1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * KFENCE guarded object allocator and fault handling. 4 * 5 * Copyright (C) 2020, Google LLC. 6 */ 7 8 #define pr_fmt(fmt) "kfence: " fmt 9 10 #include <linux/atomic.h> 11 #include <linux/bug.h> 12 #include <linux/debugfs.h> 13 #include <linux/irq_work.h> 14 #include <linux/kcsan-checks.h> 15 #include <linux/kfence.h> 16 #include <linux/kmemleak.h> 17 #include <linux/list.h> 18 #include <linux/lockdep.h> 19 #include <linux/memblock.h> 20 #include <linux/moduleparam.h> 21 #include <linux/random.h> 22 #include <linux/rcupdate.h> 23 #include <linux/sched/sysctl.h> 24 #include <linux/seq_file.h> 25 #include <linux/slab.h> 26 #include <linux/spinlock.h> 27 #include <linux/string.h> 28 29 #include <asm/kfence.h> 30 31 #include "kfence.h" 32 33 /* Disables KFENCE on the first warning assuming an irrecoverable error. */ 34 #define KFENCE_WARN_ON(cond) \ 35 ({ \ 36 const bool __cond = WARN_ON(cond); \ 37 if (unlikely(__cond)) \ 38 WRITE_ONCE(kfence_enabled, false); \ 39 __cond; \ 40 }) 41 42 /* === Data ================================================================= */ 43 44 static bool kfence_enabled __read_mostly; 45 46 static unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL; 47 48 #ifdef MODULE_PARAM_PREFIX 49 #undef MODULE_PARAM_PREFIX 50 #endif 51 #define MODULE_PARAM_PREFIX "kfence." 52 53 static int param_set_sample_interval(const char *val, const struct kernel_param *kp) 54 { 55 unsigned long num; 56 int ret = kstrtoul(val, 0, &num); 57 58 if (ret < 0) 59 return ret; 60 61 if (!num) /* Using 0 to indicate KFENCE is disabled. */ 62 WRITE_ONCE(kfence_enabled, false); 63 else if (!READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING) 64 return -EINVAL; /* Cannot (re-)enable KFENCE on-the-fly. */ 65 66 *((unsigned long *)kp->arg) = num; 67 return 0; 68 } 69 70 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp) 71 { 72 if (!READ_ONCE(kfence_enabled)) 73 return sprintf(buffer, "0\n"); 74 75 return param_get_ulong(buffer, kp); 76 } 77 78 static const struct kernel_param_ops sample_interval_param_ops = { 79 .set = param_set_sample_interval, 80 .get = param_get_sample_interval, 81 }; 82 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600); 83 84 /* The pool of pages used for guard pages and objects. */ 85 char *__kfence_pool __ro_after_init; 86 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */ 87 88 /* 89 * Per-object metadata, with one-to-one mapping of object metadata to 90 * backing pages (in __kfence_pool). 91 */ 92 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0); 93 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS]; 94 95 /* Freelist with available objects. */ 96 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist); 97 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */ 98 99 #ifdef CONFIG_KFENCE_STATIC_KEYS 100 /* The static key to set up a KFENCE allocation. */ 101 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key); 102 #endif 103 104 /* Gates the allocation, ensuring only one succeeds in a given period. */ 105 atomic_t kfence_allocation_gate = ATOMIC_INIT(1); 106 107 /* Statistics counters for debugfs. */ 108 enum kfence_counter_id { 109 KFENCE_COUNTER_ALLOCATED, 110 KFENCE_COUNTER_ALLOCS, 111 KFENCE_COUNTER_FREES, 112 KFENCE_COUNTER_ZOMBIES, 113 KFENCE_COUNTER_BUGS, 114 KFENCE_COUNTER_COUNT, 115 }; 116 static atomic_long_t counters[KFENCE_COUNTER_COUNT]; 117 static const char *const counter_names[] = { 118 [KFENCE_COUNTER_ALLOCATED] = "currently allocated", 119 [KFENCE_COUNTER_ALLOCS] = "total allocations", 120 [KFENCE_COUNTER_FREES] = "total frees", 121 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations", 122 [KFENCE_COUNTER_BUGS] = "total bugs", 123 }; 124 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT); 125 126 /* === Internals ============================================================ */ 127 128 static bool kfence_protect(unsigned long addr) 129 { 130 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true)); 131 } 132 133 static bool kfence_unprotect(unsigned long addr) 134 { 135 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false)); 136 } 137 138 static inline struct kfence_metadata *addr_to_metadata(unsigned long addr) 139 { 140 long index; 141 142 /* The checks do not affect performance; only called from slow-paths. */ 143 144 if (!is_kfence_address((void *)addr)) 145 return NULL; 146 147 /* 148 * May be an invalid index if called with an address at the edge of 149 * __kfence_pool, in which case we would report an "invalid access" 150 * error. 151 */ 152 index = (addr - (unsigned long)__kfence_pool) / (PAGE_SIZE * 2) - 1; 153 if (index < 0 || index >= CONFIG_KFENCE_NUM_OBJECTS) 154 return NULL; 155 156 return &kfence_metadata[index]; 157 } 158 159 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta) 160 { 161 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2; 162 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset]; 163 164 /* The checks do not affect performance; only called from slow-paths. */ 165 166 /* Only call with a pointer into kfence_metadata. */ 167 if (KFENCE_WARN_ON(meta < kfence_metadata || 168 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS)) 169 return 0; 170 171 /* 172 * This metadata object only ever maps to 1 page; verify that the stored 173 * address is in the expected range. 174 */ 175 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr)) 176 return 0; 177 178 return pageaddr; 179 } 180 181 /* 182 * Update the object's metadata state, including updating the alloc/free stacks 183 * depending on the state transition. 184 */ 185 static noinline void metadata_update_state(struct kfence_metadata *meta, 186 enum kfence_object_state next) 187 { 188 struct kfence_track *track = 189 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track; 190 191 lockdep_assert_held(&meta->lock); 192 193 /* 194 * Skip over 1 (this) functions; noinline ensures we do not accidentally 195 * skip over the caller by never inlining. 196 */ 197 track->num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1); 198 track->pid = task_pid_nr(current); 199 200 /* 201 * Pairs with READ_ONCE() in 202 * kfence_shutdown_cache(), 203 * kfence_handle_page_fault(). 204 */ 205 WRITE_ONCE(meta->state, next); 206 } 207 208 /* Write canary byte to @addr. */ 209 static inline bool set_canary_byte(u8 *addr) 210 { 211 *addr = KFENCE_CANARY_PATTERN(addr); 212 return true; 213 } 214 215 /* Check canary byte at @addr. */ 216 static inline bool check_canary_byte(u8 *addr) 217 { 218 if (likely(*addr == KFENCE_CANARY_PATTERN(addr))) 219 return true; 220 221 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 222 kfence_report_error((unsigned long)addr, false, NULL, addr_to_metadata((unsigned long)addr), 223 KFENCE_ERROR_CORRUPTION); 224 return false; 225 } 226 227 /* __always_inline this to ensure we won't do an indirect call to fn. */ 228 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *)) 229 { 230 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE); 231 unsigned long addr; 232 233 lockdep_assert_held(&meta->lock); 234 235 /* 236 * We'll iterate over each canary byte per-side until fn() returns 237 * false. However, we'll still iterate over the canary bytes to the 238 * right of the object even if there was an error in the canary bytes to 239 * the left of the object. Specifically, if check_canary_byte() 240 * generates an error, showing both sides might give more clues as to 241 * what the error is about when displaying which bytes were corrupted. 242 */ 243 244 /* Apply to left of object. */ 245 for (addr = pageaddr; addr < meta->addr; addr++) { 246 if (!fn((u8 *)addr)) 247 break; 248 } 249 250 /* Apply to right of object. */ 251 for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) { 252 if (!fn((u8 *)addr)) 253 break; 254 } 255 } 256 257 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp) 258 { 259 struct kfence_metadata *meta = NULL; 260 unsigned long flags; 261 struct page *page; 262 void *addr; 263 264 /* Try to obtain a free object. */ 265 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 266 if (!list_empty(&kfence_freelist)) { 267 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list); 268 list_del_init(&meta->list); 269 } 270 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 271 if (!meta) 272 return NULL; 273 274 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) { 275 /* 276 * This is extremely unlikely -- we are reporting on a 277 * use-after-free, which locked meta->lock, and the reporting 278 * code via printk calls kmalloc() which ends up in 279 * kfence_alloc() and tries to grab the same object that we're 280 * reporting on. While it has never been observed, lockdep does 281 * report that there is a possibility of deadlock. Fix it by 282 * using trylock and bailing out gracefully. 283 */ 284 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 285 /* Put the object back on the freelist. */ 286 list_add_tail(&meta->list, &kfence_freelist); 287 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 288 289 return NULL; 290 } 291 292 meta->addr = metadata_to_pageaddr(meta); 293 /* Unprotect if we're reusing this page. */ 294 if (meta->state == KFENCE_OBJECT_FREED) 295 kfence_unprotect(meta->addr); 296 297 /* 298 * Note: for allocations made before RNG initialization, will always 299 * return zero. We still benefit from enabling KFENCE as early as 300 * possible, even when the RNG is not yet available, as this will allow 301 * KFENCE to detect bugs due to earlier allocations. The only downside 302 * is that the out-of-bounds accesses detected are deterministic for 303 * such allocations. 304 */ 305 if (prandom_u32_max(2)) { 306 /* Allocate on the "right" side, re-calculate address. */ 307 meta->addr += PAGE_SIZE - size; 308 meta->addr = ALIGN_DOWN(meta->addr, cache->align); 309 } 310 311 addr = (void *)meta->addr; 312 313 /* Update remaining metadata. */ 314 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED); 315 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */ 316 WRITE_ONCE(meta->cache, cache); 317 meta->size = size; 318 for_each_canary(meta, set_canary_byte); 319 320 /* Set required struct page fields. */ 321 page = virt_to_page(meta->addr); 322 page->slab_cache = cache; 323 if (IS_ENABLED(CONFIG_SLUB)) 324 page->objects = 1; 325 if (IS_ENABLED(CONFIG_SLAB)) 326 page->s_mem = addr; 327 328 raw_spin_unlock_irqrestore(&meta->lock, flags); 329 330 /* Memory initialization. */ 331 332 /* 333 * We check slab_want_init_on_alloc() ourselves, rather than letting 334 * SL*B do the initialization, as otherwise we might overwrite KFENCE's 335 * redzone. 336 */ 337 if (unlikely(slab_want_init_on_alloc(gfp, cache))) 338 memzero_explicit(addr, size); 339 if (cache->ctor) 340 cache->ctor(addr); 341 342 if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS)) 343 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */ 344 345 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]); 346 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]); 347 348 return addr; 349 } 350 351 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie) 352 { 353 struct kcsan_scoped_access assert_page_exclusive; 354 unsigned long flags; 355 356 raw_spin_lock_irqsave(&meta->lock, flags); 357 358 if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) { 359 /* Invalid or double-free, bail out. */ 360 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 361 kfence_report_error((unsigned long)addr, false, NULL, meta, 362 KFENCE_ERROR_INVALID_FREE); 363 raw_spin_unlock_irqrestore(&meta->lock, flags); 364 return; 365 } 366 367 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */ 368 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE, 369 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT, 370 &assert_page_exclusive); 371 372 if (CONFIG_KFENCE_STRESS_TEST_FAULTS) 373 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */ 374 375 /* Restore page protection if there was an OOB access. */ 376 if (meta->unprotected_page) { 377 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE); 378 kfence_protect(meta->unprotected_page); 379 meta->unprotected_page = 0; 380 } 381 382 /* Check canary bytes for memory corruption. */ 383 for_each_canary(meta, check_canary_byte); 384 385 /* 386 * Clear memory if init-on-free is set. While we protect the page, the 387 * data is still there, and after a use-after-free is detected, we 388 * unprotect the page, so the data is still accessible. 389 */ 390 if (!zombie && unlikely(slab_want_init_on_free(meta->cache))) 391 memzero_explicit(addr, meta->size); 392 393 /* Mark the object as freed. */ 394 metadata_update_state(meta, KFENCE_OBJECT_FREED); 395 396 raw_spin_unlock_irqrestore(&meta->lock, flags); 397 398 /* Protect to detect use-after-frees. */ 399 kfence_protect((unsigned long)addr); 400 401 kcsan_end_scoped_access(&assert_page_exclusive); 402 if (!zombie) { 403 /* Add it to the tail of the freelist for reuse. */ 404 raw_spin_lock_irqsave(&kfence_freelist_lock, flags); 405 KFENCE_WARN_ON(!list_empty(&meta->list)); 406 list_add_tail(&meta->list, &kfence_freelist); 407 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags); 408 409 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]); 410 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]); 411 } else { 412 /* See kfence_shutdown_cache(). */ 413 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]); 414 } 415 } 416 417 static void rcu_guarded_free(struct rcu_head *h) 418 { 419 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head); 420 421 kfence_guarded_free((void *)meta->addr, meta, false); 422 } 423 424 static bool __init kfence_init_pool(void) 425 { 426 unsigned long addr = (unsigned long)__kfence_pool; 427 struct page *pages; 428 int i; 429 430 if (!__kfence_pool) 431 return false; 432 433 if (!arch_kfence_init_pool()) 434 goto err; 435 436 pages = virt_to_page(addr); 437 438 /* 439 * Set up object pages: they must have PG_slab set, to avoid freeing 440 * these as real pages. 441 * 442 * We also want to avoid inserting kfence_free() in the kfree() 443 * fast-path in SLUB, and therefore need to ensure kfree() correctly 444 * enters __slab_free() slow-path. 445 */ 446 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) { 447 if (!i || (i % 2)) 448 continue; 449 450 /* Verify we do not have a compound head page. */ 451 if (WARN_ON(compound_head(&pages[i]) != &pages[i])) 452 goto err; 453 454 __SetPageSlab(&pages[i]); 455 } 456 457 /* 458 * Protect the first 2 pages. The first page is mostly unnecessary, and 459 * merely serves as an extended guard page. However, adding one 460 * additional page in the beginning gives us an even number of pages, 461 * which simplifies the mapping of address to metadata index. 462 */ 463 for (i = 0; i < 2; i++) { 464 if (unlikely(!kfence_protect(addr))) 465 goto err; 466 467 addr += PAGE_SIZE; 468 } 469 470 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 471 struct kfence_metadata *meta = &kfence_metadata[i]; 472 473 /* Initialize metadata. */ 474 INIT_LIST_HEAD(&meta->list); 475 raw_spin_lock_init(&meta->lock); 476 meta->state = KFENCE_OBJECT_UNUSED; 477 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */ 478 list_add_tail(&meta->list, &kfence_freelist); 479 480 /* Protect the right redzone. */ 481 if (unlikely(!kfence_protect(addr + PAGE_SIZE))) 482 goto err; 483 484 addr += 2 * PAGE_SIZE; 485 } 486 487 /* 488 * The pool is live and will never be deallocated from this point on. 489 * Remove the pool object from the kmemleak object tree, as it would 490 * otherwise overlap with allocations returned by kfence_alloc(), which 491 * are registered with kmemleak through the slab post-alloc hook. 492 */ 493 kmemleak_free(__kfence_pool); 494 495 return true; 496 497 err: 498 /* 499 * Only release unprotected pages, and do not try to go back and change 500 * page attributes due to risk of failing to do so as well. If changing 501 * page attributes for some pages fails, it is very likely that it also 502 * fails for the first page, and therefore expect addr==__kfence_pool in 503 * most failure cases. 504 */ 505 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool)); 506 __kfence_pool = NULL; 507 return false; 508 } 509 510 /* === DebugFS Interface ==================================================== */ 511 512 static int stats_show(struct seq_file *seq, void *v) 513 { 514 int i; 515 516 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled)); 517 for (i = 0; i < KFENCE_COUNTER_COUNT; i++) 518 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i])); 519 520 return 0; 521 } 522 DEFINE_SHOW_ATTRIBUTE(stats); 523 524 /* 525 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects. 526 * start_object() and next_object() return the object index + 1, because NULL is used 527 * to stop iteration. 528 */ 529 static void *start_object(struct seq_file *seq, loff_t *pos) 530 { 531 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 532 return (void *)((long)*pos + 1); 533 return NULL; 534 } 535 536 static void stop_object(struct seq_file *seq, void *v) 537 { 538 } 539 540 static void *next_object(struct seq_file *seq, void *v, loff_t *pos) 541 { 542 ++*pos; 543 if (*pos < CONFIG_KFENCE_NUM_OBJECTS) 544 return (void *)((long)*pos + 1); 545 return NULL; 546 } 547 548 static int show_object(struct seq_file *seq, void *v) 549 { 550 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1]; 551 unsigned long flags; 552 553 raw_spin_lock_irqsave(&meta->lock, flags); 554 kfence_print_object(seq, meta); 555 raw_spin_unlock_irqrestore(&meta->lock, flags); 556 seq_puts(seq, "---------------------------------\n"); 557 558 return 0; 559 } 560 561 static const struct seq_operations object_seqops = { 562 .start = start_object, 563 .next = next_object, 564 .stop = stop_object, 565 .show = show_object, 566 }; 567 568 static int open_objects(struct inode *inode, struct file *file) 569 { 570 return seq_open(file, &object_seqops); 571 } 572 573 static const struct file_operations objects_fops = { 574 .open = open_objects, 575 .read = seq_read, 576 .llseek = seq_lseek, 577 }; 578 579 static int __init kfence_debugfs_init(void) 580 { 581 struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL); 582 583 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops); 584 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops); 585 return 0; 586 } 587 588 late_initcall(kfence_debugfs_init); 589 590 /* === Allocation Gate Timer ================================================ */ 591 592 #ifdef CONFIG_KFENCE_STATIC_KEYS 593 /* Wait queue to wake up allocation-gate timer task. */ 594 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait); 595 596 static void wake_up_kfence_timer(struct irq_work *work) 597 { 598 wake_up(&allocation_wait); 599 } 600 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer); 601 #endif 602 603 /* 604 * Set up delayed work, which will enable and disable the static key. We need to 605 * use a work queue (rather than a simple timer), since enabling and disabling a 606 * static key cannot be done from an interrupt. 607 * 608 * Note: Toggling a static branch currently causes IPIs, and here we'll end up 609 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with 610 * more aggressive sampling intervals), we could get away with a variant that 611 * avoids IPIs, at the cost of not immediately capturing allocations if the 612 * instructions remain cached. 613 */ 614 static struct delayed_work kfence_timer; 615 static void toggle_allocation_gate(struct work_struct *work) 616 { 617 if (!READ_ONCE(kfence_enabled)) 618 return; 619 620 atomic_set(&kfence_allocation_gate, 0); 621 #ifdef CONFIG_KFENCE_STATIC_KEYS 622 /* Enable static key, and await allocation to happen. */ 623 static_branch_enable(&kfence_allocation_key); 624 625 if (sysctl_hung_task_timeout_secs) { 626 /* 627 * During low activity with no allocations we might wait a 628 * while; let's avoid the hung task warning. 629 */ 630 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate), 631 sysctl_hung_task_timeout_secs * HZ / 2); 632 } else { 633 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate)); 634 } 635 636 /* Disable static key and reset timer. */ 637 static_branch_disable(&kfence_allocation_key); 638 #endif 639 queue_delayed_work(system_unbound_wq, &kfence_timer, 640 msecs_to_jiffies(kfence_sample_interval)); 641 } 642 static DECLARE_DELAYED_WORK(kfence_timer, toggle_allocation_gate); 643 644 /* === Public interface ===================================================== */ 645 646 void __init kfence_alloc_pool(void) 647 { 648 if (!kfence_sample_interval) 649 return; 650 651 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE); 652 653 if (!__kfence_pool) 654 pr_err("failed to allocate pool\n"); 655 } 656 657 void __init kfence_init(void) 658 { 659 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */ 660 if (!kfence_sample_interval) 661 return; 662 663 if (!kfence_init_pool()) { 664 pr_err("%s failed\n", __func__); 665 return; 666 } 667 668 WRITE_ONCE(kfence_enabled, true); 669 queue_delayed_work(system_unbound_wq, &kfence_timer, 0); 670 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE, 671 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool, 672 (void *)(__kfence_pool + KFENCE_POOL_SIZE)); 673 } 674 675 void kfence_shutdown_cache(struct kmem_cache *s) 676 { 677 unsigned long flags; 678 struct kfence_metadata *meta; 679 int i; 680 681 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 682 bool in_use; 683 684 meta = &kfence_metadata[i]; 685 686 /* 687 * If we observe some inconsistent cache and state pair where we 688 * should have returned false here, cache destruction is racing 689 * with either kmem_cache_alloc() or kmem_cache_free(). Taking 690 * the lock will not help, as different critical section 691 * serialization will have the same outcome. 692 */ 693 if (READ_ONCE(meta->cache) != s || 694 READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED) 695 continue; 696 697 raw_spin_lock_irqsave(&meta->lock, flags); 698 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED; 699 raw_spin_unlock_irqrestore(&meta->lock, flags); 700 701 if (in_use) { 702 /* 703 * This cache still has allocations, and we should not 704 * release them back into the freelist so they can still 705 * safely be used and retain the kernel's default 706 * behaviour of keeping the allocations alive (leak the 707 * cache); however, they effectively become "zombie 708 * allocations" as the KFENCE objects are the only ones 709 * still in use and the owning cache is being destroyed. 710 * 711 * We mark them freed, so that any subsequent use shows 712 * more useful error messages that will include stack 713 * traces of the user of the object, the original 714 * allocation, and caller to shutdown_cache(). 715 */ 716 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true); 717 } 718 } 719 720 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) { 721 meta = &kfence_metadata[i]; 722 723 /* See above. */ 724 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED) 725 continue; 726 727 raw_spin_lock_irqsave(&meta->lock, flags); 728 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED) 729 meta->cache = NULL; 730 raw_spin_unlock_irqrestore(&meta->lock, flags); 731 } 732 } 733 734 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags) 735 { 736 /* 737 * Perform size check before switching kfence_allocation_gate, so that 738 * we don't disable KFENCE without making an allocation. 739 */ 740 if (size > PAGE_SIZE) 741 return NULL; 742 743 /* 744 * Skip allocations from non-default zones, including DMA. We cannot 745 * guarantee that pages in the KFENCE pool will have the requested 746 * properties (e.g. reside in DMAable memory). 747 */ 748 if ((flags & GFP_ZONEMASK) || 749 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) 750 return NULL; 751 752 /* 753 * allocation_gate only needs to become non-zero, so it doesn't make 754 * sense to continue writing to it and pay the associated contention 755 * cost, in case we have a large number of concurrent allocations. 756 */ 757 if (atomic_read(&kfence_allocation_gate) || atomic_inc_return(&kfence_allocation_gate) > 1) 758 return NULL; 759 #ifdef CONFIG_KFENCE_STATIC_KEYS 760 /* 761 * waitqueue_active() is fully ordered after the update of 762 * kfence_allocation_gate per atomic_inc_return(). 763 */ 764 if (waitqueue_active(&allocation_wait)) { 765 /* 766 * Calling wake_up() here may deadlock when allocations happen 767 * from within timer code. Use an irq_work to defer it. 768 */ 769 irq_work_queue(&wake_up_kfence_timer_work); 770 } 771 #endif 772 773 if (!READ_ONCE(kfence_enabled)) 774 return NULL; 775 776 return kfence_guarded_alloc(s, size, flags); 777 } 778 779 size_t kfence_ksize(const void *addr) 780 { 781 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 782 783 /* 784 * Read locklessly -- if there is a race with __kfence_alloc(), this is 785 * either a use-after-free or invalid access. 786 */ 787 return meta ? meta->size : 0; 788 } 789 790 void *kfence_object_start(const void *addr) 791 { 792 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 793 794 /* 795 * Read locklessly -- if there is a race with __kfence_alloc(), this is 796 * either a use-after-free or invalid access. 797 */ 798 return meta ? (void *)meta->addr : NULL; 799 } 800 801 void __kfence_free(void *addr) 802 { 803 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr); 804 805 /* 806 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing 807 * the object, as the object page may be recycled for other-typed 808 * objects once it has been freed. meta->cache may be NULL if the cache 809 * was destroyed. 810 */ 811 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU))) 812 call_rcu(&meta->rcu_head, rcu_guarded_free); 813 else 814 kfence_guarded_free(addr, meta, false); 815 } 816 817 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs) 818 { 819 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE; 820 struct kfence_metadata *to_report = NULL; 821 enum kfence_error_type error_type; 822 unsigned long flags; 823 824 if (!is_kfence_address((void *)addr)) 825 return false; 826 827 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */ 828 return kfence_unprotect(addr); /* ... unprotect and proceed. */ 829 830 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]); 831 832 if (page_index % 2) { 833 /* This is a redzone, report a buffer overflow. */ 834 struct kfence_metadata *meta; 835 int distance = 0; 836 837 meta = addr_to_metadata(addr - PAGE_SIZE); 838 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 839 to_report = meta; 840 /* Data race ok; distance calculation approximate. */ 841 distance = addr - data_race(meta->addr + meta->size); 842 } 843 844 meta = addr_to_metadata(addr + PAGE_SIZE); 845 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) { 846 /* Data race ok; distance calculation approximate. */ 847 if (!to_report || distance > data_race(meta->addr) - addr) 848 to_report = meta; 849 } 850 851 if (!to_report) 852 goto out; 853 854 raw_spin_lock_irqsave(&to_report->lock, flags); 855 to_report->unprotected_page = addr; 856 error_type = KFENCE_ERROR_OOB; 857 858 /* 859 * If the object was freed before we took the look we can still 860 * report this as an OOB -- the report will simply show the 861 * stacktrace of the free as well. 862 */ 863 } else { 864 to_report = addr_to_metadata(addr); 865 if (!to_report) 866 goto out; 867 868 raw_spin_lock_irqsave(&to_report->lock, flags); 869 error_type = KFENCE_ERROR_UAF; 870 /* 871 * We may race with __kfence_alloc(), and it is possible that a 872 * freed object may be reallocated. We simply report this as a 873 * use-after-free, with the stack trace showing the place where 874 * the object was re-allocated. 875 */ 876 } 877 878 out: 879 if (to_report) { 880 kfence_report_error(addr, is_write, regs, to_report, error_type); 881 raw_spin_unlock_irqrestore(&to_report->lock, flags); 882 } else { 883 /* This may be a UAF or OOB access, but we can't be sure. */ 884 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID); 885 } 886 887 return kfence_unprotect(addr); /* Unprotect and let access proceed. */ 888 } 889