xref: /linux/mm/kasan/generic.c (revision 36110669ddf832e6c9ceba4dd203749d5be31d31)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains core generic KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11 
12 #include <linux/export.h>
13 #include <linux/interrupt.h>
14 #include <linux/init.h>
15 #include <linux/kasan.h>
16 #include <linux/kernel.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/linkage.h>
20 #include <linux/memblock.h>
21 #include <linux/memory.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/printk.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/slab.h>
28 #include <linux/spinlock.h>
29 #include <linux/stackdepot.h>
30 #include <linux/stacktrace.h>
31 #include <linux/string.h>
32 #include <linux/types.h>
33 #include <linux/vmalloc.h>
34 #include <linux/bug.h>
35 
36 #include "kasan.h"
37 #include "../slab.h"
38 
39 /*
40  * All functions below always inlined so compiler could
41  * perform better optimizations in each of __asan_loadX/__assn_storeX
42  * depending on memory access size X.
43  */
44 
45 static __always_inline bool memory_is_poisoned_1(const void *addr)
46 {
47 	s8 shadow_value = *(s8 *)kasan_mem_to_shadow(addr);
48 
49 	if (unlikely(shadow_value)) {
50 		s8 last_accessible_byte = (unsigned long)addr & KASAN_GRANULE_MASK;
51 		return unlikely(last_accessible_byte >= shadow_value);
52 	}
53 
54 	return false;
55 }
56 
57 static __always_inline bool memory_is_poisoned_2_4_8(const void *addr,
58 						unsigned long size)
59 {
60 	u8 *shadow_addr = (u8 *)kasan_mem_to_shadow(addr);
61 
62 	/*
63 	 * Access crosses 8(shadow size)-byte boundary. Such access maps
64 	 * into 2 shadow bytes, so we need to check them both.
65 	 */
66 	if (unlikely((((unsigned long)addr + size - 1) & KASAN_GRANULE_MASK) < size - 1))
67 		return *shadow_addr || memory_is_poisoned_1(addr + size - 1);
68 
69 	return memory_is_poisoned_1(addr + size - 1);
70 }
71 
72 static __always_inline bool memory_is_poisoned_16(const void *addr)
73 {
74 	u16 *shadow_addr = (u16 *)kasan_mem_to_shadow(addr);
75 
76 	/* Unaligned 16-bytes access maps into 3 shadow bytes. */
77 	if (unlikely(!IS_ALIGNED((unsigned long)addr, KASAN_GRANULE_SIZE)))
78 		return *shadow_addr || memory_is_poisoned_1(addr + 15);
79 
80 	return *shadow_addr;
81 }
82 
83 static __always_inline unsigned long bytes_is_nonzero(const u8 *start,
84 					size_t size)
85 {
86 	while (size) {
87 		if (unlikely(*start))
88 			return (unsigned long)start;
89 		start++;
90 		size--;
91 	}
92 
93 	return 0;
94 }
95 
96 static __always_inline unsigned long memory_is_nonzero(const void *start,
97 						const void *end)
98 {
99 	unsigned int words;
100 	unsigned long ret;
101 	unsigned int prefix = (unsigned long)start % 8;
102 
103 	if (end - start <= 16)
104 		return bytes_is_nonzero(start, end - start);
105 
106 	if (prefix) {
107 		prefix = 8 - prefix;
108 		ret = bytes_is_nonzero(start, prefix);
109 		if (unlikely(ret))
110 			return ret;
111 		start += prefix;
112 	}
113 
114 	words = (end - start) / 8;
115 	while (words) {
116 		if (unlikely(*(u64 *)start))
117 			return bytes_is_nonzero(start, 8);
118 		start += 8;
119 		words--;
120 	}
121 
122 	return bytes_is_nonzero(start, (end - start) % 8);
123 }
124 
125 static __always_inline bool memory_is_poisoned_n(const void *addr, size_t size)
126 {
127 	unsigned long ret;
128 
129 	ret = memory_is_nonzero(kasan_mem_to_shadow(addr),
130 			kasan_mem_to_shadow(addr + size - 1) + 1);
131 
132 	if (unlikely(ret)) {
133 		const void *last_byte = addr + size - 1;
134 		s8 *last_shadow = (s8 *)kasan_mem_to_shadow(last_byte);
135 		s8 last_accessible_byte = (unsigned long)last_byte & KASAN_GRANULE_MASK;
136 
137 		if (unlikely(ret != (unsigned long)last_shadow ||
138 			     last_accessible_byte >= *last_shadow))
139 			return true;
140 	}
141 	return false;
142 }
143 
144 static __always_inline bool memory_is_poisoned(const void *addr, size_t size)
145 {
146 	if (__builtin_constant_p(size)) {
147 		switch (size) {
148 		case 1:
149 			return memory_is_poisoned_1(addr);
150 		case 2:
151 		case 4:
152 		case 8:
153 			return memory_is_poisoned_2_4_8(addr, size);
154 		case 16:
155 			return memory_is_poisoned_16(addr);
156 		default:
157 			BUILD_BUG();
158 		}
159 	}
160 
161 	return memory_is_poisoned_n(addr, size);
162 }
163 
164 static __always_inline bool check_region_inline(const void *addr,
165 						size_t size, bool write,
166 						unsigned long ret_ip)
167 {
168 	if (!kasan_arch_is_ready())
169 		return true;
170 
171 	if (unlikely(size == 0))
172 		return true;
173 
174 	if (unlikely(addr + size < addr))
175 		return !kasan_report(addr, size, write, ret_ip);
176 
177 	if (unlikely(!addr_has_metadata(addr)))
178 		return !kasan_report(addr, size, write, ret_ip);
179 
180 	if (likely(!memory_is_poisoned(addr, size)))
181 		return true;
182 
183 	return !kasan_report(addr, size, write, ret_ip);
184 }
185 
186 bool kasan_check_range(const void *addr, size_t size, bool write,
187 					unsigned long ret_ip)
188 {
189 	return check_region_inline(addr, size, write, ret_ip);
190 }
191 
192 bool kasan_byte_accessible(const void *addr)
193 {
194 	s8 shadow_byte;
195 
196 	if (!kasan_arch_is_ready())
197 		return true;
198 
199 	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(addr));
200 
201 	return shadow_byte >= 0 && shadow_byte < KASAN_GRANULE_SIZE;
202 }
203 
204 void kasan_cache_shrink(struct kmem_cache *cache)
205 {
206 	kasan_quarantine_remove_cache(cache);
207 }
208 
209 void kasan_cache_shutdown(struct kmem_cache *cache)
210 {
211 	if (!__kmem_cache_empty(cache))
212 		kasan_quarantine_remove_cache(cache);
213 }
214 
215 static void register_global(struct kasan_global *global)
216 {
217 	size_t aligned_size = round_up(global->size, KASAN_GRANULE_SIZE);
218 
219 	kasan_unpoison(global->beg, global->size, false);
220 
221 	kasan_poison(global->beg + aligned_size,
222 		     global->size_with_redzone - aligned_size,
223 		     KASAN_GLOBAL_REDZONE, false);
224 }
225 
226 void __asan_register_globals(void *ptr, ssize_t size)
227 {
228 	int i;
229 	struct kasan_global *globals = ptr;
230 
231 	for (i = 0; i < size; i++)
232 		register_global(&globals[i]);
233 }
234 EXPORT_SYMBOL(__asan_register_globals);
235 
236 void __asan_unregister_globals(void *ptr, ssize_t size)
237 {
238 }
239 EXPORT_SYMBOL(__asan_unregister_globals);
240 
241 #define DEFINE_ASAN_LOAD_STORE(size)					\
242 	void __asan_load##size(void *addr)				\
243 	{								\
244 		check_region_inline(addr, size, false, _RET_IP_);	\
245 	}								\
246 	EXPORT_SYMBOL(__asan_load##size);				\
247 	__alias(__asan_load##size)					\
248 	void __asan_load##size##_noabort(void *);			\
249 	EXPORT_SYMBOL(__asan_load##size##_noabort);			\
250 	void __asan_store##size(void *addr)				\
251 	{								\
252 		check_region_inline(addr, size, true, _RET_IP_);	\
253 	}								\
254 	EXPORT_SYMBOL(__asan_store##size);				\
255 	__alias(__asan_store##size)					\
256 	void __asan_store##size##_noabort(void *);			\
257 	EXPORT_SYMBOL(__asan_store##size##_noabort)
258 
259 DEFINE_ASAN_LOAD_STORE(1);
260 DEFINE_ASAN_LOAD_STORE(2);
261 DEFINE_ASAN_LOAD_STORE(4);
262 DEFINE_ASAN_LOAD_STORE(8);
263 DEFINE_ASAN_LOAD_STORE(16);
264 
265 void __asan_loadN(void *addr, ssize_t size)
266 {
267 	kasan_check_range(addr, size, false, _RET_IP_);
268 }
269 EXPORT_SYMBOL(__asan_loadN);
270 
271 __alias(__asan_loadN)
272 void __asan_loadN_noabort(void *, ssize_t);
273 EXPORT_SYMBOL(__asan_loadN_noabort);
274 
275 void __asan_storeN(void *addr, ssize_t size)
276 {
277 	kasan_check_range(addr, size, true, _RET_IP_);
278 }
279 EXPORT_SYMBOL(__asan_storeN);
280 
281 __alias(__asan_storeN)
282 void __asan_storeN_noabort(void *, ssize_t);
283 EXPORT_SYMBOL(__asan_storeN_noabort);
284 
285 /* to shut up compiler complaints */
286 void __asan_handle_no_return(void) {}
287 EXPORT_SYMBOL(__asan_handle_no_return);
288 
289 /* Emitted by compiler to poison alloca()ed objects. */
290 void __asan_alloca_poison(void *addr, ssize_t size)
291 {
292 	size_t rounded_up_size = round_up(size, KASAN_GRANULE_SIZE);
293 	size_t padding_size = round_up(size, KASAN_ALLOCA_REDZONE_SIZE) -
294 			rounded_up_size;
295 	size_t rounded_down_size = round_down(size, KASAN_GRANULE_SIZE);
296 
297 	const void *left_redzone = (const void *)(addr -
298 			KASAN_ALLOCA_REDZONE_SIZE);
299 	const void *right_redzone = (const void *)(addr + rounded_up_size);
300 
301 	WARN_ON(!IS_ALIGNED((unsigned long)addr, KASAN_ALLOCA_REDZONE_SIZE));
302 
303 	kasan_unpoison((const void *)(addr + rounded_down_size),
304 			size - rounded_down_size, false);
305 	kasan_poison(left_redzone, KASAN_ALLOCA_REDZONE_SIZE,
306 		     KASAN_ALLOCA_LEFT, false);
307 	kasan_poison(right_redzone, padding_size + KASAN_ALLOCA_REDZONE_SIZE,
308 		     KASAN_ALLOCA_RIGHT, false);
309 }
310 EXPORT_SYMBOL(__asan_alloca_poison);
311 
312 /* Emitted by compiler to unpoison alloca()ed areas when the stack unwinds. */
313 void __asan_allocas_unpoison(void *stack_top, ssize_t stack_bottom)
314 {
315 	if (unlikely(!stack_top || stack_top > (void *)stack_bottom))
316 		return;
317 
318 	kasan_unpoison(stack_top, (void *)stack_bottom - stack_top, false);
319 }
320 EXPORT_SYMBOL(__asan_allocas_unpoison);
321 
322 /* Emitted by the compiler to [un]poison local variables. */
323 #define DEFINE_ASAN_SET_SHADOW(byte) \
324 	void __asan_set_shadow_##byte(const void *addr, ssize_t size)	\
325 	{								\
326 		__memset((void *)addr, 0x##byte, size);			\
327 	}								\
328 	EXPORT_SYMBOL(__asan_set_shadow_##byte)
329 
330 DEFINE_ASAN_SET_SHADOW(00);
331 DEFINE_ASAN_SET_SHADOW(f1);
332 DEFINE_ASAN_SET_SHADOW(f2);
333 DEFINE_ASAN_SET_SHADOW(f3);
334 DEFINE_ASAN_SET_SHADOW(f5);
335 DEFINE_ASAN_SET_SHADOW(f8);
336 
337 /*
338  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
339  * For larger allocations larger redzones are used.
340  */
341 static inline unsigned int optimal_redzone(unsigned int object_size)
342 {
343 	return
344 		object_size <= 64        - 16   ? 16 :
345 		object_size <= 128       - 32   ? 32 :
346 		object_size <= 512       - 64   ? 64 :
347 		object_size <= 4096      - 128  ? 128 :
348 		object_size <= (1 << 14) - 256  ? 256 :
349 		object_size <= (1 << 15) - 512  ? 512 :
350 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
351 }
352 
353 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
354 			  slab_flags_t *flags)
355 {
356 	unsigned int ok_size;
357 	unsigned int optimal_size;
358 	unsigned int rem_free_meta_size;
359 	unsigned int orig_alloc_meta_offset;
360 
361 	if (!kasan_requires_meta())
362 		return;
363 
364 	/*
365 	 * SLAB_KASAN is used to mark caches that are sanitized by KASAN and
366 	 * that thus have per-object metadata. Currently, this flag is used in
367 	 * slab_ksize() to account for per-object metadata when calculating the
368 	 * size of the accessible memory within the object. Additionally, we use
369 	 * SLAB_NO_MERGE to prevent merging of caches with per-object metadata.
370 	 */
371 	*flags |= SLAB_KASAN | SLAB_NO_MERGE;
372 
373 	ok_size = *size;
374 
375 	/* Add alloc meta into the redzone. */
376 	cache->kasan_info.alloc_meta_offset = *size;
377 	*size += sizeof(struct kasan_alloc_meta);
378 
379 	/* If alloc meta doesn't fit, don't add it. */
380 	if (*size > KMALLOC_MAX_SIZE) {
381 		cache->kasan_info.alloc_meta_offset = 0;
382 		*size = ok_size;
383 		/* Continue, since free meta might still fit. */
384 	}
385 
386 	ok_size = *size;
387 	orig_alloc_meta_offset = cache->kasan_info.alloc_meta_offset;
388 
389 	/*
390 	 * Store free meta in the redzone when it's not possible to store
391 	 * it in the object. This is the case when:
392 	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
393 	 *    be touched after it was freed, or
394 	 * 2. Object has a constructor, which means it's expected to
395 	 *    retain its content until the next allocation.
396 	 */
397 	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor) {
398 		cache->kasan_info.free_meta_offset = *size;
399 		*size += sizeof(struct kasan_free_meta);
400 		goto free_meta_added;
401 	}
402 
403 	/*
404 	 * Otherwise, if the object is large enough to contain free meta,
405 	 * store it within the object.
406 	 */
407 	if (sizeof(struct kasan_free_meta) <= cache->object_size) {
408 		/* cache->kasan_info.free_meta_offset = 0 is implied. */
409 		goto free_meta_added;
410 	}
411 
412 	/*
413 	 * For smaller objects, store the beginning of free meta within the
414 	 * object and the end in the redzone. And thus shift the location of
415 	 * alloc meta to free up space for free meta.
416 	 * This is only possible when slub_debug is disabled, as otherwise
417 	 * the end of free meta will overlap with slub_debug metadata.
418 	 */
419 	if (!__slub_debug_enabled()) {
420 		rem_free_meta_size = sizeof(struct kasan_free_meta) -
421 							cache->object_size;
422 		*size += rem_free_meta_size;
423 		if (cache->kasan_info.alloc_meta_offset != 0)
424 			cache->kasan_info.alloc_meta_offset += rem_free_meta_size;
425 		goto free_meta_added;
426 	}
427 
428 	/*
429 	 * If the object is small and slub_debug is enabled, store free meta
430 	 * in the redzone after alloc meta.
431 	 */
432 	cache->kasan_info.free_meta_offset = *size;
433 	*size += sizeof(struct kasan_free_meta);
434 
435 free_meta_added:
436 	/* If free meta doesn't fit, don't add it. */
437 	if (*size > KMALLOC_MAX_SIZE) {
438 		cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
439 		cache->kasan_info.alloc_meta_offset = orig_alloc_meta_offset;
440 		*size = ok_size;
441 	}
442 
443 	/* Calculate size with optimal redzone. */
444 	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
445 	/* Limit it with KMALLOC_MAX_SIZE. */
446 	if (optimal_size > KMALLOC_MAX_SIZE)
447 		optimal_size = KMALLOC_MAX_SIZE;
448 	/* Use optimal size if the size with added metas is not large enough. */
449 	if (*size < optimal_size)
450 		*size = optimal_size;
451 }
452 
453 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
454 					      const void *object)
455 {
456 	if (!cache->kasan_info.alloc_meta_offset)
457 		return NULL;
458 	return (void *)object + cache->kasan_info.alloc_meta_offset;
459 }
460 
461 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
462 					    const void *object)
463 {
464 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
465 	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
466 		return NULL;
467 	return (void *)object + cache->kasan_info.free_meta_offset;
468 }
469 
470 void kasan_init_object_meta(struct kmem_cache *cache, const void *object)
471 {
472 	struct kasan_alloc_meta *alloc_meta;
473 
474 	alloc_meta = kasan_get_alloc_meta(cache, object);
475 	if (alloc_meta) {
476 		/* Zero out alloc meta to mark it as invalid. */
477 		__memset(alloc_meta, 0, sizeof(*alloc_meta));
478 	}
479 
480 	/*
481 	 * Explicitly marking free meta as invalid is not required: the shadow
482 	 * value for the first 8 bytes of a newly allocated object is not
483 	 * KASAN_SLAB_FREE_META.
484 	 */
485 }
486 
487 static void release_alloc_meta(struct kasan_alloc_meta *meta)
488 {
489 	/* Zero out alloc meta to mark it as invalid. */
490 	__memset(meta, 0, sizeof(*meta));
491 }
492 
493 static void release_free_meta(const void *object, struct kasan_free_meta *meta)
494 {
495 	if (!kasan_arch_is_ready())
496 		return;
497 
498 	/* Check if free meta is valid. */
499 	if (*(u8 *)kasan_mem_to_shadow(object) != KASAN_SLAB_FREE_META)
500 		return;
501 
502 	/* Mark free meta as invalid. */
503 	*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE;
504 }
505 
506 size_t kasan_metadata_size(struct kmem_cache *cache, bool in_object)
507 {
508 	struct kasan_cache *info = &cache->kasan_info;
509 
510 	if (!kasan_requires_meta())
511 		return 0;
512 
513 	if (in_object)
514 		return (info->free_meta_offset ?
515 			0 : sizeof(struct kasan_free_meta));
516 	else
517 		return (info->alloc_meta_offset ?
518 			sizeof(struct kasan_alloc_meta) : 0) +
519 			((info->free_meta_offset &&
520 			info->free_meta_offset != KASAN_NO_FREE_META) ?
521 			sizeof(struct kasan_free_meta) : 0);
522 }
523 
524 static void __kasan_record_aux_stack(void *addr, depot_flags_t depot_flags)
525 {
526 	struct slab *slab = kasan_addr_to_slab(addr);
527 	struct kmem_cache *cache;
528 	struct kasan_alloc_meta *alloc_meta;
529 	void *object;
530 
531 	if (is_kfence_address(addr) || !slab)
532 		return;
533 
534 	cache = slab->slab_cache;
535 	object = nearest_obj(cache, slab, addr);
536 	alloc_meta = kasan_get_alloc_meta(cache, object);
537 	if (!alloc_meta)
538 		return;
539 
540 	alloc_meta->aux_stack[1] = alloc_meta->aux_stack[0];
541 	alloc_meta->aux_stack[0] = kasan_save_stack(0, depot_flags);
542 }
543 
544 void kasan_record_aux_stack(void *addr)
545 {
546 	return __kasan_record_aux_stack(addr, STACK_DEPOT_FLAG_CAN_ALLOC);
547 }
548 
549 void kasan_record_aux_stack_noalloc(void *addr)
550 {
551 	return __kasan_record_aux_stack(addr, 0);
552 }
553 
554 void kasan_save_alloc_info(struct kmem_cache *cache, void *object, gfp_t flags)
555 {
556 	struct kasan_alloc_meta *alloc_meta;
557 
558 	alloc_meta = kasan_get_alloc_meta(cache, object);
559 	if (!alloc_meta)
560 		return;
561 
562 	/* Invalidate previous stack traces (might exist for krealloc or mempool). */
563 	release_alloc_meta(alloc_meta);
564 
565 	kasan_save_track(&alloc_meta->alloc_track, flags);
566 }
567 
568 void kasan_save_free_info(struct kmem_cache *cache, void *object)
569 {
570 	struct kasan_free_meta *free_meta;
571 
572 	free_meta = kasan_get_free_meta(cache, object);
573 	if (!free_meta)
574 		return;
575 
576 	/* Invalidate previous stack trace (might exist for mempool). */
577 	release_free_meta(object, free_meta);
578 
579 	kasan_save_track(&free_meta->free_track, 0);
580 
581 	/* Mark free meta as valid. */
582 	*(u8 *)kasan_mem_to_shadow(object) = KASAN_SLAB_FREE_META;
583 }
584