xref: /linux/mm/kasan/shadow.c (revision 24b10e5f8e0d2bee1a10fc67011ea5d936c1a389)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12 
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23 
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 
27 #include "kasan.h"
28 
29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31 	return kasan_check_range((void *)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34 
35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37 	return kasan_check_range((void *)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40 
41 #if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
42 /*
43  * CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
44  * instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
45  * for the sites they want to instrument.
46  *
47  * If we have a compiler that can instrument meminstrinsics, never override
48  * these, so that non-instrumented files can safely consider them as builtins.
49  */
50 #undef memset
51 void *memset(void *addr, int c, size_t len)
52 {
53 	if (!kasan_check_range(addr, len, true, _RET_IP_))
54 		return NULL;
55 
56 	return __memset(addr, c, len);
57 }
58 
59 #ifdef __HAVE_ARCH_MEMMOVE
60 #undef memmove
61 void *memmove(void *dest, const void *src, size_t len)
62 {
63 	if (!kasan_check_range(src, len, false, _RET_IP_) ||
64 	    !kasan_check_range(dest, len, true, _RET_IP_))
65 		return NULL;
66 
67 	return __memmove(dest, src, len);
68 }
69 #endif
70 
71 #undef memcpy
72 void *memcpy(void *dest, const void *src, size_t len)
73 {
74 	if (!kasan_check_range(src, len, false, _RET_IP_) ||
75 	    !kasan_check_range(dest, len, true, _RET_IP_))
76 		return NULL;
77 
78 	return __memcpy(dest, src, len);
79 }
80 #endif
81 
82 void *__asan_memset(void *addr, int c, ssize_t len)
83 {
84 	if (!kasan_check_range(addr, len, true, _RET_IP_))
85 		return NULL;
86 
87 	return __memset(addr, c, len);
88 }
89 EXPORT_SYMBOL(__asan_memset);
90 
91 #ifdef __HAVE_ARCH_MEMMOVE
92 void *__asan_memmove(void *dest, const void *src, ssize_t len)
93 {
94 	if (!kasan_check_range(src, len, false, _RET_IP_) ||
95 	    !kasan_check_range(dest, len, true, _RET_IP_))
96 		return NULL;
97 
98 	return __memmove(dest, src, len);
99 }
100 EXPORT_SYMBOL(__asan_memmove);
101 #endif
102 
103 void *__asan_memcpy(void *dest, const void *src, ssize_t len)
104 {
105 	if (!kasan_check_range(src, len, false, _RET_IP_) ||
106 	    !kasan_check_range(dest, len, true, _RET_IP_))
107 		return NULL;
108 
109 	return __memcpy(dest, src, len);
110 }
111 EXPORT_SYMBOL(__asan_memcpy);
112 
113 #ifdef CONFIG_KASAN_SW_TAGS
114 void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset);
115 EXPORT_SYMBOL(__hwasan_memset);
116 #ifdef __HAVE_ARCH_MEMMOVE
117 void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove);
118 EXPORT_SYMBOL(__hwasan_memmove);
119 #endif
120 void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy);
121 EXPORT_SYMBOL(__hwasan_memcpy);
122 #endif
123 
124 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
125 {
126 	void *shadow_start, *shadow_end;
127 
128 	if (!kasan_arch_is_ready())
129 		return;
130 
131 	/*
132 	 * Perform shadow offset calculation based on untagged address, as
133 	 * some of the callers (e.g. kasan_poison_new_object) pass tagged
134 	 * addresses to this function.
135 	 */
136 	addr = kasan_reset_tag(addr);
137 
138 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
139 		return;
140 	if (WARN_ON(size & KASAN_GRANULE_MASK))
141 		return;
142 
143 	shadow_start = kasan_mem_to_shadow(addr);
144 	shadow_end = kasan_mem_to_shadow(addr + size);
145 
146 	__memset(shadow_start, value, shadow_end - shadow_start);
147 }
148 EXPORT_SYMBOL_GPL(kasan_poison);
149 
150 #ifdef CONFIG_KASAN_GENERIC
151 void kasan_poison_last_granule(const void *addr, size_t size)
152 {
153 	if (!kasan_arch_is_ready())
154 		return;
155 
156 	if (size & KASAN_GRANULE_MASK) {
157 		u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
158 		*shadow = size & KASAN_GRANULE_MASK;
159 	}
160 }
161 #endif
162 
163 void kasan_unpoison(const void *addr, size_t size, bool init)
164 {
165 	u8 tag = get_tag(addr);
166 
167 	/*
168 	 * Perform shadow offset calculation based on untagged address, as
169 	 * some of the callers (e.g. kasan_unpoison_new_object) pass tagged
170 	 * addresses to this function.
171 	 */
172 	addr = kasan_reset_tag(addr);
173 
174 	if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
175 		return;
176 
177 	/* Unpoison all granules that cover the object. */
178 	kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
179 
180 	/* Partially poison the last granule for the generic mode. */
181 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
182 		kasan_poison_last_granule(addr, size);
183 }
184 
185 #ifdef CONFIG_MEMORY_HOTPLUG
186 static bool shadow_mapped(unsigned long addr)
187 {
188 	pgd_t *pgd = pgd_offset_k(addr);
189 	p4d_t *p4d;
190 	pud_t *pud;
191 	pmd_t *pmd;
192 	pte_t *pte;
193 
194 	if (pgd_none(*pgd))
195 		return false;
196 	p4d = p4d_offset(pgd, addr);
197 	if (p4d_none(*p4d))
198 		return false;
199 	pud = pud_offset(p4d, addr);
200 	if (pud_none(*pud))
201 		return false;
202 
203 	/*
204 	 * We can't use pud_large() or pud_huge(), the first one is
205 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
206 	 * pud_bad(), if pud is bad then it's bad because it's huge.
207 	 */
208 	if (pud_bad(*pud))
209 		return true;
210 	pmd = pmd_offset(pud, addr);
211 	if (pmd_none(*pmd))
212 		return false;
213 
214 	if (pmd_bad(*pmd))
215 		return true;
216 	pte = pte_offset_kernel(pmd, addr);
217 	return !pte_none(ptep_get(pte));
218 }
219 
220 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
221 			unsigned long action, void *data)
222 {
223 	struct memory_notify *mem_data = data;
224 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
225 	unsigned long shadow_end, shadow_size;
226 
227 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
228 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
229 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
230 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
231 	shadow_end = shadow_start + shadow_size;
232 
233 	if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
234 		WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
235 		return NOTIFY_BAD;
236 
237 	switch (action) {
238 	case MEM_GOING_ONLINE: {
239 		void *ret;
240 
241 		/*
242 		 * If shadow is mapped already than it must have been mapped
243 		 * during the boot. This could happen if we onlining previously
244 		 * offlined memory.
245 		 */
246 		if (shadow_mapped(shadow_start))
247 			return NOTIFY_OK;
248 
249 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
250 					shadow_end, GFP_KERNEL,
251 					PAGE_KERNEL, VM_NO_GUARD,
252 					pfn_to_nid(mem_data->start_pfn),
253 					__builtin_return_address(0));
254 		if (!ret)
255 			return NOTIFY_BAD;
256 
257 		kmemleak_ignore(ret);
258 		return NOTIFY_OK;
259 	}
260 	case MEM_CANCEL_ONLINE:
261 	case MEM_OFFLINE: {
262 		struct vm_struct *vm;
263 
264 		/*
265 		 * shadow_start was either mapped during boot by kasan_init()
266 		 * or during memory online by __vmalloc_node_range().
267 		 * In the latter case we can use vfree() to free shadow.
268 		 * Non-NULL result of the find_vm_area() will tell us if
269 		 * that was the second case.
270 		 *
271 		 * Currently it's not possible to free shadow mapped
272 		 * during boot by kasan_init(). It's because the code
273 		 * to do that hasn't been written yet. So we'll just
274 		 * leak the memory.
275 		 */
276 		vm = find_vm_area((void *)shadow_start);
277 		if (vm)
278 			vfree((void *)shadow_start);
279 	}
280 	}
281 
282 	return NOTIFY_OK;
283 }
284 
285 static int __init kasan_memhotplug_init(void)
286 {
287 	hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
288 
289 	return 0;
290 }
291 
292 core_initcall(kasan_memhotplug_init);
293 #endif
294 
295 #ifdef CONFIG_KASAN_VMALLOC
296 
297 void __init __weak kasan_populate_early_vm_area_shadow(void *start,
298 						       unsigned long size)
299 {
300 }
301 
302 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
303 				      void *unused)
304 {
305 	unsigned long page;
306 	pte_t pte;
307 
308 	if (likely(!pte_none(ptep_get(ptep))))
309 		return 0;
310 
311 	page = __get_free_page(GFP_KERNEL);
312 	if (!page)
313 		return -ENOMEM;
314 
315 	__memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
316 	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
317 
318 	spin_lock(&init_mm.page_table_lock);
319 	if (likely(pte_none(ptep_get(ptep)))) {
320 		set_pte_at(&init_mm, addr, ptep, pte);
321 		page = 0;
322 	}
323 	spin_unlock(&init_mm.page_table_lock);
324 	if (page)
325 		free_page(page);
326 	return 0;
327 }
328 
329 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
330 {
331 	unsigned long shadow_start, shadow_end;
332 	int ret;
333 
334 	if (!kasan_arch_is_ready())
335 		return 0;
336 
337 	if (!is_vmalloc_or_module_addr((void *)addr))
338 		return 0;
339 
340 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
341 	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
342 
343 	/*
344 	 * User Mode Linux maps enough shadow memory for all of virtual memory
345 	 * at boot, so doesn't need to allocate more on vmalloc, just clear it.
346 	 *
347 	 * The remaining CONFIG_UML checks in this file exist for the same
348 	 * reason.
349 	 */
350 	if (IS_ENABLED(CONFIG_UML)) {
351 		__memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
352 		return 0;
353 	}
354 
355 	shadow_start = PAGE_ALIGN_DOWN(shadow_start);
356 	shadow_end = PAGE_ALIGN(shadow_end);
357 
358 	ret = apply_to_page_range(&init_mm, shadow_start,
359 				  shadow_end - shadow_start,
360 				  kasan_populate_vmalloc_pte, NULL);
361 	if (ret)
362 		return ret;
363 
364 	flush_cache_vmap(shadow_start, shadow_end);
365 
366 	/*
367 	 * We need to be careful about inter-cpu effects here. Consider:
368 	 *
369 	 *   CPU#0				  CPU#1
370 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
371 	 *					p[99] = 1;
372 	 *
373 	 * With compiler instrumentation, that ends up looking like this:
374 	 *
375 	 *   CPU#0				  CPU#1
376 	 * // vmalloc() allocates memory
377 	 * // let a = area->addr
378 	 * // we reach kasan_populate_vmalloc
379 	 * // and call kasan_unpoison:
380 	 * STORE shadow(a), unpoison_val
381 	 * ...
382 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
383 	 * // rest of vmalloc process		<data dependency>
384 	 * STORE p, a				LOAD shadow(x+99)
385 	 *
386 	 * If there is no barrier between the end of unpoisoning the shadow
387 	 * and the store of the result to p, the stores could be committed
388 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
389 	 * poison in the shadow.
390 	 *
391 	 * We need some sort of barrier between the stores.
392 	 *
393 	 * In the vmalloc() case, this is provided by a smp_wmb() in
394 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
395 	 * get_vm_area() and friends, the caller gets shadow allocated but
396 	 * doesn't have any pages mapped into the virtual address space that
397 	 * has been reserved. Mapping those pages in will involve taking and
398 	 * releasing a page-table lock, which will provide the barrier.
399 	 */
400 
401 	return 0;
402 }
403 
404 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
405 					void *unused)
406 {
407 	unsigned long page;
408 
409 	page = (unsigned long)__va(pte_pfn(ptep_get(ptep)) << PAGE_SHIFT);
410 
411 	spin_lock(&init_mm.page_table_lock);
412 
413 	if (likely(!pte_none(ptep_get(ptep)))) {
414 		pte_clear(&init_mm, addr, ptep);
415 		free_page(page);
416 	}
417 	spin_unlock(&init_mm.page_table_lock);
418 
419 	return 0;
420 }
421 
422 /*
423  * Release the backing for the vmalloc region [start, end), which
424  * lies within the free region [free_region_start, free_region_end).
425  *
426  * This can be run lazily, long after the region was freed. It runs
427  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
428  * infrastructure.
429  *
430  * How does this work?
431  * -------------------
432  *
433  * We have a region that is page aligned, labeled as A.
434  * That might not map onto the shadow in a way that is page-aligned:
435  *
436  *                    start                     end
437  *                    v                         v
438  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
439  *  -------- -------- --------          -------- --------
440  *      |        |       |                 |        |
441  *      |        |       |         /-------/        |
442  *      \-------\|/------/         |/---------------/
443  *              |||                ||
444  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
445  *                 (1)      (2)      (3)
446  *
447  * First we align the start upwards and the end downwards, so that the
448  * shadow of the region aligns with shadow page boundaries. In the
449  * example, this gives us the shadow page (2). This is the shadow entirely
450  * covered by this allocation.
451  *
452  * Then we have the tricky bits. We want to know if we can free the
453  * partially covered shadow pages - (1) and (3) in the example. For this,
454  * we are given the start and end of the free region that contains this
455  * allocation. Extending our previous example, we could have:
456  *
457  *  free_region_start                                    free_region_end
458  *  |                 start                     end      |
459  *  v                 v                         v        v
460  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
461  *  -------- -------- --------          -------- --------
462  *      |        |       |                 |        |
463  *      |        |       |         /-------/        |
464  *      \-------\|/------/         |/---------------/
465  *              |||                ||
466  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
467  *                 (1)      (2)      (3)
468  *
469  * Once again, we align the start of the free region up, and the end of
470  * the free region down so that the shadow is page aligned. So we can free
471  * page (1) - we know no allocation currently uses anything in that page,
472  * because all of it is in the vmalloc free region. But we cannot free
473  * page (3), because we can't be sure that the rest of it is unused.
474  *
475  * We only consider pages that contain part of the original region for
476  * freeing: we don't try to free other pages from the free region or we'd
477  * end up trying to free huge chunks of virtual address space.
478  *
479  * Concurrency
480  * -----------
481  *
482  * How do we know that we're not freeing a page that is simultaneously
483  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
484  *
485  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
486  * at the same time. While we run under free_vmap_area_lock, the population
487  * code does not.
488  *
489  * free_vmap_area_lock instead operates to ensure that the larger range
490  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
491  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
492  * no space identified as free will become used while we are running. This
493  * means that so long as we are careful with alignment and only free shadow
494  * pages entirely covered by the free region, we will not run in to any
495  * trouble - any simultaneous allocations will be for disjoint regions.
496  */
497 void kasan_release_vmalloc(unsigned long start, unsigned long end,
498 			   unsigned long free_region_start,
499 			   unsigned long free_region_end)
500 {
501 	void *shadow_start, *shadow_end;
502 	unsigned long region_start, region_end;
503 	unsigned long size;
504 
505 	if (!kasan_arch_is_ready())
506 		return;
507 
508 	region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
509 	region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
510 
511 	free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
512 
513 	if (start != region_start &&
514 	    free_region_start < region_start)
515 		region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
516 
517 	free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
518 
519 	if (end != region_end &&
520 	    free_region_end > region_end)
521 		region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
522 
523 	shadow_start = kasan_mem_to_shadow((void *)region_start);
524 	shadow_end = kasan_mem_to_shadow((void *)region_end);
525 
526 	if (shadow_end > shadow_start) {
527 		size = shadow_end - shadow_start;
528 		if (IS_ENABLED(CONFIG_UML)) {
529 			__memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
530 			return;
531 		}
532 		apply_to_existing_page_range(&init_mm,
533 					     (unsigned long)shadow_start,
534 					     size, kasan_depopulate_vmalloc_pte,
535 					     NULL);
536 		flush_tlb_kernel_range((unsigned long)shadow_start,
537 				       (unsigned long)shadow_end);
538 	}
539 }
540 
541 void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
542 			       kasan_vmalloc_flags_t flags)
543 {
544 	/*
545 	 * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
546 	 * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
547 	 * Software KASAN modes can't optimize zeroing memory by combining it
548 	 * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
549 	 */
550 
551 	if (!kasan_arch_is_ready())
552 		return (void *)start;
553 
554 	if (!is_vmalloc_or_module_addr(start))
555 		return (void *)start;
556 
557 	/*
558 	 * Don't tag executable memory with the tag-based mode.
559 	 * The kernel doesn't tolerate having the PC register tagged.
560 	 */
561 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
562 	    !(flags & KASAN_VMALLOC_PROT_NORMAL))
563 		return (void *)start;
564 
565 	start = set_tag(start, kasan_random_tag());
566 	kasan_unpoison(start, size, false);
567 	return (void *)start;
568 }
569 
570 /*
571  * Poison the shadow for a vmalloc region. Called as part of the
572  * freeing process at the time the region is freed.
573  */
574 void __kasan_poison_vmalloc(const void *start, unsigned long size)
575 {
576 	if (!kasan_arch_is_ready())
577 		return;
578 
579 	if (!is_vmalloc_or_module_addr(start))
580 		return;
581 
582 	size = round_up(size, KASAN_GRANULE_SIZE);
583 	kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
584 }
585 
586 #else /* CONFIG_KASAN_VMALLOC */
587 
588 int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
589 {
590 	void *ret;
591 	size_t scaled_size;
592 	size_t shadow_size;
593 	unsigned long shadow_start;
594 
595 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
596 	scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
597 				KASAN_SHADOW_SCALE_SHIFT;
598 	shadow_size = round_up(scaled_size, PAGE_SIZE);
599 
600 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
601 		return -EINVAL;
602 
603 	if (IS_ENABLED(CONFIG_UML)) {
604 		__memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
605 		return 0;
606 	}
607 
608 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
609 			shadow_start + shadow_size,
610 			GFP_KERNEL,
611 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
612 			__builtin_return_address(0));
613 
614 	if (ret) {
615 		struct vm_struct *vm = find_vm_area(addr);
616 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
617 		vm->flags |= VM_KASAN;
618 		kmemleak_ignore(ret);
619 
620 		if (vm->flags & VM_DEFER_KMEMLEAK)
621 			kmemleak_vmalloc(vm, size, gfp_mask);
622 
623 		return 0;
624 	}
625 
626 	return -ENOMEM;
627 }
628 
629 void kasan_free_module_shadow(const struct vm_struct *vm)
630 {
631 	if (IS_ENABLED(CONFIG_UML))
632 		return;
633 
634 	if (vm->flags & VM_KASAN)
635 		vfree(kasan_mem_to_shadow(vm->addr));
636 }
637 
638 #endif
639