1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains common KASAN code. 4 * 5 * Copyright (c) 2014 Samsung Electronics Co., Ltd. 6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com> 7 * 8 * Some code borrowed from https://github.com/xairy/kasan-prototype by 9 * Andrey Konovalov <andreyknvl@gmail.com> 10 */ 11 12 #include <linux/export.h> 13 #include <linux/init.h> 14 #include <linux/kasan.h> 15 #include <linux/kernel.h> 16 #include <linux/linkage.h> 17 #include <linux/memblock.h> 18 #include <linux/memory.h> 19 #include <linux/mm.h> 20 #include <linux/module.h> 21 #include <linux/printk.h> 22 #include <linux/sched.h> 23 #include <linux/sched/task_stack.h> 24 #include <linux/slab.h> 25 #include <linux/stacktrace.h> 26 #include <linux/string.h> 27 #include <linux/types.h> 28 #include <linux/bug.h> 29 30 #include "kasan.h" 31 #include "../slab.h" 32 33 depot_stack_handle_t kasan_save_stack(gfp_t flags) 34 { 35 unsigned long entries[KASAN_STACK_DEPTH]; 36 unsigned int nr_entries; 37 38 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0); 39 nr_entries = filter_irq_stacks(entries, nr_entries); 40 return stack_depot_save(entries, nr_entries, flags); 41 } 42 43 void kasan_set_track(struct kasan_track *track, gfp_t flags) 44 { 45 track->pid = current->pid; 46 track->stack = kasan_save_stack(flags); 47 } 48 49 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS) 50 void kasan_enable_current(void) 51 { 52 current->kasan_depth++; 53 } 54 55 void kasan_disable_current(void) 56 { 57 current->kasan_depth--; 58 } 59 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */ 60 61 void __kasan_unpoison_range(const void *address, size_t size) 62 { 63 kasan_unpoison(address, size, false); 64 } 65 66 #ifdef CONFIG_KASAN_STACK 67 /* Unpoison the entire stack for a task. */ 68 void kasan_unpoison_task_stack(struct task_struct *task) 69 { 70 void *base = task_stack_page(task); 71 72 kasan_unpoison(base, THREAD_SIZE, false); 73 } 74 75 /* Unpoison the stack for the current task beyond a watermark sp value. */ 76 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark) 77 { 78 /* 79 * Calculate the task stack base address. Avoid using 'current' 80 * because this function is called by early resume code which hasn't 81 * yet set up the percpu register (%gs). 82 */ 83 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1)); 84 85 kasan_unpoison(base, watermark - base, false); 86 } 87 #endif /* CONFIG_KASAN_STACK */ 88 89 /* 90 * Only allow cache merging when stack collection is disabled and no metadata 91 * is present. 92 */ 93 slab_flags_t __kasan_never_merge(void) 94 { 95 if (kasan_stack_collection_enabled()) 96 return SLAB_KASAN; 97 return 0; 98 } 99 100 void __kasan_alloc_pages(struct page *page, unsigned int order, bool init) 101 { 102 u8 tag; 103 unsigned long i; 104 105 if (unlikely(PageHighMem(page))) 106 return; 107 108 tag = kasan_random_tag(); 109 for (i = 0; i < (1 << order); i++) 110 page_kasan_tag_set(page + i, tag); 111 kasan_unpoison(page_address(page), PAGE_SIZE << order, init); 112 } 113 114 void __kasan_free_pages(struct page *page, unsigned int order, bool init) 115 { 116 if (likely(!PageHighMem(page))) 117 kasan_poison(page_address(page), PAGE_SIZE << order, 118 KASAN_FREE_PAGE, init); 119 } 120 121 /* 122 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime. 123 * For larger allocations larger redzones are used. 124 */ 125 static inline unsigned int optimal_redzone(unsigned int object_size) 126 { 127 return 128 object_size <= 64 - 16 ? 16 : 129 object_size <= 128 - 32 ? 32 : 130 object_size <= 512 - 64 ? 64 : 131 object_size <= 4096 - 128 ? 128 : 132 object_size <= (1 << 14) - 256 ? 256 : 133 object_size <= (1 << 15) - 512 ? 512 : 134 object_size <= (1 << 16) - 1024 ? 1024 : 2048; 135 } 136 137 void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size, 138 slab_flags_t *flags) 139 { 140 unsigned int ok_size; 141 unsigned int optimal_size; 142 143 /* 144 * SLAB_KASAN is used to mark caches as ones that are sanitized by 145 * KASAN. Currently this flag is used in two places: 146 * 1. In slab_ksize() when calculating the size of the accessible 147 * memory within the object. 148 * 2. In slab_common.c to prevent merging of sanitized caches. 149 */ 150 *flags |= SLAB_KASAN; 151 152 if (!kasan_stack_collection_enabled()) 153 return; 154 155 ok_size = *size; 156 157 /* Add alloc meta into redzone. */ 158 cache->kasan_info.alloc_meta_offset = *size; 159 *size += sizeof(struct kasan_alloc_meta); 160 161 /* 162 * If alloc meta doesn't fit, don't add it. 163 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal 164 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for 165 * larger sizes. 166 */ 167 if (*size > KMALLOC_MAX_SIZE) { 168 cache->kasan_info.alloc_meta_offset = 0; 169 *size = ok_size; 170 /* Continue, since free meta might still fit. */ 171 } 172 173 /* Only the generic mode uses free meta or flexible redzones. */ 174 if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) { 175 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; 176 return; 177 } 178 179 /* 180 * Add free meta into redzone when it's not possible to store 181 * it in the object. This is the case when: 182 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can 183 * be touched after it was freed, or 184 * 2. Object has a constructor, which means it's expected to 185 * retain its content until the next allocation, or 186 * 3. Object is too small. 187 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied. 188 */ 189 if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor || 190 cache->object_size < sizeof(struct kasan_free_meta)) { 191 ok_size = *size; 192 193 cache->kasan_info.free_meta_offset = *size; 194 *size += sizeof(struct kasan_free_meta); 195 196 /* If free meta doesn't fit, don't add it. */ 197 if (*size > KMALLOC_MAX_SIZE) { 198 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META; 199 *size = ok_size; 200 } 201 } 202 203 /* Calculate size with optimal redzone. */ 204 optimal_size = cache->object_size + optimal_redzone(cache->object_size); 205 /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */ 206 if (optimal_size > KMALLOC_MAX_SIZE) 207 optimal_size = KMALLOC_MAX_SIZE; 208 /* Use optimal size if the size with added metas is not large enough. */ 209 if (*size < optimal_size) 210 *size = optimal_size; 211 } 212 213 void __kasan_cache_create_kmalloc(struct kmem_cache *cache) 214 { 215 cache->kasan_info.is_kmalloc = true; 216 } 217 218 size_t __kasan_metadata_size(struct kmem_cache *cache) 219 { 220 if (!kasan_stack_collection_enabled()) 221 return 0; 222 return (cache->kasan_info.alloc_meta_offset ? 223 sizeof(struct kasan_alloc_meta) : 0) + 224 (cache->kasan_info.free_meta_offset ? 225 sizeof(struct kasan_free_meta) : 0); 226 } 227 228 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache, 229 const void *object) 230 { 231 if (!cache->kasan_info.alloc_meta_offset) 232 return NULL; 233 return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset; 234 } 235 236 #ifdef CONFIG_KASAN_GENERIC 237 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache, 238 const void *object) 239 { 240 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32); 241 if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META) 242 return NULL; 243 return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset; 244 } 245 #endif 246 247 void __kasan_poison_slab(struct page *page) 248 { 249 unsigned long i; 250 251 for (i = 0; i < compound_nr(page); i++) 252 page_kasan_tag_reset(page + i); 253 kasan_poison(page_address(page), page_size(page), 254 KASAN_KMALLOC_REDZONE, false); 255 } 256 257 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object) 258 { 259 kasan_unpoison(object, cache->object_size, false); 260 } 261 262 void __kasan_poison_object_data(struct kmem_cache *cache, void *object) 263 { 264 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 265 KASAN_KMALLOC_REDZONE, false); 266 } 267 268 /* 269 * This function assigns a tag to an object considering the following: 270 * 1. A cache might have a constructor, which might save a pointer to a slab 271 * object somewhere (e.g. in the object itself). We preassign a tag for 272 * each object in caches with constructors during slab creation and reuse 273 * the same tag each time a particular object is allocated. 274 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be 275 * accessed after being freed. We preassign tags for objects in these 276 * caches as well. 277 * 3. For SLAB allocator we can't preassign tags randomly since the freelist 278 * is stored as an array of indexes instead of a linked list. Assign tags 279 * based on objects indexes, so that objects that are next to each other 280 * get different tags. 281 */ 282 static inline u8 assign_tag(struct kmem_cache *cache, 283 const void *object, bool init) 284 { 285 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 286 return 0xff; 287 288 /* 289 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU 290 * set, assign a tag when the object is being allocated (init == false). 291 */ 292 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU)) 293 return init ? KASAN_TAG_KERNEL : kasan_random_tag(); 294 295 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */ 296 #ifdef CONFIG_SLAB 297 /* For SLAB assign tags based on the object index in the freelist. */ 298 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object); 299 #else 300 /* 301 * For SLUB assign a random tag during slab creation, otherwise reuse 302 * the already assigned tag. 303 */ 304 return init ? kasan_random_tag() : get_tag(object); 305 #endif 306 } 307 308 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache, 309 const void *object) 310 { 311 struct kasan_alloc_meta *alloc_meta; 312 313 if (kasan_stack_collection_enabled()) { 314 alloc_meta = kasan_get_alloc_meta(cache, object); 315 if (alloc_meta) 316 __memset(alloc_meta, 0, sizeof(*alloc_meta)); 317 } 318 319 /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */ 320 object = set_tag(object, assign_tag(cache, object, true)); 321 322 return (void *)object; 323 } 324 325 static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object, 326 unsigned long ip, bool quarantine, bool init) 327 { 328 u8 tag; 329 void *tagged_object; 330 331 tag = get_tag(object); 332 tagged_object = object; 333 object = kasan_reset_tag(object); 334 335 if (is_kfence_address(object)) 336 return false; 337 338 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) != 339 object)) { 340 kasan_report_invalid_free(tagged_object, ip); 341 return true; 342 } 343 344 /* RCU slabs could be legally used after free within the RCU period */ 345 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU)) 346 return false; 347 348 if (!kasan_byte_accessible(tagged_object)) { 349 kasan_report_invalid_free(tagged_object, ip); 350 return true; 351 } 352 353 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE), 354 KASAN_KMALLOC_FREE, init); 355 356 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine)) 357 return false; 358 359 if (kasan_stack_collection_enabled()) 360 kasan_set_free_info(cache, object, tag); 361 362 return kasan_quarantine_put(cache, object); 363 } 364 365 bool __kasan_slab_free(struct kmem_cache *cache, void *object, 366 unsigned long ip, bool init) 367 { 368 return ____kasan_slab_free(cache, object, ip, true, init); 369 } 370 371 static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip) 372 { 373 if (ptr != page_address(virt_to_head_page(ptr))) { 374 kasan_report_invalid_free(ptr, ip); 375 return true; 376 } 377 378 if (!kasan_byte_accessible(ptr)) { 379 kasan_report_invalid_free(ptr, ip); 380 return true; 381 } 382 383 /* 384 * The object will be poisoned by kasan_free_pages() or 385 * kasan_slab_free_mempool(). 386 */ 387 388 return false; 389 } 390 391 void __kasan_kfree_large(void *ptr, unsigned long ip) 392 { 393 ____kasan_kfree_large(ptr, ip); 394 } 395 396 void __kasan_slab_free_mempool(void *ptr, unsigned long ip) 397 { 398 struct page *page; 399 400 page = virt_to_head_page(ptr); 401 402 /* 403 * Even though this function is only called for kmem_cache_alloc and 404 * kmalloc backed mempool allocations, those allocations can still be 405 * !PageSlab() when the size provided to kmalloc is larger than 406 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc. 407 */ 408 if (unlikely(!PageSlab(page))) { 409 if (____kasan_kfree_large(ptr, ip)) 410 return; 411 kasan_poison(ptr, page_size(page), KASAN_FREE_PAGE, false); 412 } else { 413 ____kasan_slab_free(page->slab_cache, ptr, ip, false, false); 414 } 415 } 416 417 static void set_alloc_info(struct kmem_cache *cache, void *object, 418 gfp_t flags, bool is_kmalloc) 419 { 420 struct kasan_alloc_meta *alloc_meta; 421 422 /* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */ 423 if (cache->kasan_info.is_kmalloc && !is_kmalloc) 424 return; 425 426 alloc_meta = kasan_get_alloc_meta(cache, object); 427 if (alloc_meta) 428 kasan_set_track(&alloc_meta->alloc_track, flags); 429 } 430 431 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache, 432 void *object, gfp_t flags, bool init) 433 { 434 u8 tag; 435 void *tagged_object; 436 437 if (gfpflags_allow_blocking(flags)) 438 kasan_quarantine_reduce(); 439 440 if (unlikely(object == NULL)) 441 return NULL; 442 443 if (is_kfence_address(object)) 444 return (void *)object; 445 446 /* 447 * Generate and assign random tag for tag-based modes. 448 * Tag is ignored in set_tag() for the generic mode. 449 */ 450 tag = assign_tag(cache, object, false); 451 tagged_object = set_tag(object, tag); 452 453 /* 454 * Unpoison the whole object. 455 * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning. 456 */ 457 kasan_unpoison(tagged_object, cache->object_size, init); 458 459 /* Save alloc info (if possible) for non-kmalloc() allocations. */ 460 if (kasan_stack_collection_enabled()) 461 set_alloc_info(cache, (void *)object, flags, false); 462 463 return tagged_object; 464 } 465 466 static inline void *____kasan_kmalloc(struct kmem_cache *cache, 467 const void *object, size_t size, gfp_t flags) 468 { 469 unsigned long redzone_start; 470 unsigned long redzone_end; 471 472 if (gfpflags_allow_blocking(flags)) 473 kasan_quarantine_reduce(); 474 475 if (unlikely(object == NULL)) 476 return NULL; 477 478 if (is_kfence_address(kasan_reset_tag(object))) 479 return (void *)object; 480 481 /* 482 * The object has already been unpoisoned by kasan_slab_alloc() for 483 * kmalloc() or by kasan_krealloc() for krealloc(). 484 */ 485 486 /* 487 * The redzone has byte-level precision for the generic mode. 488 * Partially poison the last object granule to cover the unaligned 489 * part of the redzone. 490 */ 491 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 492 kasan_poison_last_granule((void *)object, size); 493 494 /* Poison the aligned part of the redzone. */ 495 redzone_start = round_up((unsigned long)(object + size), 496 KASAN_GRANULE_SIZE); 497 redzone_end = round_up((unsigned long)(object + cache->object_size), 498 KASAN_GRANULE_SIZE); 499 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 500 KASAN_KMALLOC_REDZONE, false); 501 502 /* 503 * Save alloc info (if possible) for kmalloc() allocations. 504 * This also rewrites the alloc info when called from kasan_krealloc(). 505 */ 506 if (kasan_stack_collection_enabled()) 507 set_alloc_info(cache, (void *)object, flags, true); 508 509 /* Keep the tag that was set by kasan_slab_alloc(). */ 510 return (void *)object; 511 } 512 513 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object, 514 size_t size, gfp_t flags) 515 { 516 return ____kasan_kmalloc(cache, object, size, flags); 517 } 518 EXPORT_SYMBOL(__kasan_kmalloc); 519 520 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size, 521 gfp_t flags) 522 { 523 unsigned long redzone_start; 524 unsigned long redzone_end; 525 526 if (gfpflags_allow_blocking(flags)) 527 kasan_quarantine_reduce(); 528 529 if (unlikely(ptr == NULL)) 530 return NULL; 531 532 /* 533 * The object has already been unpoisoned by kasan_alloc_pages() for 534 * alloc_pages() or by kasan_krealloc() for krealloc(). 535 */ 536 537 /* 538 * The redzone has byte-level precision for the generic mode. 539 * Partially poison the last object granule to cover the unaligned 540 * part of the redzone. 541 */ 542 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 543 kasan_poison_last_granule(ptr, size); 544 545 /* Poison the aligned part of the redzone. */ 546 redzone_start = round_up((unsigned long)(ptr + size), 547 KASAN_GRANULE_SIZE); 548 redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr)); 549 kasan_poison((void *)redzone_start, redzone_end - redzone_start, 550 KASAN_PAGE_REDZONE, false); 551 552 return (void *)ptr; 553 } 554 555 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags) 556 { 557 struct page *page; 558 559 if (unlikely(object == ZERO_SIZE_PTR)) 560 return (void *)object; 561 562 /* 563 * Unpoison the object's data. 564 * Part of it might already have been unpoisoned, but it's unknown 565 * how big that part is. 566 */ 567 kasan_unpoison(object, size, false); 568 569 page = virt_to_head_page(object); 570 571 /* Piggy-back on kmalloc() instrumentation to poison the redzone. */ 572 if (unlikely(!PageSlab(page))) 573 return __kasan_kmalloc_large(object, size, flags); 574 else 575 return ____kasan_kmalloc(page->slab_cache, object, size, flags); 576 } 577 578 bool __kasan_check_byte(const void *address, unsigned long ip) 579 { 580 if (!kasan_byte_accessible(address)) { 581 kasan_report((unsigned long)address, 1, false, ip); 582 return false; 583 } 584 return true; 585 } 586