1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains core generic KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <linux/export.h> 13 #include <linux/interrupt.h> 14 #include <linux/init.h> 15 #include <linux/kasan.h> 16 #include <linux/kernel.h> 17 #include <linux/kfence.h> 18 #include <linux/kmemleak.h> 19 #include <linux/linkage.h> 20 #include <linux/memblock.h> 21 #include <linux/memory.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/printk.h> 25 #include <linux/sched.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/slab.h> 28 #include <linux/spinlock.h> 29 #include <linux/stackdepot.h> 30 #include <linux/stacktrace.h> 31 #include <linux/string.h> 32 #include <linux/types.h> 33 #include <linux/vmalloc.h> 34 #include <linux/bug.h> 35 36 #include "kasan.h" 37 #include "../slab.h" 38 39 /* 40 * All functions below always inlined so compiler could 41 * perform better optimizations in each of __asan_loadX/__assn_storeX 42 * depending on memory access size X. 43 */ 44 45 static __always_inline bool memory_is_poisoned_1(const void *addr) 46 { 47 s8 shadow_value = *(s8 *)kasan_mem_to_shadow(addr); 48 49 if (unlikely(shadow_value)) { 50 s8 last_accessible_byte = (unsigned long)addr & KASAN_GRANULE_MASK; 51 return unlikely(last_accessible_byte >= shadow_value); 52 } 53 54 return false; 55 } 56 57 static __always_inline bool memory_is_poisoned_2_4_8(const void *addr, 58 unsigned long size) 59 { 60 u8 *shadow_addr = (u8 *)kasan_mem_to_shadow(addr); 61 62 /* 63 * Access crosses 8(shadow size)-byte boundary. Such access maps 64 * into 2 shadow bytes, so we need to check them both. 65 */ 66 if (unlikely((((unsigned long)addr + size - 1) & KASAN_GRANULE_MASK) < size - 1)) 67 return *shadow_addr || memory_is_poisoned_1(addr + size - 1); 68 69 return memory_is_poisoned_1(addr + size - 1); 70 } 71 72 static __always_inline bool memory_is_poisoned_16(const void *addr) 73 { 74 u16 *shadow_addr = (u16 *)kasan_mem_to_shadow(addr); 75 76 /* Unaligned 16-bytes access maps into 3 shadow bytes. */ 77 if (unlikely(!IS_ALIGNED((unsigned long)addr, KASAN_GRANULE_SIZE))) 78 return *shadow_addr || memory_is_poisoned_1(addr + 15); 79 80 return *shadow_addr; 81 } 82 83 static __always_inline unsigned long bytes_is_nonzero(const u8 *start, 84 size_t size) 85 { 86 while (size) { 87 if (unlikely(*start)) 88 return (unsigned long)start; 89 start++; 90 size--; 91 } 92 93 return 0; 94 } 95 96 static __always_inline unsigned long memory_is_nonzero(const void *start, 97 const void *end) 98 { 99 unsigned int words; 100 unsigned long ret; 101 unsigned int prefix = (unsigned long)start % 8; 102 103 if (end - start <= 16) 104 return bytes_is_nonzero(start, end - start); 105 106 if (prefix) { 107 prefix = 8 - prefix; 108 ret = bytes_is_nonzero(start, prefix); 109 if (unlikely(ret)) 110 return ret; 111 start += prefix; 112 } 113 114 words = (end - start) / 8; 115 while (words) { 116 if (unlikely(*(u64 *)start)) 117 return bytes_is_nonzero(start, 8); 118 start += 8; 119 words--; 120 } 121 122 return bytes_is_nonzero(start, (end - start) % 8); 123 } 124 125 static __always_inline bool memory_is_poisoned_n(const void *addr, size_t size) 126 { 127 unsigned long ret; 128 129 ret = memory_is_nonzero(kasan_mem_to_shadow(addr), 130 kasan_mem_to_shadow(addr + size - 1) + 1); 131 132 if (unlikely(ret)) { 133 const void *last_byte = addr + size - 1; 134 s8 *last_shadow = (s8 *)kasan_mem_to_shadow(last_byte); 135 s8 last_accessible_byte = (unsigned long)last_byte & KASAN_GRANULE_MASK; 136 137 if (unlikely(ret != (unsigned long)last_shadow || 138 last_accessible_byte >= *last_shadow)) 139 return true; 140 } 141 return false; 142 } 143 144 static __always_inline bool memory_is_poisoned(const void *addr, size_t size) 145 { 146 if (__builtin_constant_p(size)) { 147 switch (size) { 148 case 1: 149 return memory_is_poisoned_1(addr); 150 case 2: 151 case 4: 152 case 8: 153 return memory_is_poisoned_2_4_8(addr, size); 154 case 16: 155 return memory_is_poisoned_16(addr); 156 default: 157 BUILD_BUG(); 158 } 159 } 160 161 return memory_is_poisoned_n(addr, size); 162 } 163 164 static __always_inline bool check_region_inline(const void *addr, 165 size_t size, bool write, 166 unsigned long ret_ip) 167 { 168 if (!kasan_arch_is_ready()) 169 return true; 170 171 if (unlikely(size == 0)) 172 return true; 173 174 if (unlikely(addr + size < addr)) 175 return !kasan_report(addr, size, write, ret_ip); 176 177 if (unlikely(!addr_has_metadata(addr))) 178 return !kasan_report(addr, size, write, ret_ip); 179 180 if (likely(!memory_is_poisoned(addr, size))) 181 return true; 182 183 return !kasan_report(addr, size, write, ret_ip); 184 } 185 186 bool kasan_check_range(const void *addr, size_t size, bool write, 187 unsigned long ret_ip) 188 { 189 return check_region_inline(addr, size, write, ret_ip); 190 } 191 192 bool kasan_byte_accessible(const void *addr) 193 { 194 s8 shadow_byte; 195 196 if (!kasan_arch_is_ready()) 197 return true; 198 199 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr)); 200 201 return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE; 202 } 203 204 void kasan_cache_shrink(struct kmem_cache *cache) 205 { 206 kasan_quarantine_remove_cache(cache); 207 } 208 209 void kasan_cache_shutdown(struct kmem_cache *cache) 210 { 211 if (!__kmem_cache_empty(cache)) 212 kasan_quarantine_remove_cache(cache); 213 } 214 215 static void register_global(struct kasan_global *global) 216 { 217 size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE); 218 219 kasan_unpoison(global->beg, global->size, false); 220 221 kasan_poison(global->beg + aligned_size, 222 global->size_with_redzone - aligned_size, 223 KASAN_GLOBAL_REDZONE, false); 224 } 225 226 void __asan_register_globals(void *ptr, ssize_t size) 227 { 228 int i; 229 struct kasan_global *globals = ptr; 230 231 for (i = 0; i < size; i++) 232 register_global(&globals[i]); 233 } 234 EXPORT_SYMBOL(__asan_register_globals); 235 236 void __asan_unregister_globals(void *ptr, ssize_t size) 237 { 238 } 239 EXPORT_SYMBOL(__asan_unregister_globals); 240 241 #define DEFINE_ASAN_LOAD_STORE(size) \ 242 void __asan_load##size(void *addr) \ 243 { \ 244 check_region_inline(addr, size, false, _RET_IP_); \ 245 } \ 246 EXPORT_SYMBOL(__asan_load##size); \ 247 __alias(__asan_load##size) \ 248 void __asan_load##size##_noabort(void *); \ 249 EXPORT_SYMBOL(__asan_load##size##_noabort); \ 250 void __asan_store##size(void *addr) \ 251 { \ 252 check_region_inline(addr, size, true, _RET_IP_); \ 253 } \ 254 EXPORT_SYMBOL(__asan_store##size); \ 255 __alias(__asan_store##size) \ 256 void __asan_store##size##_noabort(void *); \ 257 EXPORT_SYMBOL(__asan_store##size##_noabort) 258 259 DEFINE_ASAN_LOAD_STORE(1); 260 DEFINE_ASAN_LOAD_STORE(2); 261 DEFINE_ASAN_LOAD_STORE(4); 262 DEFINE_ASAN_LOAD_STORE(8); 263 DEFINE_ASAN_LOAD_STORE(16); 264 265 void __asan_loadN(void *addr, ssize_t size) 266 { 267 kasan_check_range(addr, size, false, _RET_IP_); 268 } 269 EXPORT_SYMBOL(__asan_loadN); 270 271 __alias(__asan_loadN) 272 void __asan_loadN_noabort(void *, ssize_t); 273 EXPORT_SYMBOL(__asan_loadN_noabort); 274 275 void __asan_storeN(void *addr, ssize_t size) 276 { 277 kasan_check_range(addr, size, true, _RET_IP_); 278 } 279 EXPORT_SYMBOL(__asan_storeN); 280 281 __alias(__asan_storeN) 282 void __asan_storeN_noabort(void *, ssize_t); 283 EXPORT_SYMBOL(__asan_storeN_noabort); 284 285 /* to shut up compiler complaints */ 286 void __asan_handle_no_return(void) {} 287 EXPORT_SYMBOL(__asan_handle_no_return); 288 289 /* Emitted by compiler to poison alloca()ed objects. */ 290 void __asan_alloca_poison(void *addr, ssize_t size) 291 { 292 size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE); 293 size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) - 294 rounded_up_size; 295 size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE); 296 297 const void *left_redzone = (const void *)(addr - 298 KASAN_ALLOCA_REDZONE_SIZE); 299 const void *right_redzone = (const void *)(addr + rounded_up_size); 300 301 WARN_ON(!IS_ALIGNED((unsigned long)addr, KASAN_ALLOCA_REDZONE_SIZE)); 302 303 kasan_unpoison((const void *)(addr + rounded_down_size), 304 size - rounded_down_size, false); 305 kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE, 306 KASAN_ALLOCA_LEFT, false); 307 kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE, 308 KASAN_ALLOCA_RIGHT, false); 309 } 310 EXPORT_SYMBOL(__asan_alloca_poison); 311 312 /* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */ 313 void __asan_allocas_unpoison(void *stack_top, ssize_t stack_bottom) 314 { 315 if (unlikely(!stack_top || stack_top > (void *)stack_bottom)) 316 return; 317 318 kasan_unpoison(stack_top, (void *)stack_bottom - stack_top, false); 319 } 320 EXPORT_SYMBOL(__asan_allocas_unpoison); 321 322 /* Emitted by the compiler to [un]poison local variables. */ 323 #define DEFINE_ASAN_SET_SHADOW(byte) \ 324 void __asan_set_shadow_##byte(const void *addr, ssize_t size) \ 325 { \ 326 __memset((void *)addr, 0x##byte, size); \ 327 } \ 328 EXPORT_SYMBOL(__asan_set_shadow_##byte) 329 330 DEFINE_ASAN_SET_SHADOW(00); 331 DEFINE_ASAN_SET_SHADOW(f1); 332 DEFINE_ASAN_SET_SHADOW(f2); 333 DEFINE_ASAN_SET_SHADOW(f3); 334 DEFINE_ASAN_SET_SHADOW(f5); 335 DEFINE_ASAN_SET_SHADOW(f8); 336 337 /* 338 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 339 * For larger allocations larger redzones are used. 340 */ 341 static inline unsigned int optimal_redzone(unsigned int object_size) 342 { 343 return 344 object_size <= 64 - 16 ? 16 : 345 object_size <= 128 - 32 ? 32 : 346 object_size <= 512 - 64 ? 64 : 347 object_size <= 4096 - 128 ? 128 : 348 object_size <= (1 << 14) - 256 ? 256 : 349 object_size <= (1 << 15) - 512 ? 512 : 350 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 351 } 352 353 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 354 slab_flags_t *flags) 355 { 356 unsigned int ok_size; 357 unsigned int optimal_size; 358 unsigned int rem_free_meta_size; 359 unsigned int orig_alloc_meta_offset; 360 361 if (!kasan_requires_meta()) 362 return; 363 364 /* 365 * SLAB_KASAN is used to mark caches that are sanitized by KASAN and 366 * that thus have per-object metadata. Currently, this flag is used in 367 * slab_ksize() to account for per-object metadata when calculating the 368 * size of the accessible memory within the object. Additionally, we use 369 * SLAB_NO_MERGE to prevent merging of caches with per-object metadata. 370 */ 371 *flags |= SLAB_KASAN | SLAB_NO_MERGE; 372 373 ok_size = *size; 374 375 /* Add alloc meta into the redzone. */ 376 cache->kasan_info.alloc_meta_offset = *size; 377 *size += sizeof(struct kasan_alloc_meta); 378 379 /* If alloc meta doesn't fit, don't add it. */ 380 if (*size > KMALLOC_MAX_SIZE) { 381 cache->kasan_info.alloc_meta_offset = 0; 382 *size = ok_size; 383 /* Continue, since free meta might still fit. */ 384 } 385 386 ok_size = *size; 387 orig_alloc_meta_offset = cache->kasan_info.alloc_meta_offset; 388 389 /* 390 * Store free meta in the redzone when it's not possible to store 391 * it in the object. This is the case when: 392 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can 393 * be touched after it was freed, or 394 * 2. Object has a constructor, which means it's expected to 395 * retain its content until the next allocation, or 396 * 3. It is from a kmalloc cache which enables the debug option 397 * to store original size. 398 */ 399 if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor || 400 slub_debug_orig_size(cache)) { 401 cache->kasan_info.free_meta_offset = *size; 402 *size += sizeof(struct kasan_free_meta); 403 goto free_meta_added; 404 } 405 406 /* 407 * Otherwise, if the object is large enough to contain free meta, 408 * store it within the object. 409 */ 410 if (sizeof(struct kasan_free_meta) <= cache->object_size) { 411 /* cache->kasan_info.free_meta_offset = 0 is implied. */ 412 goto free_meta_added; 413 } 414 415 /* 416 * For smaller objects, store the beginning of free meta within the 417 * object and the end in the redzone. And thus shift the location of 418 * alloc meta to free up space for free meta. 419 * This is only possible when slub_debug is disabled, as otherwise 420 * the end of free meta will overlap with slub_debug metadata. 421 */ 422 if (!__slub_debug_enabled()) { 423 rem_free_meta_size = sizeof(struct kasan_free_meta) - 424 cache->object_size; 425 *size += rem_free_meta_size; 426 if (cache->kasan_info.alloc_meta_offset != 0) 427 cache->kasan_info.alloc_meta_offset += rem_free_meta_size; 428 goto free_meta_added; 429 } 430 431 /* 432 * If the object is small and slub_debug is enabled, store free meta 433 * in the redzone after alloc meta. 434 */ 435 cache->kasan_info.free_meta_offset = *size; 436 *size += sizeof(struct kasan_free_meta); 437 438 free_meta_added: 439 /* If free meta doesn't fit, don't add it. */ 440 if (*size > KMALLOC_MAX_SIZE) { 441 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; 442 cache->kasan_info.alloc_meta_offset = orig_alloc_meta_offset; 443 *size = ok_size; 444 } 445 446 /* Calculate size with optimal redzone. */ 447 optimal_size = cache->object_size + optimal_redzone(cache->object_size); 448 /* Limit it with KMALLOC_MAX_SIZE. */ 449 if (optimal_size > KMALLOC_MAX_SIZE) 450 optimal_size = KMALLOC_MAX_SIZE; 451 /* Use optimal size if the size with added metas is not large enough. */ 452 if (*size < optimal_size) 453 *size = optimal_size; 454 } 455 456 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache, 457 const void *object) 458 { 459 if (!cache->kasan_info.alloc_meta_offset) 460 return NULL; 461 return (void *)object + cache->kasan_info.alloc_meta_offset; 462 } 463 464 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache, 465 const void *object) 466 { 467 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 468 if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META) 469 return NULL; 470 return (void *)object + cache->kasan_info.free_meta_offset; 471 } 472 473 void kasan_init_object_meta(struct kmem_cache *cache, const void *object) 474 { 475 struct kasan_alloc_meta *alloc_meta; 476 477 alloc_meta = kasan_get_alloc_meta(cache, object); 478 if (alloc_meta) { 479 /* Zero out alloc meta to mark it as invalid. */ 480 __memset(alloc_meta, 0, sizeof(*alloc_meta)); 481 } 482 483 /* 484 * Explicitly marking free meta as invalid is not required: the shadow 485 * value for the first 8 bytes of a newly allocated object is not 486 * KASAN_SLAB_FREE_META. 487 */ 488 } 489 490 static void release_alloc_meta(struct kasan_alloc_meta *meta) 491 { 492 /* Zero out alloc meta to mark it as invalid. */ 493 __memset(meta, 0, sizeof(*meta)); 494 } 495 496 static void release_free_meta(const void *object, struct kasan_free_meta *meta) 497 { 498 if (!kasan_arch_is_ready()) 499 return; 500 501 /* Check if free meta is valid. */ 502 if (*(u8 *)kasan_mem_to_shadow(object) != KASAN_SLAB_FREE_META) 503 return; 504 505 /* Mark free meta as invalid. */ 506 *(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE; 507 } 508 509 size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object) 510 { 511 struct kasan_cache *info = &cache->kasan_info; 512 513 if (!kasan_requires_meta()) 514 return 0; 515 516 if (in_object) 517 return (info->free_meta_offset ? 518 0 : sizeof(struct kasan_free_meta)); 519 else 520 return (info->alloc_meta_offset ? 521 sizeof(struct kasan_alloc_meta) : 0) + 522 ((info->free_meta_offset && 523 info->free_meta_offset != KASAN_NO_FREE_META) ? 524 sizeof(struct kasan_free_meta) : 0); 525 } 526 527 static void __kasan_record_aux_stack(void *addr, depot_flags_t depot_flags) 528 { 529 struct slab *slab = kasan_addr_to_slab(addr); 530 struct kmem_cache *cache; 531 struct kasan_alloc_meta *alloc_meta; 532 void *object; 533 534 if (is_kfence_address(addr) || !slab) 535 return; 536 537 cache = slab->slab_cache; 538 object = nearest_obj(cache, slab, addr); 539 alloc_meta = kasan_get_alloc_meta(cache, object); 540 if (!alloc_meta) 541 return; 542 543 alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0]; 544 alloc_meta->aux_stack[0] = kasan_save_stack(0, depot_flags); 545 } 546 547 void kasan_record_aux_stack(void *addr) 548 { 549 return __kasan_record_aux_stack(addr, STACK_DEPOT_FLAG_CAN_ALLOC); 550 } 551 552 void kasan_record_aux_stack_noalloc(void *addr) 553 { 554 return __kasan_record_aux_stack(addr, 0); 555 } 556 557 void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags) 558 { 559 struct kasan_alloc_meta *alloc_meta; 560 561 alloc_meta = kasan_get_alloc_meta(cache, object); 562 if (!alloc_meta) 563 return; 564 565 /* Invalidate previous stack traces (might exist for krealloc or mempool). */ 566 release_alloc_meta(alloc_meta); 567 568 kasan_save_track(&alloc_meta->alloc_track, flags); 569 } 570 571 void kasan_save_free_info(struct kmem_cache *cache, void *object) 572 { 573 struct kasan_free_meta *free_meta; 574 575 free_meta = kasan_get_free_meta(cache, object); 576 if (!free_meta) 577 return; 578 579 /* Invalidate previous stack trace (might exist for mempool). */ 580 release_free_meta(object, free_meta); 581 582 kasan_save_track(&free_meta->free_track, 0); 583 584 /* Mark free meta as valid. */ 585 *(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE_META; 586 } 587