xref: /linux/mm/kfence/core.c (revision 8a405552fd3b1eefe186e724343e88790f6be832)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7 
8 #define pr_fmt(fmt) "kfence: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/notifier.h>
25 #include <linux/panic_notifier.h>
26 #include <linux/random.h>
27 #include <linux/rcupdate.h>
28 #include <linux/sched/clock.h>
29 #include <linux/seq_file.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/string.h>
33 
34 #include <asm/kfence.h>
35 
36 #include "kfence.h"
37 
38 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
39 #define KFENCE_WARN_ON(cond)                                                   \
40 	({                                                                     \
41 		const bool __cond = WARN_ON(cond);                             \
42 		if (unlikely(__cond)) {                                        \
43 			WRITE_ONCE(kfence_enabled, false);                     \
44 			disabled_by_warn = true;                               \
45 		}                                                              \
46 		__cond;                                                        \
47 	})
48 
49 /* === Data ================================================================= */
50 
51 static bool kfence_enabled __read_mostly;
52 static bool disabled_by_warn __read_mostly;
53 
54 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
55 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
56 
57 #ifdef MODULE_PARAM_PREFIX
58 #undef MODULE_PARAM_PREFIX
59 #endif
60 #define MODULE_PARAM_PREFIX "kfence."
61 
62 static int kfence_enable_late(void);
63 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
64 {
65 	unsigned long num;
66 	int ret = kstrtoul(val, 0, &num);
67 
68 	if (ret < 0)
69 		return ret;
70 
71 	/* Using 0 to indicate KFENCE is disabled. */
72 	if (!num && READ_ONCE(kfence_enabled)) {
73 		pr_info("disabled\n");
74 		WRITE_ONCE(kfence_enabled, false);
75 	}
76 
77 	*((unsigned long *)kp->arg) = num;
78 
79 	if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
80 		return disabled_by_warn ? -EINVAL : kfence_enable_late();
81 	return 0;
82 }
83 
84 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
85 {
86 	if (!READ_ONCE(kfence_enabled))
87 		return sprintf(buffer, "0\n");
88 
89 	return param_get_ulong(buffer, kp);
90 }
91 
92 static const struct kernel_param_ops sample_interval_param_ops = {
93 	.set = param_set_sample_interval,
94 	.get = param_get_sample_interval,
95 };
96 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
97 
98 /* Pool usage% threshold when currently covered allocations are skipped. */
99 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
100 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
101 
102 /* If true, use a deferrable timer. */
103 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
104 module_param_named(deferrable, kfence_deferrable, bool, 0444);
105 
106 /* If true, check all canary bytes on panic. */
107 static bool kfence_check_on_panic __read_mostly;
108 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
109 
110 /* The pool of pages used for guard pages and objects. */
111 char *__kfence_pool __read_mostly;
112 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
113 
114 /*
115  * Per-object metadata, with one-to-one mapping of object metadata to
116  * backing pages (in __kfence_pool).
117  */
118 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
119 struct kfence_metadata *kfence_metadata __read_mostly;
120 
121 /*
122  * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
123  * So introduce kfence_metadata_init to initialize metadata, and then make
124  * kfence_metadata visible after initialization is successful. This prevents
125  * potential UAF or access to uninitialized metadata.
126  */
127 static struct kfence_metadata *kfence_metadata_init __read_mostly;
128 
129 /* Freelist with available objects. */
130 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
131 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
132 
133 /*
134  * The static key to set up a KFENCE allocation; or if static keys are not used
135  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
136  */
137 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
138 
139 /* Gates the allocation, ensuring only one succeeds in a given period. */
140 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
141 
142 /*
143  * A Counting Bloom filter of allocation coverage: limits currently covered
144  * allocations of the same source filling up the pool.
145  *
146  * Assuming a range of 15%-85% unique allocations in the pool at any point in
147  * time, the below parameters provide a probablity of 0.02-0.33 for false
148  * positive hits respectively:
149  *
150  *	P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
151  */
152 #define ALLOC_COVERED_HNUM	2
153 #define ALLOC_COVERED_ORDER	(const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
154 #define ALLOC_COVERED_SIZE	(1 << ALLOC_COVERED_ORDER)
155 #define ALLOC_COVERED_HNEXT(h)	hash_32(h, ALLOC_COVERED_ORDER)
156 #define ALLOC_COVERED_MASK	(ALLOC_COVERED_SIZE - 1)
157 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
158 
159 /* Stack depth used to determine uniqueness of an allocation. */
160 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
161 
162 /*
163  * Randomness for stack hashes, making the same collisions across reboots and
164  * different machines less likely.
165  */
166 static u32 stack_hash_seed __ro_after_init;
167 
168 /* Statistics counters for debugfs. */
169 enum kfence_counter_id {
170 	KFENCE_COUNTER_ALLOCATED,
171 	KFENCE_COUNTER_ALLOCS,
172 	KFENCE_COUNTER_FREES,
173 	KFENCE_COUNTER_ZOMBIES,
174 	KFENCE_COUNTER_BUGS,
175 	KFENCE_COUNTER_SKIP_INCOMPAT,
176 	KFENCE_COUNTER_SKIP_CAPACITY,
177 	KFENCE_COUNTER_SKIP_COVERED,
178 	KFENCE_COUNTER_COUNT,
179 };
180 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
181 static const char *const counter_names[] = {
182 	[KFENCE_COUNTER_ALLOCATED]	= "currently allocated",
183 	[KFENCE_COUNTER_ALLOCS]		= "total allocations",
184 	[KFENCE_COUNTER_FREES]		= "total frees",
185 	[KFENCE_COUNTER_ZOMBIES]	= "zombie allocations",
186 	[KFENCE_COUNTER_BUGS]		= "total bugs",
187 	[KFENCE_COUNTER_SKIP_INCOMPAT]	= "skipped allocations (incompatible)",
188 	[KFENCE_COUNTER_SKIP_CAPACITY]	= "skipped allocations (capacity)",
189 	[KFENCE_COUNTER_SKIP_COVERED]	= "skipped allocations (covered)",
190 };
191 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
192 
193 /* === Internals ============================================================ */
194 
195 static inline bool should_skip_covered(void)
196 {
197 	unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
198 
199 	return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
200 }
201 
202 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
203 {
204 	num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
205 	num_entries = filter_irq_stacks(stack_entries, num_entries);
206 	return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
207 }
208 
209 /*
210  * Adds (or subtracts) count @val for allocation stack trace hash
211  * @alloc_stack_hash from Counting Bloom filter.
212  */
213 static void alloc_covered_add(u32 alloc_stack_hash, int val)
214 {
215 	int i;
216 
217 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
218 		atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
219 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
220 	}
221 }
222 
223 /*
224  * Returns true if the allocation stack trace hash @alloc_stack_hash is
225  * currently contained (non-zero count) in Counting Bloom filter.
226  */
227 static bool alloc_covered_contains(u32 alloc_stack_hash)
228 {
229 	int i;
230 
231 	for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
232 		if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
233 			return false;
234 		alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
235 	}
236 
237 	return true;
238 }
239 
240 static bool kfence_protect(unsigned long addr)
241 {
242 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
243 }
244 
245 static bool kfence_unprotect(unsigned long addr)
246 {
247 	return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
248 }
249 
250 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
251 {
252 	unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
253 	unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
254 
255 	/* The checks do not affect performance; only called from slow-paths. */
256 
257 	/* Only call with a pointer into kfence_metadata. */
258 	if (KFENCE_WARN_ON(meta < kfence_metadata ||
259 			   meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
260 		return 0;
261 
262 	/*
263 	 * This metadata object only ever maps to 1 page; verify that the stored
264 	 * address is in the expected range.
265 	 */
266 	if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
267 		return 0;
268 
269 	return pageaddr;
270 }
271 
272 /*
273  * Update the object's metadata state, including updating the alloc/free stacks
274  * depending on the state transition.
275  */
276 static noinline void
277 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
278 		      unsigned long *stack_entries, size_t num_stack_entries)
279 {
280 	struct kfence_track *track =
281 		next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
282 
283 	lockdep_assert_held(&meta->lock);
284 
285 	if (stack_entries) {
286 		memcpy(track->stack_entries, stack_entries,
287 		       num_stack_entries * sizeof(stack_entries[0]));
288 	} else {
289 		/*
290 		 * Skip over 1 (this) functions; noinline ensures we do not
291 		 * accidentally skip over the caller by never inlining.
292 		 */
293 		num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
294 	}
295 	track->num_stack_entries = num_stack_entries;
296 	track->pid = task_pid_nr(current);
297 	track->cpu = raw_smp_processor_id();
298 	track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
299 
300 	/*
301 	 * Pairs with READ_ONCE() in
302 	 *	kfence_shutdown_cache(),
303 	 *	kfence_handle_page_fault().
304 	 */
305 	WRITE_ONCE(meta->state, next);
306 }
307 
308 #ifdef CONFIG_KMSAN
309 #define check_canary_attributes noinline __no_kmsan_checks
310 #else
311 #define check_canary_attributes inline
312 #endif
313 
314 /* Check canary byte at @addr. */
315 static check_canary_attributes bool check_canary_byte(u8 *addr)
316 {
317 	struct kfence_metadata *meta;
318 	unsigned long flags;
319 
320 	if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
321 		return true;
322 
323 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
324 
325 	meta = addr_to_metadata((unsigned long)addr);
326 	raw_spin_lock_irqsave(&meta->lock, flags);
327 	kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
328 	raw_spin_unlock_irqrestore(&meta->lock, flags);
329 
330 	return false;
331 }
332 
333 static inline void set_canary(const struct kfence_metadata *meta)
334 {
335 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
336 	unsigned long addr = pageaddr;
337 
338 	/*
339 	 * The canary may be written to part of the object memory, but it does
340 	 * not affect it. The user should initialize the object before using it.
341 	 */
342 	for (; addr < meta->addr; addr += sizeof(u64))
343 		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
344 
345 	addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
346 	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
347 		*((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
348 }
349 
350 static check_canary_attributes void
351 check_canary(const struct kfence_metadata *meta)
352 {
353 	const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
354 	unsigned long addr = pageaddr;
355 
356 	/*
357 	 * We'll iterate over each canary byte per-side until a corrupted byte
358 	 * is found. However, we'll still iterate over the canary bytes to the
359 	 * right of the object even if there was an error in the canary bytes to
360 	 * the left of the object. Specifically, if check_canary_byte()
361 	 * generates an error, showing both sides might give more clues as to
362 	 * what the error is about when displaying which bytes were corrupted.
363 	 */
364 
365 	/* Apply to left of object. */
366 	for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
367 		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
368 			break;
369 	}
370 
371 	/*
372 	 * If the canary is corrupted in a certain 64 bytes, or the canary
373 	 * memory cannot be completely covered by multiple consecutive 64 bytes,
374 	 * it needs to be checked one by one.
375 	 */
376 	for (; addr < meta->addr; addr++) {
377 		if (unlikely(!check_canary_byte((u8 *)addr)))
378 			break;
379 	}
380 
381 	/* Apply to right of object. */
382 	for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
383 		if (unlikely(!check_canary_byte((u8 *)addr)))
384 			return;
385 	}
386 	for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
387 		if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
388 
389 			for (; addr - pageaddr < PAGE_SIZE; addr++) {
390 				if (!check_canary_byte((u8 *)addr))
391 					return;
392 			}
393 		}
394 	}
395 }
396 
397 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
398 				  unsigned long *stack_entries, size_t num_stack_entries,
399 				  u32 alloc_stack_hash)
400 {
401 	struct kfence_metadata *meta = NULL;
402 	unsigned long flags;
403 	struct slab *slab;
404 	void *addr;
405 	const bool random_right_allocate = get_random_u32_below(2);
406 	const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
407 				  !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
408 
409 	/* Try to obtain a free object. */
410 	raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
411 	if (!list_empty(&kfence_freelist)) {
412 		meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
413 		list_del_init(&meta->list);
414 	}
415 	raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
416 	if (!meta) {
417 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
418 		return NULL;
419 	}
420 
421 	if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
422 		/*
423 		 * This is extremely unlikely -- we are reporting on a
424 		 * use-after-free, which locked meta->lock, and the reporting
425 		 * code via printk calls kmalloc() which ends up in
426 		 * kfence_alloc() and tries to grab the same object that we're
427 		 * reporting on. While it has never been observed, lockdep does
428 		 * report that there is a possibility of deadlock. Fix it by
429 		 * using trylock and bailing out gracefully.
430 		 */
431 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
432 		/* Put the object back on the freelist. */
433 		list_add_tail(&meta->list, &kfence_freelist);
434 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
435 
436 		return NULL;
437 	}
438 
439 	meta->addr = metadata_to_pageaddr(meta);
440 	/* Unprotect if we're reusing this page. */
441 	if (meta->state == KFENCE_OBJECT_FREED)
442 		kfence_unprotect(meta->addr);
443 
444 	/*
445 	 * Note: for allocations made before RNG initialization, will always
446 	 * return zero. We still benefit from enabling KFENCE as early as
447 	 * possible, even when the RNG is not yet available, as this will allow
448 	 * KFENCE to detect bugs due to earlier allocations. The only downside
449 	 * is that the out-of-bounds accesses detected are deterministic for
450 	 * such allocations.
451 	 */
452 	if (random_right_allocate) {
453 		/* Allocate on the "right" side, re-calculate address. */
454 		meta->addr += PAGE_SIZE - size;
455 		meta->addr = ALIGN_DOWN(meta->addr, cache->align);
456 	}
457 
458 	addr = (void *)meta->addr;
459 
460 	/* Update remaining metadata. */
461 	metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
462 	/* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
463 	WRITE_ONCE(meta->cache, cache);
464 	meta->size = size;
465 	meta->alloc_stack_hash = alloc_stack_hash;
466 	raw_spin_unlock_irqrestore(&meta->lock, flags);
467 
468 	alloc_covered_add(alloc_stack_hash, 1);
469 
470 	/* Set required slab fields. */
471 	slab = virt_to_slab((void *)meta->addr);
472 	slab->slab_cache = cache;
473 	slab->objects = 1;
474 
475 	/* Memory initialization. */
476 	set_canary(meta);
477 
478 	/*
479 	 * We check slab_want_init_on_alloc() ourselves, rather than letting
480 	 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
481 	 * redzone.
482 	 */
483 	if (unlikely(slab_want_init_on_alloc(gfp, cache)))
484 		memzero_explicit(addr, size);
485 	if (cache->ctor)
486 		cache->ctor(addr);
487 
488 	if (random_fault)
489 		kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
490 
491 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
492 	atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
493 
494 	return addr;
495 }
496 
497 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
498 {
499 	struct kcsan_scoped_access assert_page_exclusive;
500 	unsigned long flags;
501 	bool init;
502 
503 	raw_spin_lock_irqsave(&meta->lock, flags);
504 
505 	if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
506 		/* Invalid or double-free, bail out. */
507 		atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
508 		kfence_report_error((unsigned long)addr, false, NULL, meta,
509 				    KFENCE_ERROR_INVALID_FREE);
510 		raw_spin_unlock_irqrestore(&meta->lock, flags);
511 		return;
512 	}
513 
514 	/* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
515 	kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
516 				  KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
517 				  &assert_page_exclusive);
518 
519 	if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
520 		kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
521 
522 	/* Restore page protection if there was an OOB access. */
523 	if (meta->unprotected_page) {
524 		memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
525 		kfence_protect(meta->unprotected_page);
526 		meta->unprotected_page = 0;
527 	}
528 
529 	/* Mark the object as freed. */
530 	metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
531 	init = slab_want_init_on_free(meta->cache);
532 	raw_spin_unlock_irqrestore(&meta->lock, flags);
533 
534 	alloc_covered_add(meta->alloc_stack_hash, -1);
535 
536 	/* Check canary bytes for memory corruption. */
537 	check_canary(meta);
538 
539 	/*
540 	 * Clear memory if init-on-free is set. While we protect the page, the
541 	 * data is still there, and after a use-after-free is detected, we
542 	 * unprotect the page, so the data is still accessible.
543 	 */
544 	if (!zombie && unlikely(init))
545 		memzero_explicit(addr, meta->size);
546 
547 	/* Protect to detect use-after-frees. */
548 	kfence_protect((unsigned long)addr);
549 
550 	kcsan_end_scoped_access(&assert_page_exclusive);
551 	if (!zombie) {
552 		/* Add it to the tail of the freelist for reuse. */
553 		raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
554 		KFENCE_WARN_ON(!list_empty(&meta->list));
555 		list_add_tail(&meta->list, &kfence_freelist);
556 		raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
557 
558 		atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
559 		atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
560 	} else {
561 		/* See kfence_shutdown_cache(). */
562 		atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
563 	}
564 }
565 
566 static void rcu_guarded_free(struct rcu_head *h)
567 {
568 	struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
569 
570 	kfence_guarded_free((void *)meta->addr, meta, false);
571 }
572 
573 /*
574  * Initialization of the KFENCE pool after its allocation.
575  * Returns 0 on success; otherwise returns the address up to
576  * which partial initialization succeeded.
577  */
578 static unsigned long kfence_init_pool(void)
579 {
580 	unsigned long addr;
581 	struct page *pages;
582 	int i;
583 
584 	if (!arch_kfence_init_pool())
585 		return (unsigned long)__kfence_pool;
586 
587 	addr = (unsigned long)__kfence_pool;
588 	pages = virt_to_page(__kfence_pool);
589 
590 	/*
591 	 * Set up object pages: they must have PG_slab set, to avoid freeing
592 	 * these as real pages.
593 	 *
594 	 * We also want to avoid inserting kfence_free() in the kfree()
595 	 * fast-path in SLUB, and therefore need to ensure kfree() correctly
596 	 * enters __slab_free() slow-path.
597 	 */
598 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
599 		struct slab *slab = page_slab(nth_page(pages, i));
600 
601 		if (!i || (i % 2))
602 			continue;
603 
604 		__folio_set_slab(slab_folio(slab));
605 #ifdef CONFIG_MEMCG
606 		slab->obj_exts = (unsigned long)&kfence_metadata_init[i / 2 - 1].obj_exts |
607 				 MEMCG_DATA_OBJEXTS;
608 #endif
609 	}
610 
611 	/*
612 	 * Protect the first 2 pages. The first page is mostly unnecessary, and
613 	 * merely serves as an extended guard page. However, adding one
614 	 * additional page in the beginning gives us an even number of pages,
615 	 * which simplifies the mapping of address to metadata index.
616 	 */
617 	for (i = 0; i < 2; i++) {
618 		if (unlikely(!kfence_protect(addr)))
619 			return addr;
620 
621 		addr += PAGE_SIZE;
622 	}
623 
624 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
625 		struct kfence_metadata *meta = &kfence_metadata_init[i];
626 
627 		/* Initialize metadata. */
628 		INIT_LIST_HEAD(&meta->list);
629 		raw_spin_lock_init(&meta->lock);
630 		meta->state = KFENCE_OBJECT_UNUSED;
631 		meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
632 		list_add_tail(&meta->list, &kfence_freelist);
633 
634 		/* Protect the right redzone. */
635 		if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
636 			goto reset_slab;
637 
638 		addr += 2 * PAGE_SIZE;
639 	}
640 
641 	/*
642 	 * Make kfence_metadata visible only when initialization is successful.
643 	 * Otherwise, if the initialization fails and kfence_metadata is freed,
644 	 * it may cause UAF in kfence_shutdown_cache().
645 	 */
646 	smp_store_release(&kfence_metadata, kfence_metadata_init);
647 	return 0;
648 
649 reset_slab:
650 	for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
651 		struct slab *slab = page_slab(nth_page(pages, i));
652 
653 		if (!i || (i % 2))
654 			continue;
655 #ifdef CONFIG_MEMCG
656 		slab->obj_exts = 0;
657 #endif
658 		__folio_clear_slab(slab_folio(slab));
659 	}
660 
661 	return addr;
662 }
663 
664 static bool __init kfence_init_pool_early(void)
665 {
666 	unsigned long addr;
667 
668 	if (!__kfence_pool)
669 		return false;
670 
671 	addr = kfence_init_pool();
672 
673 	if (!addr) {
674 		/*
675 		 * The pool is live and will never be deallocated from this point on.
676 		 * Ignore the pool object from the kmemleak phys object tree, as it would
677 		 * otherwise overlap with allocations returned by kfence_alloc(), which
678 		 * are registered with kmemleak through the slab post-alloc hook.
679 		 */
680 		kmemleak_ignore_phys(__pa(__kfence_pool));
681 		return true;
682 	}
683 
684 	/*
685 	 * Only release unprotected pages, and do not try to go back and change
686 	 * page attributes due to risk of failing to do so as well. If changing
687 	 * page attributes for some pages fails, it is very likely that it also
688 	 * fails for the first page, and therefore expect addr==__kfence_pool in
689 	 * most failure cases.
690 	 */
691 	memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
692 	__kfence_pool = NULL;
693 
694 	memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
695 	kfence_metadata_init = NULL;
696 
697 	return false;
698 }
699 
700 /* === DebugFS Interface ==================================================== */
701 
702 static int stats_show(struct seq_file *seq, void *v)
703 {
704 	int i;
705 
706 	seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
707 	for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
708 		seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
709 
710 	return 0;
711 }
712 DEFINE_SHOW_ATTRIBUTE(stats);
713 
714 /*
715  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
716  * start_object() and next_object() return the object index + 1, because NULL is used
717  * to stop iteration.
718  */
719 static void *start_object(struct seq_file *seq, loff_t *pos)
720 {
721 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
722 		return (void *)((long)*pos + 1);
723 	return NULL;
724 }
725 
726 static void stop_object(struct seq_file *seq, void *v)
727 {
728 }
729 
730 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
731 {
732 	++*pos;
733 	if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
734 		return (void *)((long)*pos + 1);
735 	return NULL;
736 }
737 
738 static int show_object(struct seq_file *seq, void *v)
739 {
740 	struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
741 	unsigned long flags;
742 
743 	raw_spin_lock_irqsave(&meta->lock, flags);
744 	kfence_print_object(seq, meta);
745 	raw_spin_unlock_irqrestore(&meta->lock, flags);
746 	seq_puts(seq, "---------------------------------\n");
747 
748 	return 0;
749 }
750 
751 static const struct seq_operations objects_sops = {
752 	.start = start_object,
753 	.next = next_object,
754 	.stop = stop_object,
755 	.show = show_object,
756 };
757 DEFINE_SEQ_ATTRIBUTE(objects);
758 
759 static int kfence_debugfs_init(void)
760 {
761 	struct dentry *kfence_dir;
762 
763 	if (!READ_ONCE(kfence_enabled))
764 		return 0;
765 
766 	kfence_dir = debugfs_create_dir("kfence", NULL);
767 	debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
768 	debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
769 	return 0;
770 }
771 
772 late_initcall(kfence_debugfs_init);
773 
774 /* === Panic Notifier ====================================================== */
775 
776 static void kfence_check_all_canary(void)
777 {
778 	int i;
779 
780 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
781 		struct kfence_metadata *meta = &kfence_metadata[i];
782 
783 		if (meta->state == KFENCE_OBJECT_ALLOCATED)
784 			check_canary(meta);
785 	}
786 }
787 
788 static int kfence_check_canary_callback(struct notifier_block *nb,
789 					unsigned long reason, void *arg)
790 {
791 	kfence_check_all_canary();
792 	return NOTIFY_OK;
793 }
794 
795 static struct notifier_block kfence_check_canary_notifier = {
796 	.notifier_call = kfence_check_canary_callback,
797 };
798 
799 /* === Allocation Gate Timer ================================================ */
800 
801 static struct delayed_work kfence_timer;
802 
803 #ifdef CONFIG_KFENCE_STATIC_KEYS
804 /* Wait queue to wake up allocation-gate timer task. */
805 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
806 
807 static void wake_up_kfence_timer(struct irq_work *work)
808 {
809 	wake_up(&allocation_wait);
810 }
811 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
812 #endif
813 
814 /*
815  * Set up delayed work, which will enable and disable the static key. We need to
816  * use a work queue (rather than a simple timer), since enabling and disabling a
817  * static key cannot be done from an interrupt.
818  *
819  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
820  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
821  * more aggressive sampling intervals), we could get away with a variant that
822  * avoids IPIs, at the cost of not immediately capturing allocations if the
823  * instructions remain cached.
824  */
825 static void toggle_allocation_gate(struct work_struct *work)
826 {
827 	if (!READ_ONCE(kfence_enabled))
828 		return;
829 
830 	atomic_set(&kfence_allocation_gate, 0);
831 #ifdef CONFIG_KFENCE_STATIC_KEYS
832 	/* Enable static key, and await allocation to happen. */
833 	static_branch_enable(&kfence_allocation_key);
834 
835 	wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
836 
837 	/* Disable static key and reset timer. */
838 	static_branch_disable(&kfence_allocation_key);
839 #endif
840 	queue_delayed_work(system_unbound_wq, &kfence_timer,
841 			   msecs_to_jiffies(kfence_sample_interval));
842 }
843 
844 /* === Public interface ===================================================== */
845 
846 void __init kfence_alloc_pool_and_metadata(void)
847 {
848 	if (!kfence_sample_interval)
849 		return;
850 
851 	/*
852 	 * If the pool has already been initialized by arch, there is no need to
853 	 * re-allocate the memory pool.
854 	 */
855 	if (!__kfence_pool)
856 		__kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
857 
858 	if (!__kfence_pool) {
859 		pr_err("failed to allocate pool\n");
860 		return;
861 	}
862 
863 	/* The memory allocated by memblock has been zeroed out. */
864 	kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
865 	if (!kfence_metadata_init) {
866 		pr_err("failed to allocate metadata\n");
867 		memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
868 		__kfence_pool = NULL;
869 	}
870 }
871 
872 static void kfence_init_enable(void)
873 {
874 	if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
875 		static_branch_enable(&kfence_allocation_key);
876 
877 	if (kfence_deferrable)
878 		INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
879 	else
880 		INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
881 
882 	if (kfence_check_on_panic)
883 		atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
884 
885 	WRITE_ONCE(kfence_enabled, true);
886 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
887 
888 	pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
889 		CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
890 		(void *)(__kfence_pool + KFENCE_POOL_SIZE));
891 }
892 
893 void __init kfence_init(void)
894 {
895 	stack_hash_seed = get_random_u32();
896 
897 	/* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
898 	if (!kfence_sample_interval)
899 		return;
900 
901 	if (!kfence_init_pool_early()) {
902 		pr_err("%s failed\n", __func__);
903 		return;
904 	}
905 
906 	kfence_init_enable();
907 }
908 
909 static int kfence_init_late(void)
910 {
911 	const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
912 	const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
913 	unsigned long addr = (unsigned long)__kfence_pool;
914 	unsigned long free_size = KFENCE_POOL_SIZE;
915 	int err = -ENOMEM;
916 
917 #ifdef CONFIG_CONTIG_ALLOC
918 	struct page *pages;
919 
920 	pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
921 				   NULL);
922 	if (!pages)
923 		return -ENOMEM;
924 
925 	__kfence_pool = page_to_virt(pages);
926 	pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
927 				   NULL);
928 	if (pages)
929 		kfence_metadata_init = page_to_virt(pages);
930 #else
931 	if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
932 	    nr_pages_meta > MAX_ORDER_NR_PAGES) {
933 		pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
934 		return -EINVAL;
935 	}
936 
937 	__kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
938 	if (!__kfence_pool)
939 		return -ENOMEM;
940 
941 	kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
942 #endif
943 
944 	if (!kfence_metadata_init)
945 		goto free_pool;
946 
947 	memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
948 	addr = kfence_init_pool();
949 	if (!addr) {
950 		kfence_init_enable();
951 		kfence_debugfs_init();
952 		return 0;
953 	}
954 
955 	pr_err("%s failed\n", __func__);
956 	free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
957 	err = -EBUSY;
958 
959 #ifdef CONFIG_CONTIG_ALLOC
960 	free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
961 			  nr_pages_meta);
962 free_pool:
963 	free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
964 			  free_size / PAGE_SIZE);
965 #else
966 	free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
967 free_pool:
968 	free_pages_exact((void *)addr, free_size);
969 #endif
970 
971 	kfence_metadata_init = NULL;
972 	__kfence_pool = NULL;
973 	return err;
974 }
975 
976 static int kfence_enable_late(void)
977 {
978 	if (!__kfence_pool)
979 		return kfence_init_late();
980 
981 	WRITE_ONCE(kfence_enabled, true);
982 	queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
983 	pr_info("re-enabled\n");
984 	return 0;
985 }
986 
987 void kfence_shutdown_cache(struct kmem_cache *s)
988 {
989 	unsigned long flags;
990 	struct kfence_metadata *meta;
991 	int i;
992 
993 	/* Pairs with release in kfence_init_pool(). */
994 	if (!smp_load_acquire(&kfence_metadata))
995 		return;
996 
997 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
998 		bool in_use;
999 
1000 		meta = &kfence_metadata[i];
1001 
1002 		/*
1003 		 * If we observe some inconsistent cache and state pair where we
1004 		 * should have returned false here, cache destruction is racing
1005 		 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
1006 		 * the lock will not help, as different critical section
1007 		 * serialization will have the same outcome.
1008 		 */
1009 		if (READ_ONCE(meta->cache) != s ||
1010 		    READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
1011 			continue;
1012 
1013 		raw_spin_lock_irqsave(&meta->lock, flags);
1014 		in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
1015 		raw_spin_unlock_irqrestore(&meta->lock, flags);
1016 
1017 		if (in_use) {
1018 			/*
1019 			 * This cache still has allocations, and we should not
1020 			 * release them back into the freelist so they can still
1021 			 * safely be used and retain the kernel's default
1022 			 * behaviour of keeping the allocations alive (leak the
1023 			 * cache); however, they effectively become "zombie
1024 			 * allocations" as the KFENCE objects are the only ones
1025 			 * still in use and the owning cache is being destroyed.
1026 			 *
1027 			 * We mark them freed, so that any subsequent use shows
1028 			 * more useful error messages that will include stack
1029 			 * traces of the user of the object, the original
1030 			 * allocation, and caller to shutdown_cache().
1031 			 */
1032 			kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
1033 		}
1034 	}
1035 
1036 	for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1037 		meta = &kfence_metadata[i];
1038 
1039 		/* See above. */
1040 		if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
1041 			continue;
1042 
1043 		raw_spin_lock_irqsave(&meta->lock, flags);
1044 		if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
1045 			meta->cache = NULL;
1046 		raw_spin_unlock_irqrestore(&meta->lock, flags);
1047 	}
1048 }
1049 
1050 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
1051 {
1052 	unsigned long stack_entries[KFENCE_STACK_DEPTH];
1053 	size_t num_stack_entries;
1054 	u32 alloc_stack_hash;
1055 
1056 	/*
1057 	 * Perform size check before switching kfence_allocation_gate, so that
1058 	 * we don't disable KFENCE without making an allocation.
1059 	 */
1060 	if (size > PAGE_SIZE) {
1061 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1062 		return NULL;
1063 	}
1064 
1065 	/*
1066 	 * Skip allocations from non-default zones, including DMA. We cannot
1067 	 * guarantee that pages in the KFENCE pool will have the requested
1068 	 * properties (e.g. reside in DMAable memory).
1069 	 */
1070 	if ((flags & GFP_ZONEMASK) ||
1071 	    (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1072 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1073 		return NULL;
1074 	}
1075 
1076 	/*
1077 	 * Skip allocations for this slab, if KFENCE has been disabled for
1078 	 * this slab.
1079 	 */
1080 	if (s->flags & SLAB_SKIP_KFENCE)
1081 		return NULL;
1082 
1083 	if (atomic_inc_return(&kfence_allocation_gate) > 1)
1084 		return NULL;
1085 #ifdef CONFIG_KFENCE_STATIC_KEYS
1086 	/*
1087 	 * waitqueue_active() is fully ordered after the update of
1088 	 * kfence_allocation_gate per atomic_inc_return().
1089 	 */
1090 	if (waitqueue_active(&allocation_wait)) {
1091 		/*
1092 		 * Calling wake_up() here may deadlock when allocations happen
1093 		 * from within timer code. Use an irq_work to defer it.
1094 		 */
1095 		irq_work_queue(&wake_up_kfence_timer_work);
1096 	}
1097 #endif
1098 
1099 	if (!READ_ONCE(kfence_enabled))
1100 		return NULL;
1101 
1102 	num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1103 
1104 	/*
1105 	 * Do expensive check for coverage of allocation in slow-path after
1106 	 * allocation_gate has already become non-zero, even though it might
1107 	 * mean not making any allocation within a given sample interval.
1108 	 *
1109 	 * This ensures reasonable allocation coverage when the pool is almost
1110 	 * full, including avoiding long-lived allocations of the same source
1111 	 * filling up the pool (e.g. pagecache allocations).
1112 	 */
1113 	alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1114 	if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1115 		atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1116 		return NULL;
1117 	}
1118 
1119 	return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1120 				    alloc_stack_hash);
1121 }
1122 
1123 size_t kfence_ksize(const void *addr)
1124 {
1125 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1126 
1127 	/*
1128 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1129 	 * either a use-after-free or invalid access.
1130 	 */
1131 	return meta ? meta->size : 0;
1132 }
1133 
1134 void *kfence_object_start(const void *addr)
1135 {
1136 	const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1137 
1138 	/*
1139 	 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1140 	 * either a use-after-free or invalid access.
1141 	 */
1142 	return meta ? (void *)meta->addr : NULL;
1143 }
1144 
1145 void __kfence_free(void *addr)
1146 {
1147 	struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1148 
1149 #ifdef CONFIG_MEMCG
1150 	KFENCE_WARN_ON(meta->obj_exts.objcg);
1151 #endif
1152 	/*
1153 	 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1154 	 * the object, as the object page may be recycled for other-typed
1155 	 * objects once it has been freed. meta->cache may be NULL if the cache
1156 	 * was destroyed.
1157 	 */
1158 	if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1159 		call_rcu(&meta->rcu_head, rcu_guarded_free);
1160 	else
1161 		kfence_guarded_free(addr, meta, false);
1162 }
1163 
1164 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1165 {
1166 	const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1167 	struct kfence_metadata *to_report = NULL;
1168 	enum kfence_error_type error_type;
1169 	unsigned long flags;
1170 
1171 	if (!is_kfence_address((void *)addr))
1172 		return false;
1173 
1174 	if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1175 		return kfence_unprotect(addr); /* ... unprotect and proceed. */
1176 
1177 	atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1178 
1179 	if (page_index % 2) {
1180 		/* This is a redzone, report a buffer overflow. */
1181 		struct kfence_metadata *meta;
1182 		int distance = 0;
1183 
1184 		meta = addr_to_metadata(addr - PAGE_SIZE);
1185 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1186 			to_report = meta;
1187 			/* Data race ok; distance calculation approximate. */
1188 			distance = addr - data_race(meta->addr + meta->size);
1189 		}
1190 
1191 		meta = addr_to_metadata(addr + PAGE_SIZE);
1192 		if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1193 			/* Data race ok; distance calculation approximate. */
1194 			if (!to_report || distance > data_race(meta->addr) - addr)
1195 				to_report = meta;
1196 		}
1197 
1198 		if (!to_report)
1199 			goto out;
1200 
1201 		raw_spin_lock_irqsave(&to_report->lock, flags);
1202 		to_report->unprotected_page = addr;
1203 		error_type = KFENCE_ERROR_OOB;
1204 
1205 		/*
1206 		 * If the object was freed before we took the look we can still
1207 		 * report this as an OOB -- the report will simply show the
1208 		 * stacktrace of the free as well.
1209 		 */
1210 	} else {
1211 		to_report = addr_to_metadata(addr);
1212 		if (!to_report)
1213 			goto out;
1214 
1215 		raw_spin_lock_irqsave(&to_report->lock, flags);
1216 		error_type = KFENCE_ERROR_UAF;
1217 		/*
1218 		 * We may race with __kfence_alloc(), and it is possible that a
1219 		 * freed object may be reallocated. We simply report this as a
1220 		 * use-after-free, with the stack trace showing the place where
1221 		 * the object was re-allocated.
1222 		 */
1223 	}
1224 
1225 out:
1226 	if (to_report) {
1227 		kfence_report_error(addr, is_write, regs, to_report, error_type);
1228 		raw_spin_unlock_irqrestore(&to_report->lock, flags);
1229 	} else {
1230 		/* This may be a UAF or OOB access, but we can't be sure. */
1231 		kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1232 	}
1233 
1234 	return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1235 }
1236