xref: /linux/mm/kasan/quarantine.c (revision 6f52b16c5b29b89d92c0e7236f4655dc8491ad70)
1 /*
2  * KASAN quarantine.
3  *
4  * Author: Alexander Potapenko <glider@google.com>
5  * Copyright (C) 2016 Google, Inc.
6  *
7  * Based on code by Dmitry Chernenkov.
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License
11  * version 2 as published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  */
19 
20 #include <linux/gfp.h>
21 #include <linux/hash.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/percpu.h>
25 #include <linux/printk.h>
26 #include <linux/shrinker.h>
27 #include <linux/slab.h>
28 #include <linux/srcu.h>
29 #include <linux/string.h>
30 #include <linux/types.h>
31 
32 #include "../slab.h"
33 #include "kasan.h"
34 
35 /* Data structure and operations for quarantine queues. */
36 
37 /*
38  * Each queue is a signle-linked list, which also stores the total size of
39  * objects inside of it.
40  */
41 struct qlist_head {
42 	struct qlist_node *head;
43 	struct qlist_node *tail;
44 	size_t bytes;
45 };
46 
47 #define QLIST_INIT { NULL, NULL, 0 }
48 
49 static bool qlist_empty(struct qlist_head *q)
50 {
51 	return !q->head;
52 }
53 
54 static void qlist_init(struct qlist_head *q)
55 {
56 	q->head = q->tail = NULL;
57 	q->bytes = 0;
58 }
59 
60 static void qlist_put(struct qlist_head *q, struct qlist_node *qlink,
61 		size_t size)
62 {
63 	if (unlikely(qlist_empty(q)))
64 		q->head = qlink;
65 	else
66 		q->tail->next = qlink;
67 	q->tail = qlink;
68 	qlink->next = NULL;
69 	q->bytes += size;
70 }
71 
72 static void qlist_move_all(struct qlist_head *from, struct qlist_head *to)
73 {
74 	if (unlikely(qlist_empty(from)))
75 		return;
76 
77 	if (qlist_empty(to)) {
78 		*to = *from;
79 		qlist_init(from);
80 		return;
81 	}
82 
83 	to->tail->next = from->head;
84 	to->tail = from->tail;
85 	to->bytes += from->bytes;
86 
87 	qlist_init(from);
88 }
89 
90 #define QUARANTINE_PERCPU_SIZE (1 << 20)
91 #define QUARANTINE_BATCHES \
92 	(1024 > 4 * CONFIG_NR_CPUS ? 1024 : 4 * CONFIG_NR_CPUS)
93 
94 /*
95  * The object quarantine consists of per-cpu queues and a global queue,
96  * guarded by quarantine_lock.
97  */
98 static DEFINE_PER_CPU(struct qlist_head, cpu_quarantine);
99 
100 /* Round-robin FIFO array of batches. */
101 static struct qlist_head global_quarantine[QUARANTINE_BATCHES];
102 static int quarantine_head;
103 static int quarantine_tail;
104 /* Total size of all objects in global_quarantine across all batches. */
105 static unsigned long quarantine_size;
106 static DEFINE_SPINLOCK(quarantine_lock);
107 DEFINE_STATIC_SRCU(remove_cache_srcu);
108 
109 /* Maximum size of the global queue. */
110 static unsigned long quarantine_max_size;
111 
112 /*
113  * Target size of a batch in global_quarantine.
114  * Usually equal to QUARANTINE_PERCPU_SIZE unless we have too much RAM.
115  */
116 static unsigned long quarantine_batch_size;
117 
118 /*
119  * The fraction of physical memory the quarantine is allowed to occupy.
120  * Quarantine doesn't support memory shrinker with SLAB allocator, so we keep
121  * the ratio low to avoid OOM.
122  */
123 #define QUARANTINE_FRACTION 32
124 
125 static struct kmem_cache *qlink_to_cache(struct qlist_node *qlink)
126 {
127 	return virt_to_head_page(qlink)->slab_cache;
128 }
129 
130 static void *qlink_to_object(struct qlist_node *qlink, struct kmem_cache *cache)
131 {
132 	struct kasan_free_meta *free_info =
133 		container_of(qlink, struct kasan_free_meta,
134 			     quarantine_link);
135 
136 	return ((void *)free_info) - cache->kasan_info.free_meta_offset;
137 }
138 
139 static void qlink_free(struct qlist_node *qlink, struct kmem_cache *cache)
140 {
141 	void *object = qlink_to_object(qlink, cache);
142 	unsigned long flags;
143 
144 	if (IS_ENABLED(CONFIG_SLAB))
145 		local_irq_save(flags);
146 
147 	___cache_free(cache, object, _THIS_IP_);
148 
149 	if (IS_ENABLED(CONFIG_SLAB))
150 		local_irq_restore(flags);
151 }
152 
153 static void qlist_free_all(struct qlist_head *q, struct kmem_cache *cache)
154 {
155 	struct qlist_node *qlink;
156 
157 	if (unlikely(qlist_empty(q)))
158 		return;
159 
160 	qlink = q->head;
161 	while (qlink) {
162 		struct kmem_cache *obj_cache =
163 			cache ? cache :	qlink_to_cache(qlink);
164 		struct qlist_node *next = qlink->next;
165 
166 		qlink_free(qlink, obj_cache);
167 		qlink = next;
168 	}
169 	qlist_init(q);
170 }
171 
172 void quarantine_put(struct kasan_free_meta *info, struct kmem_cache *cache)
173 {
174 	unsigned long flags;
175 	struct qlist_head *q;
176 	struct qlist_head temp = QLIST_INIT;
177 
178 	/*
179 	 * Note: irq must be disabled until after we move the batch to the
180 	 * global quarantine. Otherwise quarantine_remove_cache() can miss
181 	 * some objects belonging to the cache if they are in our local temp
182 	 * list. quarantine_remove_cache() executes on_each_cpu() at the
183 	 * beginning which ensures that it either sees the objects in per-cpu
184 	 * lists or in the global quarantine.
185 	 */
186 	local_irq_save(flags);
187 
188 	q = this_cpu_ptr(&cpu_quarantine);
189 	qlist_put(q, &info->quarantine_link, cache->size);
190 	if (unlikely(q->bytes > QUARANTINE_PERCPU_SIZE)) {
191 		qlist_move_all(q, &temp);
192 
193 		spin_lock(&quarantine_lock);
194 		WRITE_ONCE(quarantine_size, quarantine_size + temp.bytes);
195 		qlist_move_all(&temp, &global_quarantine[quarantine_tail]);
196 		if (global_quarantine[quarantine_tail].bytes >=
197 				READ_ONCE(quarantine_batch_size)) {
198 			int new_tail;
199 
200 			new_tail = quarantine_tail + 1;
201 			if (new_tail == QUARANTINE_BATCHES)
202 				new_tail = 0;
203 			if (new_tail != quarantine_head)
204 				quarantine_tail = new_tail;
205 		}
206 		spin_unlock(&quarantine_lock);
207 	}
208 
209 	local_irq_restore(flags);
210 }
211 
212 void quarantine_reduce(void)
213 {
214 	size_t total_size, new_quarantine_size, percpu_quarantines;
215 	unsigned long flags;
216 	int srcu_idx;
217 	struct qlist_head to_free = QLIST_INIT;
218 
219 	if (likely(READ_ONCE(quarantine_size) <=
220 		   READ_ONCE(quarantine_max_size)))
221 		return;
222 
223 	/*
224 	 * srcu critical section ensures that quarantine_remove_cache()
225 	 * will not miss objects belonging to the cache while they are in our
226 	 * local to_free list. srcu is chosen because (1) it gives us private
227 	 * grace period domain that does not interfere with anything else,
228 	 * and (2) it allows synchronize_srcu() to return without waiting
229 	 * if there are no pending read critical sections (which is the
230 	 * expected case).
231 	 */
232 	srcu_idx = srcu_read_lock(&remove_cache_srcu);
233 	spin_lock_irqsave(&quarantine_lock, flags);
234 
235 	/*
236 	 * Update quarantine size in case of hotplug. Allocate a fraction of
237 	 * the installed memory to quarantine minus per-cpu queue limits.
238 	 */
239 	total_size = (READ_ONCE(totalram_pages) << PAGE_SHIFT) /
240 		QUARANTINE_FRACTION;
241 	percpu_quarantines = QUARANTINE_PERCPU_SIZE * num_online_cpus();
242 	new_quarantine_size = (total_size < percpu_quarantines) ?
243 		0 : total_size - percpu_quarantines;
244 	WRITE_ONCE(quarantine_max_size, new_quarantine_size);
245 	/* Aim at consuming at most 1/2 of slots in quarantine. */
246 	WRITE_ONCE(quarantine_batch_size, max((size_t)QUARANTINE_PERCPU_SIZE,
247 		2 * total_size / QUARANTINE_BATCHES));
248 
249 	if (likely(quarantine_size > quarantine_max_size)) {
250 		qlist_move_all(&global_quarantine[quarantine_head], &to_free);
251 		WRITE_ONCE(quarantine_size, quarantine_size - to_free.bytes);
252 		quarantine_head++;
253 		if (quarantine_head == QUARANTINE_BATCHES)
254 			quarantine_head = 0;
255 	}
256 
257 	spin_unlock_irqrestore(&quarantine_lock, flags);
258 
259 	qlist_free_all(&to_free, NULL);
260 	srcu_read_unlock(&remove_cache_srcu, srcu_idx);
261 }
262 
263 static void qlist_move_cache(struct qlist_head *from,
264 				   struct qlist_head *to,
265 				   struct kmem_cache *cache)
266 {
267 	struct qlist_node *curr;
268 
269 	if (unlikely(qlist_empty(from)))
270 		return;
271 
272 	curr = from->head;
273 	qlist_init(from);
274 	while (curr) {
275 		struct qlist_node *next = curr->next;
276 		struct kmem_cache *obj_cache = qlink_to_cache(curr);
277 
278 		if (obj_cache == cache)
279 			qlist_put(to, curr, obj_cache->size);
280 		else
281 			qlist_put(from, curr, obj_cache->size);
282 
283 		curr = next;
284 	}
285 }
286 
287 static void per_cpu_remove_cache(void *arg)
288 {
289 	struct kmem_cache *cache = arg;
290 	struct qlist_head to_free = QLIST_INIT;
291 	struct qlist_head *q;
292 
293 	q = this_cpu_ptr(&cpu_quarantine);
294 	qlist_move_cache(q, &to_free, cache);
295 	qlist_free_all(&to_free, cache);
296 }
297 
298 /* Free all quarantined objects belonging to cache. */
299 void quarantine_remove_cache(struct kmem_cache *cache)
300 {
301 	unsigned long flags, i;
302 	struct qlist_head to_free = QLIST_INIT;
303 
304 	/*
305 	 * Must be careful to not miss any objects that are being moved from
306 	 * per-cpu list to the global quarantine in quarantine_put(),
307 	 * nor objects being freed in quarantine_reduce(). on_each_cpu()
308 	 * achieves the first goal, while synchronize_srcu() achieves the
309 	 * second.
310 	 */
311 	on_each_cpu(per_cpu_remove_cache, cache, 1);
312 
313 	spin_lock_irqsave(&quarantine_lock, flags);
314 	for (i = 0; i < QUARANTINE_BATCHES; i++) {
315 		if (qlist_empty(&global_quarantine[i]))
316 			continue;
317 		qlist_move_cache(&global_quarantine[i], &to_free, cache);
318 		/* Scanning whole quarantine can take a while. */
319 		spin_unlock_irqrestore(&quarantine_lock, flags);
320 		cond_resched();
321 		spin_lock_irqsave(&quarantine_lock, flags);
322 	}
323 	spin_unlock_irqrestore(&quarantine_lock, flags);
324 
325 	qlist_free_all(&to_free, cache);
326 
327 	synchronize_srcu(&remove_cache_srcu);
328 }
329