1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <linux/export.h> 13 #include <linux/init.h> 14 #include <linux/kasan.h> 15 #include <linux/kernel.h> 16 #include <linux/linkage.h> 17 #include <linux/memblock.h> 18 #include <linux/memory.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/printk.h> 22 #include <linux/sched.h> 23 #include <linux/sched/clock.h> 24 #include <linux/sched/task_stack.h> 25 #include <linux/slab.h> 26 #include <linux/stackdepot.h> 27 #include <linux/stacktrace.h> 28 #include <linux/string.h> 29 #include <linux/types.h> 30 #include <linux/bug.h> 31 32 #include "kasan.h" 33 #include "../slab.h" 34 35 #if defined(CONFIG_ARCH_DEFER_KASAN) || defined(CONFIG_KASAN_HW_TAGS) 36 /* 37 * Definition of the unified static key declared in kasan-enabled.h. 38 * This provides consistent runtime enable/disable across KASAN modes. 39 */ 40 DEFINE_STATIC_KEY_FALSE(kasan_flag_enabled); 41 EXPORT_SYMBOL_GPL(kasan_flag_enabled); 42 #endif 43 44 struct slab *kasan_addr_to_slab(const void *addr) 45 { 46 if (virt_addr_valid(addr)) 47 return virt_to_slab(addr); 48 return NULL; 49 } 50 51 depot_stack_handle_t kasan_save_stack(gfp_t flags, depot_flags_t depot_flags) 52 { 53 unsigned long entries[KASAN_STACK_DEPTH]; 54 unsigned int nr_entries; 55 56 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); 57 return stack_depot_save_flags(entries, nr_entries, flags, depot_flags); 58 } 59 60 void kasan_set_track(struct kasan_track *track, depot_stack_handle_t stack) 61 { 62 #ifdef CONFIG_KASAN_EXTRA_INFO 63 u32 cpu = raw_smp_processor_id(); 64 u64 ts_nsec = local_clock(); 65 66 track->cpu = cpu; 67 track->timestamp = ts_nsec >> 9; 68 #endif /* CONFIG_KASAN_EXTRA_INFO */ 69 track->pid = current->pid; 70 track->stack = stack; 71 } 72 73 void kasan_save_track(struct kasan_track *track, gfp_t flags) 74 { 75 depot_stack_handle_t stack; 76 77 stack = kasan_save_stack(flags, STACK_DEPOT_FLAG_CAN_ALLOC); 78 kasan_set_track(track, stack); 79 } 80 81 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 82 void kasan_enable_current(void) 83 { 84 current->kasan_depth++; 85 } 86 EXPORT_SYMBOL(kasan_enable_current); 87 88 void kasan_disable_current(void) 89 { 90 current->kasan_depth--; 91 } 92 EXPORT_SYMBOL(kasan_disable_current); 93 94 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ 95 96 void __kasan_unpoison_range(const void *address, size_t size) 97 { 98 if (is_kfence_address(address)) 99 return; 100 101 kasan_unpoison(address, size, false); 102 } 103 104 #ifdef CONFIG_KASAN_STACK 105 /* Unpoison the entire stack for a task. */ 106 void kasan_unpoison_task_stack(struct task_struct *task) 107 { 108 void *base = task_stack_page(task); 109 110 kasan_unpoison(base, THREAD_SIZE, false); 111 } 112 113 /* Unpoison the stack for the current task beyond a watermark sp value. */ 114 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 115 { 116 /* 117 * Calculate the task stack base address. Avoid using 'current' 118 * because this function is called by early resume code which hasn't 119 * yet set up the percpu register (%gs). 120 */ 121 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 122 123 kasan_unpoison(base, watermark - base, false); 124 } 125 #endif /* CONFIG_KASAN_STACK */ 126 127 bool __kasan_unpoison_pages(struct page *page, unsigned int order, bool init) 128 { 129 u8 tag; 130 unsigned long i; 131 132 if (unlikely(PageHighMem(page))) 133 return false; 134 135 if (!kasan_sample_page_alloc(order)) 136 return false; 137 138 tag = kasan_random_tag(); 139 kasan_unpoison(set_tag(page_address(page), tag), 140 PAGE_SIZE << order, init); 141 for (i = 0; i < (1 << order); i++) 142 page_kasan_tag_set(page + i, tag); 143 144 return true; 145 } 146 147 void __kasan_poison_pages(struct page *page, unsigned int order, bool init) 148 { 149 if (likely(!PageHighMem(page))) 150 kasan_poison(page_address(page), PAGE_SIZE << order, 151 KASAN_PAGE_FREE, init); 152 } 153 154 void __kasan_poison_slab(struct slab *slab) 155 { 156 struct page *page = slab_page(slab); 157 unsigned long i; 158 159 for (i = 0; i < compound_nr(page); i++) 160 page_kasan_tag_reset(page + i); 161 kasan_poison(page_address(page), page_size(page), 162 KASAN_SLAB_REDZONE, false); 163 } 164 165 void __kasan_unpoison_new_object(struct kmem_cache *cache, void *object) 166 { 167 kasan_unpoison(object, cache->object_size, false); 168 } 169 170 void __kasan_poison_new_object(struct kmem_cache *cache, void *object) 171 { 172 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 173 KASAN_SLAB_REDZONE, false); 174 } 175 176 /* 177 * This function assigns a tag to an object considering the following: 178 * 1. A cache might have a constructor, which might save a pointer to a slab 179 * object somewhere (e.g. in the object itself). We preassign a tag for 180 * each object in caches with constructors during slab creation and reuse 181 * the same tag each time a particular object is allocated. 182 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 183 * accessed after being freed. We preassign tags for objects in these 184 * caches as well. 185 */ 186 static inline u8 assign_tag(struct kmem_cache *cache, 187 const void *object, bool init) 188 { 189 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 190 return 0xff; 191 192 /* 193 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 194 * set, assign a tag when the object is being allocated (init == false). 195 */ 196 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 197 return init ? KASAN_TAG_KERNEL : kasan_random_tag(); 198 199 /* 200 * For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU, 201 * assign a random tag during slab creation, otherwise reuse 202 * the already assigned tag. 203 */ 204 return init ? kasan_random_tag() : get_tag(object); 205 } 206 207 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache, 208 const void *object) 209 { 210 /* Initialize per-object metadata if it is present. */ 211 if (kasan_requires_meta()) 212 kasan_init_object_meta(cache, object); 213 214 /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */ 215 object = set_tag(object, assign_tag(cache, object, true)); 216 217 return (void *)object; 218 } 219 220 /* Returns true when freeing the object is not safe. */ 221 static bool check_slab_allocation(struct kmem_cache *cache, void *object, 222 unsigned long ip) 223 { 224 void *tagged_object = object; 225 226 object = kasan_reset_tag(object); 227 228 if (unlikely(nearest_obj(cache, virt_to_slab(object), object) != object)) { 229 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE); 230 return true; 231 } 232 233 if (!kasan_byte_accessible(tagged_object)) { 234 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE); 235 return true; 236 } 237 238 return false; 239 } 240 241 static inline void poison_slab_object(struct kmem_cache *cache, void *object, 242 bool init) 243 { 244 void *tagged_object = object; 245 246 object = kasan_reset_tag(object); 247 248 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 249 KASAN_SLAB_FREE, init); 250 251 if (kasan_stack_collection_enabled()) 252 kasan_save_free_info(cache, tagged_object); 253 } 254 255 bool __kasan_slab_pre_free(struct kmem_cache *cache, void *object, 256 unsigned long ip) 257 { 258 if (is_kfence_address(object)) 259 return false; 260 return check_slab_allocation(cache, object, ip); 261 } 262 263 bool __kasan_slab_free(struct kmem_cache *cache, void *object, bool init, 264 bool still_accessible) 265 { 266 if (is_kfence_address(object)) 267 return false; 268 269 /* 270 * If this point is reached with an object that must still be 271 * accessible under RCU, we can't poison it; in that case, also skip the 272 * quarantine. This should mostly only happen when CONFIG_SLUB_RCU_DEBUG 273 * has been disabled manually. 274 * 275 * Putting the object on the quarantine wouldn't help catch UAFs (since 276 * we can't poison it here), and it would mask bugs caused by 277 * SLAB_TYPESAFE_BY_RCU users not being careful enough about object 278 * reuse; so overall, putting the object into the quarantine here would 279 * be counterproductive. 280 */ 281 if (still_accessible) 282 return false; 283 284 poison_slab_object(cache, object, init); 285 286 /* 287 * If the object is put into quarantine, do not let slab put the object 288 * onto the freelist for now. The object's metadata is kept until the 289 * object gets evicted from quarantine. 290 */ 291 if (kasan_quarantine_put(cache, object)) 292 return true; 293 294 /* 295 * Note: Keep per-object metadata to allow KASAN print stack traces for 296 * use-after-free-before-realloc bugs. 297 */ 298 299 /* Let slab put the object onto the freelist. */ 300 return false; 301 } 302 303 static inline bool check_page_allocation(void *ptr, unsigned long ip) 304 { 305 if (!kasan_enabled()) 306 return false; 307 308 if (ptr != page_address(virt_to_head_page(ptr))) { 309 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE); 310 return true; 311 } 312 313 if (!kasan_byte_accessible(ptr)) { 314 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE); 315 return true; 316 } 317 318 return false; 319 } 320 321 void __kasan_kfree_large(void *ptr, unsigned long ip) 322 { 323 check_page_allocation(ptr, ip); 324 325 /* The object will be poisoned by kasan_poison_pages(). */ 326 } 327 328 static inline void unpoison_slab_object(struct kmem_cache *cache, void *object, 329 gfp_t flags, bool init) 330 { 331 /* 332 * Unpoison the whole object. For kmalloc() allocations, 333 * poison_kmalloc_redzone() will do precise poisoning. 334 */ 335 kasan_unpoison(object, cache->object_size, init); 336 337 /* Save alloc info (if possible) for non-kmalloc() allocations. */ 338 if (kasan_stack_collection_enabled() && !is_kmalloc_cache(cache)) 339 kasan_save_alloc_info(cache, object, flags); 340 } 341 342 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, 343 void *object, gfp_t flags, bool init) 344 { 345 u8 tag; 346 void *tagged_object; 347 348 if (gfpflags_allow_blocking(flags)) 349 kasan_quarantine_reduce(); 350 351 if (unlikely(object == NULL)) 352 return NULL; 353 354 if (is_kfence_address(object)) 355 return (void *)object; 356 357 /* 358 * Generate and assign random tag for tag-based modes. 359 * Tag is ignored in set_tag() for the generic mode. 360 */ 361 tag = assign_tag(cache, object, false); 362 tagged_object = set_tag(object, tag); 363 364 /* Unpoison the object and save alloc info for non-kmalloc() allocations. */ 365 unpoison_slab_object(cache, tagged_object, flags, init); 366 367 return tagged_object; 368 } 369 370 static inline void poison_kmalloc_redzone(struct kmem_cache *cache, 371 const void *object, size_t size, gfp_t flags) 372 { 373 unsigned long redzone_start; 374 unsigned long redzone_end; 375 376 /* 377 * The redzone has byte-level precision for the generic mode. 378 * Partially poison the last object granule to cover the unaligned 379 * part of the redzone. 380 */ 381 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 382 kasan_poison_last_granule((void *)object, size); 383 384 /* Poison the aligned part of the redzone. */ 385 redzone_start = round_up((unsigned long)(object + size), 386 KASAN_GRANULE_SIZE); 387 redzone_end = round_up((unsigned long)(object + cache->object_size), 388 KASAN_GRANULE_SIZE); 389 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 390 KASAN_SLAB_REDZONE, false); 391 392 /* 393 * Save alloc info (if possible) for kmalloc() allocations. 394 * This also rewrites the alloc info when called from kasan_krealloc(). 395 */ 396 if (kasan_stack_collection_enabled() && is_kmalloc_cache(cache)) 397 kasan_save_alloc_info(cache, (void *)object, flags); 398 399 } 400 401 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object, 402 size_t size, gfp_t flags) 403 { 404 if (gfpflags_allow_blocking(flags)) 405 kasan_quarantine_reduce(); 406 407 if (unlikely(object == NULL)) 408 return NULL; 409 410 if (is_kfence_address(object)) 411 return (void *)object; 412 413 /* The object has already been unpoisoned by kasan_slab_alloc(). */ 414 poison_kmalloc_redzone(cache, object, size, flags); 415 416 /* Keep the tag that was set by kasan_slab_alloc(). */ 417 return (void *)object; 418 } 419 EXPORT_SYMBOL(__kasan_kmalloc); 420 421 static inline void poison_kmalloc_large_redzone(const void *ptr, size_t size, 422 gfp_t flags) 423 { 424 unsigned long redzone_start; 425 unsigned long redzone_end; 426 427 /* 428 * The redzone has byte-level precision for the generic mode. 429 * Partially poison the last object granule to cover the unaligned 430 * part of the redzone. 431 */ 432 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 433 kasan_poison_last_granule(ptr, size); 434 435 /* Poison the aligned part of the redzone. */ 436 redzone_start = round_up((unsigned long)(ptr + size), KASAN_GRANULE_SIZE); 437 redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr)); 438 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 439 KASAN_PAGE_REDZONE, false); 440 } 441 442 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size, 443 gfp_t flags) 444 { 445 if (gfpflags_allow_blocking(flags)) 446 kasan_quarantine_reduce(); 447 448 if (unlikely(ptr == NULL)) 449 return NULL; 450 451 /* The object has already been unpoisoned by kasan_unpoison_pages(). */ 452 poison_kmalloc_large_redzone(ptr, size, flags); 453 454 /* Keep the tag that was set by alloc_pages(). */ 455 return (void *)ptr; 456 } 457 458 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags) 459 { 460 struct slab *slab; 461 462 if (gfpflags_allow_blocking(flags)) 463 kasan_quarantine_reduce(); 464 465 if (unlikely(object == ZERO_SIZE_PTR)) 466 return (void *)object; 467 468 if (is_kfence_address(object)) 469 return (void *)object; 470 471 /* 472 * Unpoison the object's data. 473 * Part of it might already have been unpoisoned, but it's unknown 474 * how big that part is. 475 */ 476 kasan_unpoison(object, size, false); 477 478 slab = virt_to_slab(object); 479 480 /* Piggy-back on kmalloc() instrumentation to poison the redzone. */ 481 if (unlikely(!slab)) 482 poison_kmalloc_large_redzone(object, size, flags); 483 else 484 poison_kmalloc_redzone(slab->slab_cache, object, size, flags); 485 486 return (void *)object; 487 } 488 489 bool __kasan_mempool_poison_pages(struct page *page, unsigned int order, 490 unsigned long ip) 491 { 492 unsigned long *ptr; 493 494 if (unlikely(PageHighMem(page))) 495 return true; 496 497 /* Bail out if allocation was excluded due to sampling. */ 498 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 499 page_kasan_tag(page) == KASAN_TAG_KERNEL) 500 return true; 501 502 ptr = page_address(page); 503 504 if (check_page_allocation(ptr, ip)) 505 return false; 506 507 kasan_poison(ptr, PAGE_SIZE << order, KASAN_PAGE_FREE, false); 508 509 return true; 510 } 511 512 void __kasan_mempool_unpoison_pages(struct page *page, unsigned int order, 513 unsigned long ip) 514 { 515 __kasan_unpoison_pages(page, order, false); 516 } 517 518 bool __kasan_mempool_poison_object(void *ptr, unsigned long ip) 519 { 520 struct folio *folio = virt_to_folio(ptr); 521 struct slab *slab; 522 523 /* 524 * This function can be called for large kmalloc allocation that get 525 * their memory from page_alloc. Thus, the folio might not be a slab. 526 */ 527 if (unlikely(!folio_test_slab(folio))) { 528 if (check_page_allocation(ptr, ip)) 529 return false; 530 kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false); 531 return true; 532 } 533 534 if (is_kfence_address(ptr)) 535 return true; 536 537 slab = folio_slab(folio); 538 539 if (check_slab_allocation(slab->slab_cache, ptr, ip)) 540 return false; 541 542 poison_slab_object(slab->slab_cache, ptr, false); 543 return true; 544 } 545 546 void __kasan_mempool_unpoison_object(void *ptr, size_t size, unsigned long ip) 547 { 548 struct slab *slab; 549 gfp_t flags = 0; /* Might be executing under a lock. */ 550 551 slab = virt_to_slab(ptr); 552 553 /* 554 * This function can be called for large kmalloc allocation that get 555 * their memory from page_alloc. 556 */ 557 if (unlikely(!slab)) { 558 kasan_unpoison(ptr, size, false); 559 poison_kmalloc_large_redzone(ptr, size, flags); 560 return; 561 } 562 563 if (is_kfence_address(ptr)) 564 return; 565 566 /* Unpoison the object and save alloc info for non-kmalloc() allocations. */ 567 unpoison_slab_object(slab->slab_cache, ptr, flags, false); 568 569 /* Poison the redzone and save alloc info for kmalloc() allocations. */ 570 if (is_kmalloc_cache(slab->slab_cache)) 571 poison_kmalloc_redzone(slab->slab_cache, ptr, size, flags); 572 } 573 574 bool __kasan_check_byte(const void *address, unsigned long ip) 575 { 576 if (!kasan_byte_accessible(address)) { 577 kasan_report(address, 1, false, ip); 578 return false; 579 } 580 return true; 581 } 582