1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <linux/export.h> 13 #include <linux/init.h> 14 #include <linux/kasan.h> 15 #include <linux/kernel.h> 16 #include <linux/linkage.h> 17 #include <linux/memblock.h> 18 #include <linux/memory.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/printk.h> 22 #include <linux/sched.h> 23 #include <linux/sched/clock.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/slab.h> 26 #include <linux/stackdepot.h> 27 #include <linux/stacktrace.h> 28 #include <linux/string.h> 29 #include <linux/types.h> 30 #include <linux/bug.h> 31 32 #include "kasan.h" 33 #include "../slab.h" 34 35 struct slab *kasan_addr_to_slab(const void *addr) 36 { 37 if (virt_addr_valid(addr)) 38 return virt_to_slab(addr); 39 return NULL; 40 } 41 42 depot_stack_handle_t kasan_save_stack(gfp_t flags, depot_flags_t depot_flags) 43 { 44 unsigned long entries[KASAN_STACK_DEPTH]; 45 unsigned int nr_entries; 46 47 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); 48 return stack_depot_save_flags(entries, nr_entries, flags, depot_flags); 49 } 50 51 void kasan_set_track(struct kasan_track *track, depot_stack_handle_t stack) 52 { 53 #ifdef CONFIG_KASAN_EXTRA_INFO 54 u32 cpu = raw_smp_processor_id(); 55 u64 ts_nsec = local_clock(); 56 57 track->cpu = cpu; 58 track->timestamp = ts_nsec >> 9; 59 #endif /* CONFIG_KASAN_EXTRA_INFO */ 60 track->pid = current->pid; 61 track->stack = stack; 62 } 63 64 void kasan_save_track(struct kasan_track *track, gfp_t flags) 65 { 66 depot_stack_handle_t stack; 67 68 stack = kasan_save_stack(flags, STACK_DEPOT_FLAG_CAN_ALLOC); 69 kasan_set_track(track, stack); 70 } 71 72 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 73 void kasan_enable_current(void) 74 { 75 current->kasan_depth++; 76 } 77 EXPORT_SYMBOL(kasan_enable_current); 78 79 void kasan_disable_current(void) 80 { 81 current->kasan_depth--; 82 } 83 EXPORT_SYMBOL(kasan_disable_current); 84 85 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ 86 87 void __kasan_unpoison_range(const void *address, size_t size) 88 { 89 if (is_kfence_address(address)) 90 return; 91 92 kasan_unpoison(address, size, false); 93 } 94 95 #ifdef CONFIG_KASAN_STACK 96 /* Unpoison the entire stack for a task. */ 97 void kasan_unpoison_task_stack(struct task_struct *task) 98 { 99 void *base = task_stack_page(task); 100 101 kasan_unpoison(base, THREAD_SIZE, false); 102 } 103 104 /* Unpoison the stack for the current task beyond a watermark sp value. */ 105 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 106 { 107 /* 108 * Calculate the task stack base address. Avoid using 'current' 109 * because this function is called by early resume code which hasn't 110 * yet set up the percpu register (%gs). 111 */ 112 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 113 114 kasan_unpoison(base, watermark - base, false); 115 } 116 #endif /* CONFIG_KASAN_STACK */ 117 118 bool __kasan_unpoison_pages(struct page *page, unsigned int order, bool init) 119 { 120 u8 tag; 121 unsigned long i; 122 123 if (unlikely(PageHighMem(page))) 124 return false; 125 126 if (!kasan_sample_page_alloc(order)) 127 return false; 128 129 tag = kasan_random_tag(); 130 kasan_unpoison(set_tag(page_address(page), tag), 131 PAGE_SIZE << order, init); 132 for (i = 0; i < (1 << order); i++) 133 page_kasan_tag_set(page + i, tag); 134 135 return true; 136 } 137 138 void __kasan_poison_pages(struct page *page, unsigned int order, bool init) 139 { 140 if (likely(!PageHighMem(page))) 141 kasan_poison(page_address(page), PAGE_SIZE << order, 142 KASAN_PAGE_FREE, init); 143 } 144 145 void __kasan_poison_slab(struct slab *slab) 146 { 147 struct page *page = slab_page(slab); 148 unsigned long i; 149 150 for (i = 0; i < compound_nr(page); i++) 151 page_kasan_tag_reset(page + i); 152 kasan_poison(page_address(page), page_size(page), 153 KASAN_SLAB_REDZONE, false); 154 } 155 156 void __kasan_unpoison_new_object(struct kmem_cache *cache, void *object) 157 { 158 kasan_unpoison(object, cache->object_size, false); 159 } 160 161 void __kasan_poison_new_object(struct kmem_cache *cache, void *object) 162 { 163 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 164 KASAN_SLAB_REDZONE, false); 165 } 166 167 /* 168 * This function assigns a tag to an object considering the following: 169 * 1. A cache might have a constructor, which might save a pointer to a slab 170 * object somewhere (e.g. in the object itself). We preassign a tag for 171 * each object in caches with constructors during slab creation and reuse 172 * the same tag each time a particular object is allocated. 173 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 174 * accessed after being freed. We preassign tags for objects in these 175 * caches as well. 176 */ 177 static inline u8 assign_tag(struct kmem_cache *cache, 178 const void *object, bool init) 179 { 180 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 181 return 0xff; 182 183 /* 184 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 185 * set, assign a tag when the object is being allocated (init == false). 186 */ 187 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 188 return init ? KASAN_TAG_KERNEL : kasan_random_tag(); 189 190 /* 191 * For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU, 192 * assign a random tag during slab creation, otherwise reuse 193 * the already assigned tag. 194 */ 195 return init ? kasan_random_tag() : get_tag(object); 196 } 197 198 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache, 199 const void *object) 200 { 201 /* Initialize per-object metadata if it is present. */ 202 if (kasan_requires_meta()) 203 kasan_init_object_meta(cache, object); 204 205 /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */ 206 object = set_tag(object, assign_tag(cache, object, true)); 207 208 return (void *)object; 209 } 210 211 static inline bool poison_slab_object(struct kmem_cache *cache, void *object, 212 unsigned long ip, bool init) 213 { 214 void *tagged_object; 215 216 if (!kasan_arch_is_ready()) 217 return false; 218 219 tagged_object = object; 220 object = kasan_reset_tag(object); 221 222 if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != object)) { 223 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE); 224 return true; 225 } 226 227 /* RCU slabs could be legally used after free within the RCU period. */ 228 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 229 return false; 230 231 if (!kasan_byte_accessible(tagged_object)) { 232 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE); 233 return true; 234 } 235 236 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 237 KASAN_SLAB_FREE, init); 238 239 if (kasan_stack_collection_enabled()) 240 kasan_save_free_info(cache, tagged_object); 241 242 return false; 243 } 244 245 bool __kasan_slab_free(struct kmem_cache *cache, void *object, 246 unsigned long ip, bool init) 247 { 248 if (is_kfence_address(object)) 249 return false; 250 251 /* 252 * If the object is buggy, do not let slab put the object onto the 253 * freelist. The object will thus never be allocated again and its 254 * metadata will never get released. 255 */ 256 if (poison_slab_object(cache, object, ip, init)) 257 return true; 258 259 /* 260 * If the object is put into quarantine, do not let slab put the object 261 * onto the freelist for now. The object's metadata is kept until the 262 * object gets evicted from quarantine. 263 */ 264 if (kasan_quarantine_put(cache, object)) 265 return true; 266 267 /* 268 * Note: Keep per-object metadata to allow KASAN print stack traces for 269 * use-after-free-before-realloc bugs. 270 */ 271 272 /* Let slab put the object onto the freelist. */ 273 return false; 274 } 275 276 static inline bool check_page_allocation(void *ptr, unsigned long ip) 277 { 278 if (!kasan_arch_is_ready()) 279 return false; 280 281 if (ptr != page_address(virt_to_head_page(ptr))) { 282 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE); 283 return true; 284 } 285 286 if (!kasan_byte_accessible(ptr)) { 287 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE); 288 return true; 289 } 290 291 return false; 292 } 293 294 void __kasan_kfree_large(void *ptr, unsigned long ip) 295 { 296 check_page_allocation(ptr, ip); 297 298 /* The object will be poisoned by kasan_poison_pages(). */ 299 } 300 301 static inline void unpoison_slab_object(struct kmem_cache *cache, void *object, 302 gfp_t flags, bool init) 303 { 304 /* 305 * Unpoison the whole object. For kmalloc() allocations, 306 * poison_kmalloc_redzone() will do precise poisoning. 307 */ 308 kasan_unpoison(object, cache->object_size, init); 309 310 /* Save alloc info (if possible) for non-kmalloc() allocations. */ 311 if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache)) 312 kasan_save_alloc_info(cache, object, flags); 313 } 314 315 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, 316 void *object, gfp_t flags, bool init) 317 { 318 u8 tag; 319 void *tagged_object; 320 321 if (gfpflags_allow_blocking(flags)) 322 kasan_quarantine_reduce(); 323 324 if (unlikely(object == NULL)) 325 return NULL; 326 327 if (is_kfence_address(object)) 328 return (void *)object; 329 330 /* 331 * Generate and assign random tag for tag-based modes. 332 * Tag is ignored in set_tag() for the generic mode. 333 */ 334 tag = assign_tag(cache, object, false); 335 tagged_object = set_tag(object, tag); 336 337 /* Unpoison the object and save alloc info for non-kmalloc() allocations. */ 338 unpoison_slab_object(cache, tagged_object, flags, init); 339 340 return tagged_object; 341 } 342 343 static inline void poison_kmalloc_redzone(struct kmem_cache *cache, 344 const void *object, size_t size, gfp_t flags) 345 { 346 unsigned long redzone_start; 347 unsigned long redzone_end; 348 349 /* 350 * The redzone has byte-level precision for the generic mode. 351 * Partially poison the last object granule to cover the unaligned 352 * part of the redzone. 353 */ 354 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 355 kasan_poison_last_granule((void *)object, size); 356 357 /* Poison the aligned part of the redzone. */ 358 redzone_start = round_up((unsigned long)(object + size), 359 KASAN_GRANULE_SIZE); 360 redzone_end = round_up((unsigned long)(object + cache->object_size), 361 KASAN_GRANULE_SIZE); 362 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 363 KASAN_SLAB_REDZONE, false); 364 365 /* 366 * Save alloc info (if possible) for kmalloc() allocations. 367 * This also rewrites the alloc info when called from kasan_krealloc(). 368 */ 369 if (kasan_stack_collection_enabled() && is_kmalloc_cache(cache)) 370 kasan_save_alloc_info(cache, (void *)object, flags); 371 372 } 373 374 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object, 375 size_t size, gfp_t flags) 376 { 377 if (gfpflags_allow_blocking(flags)) 378 kasan_quarantine_reduce(); 379 380 if (unlikely(object == NULL)) 381 return NULL; 382 383 if (is_kfence_address(object)) 384 return (void *)object; 385 386 /* The object has already been unpoisoned by kasan_slab_alloc(). */ 387 poison_kmalloc_redzone(cache, object, size, flags); 388 389 /* Keep the tag that was set by kasan_slab_alloc(). */ 390 return (void *)object; 391 } 392 EXPORT_SYMBOL(__kasan_kmalloc); 393 394 static inline void poison_kmalloc_large_redzone(const void *ptr, size_t size, 395 gfp_t flags) 396 { 397 unsigned long redzone_start; 398 unsigned long redzone_end; 399 400 /* 401 * The redzone has byte-level precision for the generic mode. 402 * Partially poison the last object granule to cover the unaligned 403 * part of the redzone. 404 */ 405 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 406 kasan_poison_last_granule(ptr, size); 407 408 /* Poison the aligned part of the redzone. */ 409 redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE); 410 redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr)); 411 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 412 KASAN_PAGE_REDZONE, false); 413 } 414 415 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size, 416 gfp_t flags) 417 { 418 if (gfpflags_allow_blocking(flags)) 419 kasan_quarantine_reduce(); 420 421 if (unlikely(ptr == NULL)) 422 return NULL; 423 424 /* The object has already been unpoisoned by kasan_unpoison_pages(). */ 425 poison_kmalloc_large_redzone(ptr, size, flags); 426 427 /* Keep the tag that was set by alloc_pages(). */ 428 return (void *)ptr; 429 } 430 431 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags) 432 { 433 struct slab *slab; 434 435 if (gfpflags_allow_blocking(flags)) 436 kasan_quarantine_reduce(); 437 438 if (unlikely(object == ZERO_SIZE_PTR)) 439 return (void *)object; 440 441 if (is_kfence_address(object)) 442 return (void *)object; 443 444 /* 445 * Unpoison the object's data. 446 * Part of it might already have been unpoisoned, but it's unknown 447 * how big that part is. 448 */ 449 kasan_unpoison(object, size, false); 450 451 slab = virt_to_slab(object); 452 453 /* Piggy-back on kmalloc() instrumentation to poison the redzone. */ 454 if (unlikely(!slab)) 455 poison_kmalloc_large_redzone(object, size, flags); 456 else 457 poison_kmalloc_redzone(slab->slab_cache, object, size, flags); 458 459 return (void *)object; 460 } 461 462 bool __kasan_mempool_poison_pages(struct page *page, unsigned int order, 463 unsigned long ip) 464 { 465 unsigned long *ptr; 466 467 if (unlikely(PageHighMem(page))) 468 return true; 469 470 /* Bail out if allocation was excluded due to sampling. */ 471 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 472 page_kasan_tag(page) == KASAN_TAG_KERNEL) 473 return true; 474 475 ptr = page_address(page); 476 477 if (check_page_allocation(ptr, ip)) 478 return false; 479 480 kasan_poison(ptr, PAGE_SIZE << order, KASAN_PAGE_FREE, false); 481 482 return true; 483 } 484 485 void __kasan_mempool_unpoison_pages(struct page *page, unsigned int order, 486 unsigned long ip) 487 { 488 __kasan_unpoison_pages(page, order, false); 489 } 490 491 bool __kasan_mempool_poison_object(void *ptr, unsigned long ip) 492 { 493 struct folio *folio = virt_to_folio(ptr); 494 struct slab *slab; 495 496 /* 497 * This function can be called for large kmalloc allocation that get 498 * their memory from page_alloc. Thus, the folio might not be a slab. 499 */ 500 if (unlikely(!folio_test_slab(folio))) { 501 if (check_page_allocation(ptr, ip)) 502 return false; 503 kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false); 504 return true; 505 } 506 507 if (is_kfence_address(ptr)) 508 return false; 509 510 slab = folio_slab(folio); 511 return !poison_slab_object(slab->slab_cache, ptr, ip, false); 512 } 513 514 void __kasan_mempool_unpoison_object(void *ptr, size_t size, unsigned long ip) 515 { 516 struct slab *slab; 517 gfp_t flags = 0; /* Might be executing under a lock. */ 518 519 slab = virt_to_slab(ptr); 520 521 /* 522 * This function can be called for large kmalloc allocation that get 523 * their memory from page_alloc. 524 */ 525 if (unlikely(!slab)) { 526 kasan_unpoison(ptr, size, false); 527 poison_kmalloc_large_redzone(ptr, size, flags); 528 return; 529 } 530 531 if (is_kfence_address(ptr)) 532 return; 533 534 /* Unpoison the object and save alloc info for non-kmalloc() allocations. */ 535 unpoison_slab_object(slab->slab_cache, ptr, flags, false); 536 537 /* Poison the redzone and save alloc info for kmalloc() allocations. */ 538 if (is_kmalloc_cache(slab->slab_cache)) 539 poison_kmalloc_redzone(slab->slab_cache, ptr, size, flags); 540 } 541 542 bool __kasan_check_byte(const void *address, unsigned long ip) 543 { 544 if (!kasan_byte_accessible(address)) { 545 kasan_report(address, 1, false, ip); 546 return false; 547 } 548 return true; 549 } 550