142 return meta ? (void *)meta->addr : NULL; 1143 } 1144 1145 void __kfence_free(void *addr) 1146 { 1147 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 1148 1149 #ifdef CONFIG_MEMCG 1150 KFENCE_WARN_ON(meta->obj_exts.objcg); 1151 #endif 1152 /* 1153 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing 1154 * the object, as the object page may be recycled for other-typed 1155 * objects once it has been freed. meta->cache may be NULL if the cache 1156 * was destroyed. 1157 */ 1158 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) 1159 call_rcu(&meta->rcu_head, rcu_guarded_free); 1160 else 1161 kfence_guarded_free(addr, meta, false); 1162 } 1163 1164 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs) 1165 { 1166 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; 1167 struct kfence_metadata *to_report = NULL; 1168 enum kfence_error_type error_type; 1169 unsigned long flags; 1170 1171 if (!is_kfence_address((void *)addr)) 1172 return false; 1173 1174 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ 1175 return kfence_unprotect(addr); /* ... unprotect and proceed. */ 1176 1177 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 1178 1179 if (page_index % 2) { 1180 /* This is a redzone, report a buffer overflow. */ 1181 struct kfence_metadata *meta; 1182 int distance = 0; 1183 1184 meta = addr_to_metadata(addr - PAGE_SIZE); 1185 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 1186 to_report = meta; 1187 /* Data race ok; distance calculation approximate. */ 1188 distance = addr - data_race(meta->addr + meta->size); 1189 } 1190 1191 meta = addr_to_metadata(addr + PAGE_SIZE); 1192 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 1193 /* Data race ok; distance calculation approximate. */ 1194 if (!to_report || distance > data_race(meta->addr) - addr) 1195 to_report = meta; 1196 } 1197 1198 if (!to_report) 1199 goto out; 1200 1201 raw_spin_lock_irqsave(&to_report->lock, flags); 1202 to_report->unprotected_page = addr; 1203 error_type = KFENCE_ERROR_OOB; 1204 1205 /* 1206 * If the object was freed before we took the look we can still 1207 * report this as an OOB -- the report will simply show the 1208 * stacktrace of the free as well. 1209 */ 1210 } else { 1211 to_report = addr_to_metadata(addr); 1212 if (!to_report) 1213 goto out; 1214 1215 raw_spin_lock_irqsave(&to_report->lock, flags); 1216 error_type = KFENCE_ERROR_UAF; 1217 /* 1218 * We may race with __kfence_alloc(), and it is possible that a 1219 * freed object may be reallocated. We simply report this as a 1220 * use-after-free, with the stack trace showing the place where 1221 * the object was re-allocated. 1222 */ 1223 } 1224 1225 out: 1226 if (to_report) { 1227 kfence_report_error(addr, is_write, regs, to_report, error_type); 1228 raw_spin_unlock_irqrestore(&to_report->lock, flags); 1229 } else { 1230 /* This may be a UAF or OOB access, but we can't be sure. */ 1231 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID); 1232 } 1233 1234 return kfence_unprotect(addr); /* Unprotect and let access proceed. */ 1235 } 1236