xref: /linux/mm/kasan/quarantine.c (revision 51a8f9d7f587290944d6fc733d1f897091c63159)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KASAN quarantine.
4  *
5  * Author: Alexander Potapenko <glider@google.com>
6  * Copyright (C) 2016 Google, Inc.
7  *
8  * Based on code by Dmitry Chernenkov.
9  */
10 
11 #include <linux/gfp.h>
12 #include <linux/hash.h>
13 #include <linux/kernel.h>
14 #include <linux/mm.h>
15 #include <linux/percpu.h>
16 #include <linux/printk.h>
17 #include <linux/shrinker.h>
18 #include <linux/slab.h>
19 #include <linux/srcu.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/cpuhotplug.h>
23 
24 #include "../slab.h"
25 #include "kasan.h"
26 
27 /* Data structure and operations for quarantine queues. */
28 
29 /*
30  * Each queue is a single-linked list, which also stores the total size of
31  * objects inside of it.
32  */
33 struct qlist_head {
34 	struct qlist_node *head;
35 	struct qlist_node *tail;
36 	size_t bytes;
37 	bool offline;
38 };
39 
40 #define QLIST_INIT { NULL, NULL, 0 }
41 
42 static bool qlist_empty(struct qlist_head *q)
43 {
44 	return !q->head;
45 }
46 
47 static void qlist_init(struct qlist_head *q)
48 {
49 	q->head = q->tail = NULL;
50 	q->bytes = 0;
51 }
52 
53 static void qlist_put(struct qlist_head *q, struct qlist_node *qlink,
54 		size_t size)
55 {
56 	if (unlikely(qlist_empty(q)))
57 		q->head = qlink;
58 	else
59 		q->tail->next = qlink;
60 	q->tail = qlink;
61 	qlink->next = NULL;
62 	q->bytes += size;
63 }
64 
65 static void qlist_move_all(struct qlist_head *from, struct qlist_head *to)
66 {
67 	if (unlikely(qlist_empty(from)))
68 		return;
69 
70 	if (qlist_empty(to)) {
71 		*to = *from;
72 		qlist_init(from);
73 		return;
74 	}
75 
76 	to->tail->next = from->head;
77 	to->tail = from->tail;
78 	to->bytes += from->bytes;
79 
80 	qlist_init(from);
81 }
82 
83 #define QUARANTINE_PERCPU_SIZE (1 << 20)
84 #define QUARANTINE_BATCHES \
85 	(1024 > 4 * CONFIG_NR_CPUS ? 1024 : 4 * CONFIG_NR_CPUS)
86 
87 /*
88  * The object quarantine consists of per-cpu queues and a global queue,
89  * guarded by quarantine_lock.
90  */
91 static DEFINE_PER_CPU(struct qlist_head, cpu_quarantine);
92 
93 /* Round-robin FIFO array of batches. */
94 static struct qlist_head global_quarantine[QUARANTINE_BATCHES];
95 static int quarantine_head;
96 static int quarantine_tail;
97 /* Total size of all objects in global_quarantine across all batches. */
98 static unsigned long quarantine_size;
99 static DEFINE_RAW_SPINLOCK(quarantine_lock);
100 DEFINE_STATIC_SRCU(remove_cache_srcu);
101 
102 #ifdef CONFIG_PREEMPT_RT
103 struct cpu_shrink_qlist {
104 	raw_spinlock_t lock;
105 	struct qlist_head qlist;
106 };
107 
108 static DEFINE_PER_CPU(struct cpu_shrink_qlist, shrink_qlist) = {
109 	.lock = __RAW_SPIN_LOCK_UNLOCKED(shrink_qlist.lock),
110 };
111 #endif
112 
113 /* Maximum size of the global queue. */
114 static unsigned long quarantine_max_size;
115 
116 /*
117  * Target size of a batch in global_quarantine.
118  * Usually equal to QUARANTINE_PERCPU_SIZE unless we have too much RAM.
119  */
120 static unsigned long quarantine_batch_size;
121 
122 /*
123  * The fraction of physical memory the quarantine is allowed to occupy.
124  * Quarantine doesn't support memory shrinker with SLAB allocator, so we keep
125  * the ratio low to avoid OOM.
126  */
127 #define QUARANTINE_FRACTION 32
128 
129 static struct kmem_cache *qlink_to_cache(struct qlist_node *qlink)
130 {
131 	return virt_to_slab(qlink)->slab_cache;
132 }
133 
134 static void *qlink_to_object(struct qlist_node *qlink, struct kmem_cache *cache)
135 {
136 	struct kasan_free_meta *free_info =
137 		container_of(qlink, struct kasan_free_meta,
138 			     quarantine_link);
139 
140 	return ((void *)free_info) - cache->kasan_info.free_meta_offset;
141 }
142 
143 static void qlink_free(struct qlist_node *qlink, struct kmem_cache *cache)
144 {
145 	void *object = qlink_to_object(qlink, cache);
146 	struct kasan_free_meta *meta = kasan_get_free_meta(cache, object);
147 	unsigned long flags;
148 
149 	if (IS_ENABLED(CONFIG_SLAB))
150 		local_irq_save(flags);
151 
152 	/*
153 	 * If init_on_free is enabled and KASAN's free metadata is stored in
154 	 * the object, zero the metadata. Otherwise, the object's memory will
155 	 * not be properly zeroed, as KASAN saves the metadata after the slab
156 	 * allocator zeroes the object.
157 	 */
158 	if (slab_want_init_on_free(cache) &&
159 	    cache->kasan_info.free_meta_offset == 0)
160 		memzero_explicit(meta, sizeof(*meta));
161 
162 	/*
163 	 * As the object now gets freed from the quarantine, assume that its
164 	 * free track is no longer valid.
165 	 */
166 	*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE;
167 
168 	___cache_free(cache, object, _THIS_IP_);
169 
170 	if (IS_ENABLED(CONFIG_SLAB))
171 		local_irq_restore(flags);
172 }
173 
174 static void qlist_free_all(struct qlist_head *q, struct kmem_cache *cache)
175 {
176 	struct qlist_node *qlink;
177 
178 	if (unlikely(qlist_empty(q)))
179 		return;
180 
181 	qlink = q->head;
182 	while (qlink) {
183 		struct kmem_cache *obj_cache =
184 			cache ? cache :	qlink_to_cache(qlink);
185 		struct qlist_node *next = qlink->next;
186 
187 		qlink_free(qlink, obj_cache);
188 		qlink = next;
189 	}
190 	qlist_init(q);
191 }
192 
193 bool kasan_quarantine_put(struct kmem_cache *cache, void *object)
194 {
195 	unsigned long flags;
196 	struct qlist_head *q;
197 	struct qlist_head temp = QLIST_INIT;
198 	struct kasan_free_meta *meta = kasan_get_free_meta(cache, object);
199 
200 	/*
201 	 * If there's no metadata for this object, don't put it into
202 	 * quarantine.
203 	 */
204 	if (!meta)
205 		return false;
206 
207 	/*
208 	 * Note: irq must be disabled until after we move the batch to the
209 	 * global quarantine. Otherwise kasan_quarantine_remove_cache() can
210 	 * miss some objects belonging to the cache if they are in our local
211 	 * temp list. kasan_quarantine_remove_cache() executes on_each_cpu()
212 	 * at the beginning which ensures that it either sees the objects in
213 	 * per-cpu lists or in the global quarantine.
214 	 */
215 	local_irq_save(flags);
216 
217 	q = this_cpu_ptr(&cpu_quarantine);
218 	if (q->offline) {
219 		local_irq_restore(flags);
220 		return false;
221 	}
222 	qlist_put(q, &meta->quarantine_link, cache->size);
223 	if (unlikely(q->bytes > QUARANTINE_PERCPU_SIZE)) {
224 		qlist_move_all(q, &temp);
225 
226 		raw_spin_lock(&quarantine_lock);
227 		WRITE_ONCE(quarantine_size, quarantine_size + temp.bytes);
228 		qlist_move_all(&temp, &global_quarantine[quarantine_tail]);
229 		if (global_quarantine[quarantine_tail].bytes >=
230 				READ_ONCE(quarantine_batch_size)) {
231 			int new_tail;
232 
233 			new_tail = quarantine_tail + 1;
234 			if (new_tail == QUARANTINE_BATCHES)
235 				new_tail = 0;
236 			if (new_tail != quarantine_head)
237 				quarantine_tail = new_tail;
238 		}
239 		raw_spin_unlock(&quarantine_lock);
240 	}
241 
242 	local_irq_restore(flags);
243 
244 	return true;
245 }
246 
247 void kasan_quarantine_reduce(void)
248 {
249 	size_t total_size, new_quarantine_size, percpu_quarantines;
250 	unsigned long flags;
251 	int srcu_idx;
252 	struct qlist_head to_free = QLIST_INIT;
253 
254 	if (likely(READ_ONCE(quarantine_size) <=
255 		   READ_ONCE(quarantine_max_size)))
256 		return;
257 
258 	/*
259 	 * srcu critical section ensures that kasan_quarantine_remove_cache()
260 	 * will not miss objects belonging to the cache while they are in our
261 	 * local to_free list. srcu is chosen because (1) it gives us private
262 	 * grace period domain that does not interfere with anything else,
263 	 * and (2) it allows synchronize_srcu() to return without waiting
264 	 * if there are no pending read critical sections (which is the
265 	 * expected case).
266 	 */
267 	srcu_idx = srcu_read_lock(&remove_cache_srcu);
268 	raw_spin_lock_irqsave(&quarantine_lock, flags);
269 
270 	/*
271 	 * Update quarantine size in case of hotplug. Allocate a fraction of
272 	 * the installed memory to quarantine minus per-cpu queue limits.
273 	 */
274 	total_size = (totalram_pages() << PAGE_SHIFT) /
275 		QUARANTINE_FRACTION;
276 	percpu_quarantines = QUARANTINE_PERCPU_SIZE * num_online_cpus();
277 	new_quarantine_size = (total_size < percpu_quarantines) ?
278 		0 : total_size - percpu_quarantines;
279 	WRITE_ONCE(quarantine_max_size, new_quarantine_size);
280 	/* Aim at consuming at most 1/2 of slots in quarantine. */
281 	WRITE_ONCE(quarantine_batch_size, max((size_t)QUARANTINE_PERCPU_SIZE,
282 		2 * total_size / QUARANTINE_BATCHES));
283 
284 	if (likely(quarantine_size > quarantine_max_size)) {
285 		qlist_move_all(&global_quarantine[quarantine_head], &to_free);
286 		WRITE_ONCE(quarantine_size, quarantine_size - to_free.bytes);
287 		quarantine_head++;
288 		if (quarantine_head == QUARANTINE_BATCHES)
289 			quarantine_head = 0;
290 	}
291 
292 	raw_spin_unlock_irqrestore(&quarantine_lock, flags);
293 
294 	qlist_free_all(&to_free, NULL);
295 	srcu_read_unlock(&remove_cache_srcu, srcu_idx);
296 }
297 
298 static void qlist_move_cache(struct qlist_head *from,
299 				   struct qlist_head *to,
300 				   struct kmem_cache *cache)
301 {
302 	struct qlist_node *curr;
303 
304 	if (unlikely(qlist_empty(from)))
305 		return;
306 
307 	curr = from->head;
308 	qlist_init(from);
309 	while (curr) {
310 		struct qlist_node *next = curr->next;
311 		struct kmem_cache *obj_cache = qlink_to_cache(curr);
312 
313 		if (obj_cache == cache)
314 			qlist_put(to, curr, obj_cache->size);
315 		else
316 			qlist_put(from, curr, obj_cache->size);
317 
318 		curr = next;
319 	}
320 }
321 
322 #ifndef CONFIG_PREEMPT_RT
323 static void __per_cpu_remove_cache(struct qlist_head *q, void *arg)
324 {
325 	struct kmem_cache *cache = arg;
326 	struct qlist_head to_free = QLIST_INIT;
327 
328 	qlist_move_cache(q, &to_free, cache);
329 	qlist_free_all(&to_free, cache);
330 }
331 #else
332 static void __per_cpu_remove_cache(struct qlist_head *q, void *arg)
333 {
334 	struct kmem_cache *cache = arg;
335 	unsigned long flags;
336 	struct cpu_shrink_qlist *sq;
337 
338 	sq = this_cpu_ptr(&shrink_qlist);
339 	raw_spin_lock_irqsave(&sq->lock, flags);
340 	qlist_move_cache(q, &sq->qlist, cache);
341 	raw_spin_unlock_irqrestore(&sq->lock, flags);
342 }
343 #endif
344 
345 static void per_cpu_remove_cache(void *arg)
346 {
347 	struct qlist_head *q;
348 
349 	q = this_cpu_ptr(&cpu_quarantine);
350 	/*
351 	 * Ensure the ordering between the writing to q->offline and
352 	 * per_cpu_remove_cache.  Prevent cpu_quarantine from being corrupted
353 	 * by interrupt.
354 	 */
355 	if (READ_ONCE(q->offline))
356 		return;
357 	__per_cpu_remove_cache(q, arg);
358 }
359 
360 /* Free all quarantined objects belonging to cache. */
361 void kasan_quarantine_remove_cache(struct kmem_cache *cache)
362 {
363 	unsigned long flags, i;
364 	struct qlist_head to_free = QLIST_INIT;
365 
366 	/*
367 	 * Must be careful to not miss any objects that are being moved from
368 	 * per-cpu list to the global quarantine in kasan_quarantine_put(),
369 	 * nor objects being freed in kasan_quarantine_reduce(). on_each_cpu()
370 	 * achieves the first goal, while synchronize_srcu() achieves the
371 	 * second.
372 	 */
373 	on_each_cpu(per_cpu_remove_cache, cache, 1);
374 
375 #ifdef CONFIG_PREEMPT_RT
376 	{
377 		int cpu;
378 		struct cpu_shrink_qlist *sq;
379 
380 		for_each_online_cpu(cpu) {
381 			sq = per_cpu_ptr(&shrink_qlist, cpu);
382 			raw_spin_lock_irqsave(&sq->lock, flags);
383 			qlist_move_cache(&sq->qlist, &to_free, cache);
384 			raw_spin_unlock_irqrestore(&sq->lock, flags);
385 		}
386 		qlist_free_all(&to_free, cache);
387 	}
388 #endif
389 
390 	raw_spin_lock_irqsave(&quarantine_lock, flags);
391 	for (i = 0; i < QUARANTINE_BATCHES; i++) {
392 		if (qlist_empty(&global_quarantine[i]))
393 			continue;
394 		qlist_move_cache(&global_quarantine[i], &to_free, cache);
395 		/* Scanning whole quarantine can take a while. */
396 		raw_spin_unlock_irqrestore(&quarantine_lock, flags);
397 		cond_resched();
398 		raw_spin_lock_irqsave(&quarantine_lock, flags);
399 	}
400 	raw_spin_unlock_irqrestore(&quarantine_lock, flags);
401 
402 	qlist_free_all(&to_free, cache);
403 
404 	synchronize_srcu(&remove_cache_srcu);
405 }
406 
407 static int kasan_cpu_online(unsigned int cpu)
408 {
409 	this_cpu_ptr(&cpu_quarantine)->offline = false;
410 	return 0;
411 }
412 
413 static int kasan_cpu_offline(unsigned int cpu)
414 {
415 	struct qlist_head *q;
416 
417 	q = this_cpu_ptr(&cpu_quarantine);
418 	/* Ensure the ordering between the writing to q->offline and
419 	 * qlist_free_all. Otherwise, cpu_quarantine may be corrupted
420 	 * by interrupt.
421 	 */
422 	WRITE_ONCE(q->offline, true);
423 	barrier();
424 	qlist_free_all(q, NULL);
425 	return 0;
426 }
427 
428 static int __init kasan_cpu_quarantine_init(void)
429 {
430 	int ret = 0;
431 
432 	ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/kasan:online",
433 				kasan_cpu_online, kasan_cpu_offline);
434 	if (ret < 0)
435 		pr_err("kasan cpu quarantine register failed [%d]\n", ret);
436 	return ret;
437 }
438 late_initcall(kasan_cpu_quarantine_init);
439