xref: /linux/mm/kasan/common.c (revision d38c07afc356ddebaa3ed8ecb3f553340e05c969)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common generic and tag-based KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16 
17 #include <linux/export.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kasan.h>
21 #include <linux/kernel.h>
22 #include <linux/kmemleak.h>
23 #include <linux/linkage.h>
24 #include <linux/memblock.h>
25 #include <linux/memory.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/printk.h>
29 #include <linux/sched.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/slab.h>
32 #include <linux/stacktrace.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/vmalloc.h>
36 #include <linux/bug.h>
37 #include <linux/uaccess.h>
38 
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 
42 #include "kasan.h"
43 #include "../slab.h"
44 
45 static inline int in_irqentry_text(unsigned long ptr)
46 {
47 	return (ptr >= (unsigned long)&__irqentry_text_start &&
48 		ptr < (unsigned long)&__irqentry_text_end) ||
49 		(ptr >= (unsigned long)&__softirqentry_text_start &&
50 		 ptr < (unsigned long)&__softirqentry_text_end);
51 }
52 
53 static inline unsigned int filter_irq_stacks(unsigned long *entries,
54 					     unsigned int nr_entries)
55 {
56 	unsigned int i;
57 
58 	for (i = 0; i < nr_entries; i++) {
59 		if (in_irqentry_text(entries[i])) {
60 			/* Include the irqentry function into the stack. */
61 			return i + 1;
62 		}
63 	}
64 	return nr_entries;
65 }
66 
67 static inline depot_stack_handle_t save_stack(gfp_t flags)
68 {
69 	unsigned long entries[KASAN_STACK_DEPTH];
70 	unsigned int nr_entries;
71 
72 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
73 	nr_entries = filter_irq_stacks(entries, nr_entries);
74 	return stack_depot_save(entries, nr_entries, flags);
75 }
76 
77 static inline void set_track(struct kasan_track *track, gfp_t flags)
78 {
79 	track->pid = current->pid;
80 	track->stack = save_stack(flags);
81 }
82 
83 void kasan_enable_current(void)
84 {
85 	current->kasan_depth++;
86 }
87 
88 void kasan_disable_current(void)
89 {
90 	current->kasan_depth--;
91 }
92 
93 bool __kasan_check_read(const volatile void *p, unsigned int size)
94 {
95 	return check_memory_region((unsigned long)p, size, false, _RET_IP_);
96 }
97 EXPORT_SYMBOL(__kasan_check_read);
98 
99 bool __kasan_check_write(const volatile void *p, unsigned int size)
100 {
101 	return check_memory_region((unsigned long)p, size, true, _RET_IP_);
102 }
103 EXPORT_SYMBOL(__kasan_check_write);
104 
105 #undef memset
106 void *memset(void *addr, int c, size_t len)
107 {
108 	if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
109 		return NULL;
110 
111 	return __memset(addr, c, len);
112 }
113 
114 #ifdef __HAVE_ARCH_MEMMOVE
115 #undef memmove
116 void *memmove(void *dest, const void *src, size_t len)
117 {
118 	if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
119 	    !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
120 		return NULL;
121 
122 	return __memmove(dest, src, len);
123 }
124 #endif
125 
126 #undef memcpy
127 void *memcpy(void *dest, const void *src, size_t len)
128 {
129 	if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
130 	    !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
131 		return NULL;
132 
133 	return __memcpy(dest, src, len);
134 }
135 
136 /*
137  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
138  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
139  */
140 void kasan_poison_shadow(const void *address, size_t size, u8 value)
141 {
142 	void *shadow_start, *shadow_end;
143 
144 	/*
145 	 * Perform shadow offset calculation based on untagged address, as
146 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
147 	 * addresses to this function.
148 	 */
149 	address = reset_tag(address);
150 
151 	shadow_start = kasan_mem_to_shadow(address);
152 	shadow_end = kasan_mem_to_shadow(address + size);
153 
154 	__memset(shadow_start, value, shadow_end - shadow_start);
155 }
156 
157 void kasan_unpoison_shadow(const void *address, size_t size)
158 {
159 	u8 tag = get_tag(address);
160 
161 	/*
162 	 * Perform shadow offset calculation based on untagged address, as
163 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
164 	 * addresses to this function.
165 	 */
166 	address = reset_tag(address);
167 
168 	kasan_poison_shadow(address, size, tag);
169 
170 	if (size & KASAN_SHADOW_MASK) {
171 		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
172 
173 		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
174 			*shadow = tag;
175 		else
176 			*shadow = size & KASAN_SHADOW_MASK;
177 	}
178 }
179 
180 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
181 {
182 	void *base = task_stack_page(task);
183 	size_t size = sp - base;
184 
185 	kasan_unpoison_shadow(base, size);
186 }
187 
188 /* Unpoison the entire stack for a task. */
189 void kasan_unpoison_task_stack(struct task_struct *task)
190 {
191 	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
192 }
193 
194 /* Unpoison the stack for the current task beyond a watermark sp value. */
195 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
196 {
197 	/*
198 	 * Calculate the task stack base address.  Avoid using 'current'
199 	 * because this function is called by early resume code which hasn't
200 	 * yet set up the percpu register (%gs).
201 	 */
202 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
203 
204 	kasan_unpoison_shadow(base, watermark - base);
205 }
206 
207 /*
208  * Clear all poison for the region between the current SP and a provided
209  * watermark value, as is sometimes required prior to hand-crafted asm function
210  * returns in the middle of functions.
211  */
212 void kasan_unpoison_stack_above_sp_to(const void *watermark)
213 {
214 	const void *sp = __builtin_frame_address(0);
215 	size_t size = watermark - sp;
216 
217 	if (WARN_ON(sp > watermark))
218 		return;
219 	kasan_unpoison_shadow(sp, size);
220 }
221 
222 void kasan_alloc_pages(struct page *page, unsigned int order)
223 {
224 	u8 tag;
225 	unsigned long i;
226 
227 	if (unlikely(PageHighMem(page)))
228 		return;
229 
230 	tag = random_tag();
231 	for (i = 0; i < (1 << order); i++)
232 		page_kasan_tag_set(page + i, tag);
233 	kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
234 }
235 
236 void kasan_free_pages(struct page *page, unsigned int order)
237 {
238 	if (likely(!PageHighMem(page)))
239 		kasan_poison_shadow(page_address(page),
240 				PAGE_SIZE << order,
241 				KASAN_FREE_PAGE);
242 }
243 
244 /*
245  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
246  * For larger allocations larger redzones are used.
247  */
248 static inline unsigned int optimal_redzone(unsigned int object_size)
249 {
250 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
251 		return 0;
252 
253 	return
254 		object_size <= 64        - 16   ? 16 :
255 		object_size <= 128       - 32   ? 32 :
256 		object_size <= 512       - 64   ? 64 :
257 		object_size <= 4096      - 128  ? 128 :
258 		object_size <= (1 << 14) - 256  ? 256 :
259 		object_size <= (1 << 15) - 512  ? 512 :
260 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
261 }
262 
263 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
264 			slab_flags_t *flags)
265 {
266 	unsigned int orig_size = *size;
267 	unsigned int redzone_size;
268 	int redzone_adjust;
269 
270 	/* Add alloc meta. */
271 	cache->kasan_info.alloc_meta_offset = *size;
272 	*size += sizeof(struct kasan_alloc_meta);
273 
274 	/* Add free meta. */
275 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
276 	    (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
277 	     cache->object_size < sizeof(struct kasan_free_meta))) {
278 		cache->kasan_info.free_meta_offset = *size;
279 		*size += sizeof(struct kasan_free_meta);
280 	}
281 
282 	redzone_size = optimal_redzone(cache->object_size);
283 	redzone_adjust = redzone_size -	(*size - cache->object_size);
284 	if (redzone_adjust > 0)
285 		*size += redzone_adjust;
286 
287 	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
288 			max(*size, cache->object_size + redzone_size));
289 
290 	/*
291 	 * If the metadata doesn't fit, don't enable KASAN at all.
292 	 */
293 	if (*size <= cache->kasan_info.alloc_meta_offset ||
294 			*size <= cache->kasan_info.free_meta_offset) {
295 		cache->kasan_info.alloc_meta_offset = 0;
296 		cache->kasan_info.free_meta_offset = 0;
297 		*size = orig_size;
298 		return;
299 	}
300 
301 	*flags |= SLAB_KASAN;
302 }
303 
304 size_t kasan_metadata_size(struct kmem_cache *cache)
305 {
306 	return (cache->kasan_info.alloc_meta_offset ?
307 		sizeof(struct kasan_alloc_meta) : 0) +
308 		(cache->kasan_info.free_meta_offset ?
309 		sizeof(struct kasan_free_meta) : 0);
310 }
311 
312 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
313 					const void *object)
314 {
315 	return (void *)object + cache->kasan_info.alloc_meta_offset;
316 }
317 
318 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
319 				      const void *object)
320 {
321 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
322 	return (void *)object + cache->kasan_info.free_meta_offset;
323 }
324 
325 
326 static void kasan_set_free_info(struct kmem_cache *cache,
327 		void *object, u8 tag)
328 {
329 	struct kasan_alloc_meta *alloc_meta;
330 	u8 idx = 0;
331 
332 	alloc_meta = get_alloc_info(cache, object);
333 
334 #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY
335 	idx = alloc_meta->free_track_idx;
336 	alloc_meta->free_pointer_tag[idx] = tag;
337 	alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS;
338 #endif
339 
340 	set_track(&alloc_meta->free_track[idx], GFP_NOWAIT);
341 }
342 
343 void kasan_poison_slab(struct page *page)
344 {
345 	unsigned long i;
346 
347 	for (i = 0; i < compound_nr(page); i++)
348 		page_kasan_tag_reset(page + i);
349 	kasan_poison_shadow(page_address(page), page_size(page),
350 			KASAN_KMALLOC_REDZONE);
351 }
352 
353 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
354 {
355 	kasan_unpoison_shadow(object, cache->object_size);
356 }
357 
358 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
359 {
360 	kasan_poison_shadow(object,
361 			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
362 			KASAN_KMALLOC_REDZONE);
363 }
364 
365 /*
366  * This function assigns a tag to an object considering the following:
367  * 1. A cache might have a constructor, which might save a pointer to a slab
368  *    object somewhere (e.g. in the object itself). We preassign a tag for
369  *    each object in caches with constructors during slab creation and reuse
370  *    the same tag each time a particular object is allocated.
371  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
372  *    accessed after being freed. We preassign tags for objects in these
373  *    caches as well.
374  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
375  *    is stored as an array of indexes instead of a linked list. Assign tags
376  *    based on objects indexes, so that objects that are next to each other
377  *    get different tags.
378  */
379 static u8 assign_tag(struct kmem_cache *cache, const void *object,
380 			bool init, bool keep_tag)
381 {
382 	/*
383 	 * 1. When an object is kmalloc()'ed, two hooks are called:
384 	 *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
385 	 *    tag only in the first one.
386 	 * 2. We reuse the same tag for krealloc'ed objects.
387 	 */
388 	if (keep_tag)
389 		return get_tag(object);
390 
391 	/*
392 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
393 	 * set, assign a tag when the object is being allocated (init == false).
394 	 */
395 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
396 		return init ? KASAN_TAG_KERNEL : random_tag();
397 
398 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
399 #ifdef CONFIG_SLAB
400 	/* For SLAB assign tags based on the object index in the freelist. */
401 	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
402 #else
403 	/*
404 	 * For SLUB assign a random tag during slab creation, otherwise reuse
405 	 * the already assigned tag.
406 	 */
407 	return init ? random_tag() : get_tag(object);
408 #endif
409 }
410 
411 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
412 						const void *object)
413 {
414 	struct kasan_alloc_meta *alloc_info;
415 
416 	if (!(cache->flags & SLAB_KASAN))
417 		return (void *)object;
418 
419 	alloc_info = get_alloc_info(cache, object);
420 	__memset(alloc_info, 0, sizeof(*alloc_info));
421 
422 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
423 		object = set_tag(object,
424 				assign_tag(cache, object, true, false));
425 
426 	return (void *)object;
427 }
428 
429 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
430 {
431 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
432 		return shadow_byte < 0 ||
433 			shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
434 
435 	/* else CONFIG_KASAN_SW_TAGS: */
436 	if ((u8)shadow_byte == KASAN_TAG_INVALID)
437 		return true;
438 	if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
439 		return true;
440 
441 	return false;
442 }
443 
444 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
445 			      unsigned long ip, bool quarantine)
446 {
447 	s8 shadow_byte;
448 	u8 tag;
449 	void *tagged_object;
450 	unsigned long rounded_up_size;
451 
452 	tag = get_tag(object);
453 	tagged_object = object;
454 	object = reset_tag(object);
455 
456 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
457 	    object)) {
458 		kasan_report_invalid_free(tagged_object, ip);
459 		return true;
460 	}
461 
462 	/* RCU slabs could be legally used after free within the RCU period */
463 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
464 		return false;
465 
466 	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
467 	if (shadow_invalid(tag, shadow_byte)) {
468 		kasan_report_invalid_free(tagged_object, ip);
469 		return true;
470 	}
471 
472 	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
473 	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
474 
475 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
476 			unlikely(!(cache->flags & SLAB_KASAN)))
477 		return false;
478 
479 	kasan_set_free_info(cache, object, tag);
480 
481 	quarantine_put(get_free_info(cache, object), cache);
482 
483 	return IS_ENABLED(CONFIG_KASAN_GENERIC);
484 }
485 
486 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
487 {
488 	return __kasan_slab_free(cache, object, ip, true);
489 }
490 
491 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
492 				size_t size, gfp_t flags, bool keep_tag)
493 {
494 	unsigned long redzone_start;
495 	unsigned long redzone_end;
496 	u8 tag = 0xff;
497 
498 	if (gfpflags_allow_blocking(flags))
499 		quarantine_reduce();
500 
501 	if (unlikely(object == NULL))
502 		return NULL;
503 
504 	redzone_start = round_up((unsigned long)(object + size),
505 				KASAN_SHADOW_SCALE_SIZE);
506 	redzone_end = round_up((unsigned long)object + cache->object_size,
507 				KASAN_SHADOW_SCALE_SIZE);
508 
509 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
510 		tag = assign_tag(cache, object, false, keep_tag);
511 
512 	/* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
513 	kasan_unpoison_shadow(set_tag(object, tag), size);
514 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
515 		KASAN_KMALLOC_REDZONE);
516 
517 	if (cache->flags & SLAB_KASAN)
518 		set_track(&get_alloc_info(cache, object)->alloc_track, flags);
519 
520 	return set_tag(object, tag);
521 }
522 
523 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
524 					gfp_t flags)
525 {
526 	return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
527 }
528 
529 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
530 				size_t size, gfp_t flags)
531 {
532 	return __kasan_kmalloc(cache, object, size, flags, true);
533 }
534 EXPORT_SYMBOL(kasan_kmalloc);
535 
536 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
537 						gfp_t flags)
538 {
539 	struct page *page;
540 	unsigned long redzone_start;
541 	unsigned long redzone_end;
542 
543 	if (gfpflags_allow_blocking(flags))
544 		quarantine_reduce();
545 
546 	if (unlikely(ptr == NULL))
547 		return NULL;
548 
549 	page = virt_to_page(ptr);
550 	redzone_start = round_up((unsigned long)(ptr + size),
551 				KASAN_SHADOW_SCALE_SIZE);
552 	redzone_end = (unsigned long)ptr + page_size(page);
553 
554 	kasan_unpoison_shadow(ptr, size);
555 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
556 		KASAN_PAGE_REDZONE);
557 
558 	return (void *)ptr;
559 }
560 
561 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
562 {
563 	struct page *page;
564 
565 	if (unlikely(object == ZERO_SIZE_PTR))
566 		return (void *)object;
567 
568 	page = virt_to_head_page(object);
569 
570 	if (unlikely(!PageSlab(page)))
571 		return kasan_kmalloc_large(object, size, flags);
572 	else
573 		return __kasan_kmalloc(page->slab_cache, object, size,
574 						flags, true);
575 }
576 
577 void kasan_poison_kfree(void *ptr, unsigned long ip)
578 {
579 	struct page *page;
580 
581 	page = virt_to_head_page(ptr);
582 
583 	if (unlikely(!PageSlab(page))) {
584 		if (ptr != page_address(page)) {
585 			kasan_report_invalid_free(ptr, ip);
586 			return;
587 		}
588 		kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
589 	} else {
590 		__kasan_slab_free(page->slab_cache, ptr, ip, false);
591 	}
592 }
593 
594 void kasan_kfree_large(void *ptr, unsigned long ip)
595 {
596 	if (ptr != page_address(virt_to_head_page(ptr)))
597 		kasan_report_invalid_free(ptr, ip);
598 	/* The object will be poisoned by page_alloc. */
599 }
600 
601 #ifndef CONFIG_KASAN_VMALLOC
602 int kasan_module_alloc(void *addr, size_t size)
603 {
604 	void *ret;
605 	size_t scaled_size;
606 	size_t shadow_size;
607 	unsigned long shadow_start;
608 
609 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
610 	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
611 	shadow_size = round_up(scaled_size, PAGE_SIZE);
612 
613 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
614 		return -EINVAL;
615 
616 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
617 			shadow_start + shadow_size,
618 			GFP_KERNEL,
619 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
620 			__builtin_return_address(0));
621 
622 	if (ret) {
623 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
624 		find_vm_area(addr)->flags |= VM_KASAN;
625 		kmemleak_ignore(ret);
626 		return 0;
627 	}
628 
629 	return -ENOMEM;
630 }
631 
632 void kasan_free_shadow(const struct vm_struct *vm)
633 {
634 	if (vm->flags & VM_KASAN)
635 		vfree(kasan_mem_to_shadow(vm->addr));
636 }
637 #endif
638 
639 extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip);
640 extern bool report_enabled(void);
641 
642 bool kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip)
643 {
644 	unsigned long flags = user_access_save();
645 	bool ret = false;
646 
647 	if (likely(report_enabled())) {
648 		__kasan_report(addr, size, is_write, ip);
649 		ret = true;
650 	}
651 
652 	user_access_restore(flags);
653 
654 	return ret;
655 }
656 
657 #ifdef CONFIG_MEMORY_HOTPLUG
658 static bool shadow_mapped(unsigned long addr)
659 {
660 	pgd_t *pgd = pgd_offset_k(addr);
661 	p4d_t *p4d;
662 	pud_t *pud;
663 	pmd_t *pmd;
664 	pte_t *pte;
665 
666 	if (pgd_none(*pgd))
667 		return false;
668 	p4d = p4d_offset(pgd, addr);
669 	if (p4d_none(*p4d))
670 		return false;
671 	pud = pud_offset(p4d, addr);
672 	if (pud_none(*pud))
673 		return false;
674 
675 	/*
676 	 * We can't use pud_large() or pud_huge(), the first one is
677 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
678 	 * pud_bad(), if pud is bad then it's bad because it's huge.
679 	 */
680 	if (pud_bad(*pud))
681 		return true;
682 	pmd = pmd_offset(pud, addr);
683 	if (pmd_none(*pmd))
684 		return false;
685 
686 	if (pmd_bad(*pmd))
687 		return true;
688 	pte = pte_offset_kernel(pmd, addr);
689 	return !pte_none(*pte);
690 }
691 
692 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
693 			unsigned long action, void *data)
694 {
695 	struct memory_notify *mem_data = data;
696 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
697 	unsigned long shadow_end, shadow_size;
698 
699 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
700 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
701 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
702 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
703 	shadow_end = shadow_start + shadow_size;
704 
705 	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
706 		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
707 		return NOTIFY_BAD;
708 
709 	switch (action) {
710 	case MEM_GOING_ONLINE: {
711 		void *ret;
712 
713 		/*
714 		 * If shadow is mapped already than it must have been mapped
715 		 * during the boot. This could happen if we onlining previously
716 		 * offlined memory.
717 		 */
718 		if (shadow_mapped(shadow_start))
719 			return NOTIFY_OK;
720 
721 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
722 					shadow_end, GFP_KERNEL,
723 					PAGE_KERNEL, VM_NO_GUARD,
724 					pfn_to_nid(mem_data->start_pfn),
725 					__builtin_return_address(0));
726 		if (!ret)
727 			return NOTIFY_BAD;
728 
729 		kmemleak_ignore(ret);
730 		return NOTIFY_OK;
731 	}
732 	case MEM_CANCEL_ONLINE:
733 	case MEM_OFFLINE: {
734 		struct vm_struct *vm;
735 
736 		/*
737 		 * shadow_start was either mapped during boot by kasan_init()
738 		 * or during memory online by __vmalloc_node_range().
739 		 * In the latter case we can use vfree() to free shadow.
740 		 * Non-NULL result of the find_vm_area() will tell us if
741 		 * that was the second case.
742 		 *
743 		 * Currently it's not possible to free shadow mapped
744 		 * during boot by kasan_init(). It's because the code
745 		 * to do that hasn't been written yet. So we'll just
746 		 * leak the memory.
747 		 */
748 		vm = find_vm_area((void *)shadow_start);
749 		if (vm)
750 			vfree((void *)shadow_start);
751 	}
752 	}
753 
754 	return NOTIFY_OK;
755 }
756 
757 static int __init kasan_memhotplug_init(void)
758 {
759 	hotplug_memory_notifier(kasan_mem_notifier, 0);
760 
761 	return 0;
762 }
763 
764 core_initcall(kasan_memhotplug_init);
765 #endif
766 
767 #ifdef CONFIG_KASAN_VMALLOC
768 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
769 				      void *unused)
770 {
771 	unsigned long page;
772 	pte_t pte;
773 
774 	if (likely(!pte_none(*ptep)))
775 		return 0;
776 
777 	page = __get_free_page(GFP_KERNEL);
778 	if (!page)
779 		return -ENOMEM;
780 
781 	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
782 	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
783 
784 	spin_lock(&init_mm.page_table_lock);
785 	if (likely(pte_none(*ptep))) {
786 		set_pte_at(&init_mm, addr, ptep, pte);
787 		page = 0;
788 	}
789 	spin_unlock(&init_mm.page_table_lock);
790 	if (page)
791 		free_page(page);
792 	return 0;
793 }
794 
795 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
796 {
797 	unsigned long shadow_start, shadow_end;
798 	int ret;
799 
800 	if (!is_vmalloc_or_module_addr((void *)addr))
801 		return 0;
802 
803 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
804 	shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
805 	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
806 	shadow_end = ALIGN(shadow_end, PAGE_SIZE);
807 
808 	ret = apply_to_page_range(&init_mm, shadow_start,
809 				  shadow_end - shadow_start,
810 				  kasan_populate_vmalloc_pte, NULL);
811 	if (ret)
812 		return ret;
813 
814 	flush_cache_vmap(shadow_start, shadow_end);
815 
816 	/*
817 	 * We need to be careful about inter-cpu effects here. Consider:
818 	 *
819 	 *   CPU#0				  CPU#1
820 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
821 	 *					p[99] = 1;
822 	 *
823 	 * With compiler instrumentation, that ends up looking like this:
824 	 *
825 	 *   CPU#0				  CPU#1
826 	 * // vmalloc() allocates memory
827 	 * // let a = area->addr
828 	 * // we reach kasan_populate_vmalloc
829 	 * // and call kasan_unpoison_shadow:
830 	 * STORE shadow(a), unpoison_val
831 	 * ...
832 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
833 	 * // rest of vmalloc process		<data dependency>
834 	 * STORE p, a				LOAD shadow(x+99)
835 	 *
836 	 * If there is no barrier between the end of unpoisioning the shadow
837 	 * and the store of the result to p, the stores could be committed
838 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
839 	 * poison in the shadow.
840 	 *
841 	 * We need some sort of barrier between the stores.
842 	 *
843 	 * In the vmalloc() case, this is provided by a smp_wmb() in
844 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
845 	 * get_vm_area() and friends, the caller gets shadow allocated but
846 	 * doesn't have any pages mapped into the virtual address space that
847 	 * has been reserved. Mapping those pages in will involve taking and
848 	 * releasing a page-table lock, which will provide the barrier.
849 	 */
850 
851 	return 0;
852 }
853 
854 /*
855  * Poison the shadow for a vmalloc region. Called as part of the
856  * freeing process at the time the region is freed.
857  */
858 void kasan_poison_vmalloc(const void *start, unsigned long size)
859 {
860 	if (!is_vmalloc_or_module_addr(start))
861 		return;
862 
863 	size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
864 	kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID);
865 }
866 
867 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
868 {
869 	if (!is_vmalloc_or_module_addr(start))
870 		return;
871 
872 	kasan_unpoison_shadow(start, size);
873 }
874 
875 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
876 					void *unused)
877 {
878 	unsigned long page;
879 
880 	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
881 
882 	spin_lock(&init_mm.page_table_lock);
883 
884 	if (likely(!pte_none(*ptep))) {
885 		pte_clear(&init_mm, addr, ptep);
886 		free_page(page);
887 	}
888 	spin_unlock(&init_mm.page_table_lock);
889 
890 	return 0;
891 }
892 
893 /*
894  * Release the backing for the vmalloc region [start, end), which
895  * lies within the free region [free_region_start, free_region_end).
896  *
897  * This can be run lazily, long after the region was freed. It runs
898  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
899  * infrastructure.
900  *
901  * How does this work?
902  * -------------------
903  *
904  * We have a region that is page aligned, labelled as A.
905  * That might not map onto the shadow in a way that is page-aligned:
906  *
907  *                    start                     end
908  *                    v                         v
909  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
910  *  -------- -------- --------          -------- --------
911  *      |        |       |                 |        |
912  *      |        |       |         /-------/        |
913  *      \-------\|/------/         |/---------------/
914  *              |||                ||
915  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
916  *                 (1)      (2)      (3)
917  *
918  * First we align the start upwards and the end downwards, so that the
919  * shadow of the region aligns with shadow page boundaries. In the
920  * example, this gives us the shadow page (2). This is the shadow entirely
921  * covered by this allocation.
922  *
923  * Then we have the tricky bits. We want to know if we can free the
924  * partially covered shadow pages - (1) and (3) in the example. For this,
925  * we are given the start and end of the free region that contains this
926  * allocation. Extending our previous example, we could have:
927  *
928  *  free_region_start                                    free_region_end
929  *  |                 start                     end      |
930  *  v                 v                         v        v
931  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
932  *  -------- -------- --------          -------- --------
933  *      |        |       |                 |        |
934  *      |        |       |         /-------/        |
935  *      \-------\|/------/         |/---------------/
936  *              |||                ||
937  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
938  *                 (1)      (2)      (3)
939  *
940  * Once again, we align the start of the free region up, and the end of
941  * the free region down so that the shadow is page aligned. So we can free
942  * page (1) - we know no allocation currently uses anything in that page,
943  * because all of it is in the vmalloc free region. But we cannot free
944  * page (3), because we can't be sure that the rest of it is unused.
945  *
946  * We only consider pages that contain part of the original region for
947  * freeing: we don't try to free other pages from the free region or we'd
948  * end up trying to free huge chunks of virtual address space.
949  *
950  * Concurrency
951  * -----------
952  *
953  * How do we know that we're not freeing a page that is simultaneously
954  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
955  *
956  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
957  * at the same time. While we run under free_vmap_area_lock, the population
958  * code does not.
959  *
960  * free_vmap_area_lock instead operates to ensure that the larger range
961  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
962  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
963  * no space identified as free will become used while we are running. This
964  * means that so long as we are careful with alignment and only free shadow
965  * pages entirely covered by the free region, we will not run in to any
966  * trouble - any simultaneous allocations will be for disjoint regions.
967  */
968 void kasan_release_vmalloc(unsigned long start, unsigned long end,
969 			   unsigned long free_region_start,
970 			   unsigned long free_region_end)
971 {
972 	void *shadow_start, *shadow_end;
973 	unsigned long region_start, region_end;
974 	unsigned long size;
975 
976 	region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
977 	region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
978 
979 	free_region_start = ALIGN(free_region_start,
980 				  PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
981 
982 	if (start != region_start &&
983 	    free_region_start < region_start)
984 		region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
985 
986 	free_region_end = ALIGN_DOWN(free_region_end,
987 				     PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
988 
989 	if (end != region_end &&
990 	    free_region_end > region_end)
991 		region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
992 
993 	shadow_start = kasan_mem_to_shadow((void *)region_start);
994 	shadow_end = kasan_mem_to_shadow((void *)region_end);
995 
996 	if (shadow_end > shadow_start) {
997 		size = shadow_end - shadow_start;
998 		apply_to_existing_page_range(&init_mm,
999 					     (unsigned long)shadow_start,
1000 					     size, kasan_depopulate_vmalloc_pte,
1001 					     NULL);
1002 		flush_tlb_kernel_range((unsigned long)shadow_start,
1003 				       (unsigned long)shadow_end);
1004 	}
1005 }
1006 #endif
1007