1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains core generic KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <linux/export.h> 13 #include <linux/interrupt.h> 14 #include <linux/init.h> 15 #include <linux/kasan.h> 16 #include <linux/kernel.h> 17 #include <linux/kfence.h> 18 #include <linux/kmemleak.h> 19 #include <linux/linkage.h> 20 #include <linux/memblock.h> 21 #include <linux/memory.h> 22 #include <linux/mm.h> 23 #include <linux/module.h> 24 #include <linux/printk.h> 25 #include <linux/sched.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/slab.h> 28 #include <linux/spinlock.h> 29 #include <linux/stackdepot.h> 30 #include <linux/stacktrace.h> 31 #include <linux/string.h> 32 #include <linux/types.h> 33 #include <linux/vmalloc.h> 34 #include <linux/bug.h> 35 36 #include "kasan.h" 37 #include "../slab.h" 38 39 /* 40 * Initialize Generic KASAN and enable runtime checks. 41 * This should be called from arch kasan_init() once shadow memory is ready. 42 */ 43 void __init kasan_init_generic(void) 44 { 45 kasan_enable(); 46 47 pr_info("KernelAddressSanitizer initialized (generic)\n"); 48 } 49 50 /* 51 * All functions below always inlined so compiler could 52 * perform better optimizations in each of __asan_loadX/__assn_storeX 53 * depending on memory access size X. 54 */ 55 56 static __always_inline bool memory_is_poisoned_1(const void *addr) 57 { 58 s8 shadow_value = *(s8 *)kasan_mem_to_shadow(addr); 59 60 if (unlikely(shadow_value)) { 61 s8 last_accessible_byte = (unsigned long)addr & KASAN_GRANULE_MASK; 62 return unlikely(last_accessible_byte >= shadow_value); 63 } 64 65 return false; 66 } 67 68 static __always_inline bool memory_is_poisoned_2_4_8(const void *addr, 69 unsigned long size) 70 { 71 u8 *shadow_addr = (u8 *)kasan_mem_to_shadow(addr); 72 73 /* 74 * Access crosses 8(shadow size)-byte boundary. Such access maps 75 * into 2 shadow bytes, so we need to check them both. 76 */ 77 if (unlikely((((unsigned long)addr + size - 1) & KASAN_GRANULE_MASK) < size - 1)) 78 return *shadow_addr || memory_is_poisoned_1(addr + size - 1); 79 80 return memory_is_poisoned_1(addr + size - 1); 81 } 82 83 static __always_inline bool memory_is_poisoned_16(const void *addr) 84 { 85 u16 *shadow_addr = (u16 *)kasan_mem_to_shadow(addr); 86 87 /* Unaligned 16-bytes access maps into 3 shadow bytes. */ 88 if (unlikely(!IS_ALIGNED((unsigned long)addr, KASAN_GRANULE_SIZE))) 89 return *shadow_addr || memory_is_poisoned_1(addr + 15); 90 91 return *shadow_addr; 92 } 93 94 static __always_inline unsigned long bytes_is_nonzero(const u8 *start, 95 size_t size) 96 { 97 while (size) { 98 if (unlikely(*start)) 99 return (unsigned long)start; 100 start++; 101 size--; 102 } 103 104 return 0; 105 } 106 107 static __always_inline unsigned long memory_is_nonzero(const void *start, 108 const void *end) 109 { 110 unsigned int words; 111 unsigned long ret; 112 unsigned int prefix = (unsigned long)start % 8; 113 114 if (end - start <= 16) 115 return bytes_is_nonzero(start, end - start); 116 117 if (prefix) { 118 prefix = 8 - prefix; 119 ret = bytes_is_nonzero(start, prefix); 120 if (unlikely(ret)) 121 return ret; 122 start += prefix; 123 } 124 125 words = (end - start) / 8; 126 while (words) { 127 if (unlikely(*(u64 *)start)) 128 return bytes_is_nonzero(start, 8); 129 start += 8; 130 words--; 131 } 132 133 return bytes_is_nonzero(start, (end - start) % 8); 134 } 135 136 static __always_inline bool memory_is_poisoned_n(const void *addr, size_t size) 137 { 138 unsigned long ret; 139 140 ret = memory_is_nonzero(kasan_mem_to_shadow(addr), 141 kasan_mem_to_shadow(addr + size - 1) + 1); 142 143 if (unlikely(ret)) { 144 const void *last_byte = addr + size - 1; 145 s8 *last_shadow = (s8 *)kasan_mem_to_shadow(last_byte); 146 s8 last_accessible_byte = (unsigned long)last_byte & KASAN_GRANULE_MASK; 147 148 if (unlikely(ret != (unsigned long)last_shadow || 149 last_accessible_byte >= *last_shadow)) 150 return true; 151 } 152 return false; 153 } 154 155 static __always_inline bool memory_is_poisoned(const void *addr, size_t size) 156 { 157 if (__builtin_constant_p(size)) { 158 switch (size) { 159 case 1: 160 return memory_is_poisoned_1(addr); 161 case 2: 162 case 4: 163 case 8: 164 return memory_is_poisoned_2_4_8(addr, size); 165 case 16: 166 return memory_is_poisoned_16(addr); 167 default: 168 BUILD_BUG(); 169 } 170 } 171 172 return memory_is_poisoned_n(addr, size); 173 } 174 175 static __always_inline bool check_region_inline(const void *addr, 176 size_t size, bool write, 177 unsigned long ret_ip) 178 { 179 if (!kasan_enabled()) 180 return true; 181 182 if (unlikely(size == 0)) 183 return true; 184 185 if (unlikely(addr + size < addr)) 186 return !kasan_report(addr, size, write, ret_ip); 187 188 if (unlikely(!addr_has_metadata(addr))) 189 return !kasan_report(addr, size, write, ret_ip); 190 191 if (likely(!memory_is_poisoned(addr, size))) 192 return true; 193 194 return !kasan_report(addr, size, write, ret_ip); 195 } 196 197 bool kasan_check_range(const void *addr, size_t size, bool write, 198 unsigned long ret_ip) 199 { 200 return check_region_inline(addr, size, write, ret_ip); 201 } 202 203 bool kasan_byte_accessible(const void *addr) 204 { 205 s8 shadow_byte; 206 207 if (!kasan_enabled()) 208 return true; 209 210 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr)); 211 212 return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE; 213 } 214 215 void kasan_cache_shrink(struct kmem_cache *cache) 216 { 217 kasan_quarantine_remove_cache(cache); 218 } 219 220 void kasan_cache_shutdown(struct kmem_cache *cache) 221 { 222 if (!__kmem_cache_empty(cache)) 223 kasan_quarantine_remove_cache(cache); 224 } 225 226 static void register_global(struct kasan_global *global) 227 { 228 size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE); 229 230 kasan_unpoison(global->beg, global->size, false); 231 232 kasan_poison(global->beg + aligned_size, 233 global->size_with_redzone - aligned_size, 234 KASAN_GLOBAL_REDZONE, false); 235 } 236 237 void __asan_register_globals(void *ptr, ssize_t size) 238 { 239 int i; 240 struct kasan_global *globals = ptr; 241 242 for (i = 0; i < size; i++) 243 register_global(&globals[i]); 244 } 245 EXPORT_SYMBOL(__asan_register_globals); 246 247 void __asan_unregister_globals(void *ptr, ssize_t size) 248 { 249 } 250 EXPORT_SYMBOL(__asan_unregister_globals); 251 252 #define DEFINE_ASAN_LOAD_STORE(size) \ 253 void __asan_load##size(void *addr) \ 254 { \ 255 check_region_inline(addr, size, false, _RET_IP_); \ 256 } \ 257 EXPORT_SYMBOL(__asan_load##size); \ 258 __alias(__asan_load##size) \ 259 void __asan_load##size##_noabort(void *); \ 260 EXPORT_SYMBOL(__asan_load##size##_noabort); \ 261 void __asan_store##size(void *addr) \ 262 { \ 263 check_region_inline(addr, size, true, _RET_IP_); \ 264 } \ 265 EXPORT_SYMBOL(__asan_store##size); \ 266 __alias(__asan_store##size) \ 267 void __asan_store##size##_noabort(void *); \ 268 EXPORT_SYMBOL(__asan_store##size##_noabort) 269 270 DEFINE_ASAN_LOAD_STORE(1); 271 DEFINE_ASAN_LOAD_STORE(2); 272 DEFINE_ASAN_LOAD_STORE(4); 273 DEFINE_ASAN_LOAD_STORE(8); 274 DEFINE_ASAN_LOAD_STORE(16); 275 276 void __asan_loadN(void *addr, ssize_t size) 277 { 278 kasan_check_range(addr, size, false, _RET_IP_); 279 } 280 EXPORT_SYMBOL(__asan_loadN); 281 282 __alias(__asan_loadN) 283 void __asan_loadN_noabort(void *, ssize_t); 284 EXPORT_SYMBOL(__asan_loadN_noabort); 285 286 void __asan_storeN(void *addr, ssize_t size) 287 { 288 kasan_check_range(addr, size, true, _RET_IP_); 289 } 290 EXPORT_SYMBOL(__asan_storeN); 291 292 __alias(__asan_storeN) 293 void __asan_storeN_noabort(void *, ssize_t); 294 EXPORT_SYMBOL(__asan_storeN_noabort); 295 296 /* to shut up compiler complaints */ 297 void __asan_handle_no_return(void) {} 298 EXPORT_SYMBOL(__asan_handle_no_return); 299 300 /* Emitted by compiler to poison alloca()ed objects. */ 301 void __asan_alloca_poison(void *addr, ssize_t size) 302 { 303 size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE); 304 size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) - 305 rounded_up_size; 306 size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE); 307 308 const void *left_redzone = (const void *)(addr - 309 KASAN_ALLOCA_REDZONE_SIZE); 310 const void *right_redzone = (const void *)(addr + rounded_up_size); 311 312 WARN_ON(!IS_ALIGNED((unsigned long)addr, KASAN_ALLOCA_REDZONE_SIZE)); 313 314 kasan_unpoison((const void *)(addr + rounded_down_size), 315 size - rounded_down_size, false); 316 kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE, 317 KASAN_ALLOCA_LEFT, false); 318 kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE, 319 KASAN_ALLOCA_RIGHT, false); 320 } 321 EXPORT_SYMBOL(__asan_alloca_poison); 322 323 /* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */ 324 void __asan_allocas_unpoison(void *stack_top, ssize_t stack_bottom) 325 { 326 if (unlikely(!stack_top || stack_top > (void *)stack_bottom)) 327 return; 328 329 kasan_unpoison(stack_top, (void *)stack_bottom - stack_top, false); 330 } 331 EXPORT_SYMBOL(__asan_allocas_unpoison); 332 333 /* Emitted by the compiler to [un]poison local variables. */ 334 #define DEFINE_ASAN_SET_SHADOW(byte) \ 335 void __asan_set_shadow_##byte(const void *addr, ssize_t size) \ 336 { \ 337 __memset((void *)addr, 0x##byte, size); \ 338 } \ 339 EXPORT_SYMBOL(__asan_set_shadow_##byte) 340 341 DEFINE_ASAN_SET_SHADOW(00); 342 DEFINE_ASAN_SET_SHADOW(f1); 343 DEFINE_ASAN_SET_SHADOW(f2); 344 DEFINE_ASAN_SET_SHADOW(f3); 345 DEFINE_ASAN_SET_SHADOW(f5); 346 DEFINE_ASAN_SET_SHADOW(f8); 347 348 /* 349 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 350 * For larger allocations larger redzones are used. 351 */ 352 static inline unsigned int optimal_redzone(unsigned int object_size) 353 { 354 return 355 object_size <= 64 - 16 ? 16 : 356 object_size <= 128 - 32 ? 32 : 357 object_size <= 512 - 64 ? 64 : 358 object_size <= 4096 - 128 ? 128 : 359 object_size <= (1 << 14) - 256 ? 256 : 360 object_size <= (1 << 15) - 512 ? 512 : 361 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 362 } 363 364 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 365 slab_flags_t *flags) 366 { 367 unsigned int ok_size; 368 unsigned int optimal_size; 369 unsigned int rem_free_meta_size; 370 unsigned int orig_alloc_meta_offset; 371 372 if (!kasan_requires_meta()) 373 return; 374 375 /* 376 * SLAB_KASAN is used to mark caches that are sanitized by KASAN and 377 * that thus have per-object metadata. Currently, this flag is used in 378 * slab_ksize() to account for per-object metadata when calculating the 379 * size of the accessible memory within the object. Additionally, we use 380 * SLAB_NO_MERGE to prevent merging of caches with per-object metadata. 381 */ 382 *flags |= SLAB_KASAN | SLAB_NO_MERGE; 383 384 ok_size = *size; 385 386 /* Add alloc meta into the redzone. */ 387 cache->kasan_info.alloc_meta_offset = *size; 388 *size += sizeof(struct kasan_alloc_meta); 389 390 /* If alloc meta doesn't fit, don't add it. */ 391 if (*size > KMALLOC_MAX_SIZE) { 392 cache->kasan_info.alloc_meta_offset = 0; 393 *size = ok_size; 394 /* Continue, since free meta might still fit. */ 395 } 396 397 ok_size = *size; 398 orig_alloc_meta_offset = cache->kasan_info.alloc_meta_offset; 399 400 /* 401 * Store free meta in the redzone when it's not possible to store 402 * it in the object. This is the case when: 403 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can 404 * be touched after it was freed, or 405 * 2. Object has a constructor, which means it's expected to 406 * retain its content until the next allocation, or 407 * 3. It is from a kmalloc cache which enables the debug option 408 * to store original size. 409 */ 410 if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor || 411 slub_debug_orig_size(cache)) { 412 cache->kasan_info.free_meta_offset = *size; 413 *size += sizeof(struct kasan_free_meta); 414 goto free_meta_added; 415 } 416 417 /* 418 * Otherwise, if the object is large enough to contain free meta, 419 * store it within the object. 420 */ 421 if (sizeof(struct kasan_free_meta) <= cache->object_size) { 422 /* cache->kasan_info.free_meta_offset = 0 is implied. */ 423 goto free_meta_added; 424 } 425 426 /* 427 * For smaller objects, store the beginning of free meta within the 428 * object and the end in the redzone. And thus shift the location of 429 * alloc meta to free up space for free meta. 430 * This is only possible when slub_debug is disabled, as otherwise 431 * the end of free meta will overlap with slub_debug metadata. 432 */ 433 if (!__slub_debug_enabled()) { 434 rem_free_meta_size = sizeof(struct kasan_free_meta) - 435 cache->object_size; 436 *size += rem_free_meta_size; 437 if (cache->kasan_info.alloc_meta_offset != 0) 438 cache->kasan_info.alloc_meta_offset += rem_free_meta_size; 439 goto free_meta_added; 440 } 441 442 /* 443 * If the object is small and slub_debug is enabled, store free meta 444 * in the redzone after alloc meta. 445 */ 446 cache->kasan_info.free_meta_offset = *size; 447 *size += sizeof(struct kasan_free_meta); 448 449 free_meta_added: 450 /* If free meta doesn't fit, don't add it. */ 451 if (*size > KMALLOC_MAX_SIZE) { 452 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; 453 cache->kasan_info.alloc_meta_offset = orig_alloc_meta_offset; 454 *size = ok_size; 455 } 456 457 /* Calculate size with optimal redzone. */ 458 optimal_size = cache->object_size + optimal_redzone(cache->object_size); 459 /* Limit it with KMALLOC_MAX_SIZE. */ 460 if (optimal_size > KMALLOC_MAX_SIZE) 461 optimal_size = KMALLOC_MAX_SIZE; 462 /* Use optimal size if the size with added metas is not large enough. */ 463 if (*size < optimal_size) 464 *size = optimal_size; 465 } 466 467 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache, 468 const void *object) 469 { 470 if (!cache->kasan_info.alloc_meta_offset) 471 return NULL; 472 return (void *)object + cache->kasan_info.alloc_meta_offset; 473 } 474 475 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache, 476 const void *object) 477 { 478 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 479 if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META) 480 return NULL; 481 return (void *)object + cache->kasan_info.free_meta_offset; 482 } 483 484 void kasan_init_object_meta(struct kmem_cache *cache, const void *object) 485 { 486 struct kasan_alloc_meta *alloc_meta; 487 488 alloc_meta = kasan_get_alloc_meta(cache, object); 489 if (alloc_meta) { 490 /* Zero out alloc meta to mark it as invalid. */ 491 __memset(alloc_meta, 0, sizeof(*alloc_meta)); 492 } 493 494 /* 495 * Explicitly marking free meta as invalid is not required: the shadow 496 * value for the first 8 bytes of a newly allocated object is not 497 * KASAN_SLAB_FREE_META. 498 */ 499 } 500 501 static void release_alloc_meta(struct kasan_alloc_meta *meta) 502 { 503 /* Zero out alloc meta to mark it as invalid. */ 504 __memset(meta, 0, sizeof(*meta)); 505 } 506 507 static void release_free_meta(const void *object, struct kasan_free_meta *meta) 508 { 509 if (!kasan_enabled()) 510 return; 511 512 /* Check if free meta is valid. */ 513 if (*(u8 *)kasan_mem_to_shadow(object) != KASAN_SLAB_FREE_META) 514 return; 515 516 /* Mark free meta as invalid. */ 517 *(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE; 518 } 519 520 size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object) 521 { 522 struct kasan_cache *info = &cache->kasan_info; 523 524 if (!kasan_requires_meta()) 525 return 0; 526 527 if (in_object) 528 return (info->free_meta_offset ? 529 0 : sizeof(struct kasan_free_meta)); 530 else 531 return (info->alloc_meta_offset ? 532 sizeof(struct kasan_alloc_meta) : 0) + 533 ((info->free_meta_offset && 534 info->free_meta_offset != KASAN_NO_FREE_META) ? 535 sizeof(struct kasan_free_meta) : 0); 536 } 537 538 /* 539 * This function avoids dynamic memory allocations and thus can be called from 540 * contexts that do not allow allocating memory. 541 */ 542 void kasan_record_aux_stack(void *addr) 543 { 544 struct slab *slab = kasan_addr_to_slab(addr); 545 struct kmem_cache *cache; 546 struct kasan_alloc_meta *alloc_meta; 547 void *object; 548 549 if (is_kfence_address(addr) || !slab) 550 return; 551 552 cache = slab->slab_cache; 553 object = nearest_obj(cache, slab, addr); 554 alloc_meta = kasan_get_alloc_meta(cache, object); 555 if (!alloc_meta) 556 return; 557 558 alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0]; 559 alloc_meta->aux_stack[0] = kasan_save_stack(0, 0); 560 } 561 562 void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags) 563 { 564 struct kasan_alloc_meta *alloc_meta; 565 566 alloc_meta = kasan_get_alloc_meta(cache, object); 567 if (!alloc_meta) 568 return; 569 570 /* Invalidate previous stack traces (might exist for krealloc or mempool). */ 571 release_alloc_meta(alloc_meta); 572 573 kasan_save_track(&alloc_meta->alloc_track, flags); 574 } 575 576 void __kasan_save_free_info(struct kmem_cache *cache, void *object) 577 { 578 struct kasan_free_meta *free_meta; 579 580 free_meta = kasan_get_free_meta(cache, object); 581 if (!free_meta) 582 return; 583 584 /* Invalidate previous stack trace (might exist for mempool). */ 585 release_free_meta(object, free_meta); 586 587 kasan_save_track(&free_meta->free_track, 0); 588 589 /* Mark free meta as valid. */ 590 *(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE_META; 591 } 592