1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN error reporting code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <kunit/test.h> 13 #include <kunit/visibility.h> 14 #include <linux/bitops.h> 15 #include <linux/ftrace.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/lockdep.h> 19 #include <linux/mm.h> 20 #include <linux/printk.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 #include <linux/stackdepot.h> 24 #include <linux/stacktrace.h> 25 #include <linux/string.h> 26 #include <linux/types.h> 27 #include <linux/vmalloc.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/sched/task_stack.h> 31 #include <linux/uaccess.h> 32 #include <trace/events/error_report.h> 33 34 #include <asm/sections.h> 35 36 #include "kasan.h" 37 #include "../slab.h" 38 39 static unsigned long kasan_flags; 40 41 #define KASAN_BIT_REPORTED 0 42 #define KASAN_BIT_MULTI_SHOT 1 43 44 enum kasan_arg_fault { 45 KASAN_ARG_FAULT_DEFAULT, 46 KASAN_ARG_FAULT_REPORT, 47 KASAN_ARG_FAULT_PANIC, 48 KASAN_ARG_FAULT_PANIC_ON_WRITE, 49 }; 50 51 static enum kasan_arg_fault kasan_arg_fault __ro_after_init = KASAN_ARG_FAULT_DEFAULT; 52 53 /* kasan.fault=report/panic */ 54 static int __init early_kasan_fault(char *arg) 55 { 56 if (!arg) 57 return -EINVAL; 58 59 if (!strcmp(arg, "report")) 60 kasan_arg_fault = KASAN_ARG_FAULT_REPORT; 61 else if (!strcmp(arg, "panic")) 62 kasan_arg_fault = KASAN_ARG_FAULT_PANIC; 63 else if (!strcmp(arg, "panic_on_write")) 64 kasan_arg_fault = KASAN_ARG_FAULT_PANIC_ON_WRITE; 65 else 66 return -EINVAL; 67 68 return 0; 69 } 70 early_param("kasan.fault", early_kasan_fault); 71 72 static int __init kasan_set_multi_shot(char *str) 73 { 74 set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 75 return 1; 76 } 77 __setup("kasan_multi_shot", kasan_set_multi_shot); 78 79 /* 80 * This function is used to check whether KASAN reports are suppressed for 81 * software KASAN modes via kasan_disable/enable_current() critical sections. 82 * 83 * This is done to avoid: 84 * 1. False-positive reports when accessing slab metadata, 85 * 2. Deadlocking when poisoned memory is accessed by the reporting code. 86 * 87 * Hardware Tag-Based KASAN instead relies on: 88 * For #1: Resetting tags via kasan_reset_tag(). 89 * For #2: Suppression of tag checks via CPU, see report_suppress_start/end(). 90 */ 91 static bool report_suppressed_sw(void) 92 { 93 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 94 if (current->kasan_depth) 95 return true; 96 #endif 97 return false; 98 } 99 100 static void report_suppress_start(void) 101 { 102 #ifdef CONFIG_KASAN_HW_TAGS 103 /* 104 * Disable preemption for the duration of printing a KASAN report, as 105 * hw_suppress_tag_checks_start() disables checks on the current CPU. 106 */ 107 preempt_disable(); 108 hw_suppress_tag_checks_start(); 109 #else 110 kasan_disable_current(); 111 #endif 112 } 113 114 static void report_suppress_stop(void) 115 { 116 #ifdef CONFIG_KASAN_HW_TAGS 117 hw_suppress_tag_checks_stop(); 118 preempt_enable(); 119 #else 120 kasan_enable_current(); 121 #endif 122 } 123 124 /* 125 * Used to avoid reporting more than one KASAN bug unless kasan_multi_shot 126 * is enabled. Note that KASAN tests effectively enable kasan_multi_shot 127 * for their duration. 128 */ 129 static bool report_enabled(void) 130 { 131 if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) 132 return true; 133 return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags); 134 } 135 136 #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) 137 138 VISIBLE_IF_KUNIT bool kasan_save_enable_multi_shot(void) 139 { 140 return test_and_set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 141 } 142 EXPORT_SYMBOL_IF_KUNIT(kasan_save_enable_multi_shot); 143 144 VISIBLE_IF_KUNIT void kasan_restore_multi_shot(bool enabled) 145 { 146 if (!enabled) 147 clear_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 148 } 149 EXPORT_SYMBOL_IF_KUNIT(kasan_restore_multi_shot); 150 151 #endif 152 153 #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) 154 155 /* 156 * Whether the KASAN KUnit test suite is currently being executed. 157 * Updated in kasan_test.c. 158 */ 159 static bool kasan_kunit_executing; 160 161 VISIBLE_IF_KUNIT void kasan_kunit_test_suite_start(void) 162 { 163 WRITE_ONCE(kasan_kunit_executing, true); 164 } 165 EXPORT_SYMBOL_IF_KUNIT(kasan_kunit_test_suite_start); 166 167 VISIBLE_IF_KUNIT void kasan_kunit_test_suite_end(void) 168 { 169 WRITE_ONCE(kasan_kunit_executing, false); 170 } 171 EXPORT_SYMBOL_IF_KUNIT(kasan_kunit_test_suite_end); 172 173 static bool kasan_kunit_test_suite_executing(void) 174 { 175 return READ_ONCE(kasan_kunit_executing); 176 } 177 178 #else /* CONFIG_KASAN_KUNIT_TEST */ 179 180 static inline bool kasan_kunit_test_suite_executing(void) { return false; } 181 182 #endif /* CONFIG_KASAN_KUNIT_TEST */ 183 184 #if IS_ENABLED(CONFIG_KUNIT) 185 186 static void fail_non_kasan_kunit_test(void) 187 { 188 struct kunit *test; 189 190 if (kasan_kunit_test_suite_executing()) 191 return; 192 193 test = current->kunit_test; 194 if (test) 195 kunit_set_failure(test); 196 } 197 198 #else /* CONFIG_KUNIT */ 199 200 static inline void fail_non_kasan_kunit_test(void) { } 201 202 #endif /* CONFIG_KUNIT */ 203 204 static DEFINE_SPINLOCK(report_lock); 205 206 static void start_report(unsigned long *flags, bool sync) 207 { 208 fail_non_kasan_kunit_test(); 209 /* Respect the /proc/sys/kernel/traceoff_on_warning interface. */ 210 disable_trace_on_warning(); 211 /* Do not allow LOCKDEP mangling KASAN reports. */ 212 lockdep_off(); 213 /* Make sure we don't end up in loop. */ 214 report_suppress_start(); 215 spin_lock_irqsave(&report_lock, *flags); 216 pr_err("==================================================================\n"); 217 } 218 219 static void end_report(unsigned long *flags, const void *addr, bool is_write) 220 { 221 if (addr) 222 trace_error_report_end(ERROR_DETECTOR_KASAN, 223 (unsigned long)addr); 224 pr_err("==================================================================\n"); 225 spin_unlock_irqrestore(&report_lock, *flags); 226 if (!test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) 227 check_panic_on_warn("KASAN"); 228 switch (kasan_arg_fault) { 229 case KASAN_ARG_FAULT_DEFAULT: 230 case KASAN_ARG_FAULT_REPORT: 231 break; 232 case KASAN_ARG_FAULT_PANIC: 233 panic("kasan.fault=panic set ...\n"); 234 break; 235 case KASAN_ARG_FAULT_PANIC_ON_WRITE: 236 if (is_write) 237 panic("kasan.fault=panic_on_write set ...\n"); 238 break; 239 } 240 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 241 lockdep_on(); 242 report_suppress_stop(); 243 } 244 245 static void print_error_description(struct kasan_report_info *info) 246 { 247 pr_err("BUG: KASAN: %s in %pS\n", info->bug_type, (void *)info->ip); 248 249 if (info->type != KASAN_REPORT_ACCESS) { 250 pr_err("Free of addr %px by task %s/%d\n", 251 info->access_addr, current->comm, task_pid_nr(current)); 252 return; 253 } 254 255 if (info->access_size) 256 pr_err("%s of size %zu at addr %px by task %s/%d\n", 257 info->is_write ? "Write" : "Read", info->access_size, 258 info->access_addr, current->comm, task_pid_nr(current)); 259 else 260 pr_err("%s at addr %px by task %s/%d\n", 261 info->is_write ? "Write" : "Read", 262 info->access_addr, current->comm, task_pid_nr(current)); 263 } 264 265 static void print_track(struct kasan_track *track, const char *prefix) 266 { 267 #ifdef CONFIG_KASAN_EXTRA_INFO 268 u64 ts_nsec = track->timestamp; 269 unsigned long rem_usec; 270 271 ts_nsec <<= 9; 272 rem_usec = do_div(ts_nsec, NSEC_PER_SEC) / 1000; 273 274 pr_err("%s by task %u on cpu %d at %lu.%06lus:\n", 275 prefix, track->pid, track->cpu, 276 (unsigned long)ts_nsec, rem_usec); 277 #else 278 pr_err("%s by task %u:\n", prefix, track->pid); 279 #endif /* CONFIG_KASAN_EXTRA_INFO */ 280 if (track->stack) 281 stack_depot_print(track->stack); 282 else 283 pr_err("(stack is not available)\n"); 284 } 285 286 static inline struct page *addr_to_page(const void *addr) 287 { 288 if (virt_addr_valid(addr)) 289 return virt_to_head_page(addr); 290 return NULL; 291 } 292 293 static void describe_object_addr(const void *addr, struct kasan_report_info *info) 294 { 295 unsigned long access_addr = (unsigned long)addr; 296 unsigned long object_addr = (unsigned long)info->object; 297 const char *rel_type, *region_state = ""; 298 int rel_bytes; 299 300 pr_err("The buggy address belongs to the object at %px\n" 301 " which belongs to the cache %s of size %d\n", 302 info->object, info->cache->name, info->cache->object_size); 303 304 if (access_addr < object_addr) { 305 rel_type = "to the left"; 306 rel_bytes = object_addr - access_addr; 307 } else if (access_addr >= object_addr + info->alloc_size) { 308 rel_type = "to the right"; 309 rel_bytes = access_addr - (object_addr + info->alloc_size); 310 } else { 311 rel_type = "inside"; 312 rel_bytes = access_addr - object_addr; 313 } 314 315 /* 316 * Tag-Based modes use the stack ring to infer the bug type, but the 317 * memory region state description is generated based on the metadata. 318 * Thus, defining the region state as below can contradict the metadata. 319 * Fixing this requires further improvements, so only infer the state 320 * for the Generic mode. 321 */ 322 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) { 323 if (strcmp(info->bug_type, "slab-out-of-bounds") == 0) 324 region_state = "allocated "; 325 else if (strcmp(info->bug_type, "slab-use-after-free") == 0) 326 region_state = "freed "; 327 } 328 329 pr_err("The buggy address is located %d bytes %s of\n" 330 " %s%zu-byte region [%px, %px)\n", 331 rel_bytes, rel_type, region_state, info->alloc_size, 332 (void *)object_addr, (void *)(object_addr + info->alloc_size)); 333 } 334 335 static void describe_object_stacks(struct kasan_report_info *info) 336 { 337 if (info->alloc_track.stack) { 338 print_track(&info->alloc_track, "Allocated"); 339 pr_err("\n"); 340 } 341 342 if (info->free_track.stack) { 343 print_track(&info->free_track, "Freed"); 344 pr_err("\n"); 345 } 346 347 kasan_print_aux_stacks(info->cache, info->object); 348 } 349 350 static void describe_object(const void *addr, struct kasan_report_info *info) 351 { 352 if (kasan_stack_collection_enabled()) 353 describe_object_stacks(info); 354 describe_object_addr(addr, info); 355 } 356 357 static inline bool kernel_or_module_addr(const void *addr) 358 { 359 if (is_kernel((unsigned long)addr)) 360 return true; 361 if (is_module_address((unsigned long)addr)) 362 return true; 363 return false; 364 } 365 366 static inline bool init_task_stack_addr(const void *addr) 367 { 368 return addr >= (void *)&init_thread_union.stack && 369 (addr <= (void *)&init_thread_union.stack + 370 sizeof(init_thread_union.stack)); 371 } 372 373 static void print_address_description(void *addr, u8 tag, 374 struct kasan_report_info *info) 375 { 376 struct page *page = addr_to_page(addr); 377 378 dump_stack_lvl(KERN_ERR); 379 pr_err("\n"); 380 381 if (info->cache && info->object) { 382 describe_object(addr, info); 383 pr_err("\n"); 384 } 385 386 if (kernel_or_module_addr(addr) && !init_task_stack_addr(addr)) { 387 pr_err("The buggy address belongs to the variable:\n"); 388 pr_err(" %pS\n", addr); 389 pr_err("\n"); 390 } 391 392 if (object_is_on_stack(addr)) { 393 /* 394 * Currently, KASAN supports printing frame information only 395 * for accesses to the task's own stack. 396 */ 397 kasan_print_address_stack_frame(addr); 398 pr_err("\n"); 399 } 400 401 if (is_vmalloc_addr(addr)) { 402 struct vm_struct *va = find_vm_area(addr); 403 404 if (va) { 405 pr_err("The buggy address belongs to the virtual mapping at\n" 406 " [%px, %px) created by:\n" 407 " %pS\n", 408 va->addr, va->addr + va->size, va->caller); 409 pr_err("\n"); 410 411 page = vmalloc_to_page(addr); 412 } 413 } 414 415 if (page) { 416 pr_err("The buggy address belongs to the physical page:\n"); 417 dump_page(page, "kasan: bad access detected"); 418 pr_err("\n"); 419 } 420 } 421 422 static bool meta_row_is_guilty(const void *row, const void *addr) 423 { 424 return (row <= addr) && (addr < row + META_MEM_BYTES_PER_ROW); 425 } 426 427 static int meta_pointer_offset(const void *row, const void *addr) 428 { 429 /* 430 * Memory state around the buggy address: 431 * ff00ff00ff00ff00: 00 00 00 05 fe fe fe fe fe fe fe fe fe fe fe fe 432 * ... 433 * 434 * The length of ">ff00ff00ff00ff00: " is 435 * 3 + (BITS_PER_LONG / 8) * 2 chars. 436 * The length of each granule metadata is 2 bytes 437 * plus 1 byte for space. 438 */ 439 return 3 + (BITS_PER_LONG / 8) * 2 + 440 (addr - row) / KASAN_GRANULE_SIZE * 3 + 1; 441 } 442 443 static void print_memory_metadata(const void *addr) 444 { 445 int i; 446 void *row; 447 448 row = (void *)round_down((unsigned long)addr, META_MEM_BYTES_PER_ROW) 449 - META_ROWS_AROUND_ADDR * META_MEM_BYTES_PER_ROW; 450 451 pr_err("Memory state around the buggy address:\n"); 452 453 for (i = -META_ROWS_AROUND_ADDR; i <= META_ROWS_AROUND_ADDR; i++) { 454 char buffer[4 + (BITS_PER_LONG / 8) * 2]; 455 char metadata[META_BYTES_PER_ROW]; 456 457 snprintf(buffer, sizeof(buffer), 458 (i == 0) ? ">%px: " : " %px: ", row); 459 460 /* 461 * We should not pass a shadow pointer to generic 462 * function, because generic functions may try to 463 * access kasan mapping for the passed address. 464 */ 465 kasan_metadata_fetch_row(&metadata[0], row); 466 467 print_hex_dump(KERN_ERR, buffer, 468 DUMP_PREFIX_NONE, META_BYTES_PER_ROW, 1, 469 metadata, META_BYTES_PER_ROW, 0); 470 471 if (meta_row_is_guilty(row, addr)) 472 pr_err("%*c\n", meta_pointer_offset(row, addr), '^'); 473 474 row += META_MEM_BYTES_PER_ROW; 475 } 476 } 477 478 static void print_report(struct kasan_report_info *info) 479 { 480 void *addr = kasan_reset_tag((void *)info->access_addr); 481 u8 tag = get_tag((void *)info->access_addr); 482 483 print_error_description(info); 484 if (addr_has_metadata(addr)) 485 kasan_print_tags(tag, info->first_bad_addr); 486 pr_err("\n"); 487 488 if (addr_has_metadata(addr)) { 489 print_address_description(addr, tag, info); 490 print_memory_metadata(info->first_bad_addr); 491 } else { 492 dump_stack_lvl(KERN_ERR); 493 } 494 } 495 496 static void complete_report_info(struct kasan_report_info *info) 497 { 498 void *addr = kasan_reset_tag((void *)info->access_addr); 499 struct slab *slab; 500 501 if (info->type == KASAN_REPORT_ACCESS) 502 info->first_bad_addr = kasan_find_first_bad_addr( 503 (void *)info->access_addr, info->access_size); 504 else 505 info->first_bad_addr = addr; 506 507 slab = kasan_addr_to_slab(addr); 508 if (slab) { 509 info->cache = slab->slab_cache; 510 info->object = nearest_obj(info->cache, slab, addr); 511 512 /* Try to determine allocation size based on the metadata. */ 513 info->alloc_size = kasan_get_alloc_size(info->object, info->cache); 514 /* Fallback to the object size if failed. */ 515 if (!info->alloc_size) 516 info->alloc_size = info->cache->object_size; 517 } else 518 info->cache = info->object = NULL; 519 520 switch (info->type) { 521 case KASAN_REPORT_INVALID_FREE: 522 info->bug_type = "invalid-free"; 523 break; 524 case KASAN_REPORT_DOUBLE_FREE: 525 info->bug_type = "double-free"; 526 break; 527 default: 528 /* bug_type filled in by kasan_complete_mode_report_info. */ 529 break; 530 } 531 532 /* Fill in mode-specific report info fields. */ 533 kasan_complete_mode_report_info(info); 534 } 535 536 void kasan_report_invalid_free(void *ptr, unsigned long ip, enum kasan_report_type type) 537 { 538 unsigned long flags; 539 struct kasan_report_info info; 540 541 /* 542 * Do not check report_suppressed_sw(), as an invalid-free cannot be 543 * caused by accessing poisoned memory and thus should not be suppressed 544 * by kasan_disable/enable_current() critical sections. 545 * 546 * Note that for Hardware Tag-Based KASAN, kasan_report_invalid_free() 547 * is triggered by explicit tag checks and not by the ones performed by 548 * the CPU. Thus, reporting invalid-free is not suppressed as well. 549 */ 550 if (unlikely(!report_enabled())) 551 return; 552 553 start_report(&flags, true); 554 555 __memset(&info, 0, sizeof(info)); 556 info.type = type; 557 info.access_addr = ptr; 558 info.access_size = 0; 559 info.is_write = false; 560 info.ip = ip; 561 562 complete_report_info(&info); 563 564 print_report(&info); 565 566 /* 567 * Invalid free is considered a "write" since the allocator's metadata 568 * updates involves writes. 569 */ 570 end_report(&flags, ptr, true); 571 } 572 573 /* 574 * kasan_report() is the only reporting function that uses 575 * user_access_save/restore(): kasan_report_invalid_free() cannot be called 576 * from a UACCESS region, and kasan_report_async() is not used on x86. 577 */ 578 bool kasan_report(const void *addr, size_t size, bool is_write, 579 unsigned long ip) 580 { 581 bool ret = true; 582 unsigned long ua_flags = user_access_save(); 583 unsigned long irq_flags; 584 struct kasan_report_info info; 585 586 if (unlikely(report_suppressed_sw()) || unlikely(!report_enabled())) { 587 ret = false; 588 goto out; 589 } 590 591 start_report(&irq_flags, true); 592 593 __memset(&info, 0, sizeof(info)); 594 info.type = KASAN_REPORT_ACCESS; 595 info.access_addr = addr; 596 info.access_size = size; 597 info.is_write = is_write; 598 info.ip = ip; 599 600 complete_report_info(&info); 601 602 print_report(&info); 603 604 end_report(&irq_flags, (void *)addr, is_write); 605 606 out: 607 user_access_restore(ua_flags); 608 609 return ret; 610 } 611 612 #ifdef CONFIG_KASAN_HW_TAGS 613 void kasan_report_async(void) 614 { 615 unsigned long flags; 616 617 /* 618 * Do not check report_suppressed_sw(), as 619 * kasan_disable/enable_current() critical sections do not affect 620 * Hardware Tag-Based KASAN. 621 */ 622 if (unlikely(!report_enabled())) 623 return; 624 625 start_report(&flags, false); 626 pr_err("BUG: KASAN: invalid-access\n"); 627 pr_err("Asynchronous fault: no details available\n"); 628 pr_err("\n"); 629 dump_stack_lvl(KERN_ERR); 630 /* 631 * Conservatively set is_write=true, because no details are available. 632 * In this mode, kasan.fault=panic_on_write is like kasan.fault=panic. 633 */ 634 end_report(&flags, NULL, true); 635 } 636 #endif /* CONFIG_KASAN_HW_TAGS */ 637 638 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 639 /* 640 * With compiler-based KASAN modes, accesses to bogus pointers (outside of the 641 * mapped kernel address space regions) cause faults when KASAN tries to check 642 * the shadow memory before the actual memory access. This results in cryptic 643 * GPF reports, which are hard for users to interpret. This hook helps users to 644 * figure out what the original bogus pointer was. 645 */ 646 void kasan_non_canonical_hook(unsigned long addr) 647 { 648 unsigned long orig_addr; 649 const char *bug_type; 650 651 /* 652 * All addresses that came as a result of the memory-to-shadow mapping 653 * (even for bogus pointers) must be >= KASAN_SHADOW_OFFSET. 654 */ 655 if (addr < KASAN_SHADOW_OFFSET) 656 return; 657 658 orig_addr = (unsigned long)kasan_shadow_to_mem((void *)addr); 659 660 /* 661 * For faults near the shadow address for NULL, we can be fairly certain 662 * that this is a KASAN shadow memory access. 663 * For faults that correspond to the shadow for low or high canonical 664 * addresses, we can still be pretty sure: these shadow regions are a 665 * fairly narrow chunk of the address space. 666 * But the shadow for non-canonical addresses is a really large chunk 667 * of the address space. For this case, we still print the decoded 668 * address, but make it clear that this is not necessarily what's 669 * actually going on. 670 */ 671 if (orig_addr < PAGE_SIZE) 672 bug_type = "null-ptr-deref"; 673 else if (orig_addr < TASK_SIZE) 674 bug_type = "probably user-memory-access"; 675 else if (addr_in_shadow((void *)addr)) 676 bug_type = "probably wild-memory-access"; 677 else 678 bug_type = "maybe wild-memory-access"; 679 pr_alert("KASAN: %s in range [0x%016lx-0x%016lx]\n", bug_type, 680 orig_addr, orig_addr + KASAN_GRANULE_SIZE - 1); 681 } 682 #endif 683