1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN error reporting code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <linux/bitops.h> 13 #include <linux/ftrace.h> 14 #include <linux/init.h> 15 #include <linux/kernel.h> 16 #include <linux/mm.h> 17 #include <linux/printk.h> 18 #include <linux/sched.h> 19 #include <linux/slab.h> 20 #include <linux/stackdepot.h> 21 #include <linux/stacktrace.h> 22 #include <linux/string.h> 23 #include <linux/types.h> 24 #include <linux/kasan.h> 25 #include <linux/module.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/uaccess.h> 28 #include <trace/events/error_report.h> 29 30 #include <asm/sections.h> 31 32 #include <kunit/test.h> 33 34 #include "kasan.h" 35 #include "../slab.h" 36 37 static unsigned long kasan_flags; 38 39 #define KASAN_BIT_REPORTED 0 40 #define KASAN_BIT_MULTI_SHOT 1 41 42 bool kasan_save_enable_multi_shot(void) 43 { 44 return test_and_set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 45 } 46 EXPORT_SYMBOL_GPL(kasan_save_enable_multi_shot); 47 48 void kasan_restore_multi_shot(bool enabled) 49 { 50 if (!enabled) 51 clear_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 52 } 53 EXPORT_SYMBOL_GPL(kasan_restore_multi_shot); 54 55 static int __init kasan_set_multi_shot(char *str) 56 { 57 set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 58 return 1; 59 } 60 __setup("kasan_multi_shot", kasan_set_multi_shot); 61 62 static void print_error_description(struct kasan_access_info *info) 63 { 64 pr_err("BUG: KASAN: %s in %pS\n", 65 kasan_get_bug_type(info), (void *)info->ip); 66 if (info->access_size) 67 pr_err("%s of size %zu at addr %px by task %s/%d\n", 68 info->is_write ? "Write" : "Read", info->access_size, 69 info->access_addr, current->comm, task_pid_nr(current)); 70 else 71 pr_err("%s at addr %px by task %s/%d\n", 72 info->is_write ? "Write" : "Read", 73 info->access_addr, current->comm, task_pid_nr(current)); 74 } 75 76 static DEFINE_SPINLOCK(report_lock); 77 78 static void start_report(unsigned long *flags) 79 { 80 /* 81 * Make sure we don't end up in loop. 82 */ 83 kasan_disable_current(); 84 spin_lock_irqsave(&report_lock, *flags); 85 pr_err("==================================================================\n"); 86 } 87 88 static void end_report(unsigned long *flags, unsigned long addr) 89 { 90 if (!kasan_async_mode_enabled()) 91 trace_error_report_end(ERROR_DETECTOR_KASAN, addr); 92 pr_err("==================================================================\n"); 93 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 94 spin_unlock_irqrestore(&report_lock, *flags); 95 if (panic_on_warn && !test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) { 96 /* 97 * This thread may hit another WARN() in the panic path. 98 * Resetting this prevents additional WARN() from panicking the 99 * system on this thread. Other threads are blocked by the 100 * panic_mutex in panic(). 101 */ 102 panic_on_warn = 0; 103 panic("panic_on_warn set ...\n"); 104 } 105 #ifdef CONFIG_KASAN_HW_TAGS 106 if (kasan_flag_panic) 107 panic("kasan.fault=panic set ...\n"); 108 #endif 109 kasan_enable_current(); 110 } 111 112 static void print_stack(depot_stack_handle_t stack) 113 { 114 unsigned long *entries; 115 unsigned int nr_entries; 116 117 nr_entries = stack_depot_fetch(stack, &entries); 118 stack_trace_print(entries, nr_entries, 0); 119 } 120 121 static void print_track(struct kasan_track *track, const char *prefix) 122 { 123 pr_err("%s by task %u:\n", prefix, track->pid); 124 if (track->stack) { 125 print_stack(track->stack); 126 } else { 127 pr_err("(stack is not available)\n"); 128 } 129 } 130 131 struct page *kasan_addr_to_page(const void *addr) 132 { 133 if ((addr >= (void *)PAGE_OFFSET) && 134 (addr < high_memory)) 135 return virt_to_head_page(addr); 136 return NULL; 137 } 138 139 static void describe_object_addr(struct kmem_cache *cache, void *object, 140 const void *addr) 141 { 142 unsigned long access_addr = (unsigned long)addr; 143 unsigned long object_addr = (unsigned long)object; 144 const char *rel_type; 145 int rel_bytes; 146 147 pr_err("The buggy address belongs to the object at %px\n" 148 " which belongs to the cache %s of size %d\n", 149 object, cache->name, cache->object_size); 150 151 if (!addr) 152 return; 153 154 if (access_addr < object_addr) { 155 rel_type = "to the left"; 156 rel_bytes = object_addr - access_addr; 157 } else if (access_addr >= object_addr + cache->object_size) { 158 rel_type = "to the right"; 159 rel_bytes = access_addr - (object_addr + cache->object_size); 160 } else { 161 rel_type = "inside"; 162 rel_bytes = access_addr - object_addr; 163 } 164 165 pr_err("The buggy address is located %d bytes %s of\n" 166 " %d-byte region [%px, %px)\n", 167 rel_bytes, rel_type, cache->object_size, (void *)object_addr, 168 (void *)(object_addr + cache->object_size)); 169 } 170 171 static void describe_object_stacks(struct kmem_cache *cache, void *object, 172 const void *addr, u8 tag) 173 { 174 struct kasan_alloc_meta *alloc_meta; 175 struct kasan_track *free_track; 176 177 alloc_meta = kasan_get_alloc_meta(cache, object); 178 if (alloc_meta) { 179 print_track(&alloc_meta->alloc_track, "Allocated"); 180 pr_err("\n"); 181 } 182 183 free_track = kasan_get_free_track(cache, object, tag); 184 if (free_track) { 185 print_track(free_track, "Freed"); 186 pr_err("\n"); 187 } 188 189 #ifdef CONFIG_KASAN_GENERIC 190 if (!alloc_meta) 191 return; 192 if (alloc_meta->aux_stack[0]) { 193 pr_err("Last potentially related work creation:\n"); 194 print_stack(alloc_meta->aux_stack[0]); 195 pr_err("\n"); 196 } 197 if (alloc_meta->aux_stack[1]) { 198 pr_err("Second to last potentially related work creation:\n"); 199 print_stack(alloc_meta->aux_stack[1]); 200 pr_err("\n"); 201 } 202 #endif 203 } 204 205 static void describe_object(struct kmem_cache *cache, void *object, 206 const void *addr, u8 tag) 207 { 208 if (kasan_stack_collection_enabled()) 209 describe_object_stacks(cache, object, addr, tag); 210 describe_object_addr(cache, object, addr); 211 } 212 213 static inline bool kernel_or_module_addr(const void *addr) 214 { 215 if (addr >= (void *)_stext && addr < (void *)_end) 216 return true; 217 if (is_module_address((unsigned long)addr)) 218 return true; 219 return false; 220 } 221 222 static inline bool init_task_stack_addr(const void *addr) 223 { 224 return addr >= (void *)&init_thread_union.stack && 225 (addr <= (void *)&init_thread_union.stack + 226 sizeof(init_thread_union.stack)); 227 } 228 229 static void print_address_description(void *addr, u8 tag) 230 { 231 struct page *page = kasan_addr_to_page(addr); 232 233 dump_stack(); 234 pr_err("\n"); 235 236 if (page && PageSlab(page)) { 237 struct kmem_cache *cache = page->slab_cache; 238 void *object = nearest_obj(cache, page, addr); 239 240 describe_object(cache, object, addr, tag); 241 } 242 243 if (kernel_or_module_addr(addr) && !init_task_stack_addr(addr)) { 244 pr_err("The buggy address belongs to the variable:\n"); 245 pr_err(" %pS\n", addr); 246 } 247 248 if (page) { 249 pr_err("The buggy address belongs to the page:\n"); 250 dump_page(page, "kasan: bad access detected"); 251 } 252 253 kasan_print_address_stack_frame(addr); 254 } 255 256 static bool meta_row_is_guilty(const void *row, const void *addr) 257 { 258 return (row <= addr) && (addr < row + META_MEM_BYTES_PER_ROW); 259 } 260 261 static int meta_pointer_offset(const void *row, const void *addr) 262 { 263 /* 264 * Memory state around the buggy address: 265 * ff00ff00ff00ff00: 00 00 00 05 fe fe fe fe fe fe fe fe fe fe fe fe 266 * ... 267 * 268 * The length of ">ff00ff00ff00ff00: " is 269 * 3 + (BITS_PER_LONG / 8) * 2 chars. 270 * The length of each granule metadata is 2 bytes 271 * plus 1 byte for space. 272 */ 273 return 3 + (BITS_PER_LONG / 8) * 2 + 274 (addr - row) / KASAN_GRANULE_SIZE * 3 + 1; 275 } 276 277 static void print_memory_metadata(const void *addr) 278 { 279 int i; 280 void *row; 281 282 row = (void *)round_down((unsigned long)addr, META_MEM_BYTES_PER_ROW) 283 - META_ROWS_AROUND_ADDR * META_MEM_BYTES_PER_ROW; 284 285 pr_err("Memory state around the buggy address:\n"); 286 287 for (i = -META_ROWS_AROUND_ADDR; i <= META_ROWS_AROUND_ADDR; i++) { 288 char buffer[4 + (BITS_PER_LONG / 8) * 2]; 289 char metadata[META_BYTES_PER_ROW]; 290 291 snprintf(buffer, sizeof(buffer), 292 (i == 0) ? ">%px: " : " %px: ", row); 293 294 /* 295 * We should not pass a shadow pointer to generic 296 * function, because generic functions may try to 297 * access kasan mapping for the passed address. 298 */ 299 kasan_metadata_fetch_row(&metadata[0], row); 300 301 print_hex_dump(KERN_ERR, buffer, 302 DUMP_PREFIX_NONE, META_BYTES_PER_ROW, 1, 303 metadata, META_BYTES_PER_ROW, 0); 304 305 if (meta_row_is_guilty(row, addr)) 306 pr_err("%*c\n", meta_pointer_offset(row, addr), '^'); 307 308 row += META_MEM_BYTES_PER_ROW; 309 } 310 } 311 312 static bool report_enabled(void) 313 { 314 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 315 if (current->kasan_depth) 316 return false; 317 #endif 318 if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) 319 return true; 320 return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags); 321 } 322 323 #if IS_ENABLED(CONFIG_KUNIT) 324 static void kasan_update_kunit_status(struct kunit *cur_test) 325 { 326 struct kunit_resource *resource; 327 struct kunit_kasan_expectation *kasan_data; 328 329 resource = kunit_find_named_resource(cur_test, "kasan_data"); 330 331 if (!resource) { 332 kunit_set_failure(cur_test); 333 return; 334 } 335 336 kasan_data = (struct kunit_kasan_expectation *)resource->data; 337 WRITE_ONCE(kasan_data->report_found, true); 338 kunit_put_resource(resource); 339 } 340 #endif /* IS_ENABLED(CONFIG_KUNIT) */ 341 342 void kasan_report_invalid_free(void *object, unsigned long ip) 343 { 344 unsigned long flags; 345 u8 tag = get_tag(object); 346 347 object = kasan_reset_tag(object); 348 349 #if IS_ENABLED(CONFIG_KUNIT) 350 if (current->kunit_test) 351 kasan_update_kunit_status(current->kunit_test); 352 #endif /* IS_ENABLED(CONFIG_KUNIT) */ 353 354 start_report(&flags); 355 pr_err("BUG: KASAN: double-free or invalid-free in %pS\n", (void *)ip); 356 kasan_print_tags(tag, object); 357 pr_err("\n"); 358 print_address_description(object, tag); 359 pr_err("\n"); 360 print_memory_metadata(object); 361 end_report(&flags, (unsigned long)object); 362 } 363 364 #ifdef CONFIG_KASAN_HW_TAGS 365 void kasan_report_async(void) 366 { 367 unsigned long flags; 368 369 #if IS_ENABLED(CONFIG_KUNIT) 370 if (current->kunit_test) 371 kasan_update_kunit_status(current->kunit_test); 372 #endif /* IS_ENABLED(CONFIG_KUNIT) */ 373 374 start_report(&flags); 375 pr_err("BUG: KASAN: invalid-access\n"); 376 pr_err("Asynchronous mode enabled: no access details available\n"); 377 pr_err("\n"); 378 dump_stack(); 379 end_report(&flags, 0); 380 } 381 #endif /* CONFIG_KASAN_HW_TAGS */ 382 383 static void __kasan_report(unsigned long addr, size_t size, bool is_write, 384 unsigned long ip) 385 { 386 struct kasan_access_info info; 387 void *tagged_addr; 388 void *untagged_addr; 389 unsigned long flags; 390 391 #if IS_ENABLED(CONFIG_KUNIT) 392 if (current->kunit_test) 393 kasan_update_kunit_status(current->kunit_test); 394 #endif /* IS_ENABLED(CONFIG_KUNIT) */ 395 396 disable_trace_on_warning(); 397 398 tagged_addr = (void *)addr; 399 untagged_addr = kasan_reset_tag(tagged_addr); 400 401 info.access_addr = tagged_addr; 402 if (addr_has_metadata(untagged_addr)) 403 info.first_bad_addr = 404 kasan_find_first_bad_addr(tagged_addr, size); 405 else 406 info.first_bad_addr = untagged_addr; 407 info.access_size = size; 408 info.is_write = is_write; 409 info.ip = ip; 410 411 start_report(&flags); 412 413 print_error_description(&info); 414 if (addr_has_metadata(untagged_addr)) 415 kasan_print_tags(get_tag(tagged_addr), info.first_bad_addr); 416 pr_err("\n"); 417 418 if (addr_has_metadata(untagged_addr)) { 419 print_address_description(untagged_addr, get_tag(tagged_addr)); 420 pr_err("\n"); 421 print_memory_metadata(info.first_bad_addr); 422 } else { 423 dump_stack(); 424 } 425 426 end_report(&flags, addr); 427 } 428 429 bool kasan_report(unsigned long addr, size_t size, bool is_write, 430 unsigned long ip) 431 { 432 unsigned long flags = user_access_save(); 433 bool ret = false; 434 435 if (likely(report_enabled())) { 436 __kasan_report(addr, size, is_write, ip); 437 ret = true; 438 } 439 440 user_access_restore(flags); 441 442 return ret; 443 } 444 445 #ifdef CONFIG_KASAN_INLINE 446 /* 447 * With CONFIG_KASAN_INLINE, accesses to bogus pointers (outside the high 448 * canonical half of the address space) cause out-of-bounds shadow memory reads 449 * before the actual access. For addresses in the low canonical half of the 450 * address space, as well as most non-canonical addresses, that out-of-bounds 451 * shadow memory access lands in the non-canonical part of the address space. 452 * Help the user figure out what the original bogus pointer was. 453 */ 454 void kasan_non_canonical_hook(unsigned long addr) 455 { 456 unsigned long orig_addr; 457 const char *bug_type; 458 459 if (addr < KASAN_SHADOW_OFFSET) 460 return; 461 462 orig_addr = (addr - KASAN_SHADOW_OFFSET) << KASAN_SHADOW_SCALE_SHIFT; 463 /* 464 * For faults near the shadow address for NULL, we can be fairly certain 465 * that this is a KASAN shadow memory access. 466 * For faults that correspond to shadow for low canonical addresses, we 467 * can still be pretty sure - that shadow region is a fairly narrow 468 * chunk of the non-canonical address space. 469 * But faults that look like shadow for non-canonical addresses are a 470 * really large chunk of the address space. In that case, we still 471 * print the decoded address, but make it clear that this is not 472 * necessarily what's actually going on. 473 */ 474 if (orig_addr < PAGE_SIZE) 475 bug_type = "null-ptr-deref"; 476 else if (orig_addr < TASK_SIZE) 477 bug_type = "probably user-memory-access"; 478 else 479 bug_type = "maybe wild-memory-access"; 480 pr_alert("KASAN: %s in range [0x%016lx-0x%016lx]\n", bug_type, 481 orig_addr, orig_addr + KASAN_GRANULE_SIZE - 1); 482 } 483 #endif 484