xref: /linux/mm/kasan/common.c (revision dacef016c088f8f69fe1e6e5feab3543df3dab83)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/slab.h>
25 #include <linux/stacktrace.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/bug.h>
29 
30 #include "kasan.h"
31 #include "../slab.h"
32 
33 depot_stack_handle_t kasan_save_stack(gfp_t flags, bool can_alloc)
34 {
35 	unsigned long entries[KASAN_STACK_DEPTH];
36 	unsigned int nr_entries;
37 
38 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
39 	nr_entries = filter_irq_stacks(entries, nr_entries);
40 	return __stack_depot_save(entries, nr_entries, flags, can_alloc);
41 }
42 
43 void kasan_set_track(struct kasan_track *track, gfp_t flags)
44 {
45 	track->pid = current->pid;
46 	track->stack = kasan_save_stack(flags, true);
47 }
48 
49 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
50 void kasan_enable_current(void)
51 {
52 	current->kasan_depth++;
53 }
54 EXPORT_SYMBOL(kasan_enable_current);
55 
56 void kasan_disable_current(void)
57 {
58 	current->kasan_depth--;
59 }
60 EXPORT_SYMBOL(kasan_disable_current);
61 
62 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
63 
64 void __kasan_unpoison_range(const void *address, size_t size)
65 {
66 	kasan_unpoison(address, size, false);
67 }
68 
69 #ifdef CONFIG_KASAN_STACK
70 /* Unpoison the entire stack for a task. */
71 void kasan_unpoison_task_stack(struct task_struct *task)
72 {
73 	void *base = task_stack_page(task);
74 
75 	kasan_unpoison(base, THREAD_SIZE, false);
76 }
77 
78 /* Unpoison the stack for the current task beyond a watermark sp value. */
79 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
80 {
81 	/*
82 	 * Calculate the task stack base address.  Avoid using 'current'
83 	 * because this function is called by early resume code which hasn't
84 	 * yet set up the percpu register (%gs).
85 	 */
86 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
87 
88 	kasan_unpoison(base, watermark - base, false);
89 }
90 #endif /* CONFIG_KASAN_STACK */
91 
92 /*
93  * Only allow cache merging when stack collection is disabled and no metadata
94  * is present.
95  */
96 slab_flags_t __kasan_never_merge(void)
97 {
98 	if (kasan_stack_collection_enabled())
99 		return SLAB_KASAN;
100 	return 0;
101 }
102 
103 void __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
104 {
105 	u8 tag;
106 	unsigned long i;
107 
108 	if (unlikely(PageHighMem(page)))
109 		return;
110 
111 	tag = kasan_random_tag();
112 	for (i = 0; i < (1 << order); i++)
113 		page_kasan_tag_set(page + i, tag);
114 	kasan_unpoison(page_address(page), PAGE_SIZE << order, init);
115 }
116 
117 void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
118 {
119 	if (likely(!PageHighMem(page)))
120 		kasan_poison(page_address(page), PAGE_SIZE << order,
121 			     KASAN_FREE_PAGE, init);
122 }
123 
124 /*
125  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
126  * For larger allocations larger redzones are used.
127  */
128 static inline unsigned int optimal_redzone(unsigned int object_size)
129 {
130 	return
131 		object_size <= 64        - 16   ? 16 :
132 		object_size <= 128       - 32   ? 32 :
133 		object_size <= 512       - 64   ? 64 :
134 		object_size <= 4096      - 128  ? 128 :
135 		object_size <= (1 << 14) - 256  ? 256 :
136 		object_size <= (1 << 15) - 512  ? 512 :
137 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
138 }
139 
140 void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
141 			  slab_flags_t *flags)
142 {
143 	unsigned int ok_size;
144 	unsigned int optimal_size;
145 
146 	/*
147 	 * SLAB_KASAN is used to mark caches as ones that are sanitized by
148 	 * KASAN. Currently this flag is used in two places:
149 	 * 1. In slab_ksize() when calculating the size of the accessible
150 	 *    memory within the object.
151 	 * 2. In slab_common.c to prevent merging of sanitized caches.
152 	 */
153 	*flags |= SLAB_KASAN;
154 
155 	if (!kasan_stack_collection_enabled())
156 		return;
157 
158 	ok_size = *size;
159 
160 	/* Add alloc meta into redzone. */
161 	cache->kasan_info.alloc_meta_offset = *size;
162 	*size += sizeof(struct kasan_alloc_meta);
163 
164 	/*
165 	 * If alloc meta doesn't fit, don't add it.
166 	 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
167 	 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
168 	 * larger sizes.
169 	 */
170 	if (*size > KMALLOC_MAX_SIZE) {
171 		cache->kasan_info.alloc_meta_offset = 0;
172 		*size = ok_size;
173 		/* Continue, since free meta might still fit. */
174 	}
175 
176 	/* Only the generic mode uses free meta or flexible redzones. */
177 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) {
178 		cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
179 		return;
180 	}
181 
182 	/*
183 	 * Add free meta into redzone when it's not possible to store
184 	 * it in the object. This is the case when:
185 	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
186 	 *    be touched after it was freed, or
187 	 * 2. Object has a constructor, which means it's expected to
188 	 *    retain its content until the next allocation, or
189 	 * 3. Object is too small.
190 	 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
191 	 */
192 	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
193 	    cache->object_size < sizeof(struct kasan_free_meta)) {
194 		ok_size = *size;
195 
196 		cache->kasan_info.free_meta_offset = *size;
197 		*size += sizeof(struct kasan_free_meta);
198 
199 		/* If free meta doesn't fit, don't add it. */
200 		if (*size > KMALLOC_MAX_SIZE) {
201 			cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
202 			*size = ok_size;
203 		}
204 	}
205 
206 	/* Calculate size with optimal redzone. */
207 	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
208 	/* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
209 	if (optimal_size > KMALLOC_MAX_SIZE)
210 		optimal_size = KMALLOC_MAX_SIZE;
211 	/* Use optimal size if the size with added metas is not large enough. */
212 	if (*size < optimal_size)
213 		*size = optimal_size;
214 }
215 
216 void __kasan_cache_create_kmalloc(struct kmem_cache *cache)
217 {
218 	cache->kasan_info.is_kmalloc = true;
219 }
220 
221 size_t __kasan_metadata_size(struct kmem_cache *cache)
222 {
223 	if (!kasan_stack_collection_enabled())
224 		return 0;
225 	return (cache->kasan_info.alloc_meta_offset ?
226 		sizeof(struct kasan_alloc_meta) : 0) +
227 		(cache->kasan_info.free_meta_offset ?
228 		sizeof(struct kasan_free_meta) : 0);
229 }
230 
231 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
232 					      const void *object)
233 {
234 	if (!cache->kasan_info.alloc_meta_offset)
235 		return NULL;
236 	return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset;
237 }
238 
239 #ifdef CONFIG_KASAN_GENERIC
240 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
241 					    const void *object)
242 {
243 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
244 	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
245 		return NULL;
246 	return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset;
247 }
248 #endif
249 
250 void __kasan_poison_slab(struct page *page)
251 {
252 	unsigned long i;
253 
254 	for (i = 0; i < compound_nr(page); i++)
255 		page_kasan_tag_reset(page + i);
256 	kasan_poison(page_address(page), page_size(page),
257 		     KASAN_KMALLOC_REDZONE, false);
258 }
259 
260 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
261 {
262 	kasan_unpoison(object, cache->object_size, false);
263 }
264 
265 void __kasan_poison_object_data(struct kmem_cache *cache, void *object)
266 {
267 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
268 			KASAN_KMALLOC_REDZONE, false);
269 }
270 
271 /*
272  * This function assigns a tag to an object considering the following:
273  * 1. A cache might have a constructor, which might save a pointer to a slab
274  *    object somewhere (e.g. in the object itself). We preassign a tag for
275  *    each object in caches with constructors during slab creation and reuse
276  *    the same tag each time a particular object is allocated.
277  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
278  *    accessed after being freed. We preassign tags for objects in these
279  *    caches as well.
280  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
281  *    is stored as an array of indexes instead of a linked list. Assign tags
282  *    based on objects indexes, so that objects that are next to each other
283  *    get different tags.
284  */
285 static inline u8 assign_tag(struct kmem_cache *cache,
286 					const void *object, bool init)
287 {
288 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
289 		return 0xff;
290 
291 	/*
292 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
293 	 * set, assign a tag when the object is being allocated (init == false).
294 	 */
295 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
296 		return init ? KASAN_TAG_KERNEL : kasan_random_tag();
297 
298 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
299 #ifdef CONFIG_SLAB
300 	/* For SLAB assign tags based on the object index in the freelist. */
301 	return (u8)obj_to_index(cache, virt_to_head_page(object), (void *)object);
302 #else
303 	/*
304 	 * For SLUB assign a random tag during slab creation, otherwise reuse
305 	 * the already assigned tag.
306 	 */
307 	return init ? kasan_random_tag() : get_tag(object);
308 #endif
309 }
310 
311 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
312 						const void *object)
313 {
314 	struct kasan_alloc_meta *alloc_meta;
315 
316 	if (kasan_stack_collection_enabled()) {
317 		alloc_meta = kasan_get_alloc_meta(cache, object);
318 		if (alloc_meta)
319 			__memset(alloc_meta, 0, sizeof(*alloc_meta));
320 	}
321 
322 	/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
323 	object = set_tag(object, assign_tag(cache, object, true));
324 
325 	return (void *)object;
326 }
327 
328 static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object,
329 				unsigned long ip, bool quarantine, bool init)
330 {
331 	u8 tag;
332 	void *tagged_object;
333 
334 	if (!kasan_arch_is_ready())
335 		return false;
336 
337 	tag = get_tag(object);
338 	tagged_object = object;
339 	object = kasan_reset_tag(object);
340 
341 	if (is_kfence_address(object))
342 		return false;
343 
344 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
345 	    object)) {
346 		kasan_report_invalid_free(tagged_object, ip);
347 		return true;
348 	}
349 
350 	/* RCU slabs could be legally used after free within the RCU period */
351 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
352 		return false;
353 
354 	if (!kasan_byte_accessible(tagged_object)) {
355 		kasan_report_invalid_free(tagged_object, ip);
356 		return true;
357 	}
358 
359 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
360 			KASAN_KMALLOC_FREE, init);
361 
362 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine))
363 		return false;
364 
365 	if (kasan_stack_collection_enabled())
366 		kasan_set_free_info(cache, object, tag);
367 
368 	return kasan_quarantine_put(cache, object);
369 }
370 
371 bool __kasan_slab_free(struct kmem_cache *cache, void *object,
372 				unsigned long ip, bool init)
373 {
374 	return ____kasan_slab_free(cache, object, ip, true, init);
375 }
376 
377 static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip)
378 {
379 	if (ptr != page_address(virt_to_head_page(ptr))) {
380 		kasan_report_invalid_free(ptr, ip);
381 		return true;
382 	}
383 
384 	if (!kasan_byte_accessible(ptr)) {
385 		kasan_report_invalid_free(ptr, ip);
386 		return true;
387 	}
388 
389 	/*
390 	 * The object will be poisoned by kasan_free_pages() or
391 	 * kasan_slab_free_mempool().
392 	 */
393 
394 	return false;
395 }
396 
397 void __kasan_kfree_large(void *ptr, unsigned long ip)
398 {
399 	____kasan_kfree_large(ptr, ip);
400 }
401 
402 void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
403 {
404 	struct page *page;
405 
406 	page = virt_to_head_page(ptr);
407 
408 	/*
409 	 * Even though this function is only called for kmem_cache_alloc and
410 	 * kmalloc backed mempool allocations, those allocations can still be
411 	 * !PageSlab() when the size provided to kmalloc is larger than
412 	 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
413 	 */
414 	if (unlikely(!PageSlab(page))) {
415 		if (____kasan_kfree_large(ptr, ip))
416 			return;
417 		kasan_poison(ptr, page_size(page), KASAN_FREE_PAGE, false);
418 	} else {
419 		____kasan_slab_free(page->slab_cache, ptr, ip, false, false);
420 	}
421 }
422 
423 static void set_alloc_info(struct kmem_cache *cache, void *object,
424 				gfp_t flags, bool is_kmalloc)
425 {
426 	struct kasan_alloc_meta *alloc_meta;
427 
428 	/* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */
429 	if (cache->kasan_info.is_kmalloc && !is_kmalloc)
430 		return;
431 
432 	alloc_meta = kasan_get_alloc_meta(cache, object);
433 	if (alloc_meta)
434 		kasan_set_track(&alloc_meta->alloc_track, flags);
435 }
436 
437 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
438 					void *object, gfp_t flags, bool init)
439 {
440 	u8 tag;
441 	void *tagged_object;
442 
443 	if (gfpflags_allow_blocking(flags))
444 		kasan_quarantine_reduce();
445 
446 	if (unlikely(object == NULL))
447 		return NULL;
448 
449 	if (is_kfence_address(object))
450 		return (void *)object;
451 
452 	/*
453 	 * Generate and assign random tag for tag-based modes.
454 	 * Tag is ignored in set_tag() for the generic mode.
455 	 */
456 	tag = assign_tag(cache, object, false);
457 	tagged_object = set_tag(object, tag);
458 
459 	/*
460 	 * Unpoison the whole object.
461 	 * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning.
462 	 */
463 	kasan_unpoison(tagged_object, cache->object_size, init);
464 
465 	/* Save alloc info (if possible) for non-kmalloc() allocations. */
466 	if (kasan_stack_collection_enabled())
467 		set_alloc_info(cache, (void *)object, flags, false);
468 
469 	return tagged_object;
470 }
471 
472 static inline void *____kasan_kmalloc(struct kmem_cache *cache,
473 				const void *object, size_t size, gfp_t flags)
474 {
475 	unsigned long redzone_start;
476 	unsigned long redzone_end;
477 
478 	if (gfpflags_allow_blocking(flags))
479 		kasan_quarantine_reduce();
480 
481 	if (unlikely(object == NULL))
482 		return NULL;
483 
484 	if (is_kfence_address(kasan_reset_tag(object)))
485 		return (void *)object;
486 
487 	/*
488 	 * The object has already been unpoisoned by kasan_slab_alloc() for
489 	 * kmalloc() or by kasan_krealloc() for krealloc().
490 	 */
491 
492 	/*
493 	 * The redzone has byte-level precision for the generic mode.
494 	 * Partially poison the last object granule to cover the unaligned
495 	 * part of the redzone.
496 	 */
497 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
498 		kasan_poison_last_granule((void *)object, size);
499 
500 	/* Poison the aligned part of the redzone. */
501 	redzone_start = round_up((unsigned long)(object + size),
502 				KASAN_GRANULE_SIZE);
503 	redzone_end = round_up((unsigned long)(object + cache->object_size),
504 				KASAN_GRANULE_SIZE);
505 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
506 			   KASAN_KMALLOC_REDZONE, false);
507 
508 	/*
509 	 * Save alloc info (if possible) for kmalloc() allocations.
510 	 * This also rewrites the alloc info when called from kasan_krealloc().
511 	 */
512 	if (kasan_stack_collection_enabled())
513 		set_alloc_info(cache, (void *)object, flags, true);
514 
515 	/* Keep the tag that was set by kasan_slab_alloc(). */
516 	return (void *)object;
517 }
518 
519 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
520 					size_t size, gfp_t flags)
521 {
522 	return ____kasan_kmalloc(cache, object, size, flags);
523 }
524 EXPORT_SYMBOL(__kasan_kmalloc);
525 
526 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
527 						gfp_t flags)
528 {
529 	unsigned long redzone_start;
530 	unsigned long redzone_end;
531 
532 	if (gfpflags_allow_blocking(flags))
533 		kasan_quarantine_reduce();
534 
535 	if (unlikely(ptr == NULL))
536 		return NULL;
537 
538 	/*
539 	 * The object has already been unpoisoned by kasan_alloc_pages() for
540 	 * alloc_pages() or by kasan_krealloc() for krealloc().
541 	 */
542 
543 	/*
544 	 * The redzone has byte-level precision for the generic mode.
545 	 * Partially poison the last object granule to cover the unaligned
546 	 * part of the redzone.
547 	 */
548 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
549 		kasan_poison_last_granule(ptr, size);
550 
551 	/* Poison the aligned part of the redzone. */
552 	redzone_start = round_up((unsigned long)(ptr + size),
553 				KASAN_GRANULE_SIZE);
554 	redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
555 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
556 		     KASAN_PAGE_REDZONE, false);
557 
558 	return (void *)ptr;
559 }
560 
561 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
562 {
563 	struct page *page;
564 
565 	if (unlikely(object == ZERO_SIZE_PTR))
566 		return (void *)object;
567 
568 	/*
569 	 * Unpoison the object's data.
570 	 * Part of it might already have been unpoisoned, but it's unknown
571 	 * how big that part is.
572 	 */
573 	kasan_unpoison(object, size, false);
574 
575 	page = virt_to_head_page(object);
576 
577 	/* Piggy-back on kmalloc() instrumentation to poison the redzone. */
578 	if (unlikely(!PageSlab(page)))
579 		return __kasan_kmalloc_large(object, size, flags);
580 	else
581 		return ____kasan_kmalloc(page->slab_cache, object, size, flags);
582 }
583 
584 bool __kasan_check_byte(const void *address, unsigned long ip)
585 {
586 	if (!kasan_byte_accessible(address)) {
587 		kasan_report((unsigned long)address, 1, false, ip);
588 		return false;
589 	}
590 	return true;
591 }
592