xref: /linux/mm/kasan/report.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common KASAN error reporting code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11 
12 #include <kunit/test.h>
13 #include <kunit/visibility.h>
14 #include <linux/bitops.h>
15 #include <linux/ftrace.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/lockdep.h>
19 #include <linux/mm.h>
20 #include <linux/printk.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/stackdepot.h>
24 #include <linux/stacktrace.h>
25 #include <linux/string.h>
26 #include <linux/types.h>
27 #include <linux/vmalloc.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/uaccess.h>
32 #include <trace/events/error_report.h>
33 
34 #include <asm/sections.h>
35 
36 #include "kasan.h"
37 #include "../slab.h"
38 
39 static unsigned long kasan_flags;
40 
41 #define KASAN_BIT_REPORTED	0
42 #define KASAN_BIT_MULTI_SHOT	1
43 
44 enum kasan_arg_fault {
45 	KASAN_ARG_FAULT_DEFAULT,
46 	KASAN_ARG_FAULT_REPORT,
47 	KASAN_ARG_FAULT_PANIC,
48 	KASAN_ARG_FAULT_PANIC_ON_WRITE,
49 };
50 
51 static enum kasan_arg_fault kasan_arg_fault __ro_after_init = KASAN_ARG_FAULT_DEFAULT;
52 
53 /* kasan.fault=report/panic */
54 static int __init early_kasan_fault(char *arg)
55 {
56 	if (!arg)
57 		return -EINVAL;
58 
59 	if (!strcmp(arg, "report"))
60 		kasan_arg_fault = KASAN_ARG_FAULT_REPORT;
61 	else if (!strcmp(arg, "panic"))
62 		kasan_arg_fault = KASAN_ARG_FAULT_PANIC;
63 	else if (!strcmp(arg, "panic_on_write"))
64 		kasan_arg_fault = KASAN_ARG_FAULT_PANIC_ON_WRITE;
65 	else
66 		return -EINVAL;
67 
68 	return 0;
69 }
70 early_param("kasan.fault", early_kasan_fault);
71 
72 static int __init kasan_set_multi_shot(char *str)
73 {
74 	set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
75 	return 1;
76 }
77 __setup("kasan_multi_shot", kasan_set_multi_shot);
78 
79 /*
80  * This function is used to check whether KASAN reports are suppressed for
81  * software KASAN modes via kasan_disable/enable_current() critical sections.
82  *
83  * This is done to avoid:
84  * 1. False-positive reports when accessing slab metadata,
85  * 2. Deadlocking when poisoned memory is accessed by the reporting code.
86  *
87  * Hardware Tag-Based KASAN instead relies on:
88  * For #1: Resetting tags via kasan_reset_tag().
89  * For #2: Suppression of tag checks via CPU, see report_suppress_start/end().
90  */
91 static bool report_suppressed_sw(void)
92 {
93 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
94 	if (current->kasan_depth)
95 		return true;
96 #endif
97 	return false;
98 }
99 
100 static void report_suppress_start(void)
101 {
102 #ifdef CONFIG_KASAN_HW_TAGS
103 	/*
104 	 * Disable preemption for the duration of printing a KASAN report, as
105 	 * hw_suppress_tag_checks_start() disables checks on the current CPU.
106 	 */
107 	preempt_disable();
108 	hw_suppress_tag_checks_start();
109 #else
110 	kasan_disable_current();
111 #endif
112 }
113 
114 static void report_suppress_stop(void)
115 {
116 #ifdef CONFIG_KASAN_HW_TAGS
117 	hw_suppress_tag_checks_stop();
118 	preempt_enable();
119 #else
120 	kasan_enable_current();
121 #endif
122 }
123 
124 /*
125  * Used to avoid reporting more than one KASAN bug unless kasan_multi_shot
126  * is enabled. Note that KASAN tests effectively enable kasan_multi_shot
127  * for their duration.
128  */
129 static bool report_enabled(void)
130 {
131 	if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags))
132 		return true;
133 	return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags);
134 }
135 
136 #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST)
137 
138 VISIBLE_IF_KUNIT bool kasan_save_enable_multi_shot(void)
139 {
140 	return test_and_set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
141 }
142 EXPORT_SYMBOL_IF_KUNIT(kasan_save_enable_multi_shot);
143 
144 VISIBLE_IF_KUNIT void kasan_restore_multi_shot(bool enabled)
145 {
146 	if (!enabled)
147 		clear_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
148 }
149 EXPORT_SYMBOL_IF_KUNIT(kasan_restore_multi_shot);
150 
151 #endif
152 
153 #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST)
154 
155 /*
156  * Whether the KASAN KUnit test suite is currently being executed.
157  * Updated in kasan_test.c.
158  */
159 static bool kasan_kunit_executing;
160 
161 VISIBLE_IF_KUNIT void kasan_kunit_test_suite_start(void)
162 {
163 	WRITE_ONCE(kasan_kunit_executing, true);
164 }
165 EXPORT_SYMBOL_IF_KUNIT(kasan_kunit_test_suite_start);
166 
167 VISIBLE_IF_KUNIT void kasan_kunit_test_suite_end(void)
168 {
169 	WRITE_ONCE(kasan_kunit_executing, false);
170 }
171 EXPORT_SYMBOL_IF_KUNIT(kasan_kunit_test_suite_end);
172 
173 static bool kasan_kunit_test_suite_executing(void)
174 {
175 	return READ_ONCE(kasan_kunit_executing);
176 }
177 
178 #else /* CONFIG_KASAN_KUNIT_TEST */
179 
180 static inline bool kasan_kunit_test_suite_executing(void) { return false; }
181 
182 #endif /* CONFIG_KASAN_KUNIT_TEST */
183 
184 #if IS_ENABLED(CONFIG_KUNIT)
185 
186 static void fail_non_kasan_kunit_test(void)
187 {
188 	struct kunit *test;
189 
190 	if (kasan_kunit_test_suite_executing())
191 		return;
192 
193 	test = current->kunit_test;
194 	if (test)
195 		kunit_set_failure(test);
196 }
197 
198 #else /* CONFIG_KUNIT */
199 
200 static inline void fail_non_kasan_kunit_test(void) { }
201 
202 #endif /* CONFIG_KUNIT */
203 
204 static DEFINE_SPINLOCK(report_lock);
205 
206 static void start_report(unsigned long *flags, bool sync)
207 {
208 	fail_non_kasan_kunit_test();
209 	/* Respect the /proc/sys/kernel/traceoff_on_warning interface. */
210 	disable_trace_on_warning();
211 	/* Do not allow LOCKDEP mangling KASAN reports. */
212 	lockdep_off();
213 	/* Make sure we don't end up in loop. */
214 	report_suppress_start();
215 	spin_lock_irqsave(&report_lock, *flags);
216 	pr_err("==================================================================\n");
217 }
218 
219 static void end_report(unsigned long *flags, const void *addr, bool is_write)
220 {
221 	if (addr)
222 		trace_error_report_end(ERROR_DETECTOR_KASAN,
223 				       (unsigned long)addr);
224 	pr_err("==================================================================\n");
225 	spin_unlock_irqrestore(&report_lock, *flags);
226 	if (!test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags))
227 		check_panic_on_warn("KASAN");
228 	switch (kasan_arg_fault) {
229 	case KASAN_ARG_FAULT_DEFAULT:
230 	case KASAN_ARG_FAULT_REPORT:
231 		break;
232 	case KASAN_ARG_FAULT_PANIC:
233 		panic("kasan.fault=panic set ...\n");
234 		break;
235 	case KASAN_ARG_FAULT_PANIC_ON_WRITE:
236 		if (is_write)
237 			panic("kasan.fault=panic_on_write set ...\n");
238 		break;
239 	}
240 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
241 	lockdep_on();
242 	report_suppress_stop();
243 }
244 
245 static void print_error_description(struct kasan_report_info *info)
246 {
247 	pr_err("BUG: KASAN: %s in %pS\n", info->bug_type, (void *)info->ip);
248 
249 	if (info->type != KASAN_REPORT_ACCESS) {
250 		pr_err("Free of addr %px by task %s/%d\n",
251 			info->access_addr, current->comm, task_pid_nr(current));
252 		return;
253 	}
254 
255 	if (info->access_size)
256 		pr_err("%s of size %zu at addr %px by task %s/%d\n",
257 			info->is_write ? "Write" : "Read", info->access_size,
258 			info->access_addr, current->comm, task_pid_nr(current));
259 	else
260 		pr_err("%s at addr %px by task %s/%d\n",
261 			info->is_write ? "Write" : "Read",
262 			info->access_addr, current->comm, task_pid_nr(current));
263 }
264 
265 static void print_track(struct kasan_track *track, const char *prefix)
266 {
267 #ifdef CONFIG_KASAN_EXTRA_INFO
268 	u64 ts_nsec = track->timestamp;
269 	unsigned long rem_usec;
270 
271 	ts_nsec <<= 9;
272 	rem_usec = do_div(ts_nsec, NSEC_PER_SEC) / 1000;
273 
274 	pr_err("%s by task %u on cpu %d at %lu.%06lus:\n",
275 			prefix, track->pid, track->cpu,
276 			(unsigned long)ts_nsec, rem_usec);
277 #else
278 	pr_err("%s by task %u:\n", prefix, track->pid);
279 #endif /* CONFIG_KASAN_EXTRA_INFO */
280 	if (track->stack)
281 		stack_depot_print(track->stack);
282 	else
283 		pr_err("(stack is not available)\n");
284 }
285 
286 static inline struct page *addr_to_page(const void *addr)
287 {
288 	if (virt_addr_valid(addr))
289 		return virt_to_head_page(addr);
290 	return NULL;
291 }
292 
293 static void describe_object_addr(const void *addr, struct kasan_report_info *info)
294 {
295 	unsigned long access_addr = (unsigned long)addr;
296 	unsigned long object_addr = (unsigned long)info->object;
297 	const char *rel_type, *region_state = "";
298 	int rel_bytes;
299 
300 	pr_err("The buggy address belongs to the object at %px\n"
301 	       " which belongs to the cache %s of size %d\n",
302 		info->object, info->cache->name, info->cache->object_size);
303 
304 	if (access_addr < object_addr) {
305 		rel_type = "to the left";
306 		rel_bytes = object_addr - access_addr;
307 	} else if (access_addr >= object_addr + info->alloc_size) {
308 		rel_type = "to the right";
309 		rel_bytes = access_addr - (object_addr + info->alloc_size);
310 	} else {
311 		rel_type = "inside";
312 		rel_bytes = access_addr - object_addr;
313 	}
314 
315 	/*
316 	 * Tag-Based modes use the stack ring to infer the bug type, but the
317 	 * memory region state description is generated based on the metadata.
318 	 * Thus, defining the region state as below can contradict the metadata.
319 	 * Fixing this requires further improvements, so only infer the state
320 	 * for the Generic mode.
321 	 */
322 	if (IS_ENABLED(CONFIG_KASAN_GENERIC)) {
323 		if (strcmp(info->bug_type, "slab-out-of-bounds") == 0)
324 			region_state = "allocated ";
325 		else if (strcmp(info->bug_type, "slab-use-after-free") == 0)
326 			region_state = "freed ";
327 	}
328 
329 	pr_err("The buggy address is located %d bytes %s of\n"
330 	       " %s%zu-byte region [%px, %px)\n",
331 	       rel_bytes, rel_type, region_state, info->alloc_size,
332 	       (void *)object_addr, (void *)(object_addr + info->alloc_size));
333 }
334 
335 static void describe_object_stacks(struct kasan_report_info *info)
336 {
337 	if (info->alloc_track.stack) {
338 		print_track(&info->alloc_track, "Allocated");
339 		pr_err("\n");
340 	}
341 
342 	if (info->free_track.stack) {
343 		print_track(&info->free_track, "Freed");
344 		pr_err("\n");
345 	}
346 
347 	kasan_print_aux_stacks(info->cache, info->object);
348 }
349 
350 static void describe_object(const void *addr, struct kasan_report_info *info)
351 {
352 	if (kasan_stack_collection_enabled())
353 		describe_object_stacks(info);
354 	describe_object_addr(addr, info);
355 }
356 
357 static inline bool kernel_or_module_addr(const void *addr)
358 {
359 	if (is_kernel((unsigned long)addr))
360 		return true;
361 	if (is_module_address((unsigned long)addr))
362 		return true;
363 	return false;
364 }
365 
366 static inline bool init_task_stack_addr(const void *addr)
367 {
368 	return addr >= (void *)&init_thread_union.stack &&
369 		(addr <= (void *)&init_thread_union.stack +
370 			sizeof(init_thread_union.stack));
371 }
372 
373 static void print_address_description(void *addr, u8 tag,
374 				      struct kasan_report_info *info)
375 {
376 	struct page *page = addr_to_page(addr);
377 
378 	dump_stack_lvl(KERN_ERR);
379 	pr_err("\n");
380 
381 	if (info->cache && info->object) {
382 		describe_object(addr, info);
383 		pr_err("\n");
384 	}
385 
386 	if (kernel_or_module_addr(addr) && !init_task_stack_addr(addr)) {
387 		pr_err("The buggy address belongs to the variable:\n");
388 		pr_err(" %pS\n", addr);
389 		pr_err("\n");
390 	}
391 
392 	if (object_is_on_stack(addr)) {
393 		/*
394 		 * Currently, KASAN supports printing frame information only
395 		 * for accesses to the task's own stack.
396 		 */
397 		kasan_print_address_stack_frame(addr);
398 		pr_err("\n");
399 	}
400 
401 	if (is_vmalloc_addr(addr)) {
402 		struct vm_struct *va = find_vm_area(addr);
403 
404 		if (va) {
405 			pr_err("The buggy address belongs to the virtual mapping at\n"
406 			       " [%px, %px) created by:\n"
407 			       " %pS\n",
408 			       va->addr, va->addr + va->size, va->caller);
409 			pr_err("\n");
410 
411 			page = vmalloc_to_page(addr);
412 		}
413 	}
414 
415 	if (page) {
416 		pr_err("The buggy address belongs to the physical page:\n");
417 		dump_page(page, "kasan: bad access detected");
418 		pr_err("\n");
419 	}
420 }
421 
422 static bool meta_row_is_guilty(const void *row, const void *addr)
423 {
424 	return (row <= addr) && (addr < row + META_MEM_BYTES_PER_ROW);
425 }
426 
427 static int meta_pointer_offset(const void *row, const void *addr)
428 {
429 	/*
430 	 * Memory state around the buggy address:
431 	 *  ff00ff00ff00ff00: 00 00 00 05 fe fe fe fe fe fe fe fe fe fe fe fe
432 	 *  ...
433 	 *
434 	 * The length of ">ff00ff00ff00ff00: " is
435 	 *    3 + (BITS_PER_LONG / 8) * 2 chars.
436 	 * The length of each granule metadata is 2 bytes
437 	 *    plus 1 byte for space.
438 	 */
439 	return 3 + (BITS_PER_LONG / 8) * 2 +
440 		(addr - row) / KASAN_GRANULE_SIZE * 3 + 1;
441 }
442 
443 static void print_memory_metadata(const void *addr)
444 {
445 	int i;
446 	void *row;
447 
448 	row = (void *)round_down((unsigned long)addr, META_MEM_BYTES_PER_ROW)
449 			- META_ROWS_AROUND_ADDR * META_MEM_BYTES_PER_ROW;
450 
451 	pr_err("Memory state around the buggy address:\n");
452 
453 	for (i = -META_ROWS_AROUND_ADDR; i <= META_ROWS_AROUND_ADDR; i++) {
454 		char buffer[4 + (BITS_PER_LONG / 8) * 2];
455 		char metadata[META_BYTES_PER_ROW];
456 
457 		snprintf(buffer, sizeof(buffer),
458 				(i == 0) ? ">%px: " : " %px: ", row);
459 
460 		/*
461 		 * We should not pass a shadow pointer to generic
462 		 * function, because generic functions may try to
463 		 * access kasan mapping for the passed address.
464 		 */
465 		kasan_metadata_fetch_row(&metadata[0], row);
466 
467 		print_hex_dump(KERN_ERR, buffer,
468 			DUMP_PREFIX_NONE, META_BYTES_PER_ROW, 1,
469 			metadata, META_BYTES_PER_ROW, 0);
470 
471 		if (meta_row_is_guilty(row, addr))
472 			pr_err("%*c\n", meta_pointer_offset(row, addr), '^');
473 
474 		row += META_MEM_BYTES_PER_ROW;
475 	}
476 }
477 
478 static void print_report(struct kasan_report_info *info)
479 {
480 	void *addr = kasan_reset_tag((void *)info->access_addr);
481 	u8 tag = get_tag((void *)info->access_addr);
482 
483 	print_error_description(info);
484 	if (addr_has_metadata(addr))
485 		kasan_print_tags(tag, info->first_bad_addr);
486 	pr_err("\n");
487 
488 	if (addr_has_metadata(addr)) {
489 		print_address_description(addr, tag, info);
490 		print_memory_metadata(info->first_bad_addr);
491 	} else {
492 		dump_stack_lvl(KERN_ERR);
493 	}
494 }
495 
496 static void complete_report_info(struct kasan_report_info *info)
497 {
498 	void *addr = kasan_reset_tag((void *)info->access_addr);
499 	struct slab *slab;
500 
501 	if (info->type == KASAN_REPORT_ACCESS)
502 		info->first_bad_addr = kasan_find_first_bad_addr(
503 					(void *)info->access_addr, info->access_size);
504 	else
505 		info->first_bad_addr = addr;
506 
507 	slab = kasan_addr_to_slab(addr);
508 	if (slab) {
509 		info->cache = slab->slab_cache;
510 		info->object = nearest_obj(info->cache, slab, addr);
511 
512 		/* Try to determine allocation size based on the metadata. */
513 		info->alloc_size = kasan_get_alloc_size(info->object, info->cache);
514 		/* Fallback to the object size if failed. */
515 		if (!info->alloc_size)
516 			info->alloc_size = info->cache->object_size;
517 	} else
518 		info->cache = info->object = NULL;
519 
520 	switch (info->type) {
521 	case KASAN_REPORT_INVALID_FREE:
522 		info->bug_type = "invalid-free";
523 		break;
524 	case KASAN_REPORT_DOUBLE_FREE:
525 		info->bug_type = "double-free";
526 		break;
527 	default:
528 		/* bug_type filled in by kasan_complete_mode_report_info. */
529 		break;
530 	}
531 
532 	/* Fill in mode-specific report info fields. */
533 	kasan_complete_mode_report_info(info);
534 }
535 
536 void kasan_report_invalid_free(void *ptr, unsigned long ip, enum kasan_report_type type)
537 {
538 	unsigned long flags;
539 	struct kasan_report_info info;
540 
541 	/*
542 	 * Do not check report_suppressed_sw(), as an invalid-free cannot be
543 	 * caused by accessing poisoned memory and thus should not be suppressed
544 	 * by kasan_disable/enable_current() critical sections.
545 	 *
546 	 * Note that for Hardware Tag-Based KASAN, kasan_report_invalid_free()
547 	 * is triggered by explicit tag checks and not by the ones performed by
548 	 * the CPU. Thus, reporting invalid-free is not suppressed as well.
549 	 */
550 	if (unlikely(!report_enabled()))
551 		return;
552 
553 	start_report(&flags, true);
554 
555 	__memset(&info, 0, sizeof(info));
556 	info.type = type;
557 	info.access_addr = ptr;
558 	info.access_size = 0;
559 	info.is_write = false;
560 	info.ip = ip;
561 
562 	complete_report_info(&info);
563 
564 	print_report(&info);
565 
566 	/*
567 	 * Invalid free is considered a "write" since the allocator's metadata
568 	 * updates involves writes.
569 	 */
570 	end_report(&flags, ptr, true);
571 }
572 
573 /*
574  * kasan_report() is the only reporting function that uses
575  * user_access_save/restore(): kasan_report_invalid_free() cannot be called
576  * from a UACCESS region, and kasan_report_async() is not used on x86.
577  */
578 bool kasan_report(const void *addr, size_t size, bool is_write,
579 			unsigned long ip)
580 {
581 	bool ret = true;
582 	unsigned long ua_flags = user_access_save();
583 	unsigned long irq_flags;
584 	struct kasan_report_info info;
585 
586 	if (unlikely(report_suppressed_sw()) || unlikely(!report_enabled())) {
587 		ret = false;
588 		goto out;
589 	}
590 
591 	start_report(&irq_flags, true);
592 
593 	__memset(&info, 0, sizeof(info));
594 	info.type = KASAN_REPORT_ACCESS;
595 	info.access_addr = addr;
596 	info.access_size = size;
597 	info.is_write = is_write;
598 	info.ip = ip;
599 
600 	complete_report_info(&info);
601 
602 	print_report(&info);
603 
604 	end_report(&irq_flags, (void *)addr, is_write);
605 
606 out:
607 	user_access_restore(ua_flags);
608 
609 	return ret;
610 }
611 
612 #ifdef CONFIG_KASAN_HW_TAGS
613 void kasan_report_async(void)
614 {
615 	unsigned long flags;
616 
617 	/*
618 	 * Do not check report_suppressed_sw(), as
619 	 * kasan_disable/enable_current() critical sections do not affect
620 	 * Hardware Tag-Based KASAN.
621 	 */
622 	if (unlikely(!report_enabled()))
623 		return;
624 
625 	start_report(&flags, false);
626 	pr_err("BUG: KASAN: invalid-access\n");
627 	pr_err("Asynchronous fault: no details available\n");
628 	pr_err("\n");
629 	dump_stack_lvl(KERN_ERR);
630 	/*
631 	 * Conservatively set is_write=true, because no details are available.
632 	 * In this mode, kasan.fault=panic_on_write is like kasan.fault=panic.
633 	 */
634 	end_report(&flags, NULL, true);
635 }
636 #endif /* CONFIG_KASAN_HW_TAGS */
637 
638 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
639 /*
640  * With compiler-based KASAN modes, accesses to bogus pointers (outside of the
641  * mapped kernel address space regions) cause faults when KASAN tries to check
642  * the shadow memory before the actual memory access. This results in cryptic
643  * GPF reports, which are hard for users to interpret. This hook helps users to
644  * figure out what the original bogus pointer was.
645  */
646 void kasan_non_canonical_hook(unsigned long addr)
647 {
648 	unsigned long orig_addr;
649 	const char *bug_type;
650 
651 	/*
652 	 * All addresses that came as a result of the memory-to-shadow mapping
653 	 * (even for bogus pointers) must be >= KASAN_SHADOW_OFFSET.
654 	 */
655 	if (addr < KASAN_SHADOW_OFFSET)
656 		return;
657 
658 	orig_addr = (unsigned long)kasan_shadow_to_mem((void *)addr);
659 
660 	/*
661 	 * For faults near the shadow address for NULL, we can be fairly certain
662 	 * that this is a KASAN shadow memory access.
663 	 * For faults that correspond to the shadow for low or high canonical
664 	 * addresses, we can still be pretty sure: these shadow regions are a
665 	 * fairly narrow chunk of the address space.
666 	 * But the shadow for non-canonical addresses is a really large chunk
667 	 * of the address space. For this case, we still print the decoded
668 	 * address, but make it clear that this is not necessarily what's
669 	 * actually going on.
670 	 */
671 	if (orig_addr < PAGE_SIZE)
672 		bug_type = "null-ptr-deref";
673 	else if (orig_addr < TASK_SIZE)
674 		bug_type = "probably user-memory-access";
675 	else if (addr_in_shadow((void *)addr))
676 		bug_type = "probably wild-memory-access";
677 	else
678 		bug_type = "maybe wild-memory-access";
679 	pr_alert("KASAN: %s in range [0x%016lx-0x%016lx]\n", bug_type,
680 		 orig_addr, orig_addr + KASAN_GRANULE_SIZE - 1);
681 }
682 #endif
683