1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN error reporting code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <kunit/test.h> 13 #include <kunit/visibility.h> 14 #include <linux/bitops.h> 15 #include <linux/ftrace.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/lockdep.h> 19 #include <linux/mm.h> 20 #include <linux/printk.h> 21 #include <linux/sched.h> 22 #include <linux/slab.h> 23 #include <linux/stackdepot.h> 24 #include <linux/stacktrace.h> 25 #include <linux/string.h> 26 #include <linux/types.h> 27 #include <linux/vmalloc.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/sched/task_stack.h> 31 #include <linux/uaccess.h> 32 #include <trace/events/error_report.h> 33 34 #include <asm/sections.h> 35 36 #include "kasan.h" 37 #include "../slab.h" 38 39 static unsigned long kasan_flags; 40 41 #define KASAN_BIT_REPORTED 0 42 #define KASAN_BIT_MULTI_SHOT 1 43 44 enum kasan_arg_fault { 45 KASAN_ARG_FAULT_DEFAULT, 46 KASAN_ARG_FAULT_REPORT, 47 KASAN_ARG_FAULT_PANIC, 48 KASAN_ARG_FAULT_PANIC_ON_WRITE, 49 }; 50 51 static enum kasan_arg_fault kasan_arg_fault __ro_after_init = KASAN_ARG_FAULT_DEFAULT; 52 53 /* kasan.fault=report/panic */ 54 static int __init early_kasan_fault(char *arg) 55 { 56 if (!arg) 57 return -EINVAL; 58 59 if (!strcmp(arg, "report")) 60 kasan_arg_fault = KASAN_ARG_FAULT_REPORT; 61 else if (!strcmp(arg, "panic")) 62 kasan_arg_fault = KASAN_ARG_FAULT_PANIC; 63 else if (!strcmp(arg, "panic_on_write")) 64 kasan_arg_fault = KASAN_ARG_FAULT_PANIC_ON_WRITE; 65 else 66 return -EINVAL; 67 68 return 0; 69 } 70 early_param("kasan.fault", early_kasan_fault); 71 72 static int __init kasan_set_multi_shot(char *str) 73 { 74 set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 75 return 1; 76 } 77 __setup("kasan_multi_shot", kasan_set_multi_shot); 78 79 /* 80 * This function is used to check whether KASAN reports are suppressed for 81 * software KASAN modes via kasan_disable/enable_current() critical sections. 82 * 83 * This is done to avoid: 84 * 1. False-positive reports when accessing slab metadata, 85 * 2. Deadlocking when poisoned memory is accessed by the reporting code. 86 * 87 * Hardware Tag-Based KASAN instead relies on: 88 * For #1: Resetting tags via kasan_reset_tag(). 89 * For #2: Suppression of tag checks via CPU, see report_suppress_start/end(). 90 */ 91 static bool report_suppressed_sw(void) 92 { 93 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 94 if (current->kasan_depth) 95 return true; 96 #endif 97 return false; 98 } 99 100 static void report_suppress_start(void) 101 { 102 #ifdef CONFIG_KASAN_HW_TAGS 103 /* 104 * Disable preemption for the duration of printing a KASAN report, as 105 * hw_suppress_tag_checks_start() disables checks on the current CPU. 106 */ 107 preempt_disable(); 108 hw_suppress_tag_checks_start(); 109 #else 110 kasan_disable_current(); 111 #endif 112 } 113 114 static void report_suppress_stop(void) 115 { 116 #ifdef CONFIG_KASAN_HW_TAGS 117 hw_suppress_tag_checks_stop(); 118 preempt_enable(); 119 #else 120 kasan_enable_current(); 121 #endif 122 } 123 124 /* 125 * Used to avoid reporting more than one KASAN bug unless kasan_multi_shot 126 * is enabled. Note that KASAN tests effectively enable kasan_multi_shot 127 * for their duration. 128 */ 129 static bool report_enabled(void) 130 { 131 if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) 132 return true; 133 return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags); 134 } 135 136 #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) 137 138 VISIBLE_IF_KUNIT bool kasan_save_enable_multi_shot(void) 139 { 140 return test_and_set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 141 } 142 EXPORT_SYMBOL_IF_KUNIT(kasan_save_enable_multi_shot); 143 144 VISIBLE_IF_KUNIT void kasan_restore_multi_shot(bool enabled) 145 { 146 if (!enabled) 147 clear_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags); 148 } 149 EXPORT_SYMBOL_IF_KUNIT(kasan_restore_multi_shot); 150 151 #endif 152 153 #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) 154 155 /* 156 * Whether the KASAN KUnit test suite is currently being executed. 157 * Updated in kasan_test.c. 158 */ 159 static bool kasan_kunit_executing; 160 161 VISIBLE_IF_KUNIT void kasan_kunit_test_suite_start(void) 162 { 163 WRITE_ONCE(kasan_kunit_executing, true); 164 } 165 EXPORT_SYMBOL_IF_KUNIT(kasan_kunit_test_suite_start); 166 167 VISIBLE_IF_KUNIT void kasan_kunit_test_suite_end(void) 168 { 169 WRITE_ONCE(kasan_kunit_executing, false); 170 } 171 EXPORT_SYMBOL_IF_KUNIT(kasan_kunit_test_suite_end); 172 173 static bool kasan_kunit_test_suite_executing(void) 174 { 175 return READ_ONCE(kasan_kunit_executing); 176 } 177 178 #else /* CONFIG_KASAN_KUNIT_TEST */ 179 180 static inline bool kasan_kunit_test_suite_executing(void) { return false; } 181 182 #endif /* CONFIG_KASAN_KUNIT_TEST */ 183 184 #if IS_ENABLED(CONFIG_KUNIT) 185 186 static void fail_non_kasan_kunit_test(void) 187 { 188 struct kunit *test; 189 190 if (kasan_kunit_test_suite_executing()) 191 return; 192 193 test = current->kunit_test; 194 if (test) 195 kunit_set_failure(test); 196 } 197 198 #else /* CONFIG_KUNIT */ 199 200 static inline void fail_non_kasan_kunit_test(void) { } 201 202 #endif /* CONFIG_KUNIT */ 203 204 static DEFINE_RAW_SPINLOCK(report_lock); 205 206 static void start_report(unsigned long *flags, bool sync) 207 { 208 fail_non_kasan_kunit_test(); 209 /* Respect the /proc/sys/kernel/traceoff_on_warning interface. */ 210 disable_trace_on_warning(); 211 /* Do not allow LOCKDEP mangling KASAN reports. */ 212 lockdep_off(); 213 /* Make sure we don't end up in loop. */ 214 report_suppress_start(); 215 raw_spin_lock_irqsave(&report_lock, *flags); 216 pr_err("==================================================================\n"); 217 } 218 219 static void end_report(unsigned long *flags, const void *addr, bool is_write) 220 { 221 if (addr) 222 trace_error_report_end(ERROR_DETECTOR_KASAN, 223 (unsigned long)addr); 224 pr_err("==================================================================\n"); 225 raw_spin_unlock_irqrestore(&report_lock, *flags); 226 if (!test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags)) 227 check_panic_on_warn("KASAN"); 228 switch (kasan_arg_fault) { 229 case KASAN_ARG_FAULT_DEFAULT: 230 case KASAN_ARG_FAULT_REPORT: 231 break; 232 case KASAN_ARG_FAULT_PANIC: 233 panic("kasan.fault=panic set ...\n"); 234 break; 235 case KASAN_ARG_FAULT_PANIC_ON_WRITE: 236 if (is_write) 237 panic("kasan.fault=panic_on_write set ...\n"); 238 break; 239 } 240 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 241 lockdep_on(); 242 report_suppress_stop(); 243 } 244 245 static void print_error_description(struct kasan_report_info *info) 246 { 247 pr_err("BUG: KASAN: %s in %pS\n", info->bug_type, (void *)info->ip); 248 249 if (info->type != KASAN_REPORT_ACCESS) { 250 pr_err("Free of addr %px by task %s/%d\n", 251 info->access_addr, current->comm, task_pid_nr(current)); 252 return; 253 } 254 255 if (info->access_size) 256 pr_err("%s of size %zu at addr %px by task %s/%d\n", 257 info->is_write ? "Write" : "Read", info->access_size, 258 info->access_addr, current->comm, task_pid_nr(current)); 259 else 260 pr_err("%s at addr %px by task %s/%d\n", 261 info->is_write ? "Write" : "Read", 262 info->access_addr, current->comm, task_pid_nr(current)); 263 } 264 265 static void print_track(struct kasan_track *track, const char *prefix) 266 { 267 #ifdef CONFIG_KASAN_EXTRA_INFO 268 u64 ts_nsec = track->timestamp; 269 unsigned long rem_usec; 270 271 ts_nsec <<= 9; 272 rem_usec = do_div(ts_nsec, NSEC_PER_SEC) / 1000; 273 274 pr_err("%s by task %u on cpu %d at %lu.%06lus:\n", 275 prefix, track->pid, track->cpu, 276 (unsigned long)ts_nsec, rem_usec); 277 #else 278 pr_err("%s by task %u:\n", prefix, track->pid); 279 #endif /* CONFIG_KASAN_EXTRA_INFO */ 280 if (track->stack) 281 stack_depot_print(track->stack); 282 else 283 pr_err("(stack is not available)\n"); 284 } 285 286 static inline struct page *addr_to_page(const void *addr) 287 { 288 if (virt_addr_valid(addr)) 289 return virt_to_head_page(addr); 290 return NULL; 291 } 292 293 static void describe_object_addr(const void *addr, struct kasan_report_info *info) 294 { 295 unsigned long access_addr = (unsigned long)addr; 296 unsigned long object_addr = (unsigned long)info->object; 297 const char *rel_type, *region_state = ""; 298 int rel_bytes; 299 300 pr_err("The buggy address belongs to the object at %px\n" 301 " which belongs to the cache %s of size %d\n", 302 info->object, info->cache->name, info->cache->object_size); 303 304 if (access_addr < object_addr) { 305 rel_type = "to the left"; 306 rel_bytes = object_addr - access_addr; 307 } else if (access_addr >= object_addr + info->alloc_size) { 308 rel_type = "to the right"; 309 rel_bytes = access_addr - (object_addr + info->alloc_size); 310 } else { 311 rel_type = "inside"; 312 rel_bytes = access_addr - object_addr; 313 } 314 315 /* 316 * Tag-Based modes use the stack ring to infer the bug type, but the 317 * memory region state description is generated based on the metadata. 318 * Thus, defining the region state as below can contradict the metadata. 319 * Fixing this requires further improvements, so only infer the state 320 * for the Generic mode. 321 */ 322 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) { 323 if (strcmp(info->bug_type, "slab-out-of-bounds") == 0) 324 region_state = "allocated "; 325 else if (strcmp(info->bug_type, "slab-use-after-free") == 0) 326 region_state = "freed "; 327 } 328 329 pr_err("The buggy address is located %d bytes %s of\n" 330 " %s%zu-byte region [%px, %px)\n", 331 rel_bytes, rel_type, region_state, info->alloc_size, 332 (void *)object_addr, (void *)(object_addr + info->alloc_size)); 333 } 334 335 static void describe_object_stacks(struct kasan_report_info *info) 336 { 337 if (info->alloc_track.stack) { 338 print_track(&info->alloc_track, "Allocated"); 339 pr_err("\n"); 340 } 341 342 if (info->free_track.stack) { 343 print_track(&info->free_track, "Freed"); 344 pr_err("\n"); 345 } 346 347 kasan_print_aux_stacks(info->cache, info->object); 348 } 349 350 static void describe_object(const void *addr, struct kasan_report_info *info) 351 { 352 if (kasan_stack_collection_enabled()) 353 describe_object_stacks(info); 354 describe_object_addr(addr, info); 355 } 356 357 static inline bool kernel_or_module_addr(const void *addr) 358 { 359 if (is_kernel((unsigned long)addr)) 360 return true; 361 if (is_module_address((unsigned long)addr)) 362 return true; 363 return false; 364 } 365 366 static inline bool init_task_stack_addr(const void *addr) 367 { 368 return addr >= (void *)&init_thread_union.stack && 369 (addr <= (void *)&init_thread_union.stack + 370 sizeof(init_thread_union.stack)); 371 } 372 373 static void print_address_description(void *addr, u8 tag, 374 struct kasan_report_info *info) 375 { 376 struct page *page = addr_to_page(addr); 377 378 dump_stack_lvl(KERN_ERR); 379 pr_err("\n"); 380 381 if (info->cache && info->object) { 382 describe_object(addr, info); 383 pr_err("\n"); 384 } 385 386 if (kernel_or_module_addr(addr) && !init_task_stack_addr(addr)) { 387 pr_err("The buggy address belongs to the variable:\n"); 388 pr_err(" %pS\n", addr); 389 pr_err("\n"); 390 } 391 392 if (object_is_on_stack(addr)) { 393 /* 394 * Currently, KASAN supports printing frame information only 395 * for accesses to the task's own stack. 396 */ 397 kasan_print_address_stack_frame(addr); 398 pr_err("\n"); 399 } 400 401 if (is_vmalloc_addr(addr)) { 402 pr_err("The buggy address belongs to a"); 403 if (!vmalloc_dump_obj(addr)) 404 pr_cont(" vmalloc virtual mapping\n"); 405 page = vmalloc_to_page(addr); 406 } 407 408 if (page) { 409 pr_err("The buggy address belongs to the physical page:\n"); 410 dump_page(page, "kasan: bad access detected"); 411 pr_err("\n"); 412 } 413 } 414 415 static bool meta_row_is_guilty(const void *row, const void *addr) 416 { 417 return (row <= addr) && (addr < row + META_MEM_BYTES_PER_ROW); 418 } 419 420 static int meta_pointer_offset(const void *row, const void *addr) 421 { 422 /* 423 * Memory state around the buggy address: 424 * ff00ff00ff00ff00: 00 00 00 05 fe fe fe fe fe fe fe fe fe fe fe fe 425 * ... 426 * 427 * The length of ">ff00ff00ff00ff00: " is 428 * 3 + (BITS_PER_LONG / 8) * 2 chars. 429 * The length of each granule metadata is 2 bytes 430 * plus 1 byte for space. 431 */ 432 return 3 + (BITS_PER_LONG / 8) * 2 + 433 (addr - row) / KASAN_GRANULE_SIZE * 3 + 1; 434 } 435 436 static void print_memory_metadata(const void *addr) 437 { 438 int i; 439 void *row; 440 441 row = (void *)round_down((unsigned long)addr, META_MEM_BYTES_PER_ROW) 442 - META_ROWS_AROUND_ADDR * META_MEM_BYTES_PER_ROW; 443 444 pr_err("Memory state around the buggy address:\n"); 445 446 for (i = -META_ROWS_AROUND_ADDR; i <= META_ROWS_AROUND_ADDR; i++) { 447 char buffer[4 + (BITS_PER_LONG / 8) * 2]; 448 char metadata[META_BYTES_PER_ROW]; 449 450 snprintf(buffer, sizeof(buffer), 451 (i == 0) ? ">%px: " : " %px: ", row); 452 453 /* 454 * We should not pass a shadow pointer to generic 455 * function, because generic functions may try to 456 * access kasan mapping for the passed address. 457 */ 458 kasan_metadata_fetch_row(&metadata[0], row); 459 460 print_hex_dump(KERN_ERR, buffer, 461 DUMP_PREFIX_NONE, META_BYTES_PER_ROW, 1, 462 metadata, META_BYTES_PER_ROW, 0); 463 464 if (meta_row_is_guilty(row, addr)) 465 pr_err("%*c\n", meta_pointer_offset(row, addr), '^'); 466 467 row += META_MEM_BYTES_PER_ROW; 468 } 469 } 470 471 static void print_report(struct kasan_report_info *info) 472 { 473 void *addr = kasan_reset_tag((void *)info->access_addr); 474 u8 tag = get_tag((void *)info->access_addr); 475 476 print_error_description(info); 477 if (addr_has_metadata(addr)) 478 kasan_print_tags(tag, info->first_bad_addr); 479 pr_err("\n"); 480 481 if (addr_has_metadata(addr)) { 482 print_address_description(addr, tag, info); 483 print_memory_metadata(info->first_bad_addr); 484 } else { 485 dump_stack_lvl(KERN_ERR); 486 } 487 } 488 489 static void complete_report_info(struct kasan_report_info *info) 490 { 491 void *addr = kasan_reset_tag((void *)info->access_addr); 492 struct slab *slab; 493 494 if (info->type == KASAN_REPORT_ACCESS) 495 info->first_bad_addr = kasan_find_first_bad_addr( 496 (void *)info->access_addr, info->access_size); 497 else 498 info->first_bad_addr = addr; 499 500 slab = kasan_addr_to_slab(addr); 501 if (slab) { 502 info->cache = slab->slab_cache; 503 info->object = nearest_obj(info->cache, slab, addr); 504 505 /* Try to determine allocation size based on the metadata. */ 506 info->alloc_size = kasan_get_alloc_size(info->object, info->cache); 507 /* Fallback to the object size if failed. */ 508 if (!info->alloc_size) 509 info->alloc_size = info->cache->object_size; 510 } else 511 info->cache = info->object = NULL; 512 513 switch (info->type) { 514 case KASAN_REPORT_INVALID_FREE: 515 info->bug_type = "invalid-free"; 516 break; 517 case KASAN_REPORT_DOUBLE_FREE: 518 info->bug_type = "double-free"; 519 break; 520 default: 521 /* bug_type filled in by kasan_complete_mode_report_info. */ 522 break; 523 } 524 525 /* Fill in mode-specific report info fields. */ 526 kasan_complete_mode_report_info(info); 527 } 528 529 void kasan_report_invalid_free(void *ptr, unsigned long ip, enum kasan_report_type type) 530 { 531 unsigned long flags; 532 struct kasan_report_info info; 533 534 /* 535 * Do not check report_suppressed_sw(), as an invalid-free cannot be 536 * caused by accessing poisoned memory and thus should not be suppressed 537 * by kasan_disable/enable_current() critical sections. 538 * 539 * Note that for Hardware Tag-Based KASAN, kasan_report_invalid_free() 540 * is triggered by explicit tag checks and not by the ones performed by 541 * the CPU. Thus, reporting invalid-free is not suppressed as well. 542 */ 543 if (unlikely(!report_enabled())) 544 return; 545 546 start_report(&flags, true); 547 548 __memset(&info, 0, sizeof(info)); 549 info.type = type; 550 info.access_addr = ptr; 551 info.access_size = 0; 552 info.is_write = false; 553 info.ip = ip; 554 555 complete_report_info(&info); 556 557 print_report(&info); 558 559 /* 560 * Invalid free is considered a "write" since the allocator's metadata 561 * updates involves writes. 562 */ 563 end_report(&flags, ptr, true); 564 } 565 566 /* 567 * kasan_report() is the only reporting function that uses 568 * user_access_save/restore(): kasan_report_invalid_free() cannot be called 569 * from a UACCESS region, and kasan_report_async() is not used on x86. 570 */ 571 bool kasan_report(const void *addr, size_t size, bool is_write, 572 unsigned long ip) 573 { 574 bool ret = true; 575 unsigned long ua_flags = user_access_save(); 576 unsigned long irq_flags; 577 struct kasan_report_info info; 578 579 if (unlikely(report_suppressed_sw()) || unlikely(!report_enabled())) { 580 ret = false; 581 goto out; 582 } 583 584 start_report(&irq_flags, true); 585 586 __memset(&info, 0, sizeof(info)); 587 info.type = KASAN_REPORT_ACCESS; 588 info.access_addr = addr; 589 info.access_size = size; 590 info.is_write = is_write; 591 info.ip = ip; 592 593 complete_report_info(&info); 594 595 print_report(&info); 596 597 end_report(&irq_flags, (void *)addr, is_write); 598 599 out: 600 user_access_restore(ua_flags); 601 602 return ret; 603 } 604 605 #ifdef CONFIG_KASAN_HW_TAGS 606 void kasan_report_async(void) 607 { 608 unsigned long flags; 609 610 /* 611 * Do not check report_suppressed_sw(), as 612 * kasan_disable/enable_current() critical sections do not affect 613 * Hardware Tag-Based KASAN. 614 */ 615 if (unlikely(!report_enabled())) 616 return; 617 618 start_report(&flags, false); 619 pr_err("BUG: KASAN: invalid-access\n"); 620 pr_err("Asynchronous fault: no details available\n"); 621 pr_err("\n"); 622 dump_stack_lvl(KERN_ERR); 623 /* 624 * Conservatively set is_write=true, because no details are available. 625 * In this mode, kasan.fault=panic_on_write is like kasan.fault=panic. 626 */ 627 end_report(&flags, NULL, true); 628 } 629 #endif /* CONFIG_KASAN_HW_TAGS */ 630 631 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 632 /* 633 * With compiler-based KASAN modes, accesses to bogus pointers (outside of the 634 * mapped kernel address space regions) cause faults when KASAN tries to check 635 * the shadow memory before the actual memory access. This results in cryptic 636 * GPF reports, which are hard for users to interpret. This hook helps users to 637 * figure out what the original bogus pointer was. 638 */ 639 void kasan_non_canonical_hook(unsigned long addr) 640 { 641 unsigned long orig_addr; 642 const char *bug_type; 643 644 /* 645 * All addresses that came as a result of the memory-to-shadow mapping 646 * (even for bogus pointers) must be >= KASAN_SHADOW_OFFSET. 647 */ 648 if (addr < KASAN_SHADOW_OFFSET) 649 return; 650 651 orig_addr = (unsigned long)kasan_shadow_to_mem((void *)addr); 652 653 /* 654 * For faults near the shadow address for NULL, we can be fairly certain 655 * that this is a KASAN shadow memory access. 656 * For faults that correspond to the shadow for low or high canonical 657 * addresses, we can still be pretty sure: these shadow regions are a 658 * fairly narrow chunk of the address space. 659 * But the shadow for non-canonical addresses is a really large chunk 660 * of the address space. For this case, we still print the decoded 661 * address, but make it clear that this is not necessarily what's 662 * actually going on. 663 */ 664 if (orig_addr < PAGE_SIZE) 665 bug_type = "null-ptr-deref"; 666 else if (orig_addr < TASK_SIZE) 667 bug_type = "probably user-memory-access"; 668 else if (addr_in_shadow((void *)addr)) 669 bug_type = "probably wild-memory-access"; 670 else 671 bug_type = "maybe wild-memory-access"; 672 pr_alert("KASAN: %s in range [0x%016lx-0x%016lx]\n", bug_type, 673 orig_addr, orig_addr + KASAN_GRANULE_SIZE - 1); 674 } 675 #endif 676