xref: /linux/mm/kasan/common.c (revision 74cc09fd8d04c56b652cfb332adb61f10bc2c199)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common generic and tag-based KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16 
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kasan.h>
20 #include <linux/kernel.h>
21 #include <linux/kmemleak.h>
22 #include <linux/linkage.h>
23 #include <linux/memblock.h>
24 #include <linux/memory.h>
25 #include <linux/mm.h>
26 #include <linux/module.h>
27 #include <linux/printk.h>
28 #include <linux/sched.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/slab.h>
31 #include <linux/stacktrace.h>
32 #include <linux/string.h>
33 #include <linux/types.h>
34 #include <linux/vmalloc.h>
35 #include <linux/bug.h>
36 
37 #include <asm/cacheflush.h>
38 #include <asm/tlbflush.h>
39 
40 #include "kasan.h"
41 #include "../slab.h"
42 
43 static inline depot_stack_handle_t save_stack(gfp_t flags)
44 {
45 	unsigned long entries[KASAN_STACK_DEPTH];
46 	unsigned int nr_entries;
47 
48 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
49 	nr_entries = filter_irq_stacks(entries, nr_entries);
50 	return stack_depot_save(entries, nr_entries, flags);
51 }
52 
53 static inline void set_track(struct kasan_track *track, gfp_t flags)
54 {
55 	track->pid = current->pid;
56 	track->stack = save_stack(flags);
57 }
58 
59 void kasan_enable_current(void)
60 {
61 	current->kasan_depth++;
62 }
63 
64 void kasan_disable_current(void)
65 {
66 	current->kasan_depth--;
67 }
68 
69 bool __kasan_check_read(const volatile void *p, unsigned int size)
70 {
71 	return check_memory_region((unsigned long)p, size, false, _RET_IP_);
72 }
73 EXPORT_SYMBOL(__kasan_check_read);
74 
75 bool __kasan_check_write(const volatile void *p, unsigned int size)
76 {
77 	return check_memory_region((unsigned long)p, size, true, _RET_IP_);
78 }
79 EXPORT_SYMBOL(__kasan_check_write);
80 
81 #undef memset
82 void *memset(void *addr, int c, size_t len)
83 {
84 	if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
85 		return NULL;
86 
87 	return __memset(addr, c, len);
88 }
89 
90 #ifdef __HAVE_ARCH_MEMMOVE
91 #undef memmove
92 void *memmove(void *dest, const void *src, size_t len)
93 {
94 	if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
95 	    !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
96 		return NULL;
97 
98 	return __memmove(dest, src, len);
99 }
100 #endif
101 
102 #undef memcpy
103 void *memcpy(void *dest, const void *src, size_t len)
104 {
105 	if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
106 	    !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
107 		return NULL;
108 
109 	return __memcpy(dest, src, len);
110 }
111 
112 /*
113  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
114  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
115  */
116 void kasan_poison_shadow(const void *address, size_t size, u8 value)
117 {
118 	void *shadow_start, *shadow_end;
119 
120 	/*
121 	 * Perform shadow offset calculation based on untagged address, as
122 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
123 	 * addresses to this function.
124 	 */
125 	address = reset_tag(address);
126 
127 	shadow_start = kasan_mem_to_shadow(address);
128 	shadow_end = kasan_mem_to_shadow(address + size);
129 
130 	__memset(shadow_start, value, shadow_end - shadow_start);
131 }
132 
133 void kasan_unpoison_shadow(const void *address, size_t size)
134 {
135 	u8 tag = get_tag(address);
136 
137 	/*
138 	 * Perform shadow offset calculation based on untagged address, as
139 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
140 	 * addresses to this function.
141 	 */
142 	address = reset_tag(address);
143 
144 	kasan_poison_shadow(address, size, tag);
145 
146 	if (size & KASAN_SHADOW_MASK) {
147 		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
148 
149 		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
150 			*shadow = tag;
151 		else
152 			*shadow = size & KASAN_SHADOW_MASK;
153 	}
154 }
155 
156 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
157 {
158 	void *base = task_stack_page(task);
159 	size_t size = sp - base;
160 
161 	kasan_unpoison_shadow(base, size);
162 }
163 
164 /* Unpoison the entire stack for a task. */
165 void kasan_unpoison_task_stack(struct task_struct *task)
166 {
167 	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
168 }
169 
170 /* Unpoison the stack for the current task beyond a watermark sp value. */
171 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
172 {
173 	/*
174 	 * Calculate the task stack base address.  Avoid using 'current'
175 	 * because this function is called by early resume code which hasn't
176 	 * yet set up the percpu register (%gs).
177 	 */
178 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
179 
180 	kasan_unpoison_shadow(base, watermark - base);
181 }
182 
183 /*
184  * Clear all poison for the region between the current SP and a provided
185  * watermark value, as is sometimes required prior to hand-crafted asm function
186  * returns in the middle of functions.
187  */
188 void kasan_unpoison_stack_above_sp_to(const void *watermark)
189 {
190 	const void *sp = __builtin_frame_address(0);
191 	size_t size = watermark - sp;
192 
193 	if (WARN_ON(sp > watermark))
194 		return;
195 	kasan_unpoison_shadow(sp, size);
196 }
197 
198 void kasan_alloc_pages(struct page *page, unsigned int order)
199 {
200 	u8 tag;
201 	unsigned long i;
202 
203 	if (unlikely(PageHighMem(page)))
204 		return;
205 
206 	tag = random_tag();
207 	for (i = 0; i < (1 << order); i++)
208 		page_kasan_tag_set(page + i, tag);
209 	kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
210 }
211 
212 void kasan_free_pages(struct page *page, unsigned int order)
213 {
214 	if (likely(!PageHighMem(page)))
215 		kasan_poison_shadow(page_address(page),
216 				PAGE_SIZE << order,
217 				KASAN_FREE_PAGE);
218 }
219 
220 /*
221  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
222  * For larger allocations larger redzones are used.
223  */
224 static inline unsigned int optimal_redzone(unsigned int object_size)
225 {
226 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
227 		return 0;
228 
229 	return
230 		object_size <= 64        - 16   ? 16 :
231 		object_size <= 128       - 32   ? 32 :
232 		object_size <= 512       - 64   ? 64 :
233 		object_size <= 4096      - 128  ? 128 :
234 		object_size <= (1 << 14) - 256  ? 256 :
235 		object_size <= (1 << 15) - 512  ? 512 :
236 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
237 }
238 
239 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
240 			slab_flags_t *flags)
241 {
242 	unsigned int orig_size = *size;
243 	unsigned int redzone_size;
244 	int redzone_adjust;
245 
246 	/* Add alloc meta. */
247 	cache->kasan_info.alloc_meta_offset = *size;
248 	*size += sizeof(struct kasan_alloc_meta);
249 
250 	/* Add free meta. */
251 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
252 	    (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
253 	     cache->object_size < sizeof(struct kasan_free_meta))) {
254 		cache->kasan_info.free_meta_offset = *size;
255 		*size += sizeof(struct kasan_free_meta);
256 	}
257 
258 	redzone_size = optimal_redzone(cache->object_size);
259 	redzone_adjust = redzone_size -	(*size - cache->object_size);
260 	if (redzone_adjust > 0)
261 		*size += redzone_adjust;
262 
263 	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
264 			max(*size, cache->object_size + redzone_size));
265 
266 	/*
267 	 * If the metadata doesn't fit, don't enable KASAN at all.
268 	 */
269 	if (*size <= cache->kasan_info.alloc_meta_offset ||
270 			*size <= cache->kasan_info.free_meta_offset) {
271 		cache->kasan_info.alloc_meta_offset = 0;
272 		cache->kasan_info.free_meta_offset = 0;
273 		*size = orig_size;
274 		return;
275 	}
276 
277 	*flags |= SLAB_KASAN;
278 }
279 
280 size_t kasan_metadata_size(struct kmem_cache *cache)
281 {
282 	return (cache->kasan_info.alloc_meta_offset ?
283 		sizeof(struct kasan_alloc_meta) : 0) +
284 		(cache->kasan_info.free_meta_offset ?
285 		sizeof(struct kasan_free_meta) : 0);
286 }
287 
288 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
289 					const void *object)
290 {
291 	return (void *)object + cache->kasan_info.alloc_meta_offset;
292 }
293 
294 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
295 				      const void *object)
296 {
297 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
298 	return (void *)object + cache->kasan_info.free_meta_offset;
299 }
300 
301 
302 static void kasan_set_free_info(struct kmem_cache *cache,
303 		void *object, u8 tag)
304 {
305 	struct kasan_alloc_meta *alloc_meta;
306 	u8 idx = 0;
307 
308 	alloc_meta = get_alloc_info(cache, object);
309 
310 #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY
311 	idx = alloc_meta->free_track_idx;
312 	alloc_meta->free_pointer_tag[idx] = tag;
313 	alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS;
314 #endif
315 
316 	set_track(&alloc_meta->free_track[idx], GFP_NOWAIT);
317 }
318 
319 void kasan_poison_slab(struct page *page)
320 {
321 	unsigned long i;
322 
323 	for (i = 0; i < compound_nr(page); i++)
324 		page_kasan_tag_reset(page + i);
325 	kasan_poison_shadow(page_address(page), page_size(page),
326 			KASAN_KMALLOC_REDZONE);
327 }
328 
329 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
330 {
331 	kasan_unpoison_shadow(object, cache->object_size);
332 }
333 
334 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
335 {
336 	kasan_poison_shadow(object,
337 			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
338 			KASAN_KMALLOC_REDZONE);
339 }
340 
341 /*
342  * This function assigns a tag to an object considering the following:
343  * 1. A cache might have a constructor, which might save a pointer to a slab
344  *    object somewhere (e.g. in the object itself). We preassign a tag for
345  *    each object in caches with constructors during slab creation and reuse
346  *    the same tag each time a particular object is allocated.
347  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
348  *    accessed after being freed. We preassign tags for objects in these
349  *    caches as well.
350  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
351  *    is stored as an array of indexes instead of a linked list. Assign tags
352  *    based on objects indexes, so that objects that are next to each other
353  *    get different tags.
354  */
355 static u8 assign_tag(struct kmem_cache *cache, const void *object,
356 			bool init, bool keep_tag)
357 {
358 	/*
359 	 * 1. When an object is kmalloc()'ed, two hooks are called:
360 	 *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
361 	 *    tag only in the first one.
362 	 * 2. We reuse the same tag for krealloc'ed objects.
363 	 */
364 	if (keep_tag)
365 		return get_tag(object);
366 
367 	/*
368 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
369 	 * set, assign a tag when the object is being allocated (init == false).
370 	 */
371 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
372 		return init ? KASAN_TAG_KERNEL : random_tag();
373 
374 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
375 #ifdef CONFIG_SLAB
376 	/* For SLAB assign tags based on the object index in the freelist. */
377 	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
378 #else
379 	/*
380 	 * For SLUB assign a random tag during slab creation, otherwise reuse
381 	 * the already assigned tag.
382 	 */
383 	return init ? random_tag() : get_tag(object);
384 #endif
385 }
386 
387 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
388 						const void *object)
389 {
390 	struct kasan_alloc_meta *alloc_info;
391 
392 	if (!(cache->flags & SLAB_KASAN))
393 		return (void *)object;
394 
395 	alloc_info = get_alloc_info(cache, object);
396 	__memset(alloc_info, 0, sizeof(*alloc_info));
397 
398 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
399 		object = set_tag(object,
400 				assign_tag(cache, object, true, false));
401 
402 	return (void *)object;
403 }
404 
405 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
406 {
407 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
408 		return shadow_byte < 0 ||
409 			shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
410 
411 	/* else CONFIG_KASAN_SW_TAGS: */
412 	if ((u8)shadow_byte == KASAN_TAG_INVALID)
413 		return true;
414 	if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
415 		return true;
416 
417 	return false;
418 }
419 
420 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
421 			      unsigned long ip, bool quarantine)
422 {
423 	s8 shadow_byte;
424 	u8 tag;
425 	void *tagged_object;
426 	unsigned long rounded_up_size;
427 
428 	tag = get_tag(object);
429 	tagged_object = object;
430 	object = reset_tag(object);
431 
432 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
433 	    object)) {
434 		kasan_report_invalid_free(tagged_object, ip);
435 		return true;
436 	}
437 
438 	/* RCU slabs could be legally used after free within the RCU period */
439 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
440 		return false;
441 
442 	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
443 	if (shadow_invalid(tag, shadow_byte)) {
444 		kasan_report_invalid_free(tagged_object, ip);
445 		return true;
446 	}
447 
448 	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
449 	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
450 
451 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
452 			unlikely(!(cache->flags & SLAB_KASAN)))
453 		return false;
454 
455 	kasan_set_free_info(cache, object, tag);
456 
457 	quarantine_put(get_free_info(cache, object), cache);
458 
459 	return IS_ENABLED(CONFIG_KASAN_GENERIC);
460 }
461 
462 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
463 {
464 	return __kasan_slab_free(cache, object, ip, true);
465 }
466 
467 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
468 				size_t size, gfp_t flags, bool keep_tag)
469 {
470 	unsigned long redzone_start;
471 	unsigned long redzone_end;
472 	u8 tag = 0xff;
473 
474 	if (gfpflags_allow_blocking(flags))
475 		quarantine_reduce();
476 
477 	if (unlikely(object == NULL))
478 		return NULL;
479 
480 	redzone_start = round_up((unsigned long)(object + size),
481 				KASAN_SHADOW_SCALE_SIZE);
482 	redzone_end = round_up((unsigned long)object + cache->object_size,
483 				KASAN_SHADOW_SCALE_SIZE);
484 
485 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
486 		tag = assign_tag(cache, object, false, keep_tag);
487 
488 	/* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
489 	kasan_unpoison_shadow(set_tag(object, tag), size);
490 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
491 		KASAN_KMALLOC_REDZONE);
492 
493 	if (cache->flags & SLAB_KASAN)
494 		set_track(&get_alloc_info(cache, object)->alloc_track, flags);
495 
496 	return set_tag(object, tag);
497 }
498 
499 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
500 					gfp_t flags)
501 {
502 	return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
503 }
504 
505 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
506 				size_t size, gfp_t flags)
507 {
508 	return __kasan_kmalloc(cache, object, size, flags, true);
509 }
510 EXPORT_SYMBOL(kasan_kmalloc);
511 
512 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
513 						gfp_t flags)
514 {
515 	struct page *page;
516 	unsigned long redzone_start;
517 	unsigned long redzone_end;
518 
519 	if (gfpflags_allow_blocking(flags))
520 		quarantine_reduce();
521 
522 	if (unlikely(ptr == NULL))
523 		return NULL;
524 
525 	page = virt_to_page(ptr);
526 	redzone_start = round_up((unsigned long)(ptr + size),
527 				KASAN_SHADOW_SCALE_SIZE);
528 	redzone_end = (unsigned long)ptr + page_size(page);
529 
530 	kasan_unpoison_shadow(ptr, size);
531 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
532 		KASAN_PAGE_REDZONE);
533 
534 	return (void *)ptr;
535 }
536 
537 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
538 {
539 	struct page *page;
540 
541 	if (unlikely(object == ZERO_SIZE_PTR))
542 		return (void *)object;
543 
544 	page = virt_to_head_page(object);
545 
546 	if (unlikely(!PageSlab(page)))
547 		return kasan_kmalloc_large(object, size, flags);
548 	else
549 		return __kasan_kmalloc(page->slab_cache, object, size,
550 						flags, true);
551 }
552 
553 void kasan_poison_kfree(void *ptr, unsigned long ip)
554 {
555 	struct page *page;
556 
557 	page = virt_to_head_page(ptr);
558 
559 	if (unlikely(!PageSlab(page))) {
560 		if (ptr != page_address(page)) {
561 			kasan_report_invalid_free(ptr, ip);
562 			return;
563 		}
564 		kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
565 	} else {
566 		__kasan_slab_free(page->slab_cache, ptr, ip, false);
567 	}
568 }
569 
570 void kasan_kfree_large(void *ptr, unsigned long ip)
571 {
572 	if (ptr != page_address(virt_to_head_page(ptr)))
573 		kasan_report_invalid_free(ptr, ip);
574 	/* The object will be poisoned by page_alloc. */
575 }
576 
577 #ifndef CONFIG_KASAN_VMALLOC
578 int kasan_module_alloc(void *addr, size_t size)
579 {
580 	void *ret;
581 	size_t scaled_size;
582 	size_t shadow_size;
583 	unsigned long shadow_start;
584 
585 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
586 	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
587 	shadow_size = round_up(scaled_size, PAGE_SIZE);
588 
589 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
590 		return -EINVAL;
591 
592 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
593 			shadow_start + shadow_size,
594 			GFP_KERNEL,
595 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
596 			__builtin_return_address(0));
597 
598 	if (ret) {
599 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
600 		find_vm_area(addr)->flags |= VM_KASAN;
601 		kmemleak_ignore(ret);
602 		return 0;
603 	}
604 
605 	return -ENOMEM;
606 }
607 
608 void kasan_free_shadow(const struct vm_struct *vm)
609 {
610 	if (vm->flags & VM_KASAN)
611 		vfree(kasan_mem_to_shadow(vm->addr));
612 }
613 #endif
614 
615 #ifdef CONFIG_MEMORY_HOTPLUG
616 static bool shadow_mapped(unsigned long addr)
617 {
618 	pgd_t *pgd = pgd_offset_k(addr);
619 	p4d_t *p4d;
620 	pud_t *pud;
621 	pmd_t *pmd;
622 	pte_t *pte;
623 
624 	if (pgd_none(*pgd))
625 		return false;
626 	p4d = p4d_offset(pgd, addr);
627 	if (p4d_none(*p4d))
628 		return false;
629 	pud = pud_offset(p4d, addr);
630 	if (pud_none(*pud))
631 		return false;
632 
633 	/*
634 	 * We can't use pud_large() or pud_huge(), the first one is
635 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
636 	 * pud_bad(), if pud is bad then it's bad because it's huge.
637 	 */
638 	if (pud_bad(*pud))
639 		return true;
640 	pmd = pmd_offset(pud, addr);
641 	if (pmd_none(*pmd))
642 		return false;
643 
644 	if (pmd_bad(*pmd))
645 		return true;
646 	pte = pte_offset_kernel(pmd, addr);
647 	return !pte_none(*pte);
648 }
649 
650 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
651 			unsigned long action, void *data)
652 {
653 	struct memory_notify *mem_data = data;
654 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
655 	unsigned long shadow_end, shadow_size;
656 
657 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
658 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
659 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
660 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
661 	shadow_end = shadow_start + shadow_size;
662 
663 	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
664 		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
665 		return NOTIFY_BAD;
666 
667 	switch (action) {
668 	case MEM_GOING_ONLINE: {
669 		void *ret;
670 
671 		/*
672 		 * If shadow is mapped already than it must have been mapped
673 		 * during the boot. This could happen if we onlining previously
674 		 * offlined memory.
675 		 */
676 		if (shadow_mapped(shadow_start))
677 			return NOTIFY_OK;
678 
679 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
680 					shadow_end, GFP_KERNEL,
681 					PAGE_KERNEL, VM_NO_GUARD,
682 					pfn_to_nid(mem_data->start_pfn),
683 					__builtin_return_address(0));
684 		if (!ret)
685 			return NOTIFY_BAD;
686 
687 		kmemleak_ignore(ret);
688 		return NOTIFY_OK;
689 	}
690 	case MEM_CANCEL_ONLINE:
691 	case MEM_OFFLINE: {
692 		struct vm_struct *vm;
693 
694 		/*
695 		 * shadow_start was either mapped during boot by kasan_init()
696 		 * or during memory online by __vmalloc_node_range().
697 		 * In the latter case we can use vfree() to free shadow.
698 		 * Non-NULL result of the find_vm_area() will tell us if
699 		 * that was the second case.
700 		 *
701 		 * Currently it's not possible to free shadow mapped
702 		 * during boot by kasan_init(). It's because the code
703 		 * to do that hasn't been written yet. So we'll just
704 		 * leak the memory.
705 		 */
706 		vm = find_vm_area((void *)shadow_start);
707 		if (vm)
708 			vfree((void *)shadow_start);
709 	}
710 	}
711 
712 	return NOTIFY_OK;
713 }
714 
715 static int __init kasan_memhotplug_init(void)
716 {
717 	hotplug_memory_notifier(kasan_mem_notifier, 0);
718 
719 	return 0;
720 }
721 
722 core_initcall(kasan_memhotplug_init);
723 #endif
724 
725 #ifdef CONFIG_KASAN_VMALLOC
726 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
727 				      void *unused)
728 {
729 	unsigned long page;
730 	pte_t pte;
731 
732 	if (likely(!pte_none(*ptep)))
733 		return 0;
734 
735 	page = __get_free_page(GFP_KERNEL);
736 	if (!page)
737 		return -ENOMEM;
738 
739 	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
740 	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
741 
742 	spin_lock(&init_mm.page_table_lock);
743 	if (likely(pte_none(*ptep))) {
744 		set_pte_at(&init_mm, addr, ptep, pte);
745 		page = 0;
746 	}
747 	spin_unlock(&init_mm.page_table_lock);
748 	if (page)
749 		free_page(page);
750 	return 0;
751 }
752 
753 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
754 {
755 	unsigned long shadow_start, shadow_end;
756 	int ret;
757 
758 	if (!is_vmalloc_or_module_addr((void *)addr))
759 		return 0;
760 
761 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
762 	shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
763 	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
764 	shadow_end = ALIGN(shadow_end, PAGE_SIZE);
765 
766 	ret = apply_to_page_range(&init_mm, shadow_start,
767 				  shadow_end - shadow_start,
768 				  kasan_populate_vmalloc_pte, NULL);
769 	if (ret)
770 		return ret;
771 
772 	flush_cache_vmap(shadow_start, shadow_end);
773 
774 	/*
775 	 * We need to be careful about inter-cpu effects here. Consider:
776 	 *
777 	 *   CPU#0				  CPU#1
778 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
779 	 *					p[99] = 1;
780 	 *
781 	 * With compiler instrumentation, that ends up looking like this:
782 	 *
783 	 *   CPU#0				  CPU#1
784 	 * // vmalloc() allocates memory
785 	 * // let a = area->addr
786 	 * // we reach kasan_populate_vmalloc
787 	 * // and call kasan_unpoison_shadow:
788 	 * STORE shadow(a), unpoison_val
789 	 * ...
790 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
791 	 * // rest of vmalloc process		<data dependency>
792 	 * STORE p, a				LOAD shadow(x+99)
793 	 *
794 	 * If there is no barrier between the end of unpoisioning the shadow
795 	 * and the store of the result to p, the stores could be committed
796 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
797 	 * poison in the shadow.
798 	 *
799 	 * We need some sort of barrier between the stores.
800 	 *
801 	 * In the vmalloc() case, this is provided by a smp_wmb() in
802 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
803 	 * get_vm_area() and friends, the caller gets shadow allocated but
804 	 * doesn't have any pages mapped into the virtual address space that
805 	 * has been reserved. Mapping those pages in will involve taking and
806 	 * releasing a page-table lock, which will provide the barrier.
807 	 */
808 
809 	return 0;
810 }
811 
812 /*
813  * Poison the shadow for a vmalloc region. Called as part of the
814  * freeing process at the time the region is freed.
815  */
816 void kasan_poison_vmalloc(const void *start, unsigned long size)
817 {
818 	if (!is_vmalloc_or_module_addr(start))
819 		return;
820 
821 	size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
822 	kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID);
823 }
824 
825 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
826 {
827 	if (!is_vmalloc_or_module_addr(start))
828 		return;
829 
830 	kasan_unpoison_shadow(start, size);
831 }
832 
833 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
834 					void *unused)
835 {
836 	unsigned long page;
837 
838 	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
839 
840 	spin_lock(&init_mm.page_table_lock);
841 
842 	if (likely(!pte_none(*ptep))) {
843 		pte_clear(&init_mm, addr, ptep);
844 		free_page(page);
845 	}
846 	spin_unlock(&init_mm.page_table_lock);
847 
848 	return 0;
849 }
850 
851 /*
852  * Release the backing for the vmalloc region [start, end), which
853  * lies within the free region [free_region_start, free_region_end).
854  *
855  * This can be run lazily, long after the region was freed. It runs
856  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
857  * infrastructure.
858  *
859  * How does this work?
860  * -------------------
861  *
862  * We have a region that is page aligned, labelled as A.
863  * That might not map onto the shadow in a way that is page-aligned:
864  *
865  *                    start                     end
866  *                    v                         v
867  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
868  *  -------- -------- --------          -------- --------
869  *      |        |       |                 |        |
870  *      |        |       |         /-------/        |
871  *      \-------\|/------/         |/---------------/
872  *              |||                ||
873  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
874  *                 (1)      (2)      (3)
875  *
876  * First we align the start upwards and the end downwards, so that the
877  * shadow of the region aligns with shadow page boundaries. In the
878  * example, this gives us the shadow page (2). This is the shadow entirely
879  * covered by this allocation.
880  *
881  * Then we have the tricky bits. We want to know if we can free the
882  * partially covered shadow pages - (1) and (3) in the example. For this,
883  * we are given the start and end of the free region that contains this
884  * allocation. Extending our previous example, we could have:
885  *
886  *  free_region_start                                    free_region_end
887  *  |                 start                     end      |
888  *  v                 v                         v        v
889  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
890  *  -------- -------- --------          -------- --------
891  *      |        |       |                 |        |
892  *      |        |       |         /-------/        |
893  *      \-------\|/------/         |/---------------/
894  *              |||                ||
895  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
896  *                 (1)      (2)      (3)
897  *
898  * Once again, we align the start of the free region up, and the end of
899  * the free region down so that the shadow is page aligned. So we can free
900  * page (1) - we know no allocation currently uses anything in that page,
901  * because all of it is in the vmalloc free region. But we cannot free
902  * page (3), because we can't be sure that the rest of it is unused.
903  *
904  * We only consider pages that contain part of the original region for
905  * freeing: we don't try to free other pages from the free region or we'd
906  * end up trying to free huge chunks of virtual address space.
907  *
908  * Concurrency
909  * -----------
910  *
911  * How do we know that we're not freeing a page that is simultaneously
912  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
913  *
914  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
915  * at the same time. While we run under free_vmap_area_lock, the population
916  * code does not.
917  *
918  * free_vmap_area_lock instead operates to ensure that the larger range
919  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
920  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
921  * no space identified as free will become used while we are running. This
922  * means that so long as we are careful with alignment and only free shadow
923  * pages entirely covered by the free region, we will not run in to any
924  * trouble - any simultaneous allocations will be for disjoint regions.
925  */
926 void kasan_release_vmalloc(unsigned long start, unsigned long end,
927 			   unsigned long free_region_start,
928 			   unsigned long free_region_end)
929 {
930 	void *shadow_start, *shadow_end;
931 	unsigned long region_start, region_end;
932 	unsigned long size;
933 
934 	region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
935 	region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
936 
937 	free_region_start = ALIGN(free_region_start,
938 				  PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
939 
940 	if (start != region_start &&
941 	    free_region_start < region_start)
942 		region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
943 
944 	free_region_end = ALIGN_DOWN(free_region_end,
945 				     PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
946 
947 	if (end != region_end &&
948 	    free_region_end > region_end)
949 		region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
950 
951 	shadow_start = kasan_mem_to_shadow((void *)region_start);
952 	shadow_end = kasan_mem_to_shadow((void *)region_end);
953 
954 	if (shadow_end > shadow_start) {
955 		size = shadow_end - shadow_start;
956 		apply_to_existing_page_range(&init_mm,
957 					     (unsigned long)shadow_start,
958 					     size, kasan_depopulate_vmalloc_pte,
959 					     NULL);
960 		flush_tlb_kernel_range((unsigned long)shadow_start,
961 				       (unsigned long)shadow_end);
962 	}
963 }
964 #endif
965