xref: /linux/mm/kasan/common.c (revision 4461568aa4e565de2c336f4875ddf912f26da8a5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11 
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/slab.h>
25 #include <linux/stacktrace.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/bug.h>
29 
30 #include "kasan.h"
31 #include "../slab.h"
32 
33 depot_stack_handle_t kasan_save_stack(gfp_t flags, bool can_alloc)
34 {
35 	unsigned long entries[KASAN_STACK_DEPTH];
36 	unsigned int nr_entries;
37 
38 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
39 	return __stack_depot_save(entries, nr_entries, flags, can_alloc);
40 }
41 
42 void kasan_set_track(struct kasan_track *track, gfp_t flags)
43 {
44 	track->pid = current->pid;
45 	track->stack = kasan_save_stack(flags, true);
46 }
47 
48 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
49 void kasan_enable_current(void)
50 {
51 	current->kasan_depth++;
52 }
53 EXPORT_SYMBOL(kasan_enable_current);
54 
55 void kasan_disable_current(void)
56 {
57 	current->kasan_depth--;
58 }
59 EXPORT_SYMBOL(kasan_disable_current);
60 
61 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
62 
63 void __kasan_unpoison_range(const void *address, size_t size)
64 {
65 	kasan_unpoison(address, size, false);
66 }
67 
68 #ifdef CONFIG_KASAN_STACK
69 /* Unpoison the entire stack for a task. */
70 void kasan_unpoison_task_stack(struct task_struct *task)
71 {
72 	void *base = task_stack_page(task);
73 
74 	kasan_unpoison(base, THREAD_SIZE, false);
75 }
76 
77 /* Unpoison the stack for the current task beyond a watermark sp value. */
78 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
79 {
80 	/*
81 	 * Calculate the task stack base address.  Avoid using 'current'
82 	 * because this function is called by early resume code which hasn't
83 	 * yet set up the percpu register (%gs).
84 	 */
85 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
86 
87 	kasan_unpoison(base, watermark - base, false);
88 }
89 #endif /* CONFIG_KASAN_STACK */
90 
91 /*
92  * Only allow cache merging when stack collection is disabled and no metadata
93  * is present.
94  */
95 slab_flags_t __kasan_never_merge(void)
96 {
97 	if (kasan_stack_collection_enabled())
98 		return SLAB_KASAN;
99 	return 0;
100 }
101 
102 void __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
103 {
104 	u8 tag;
105 	unsigned long i;
106 
107 	if (unlikely(PageHighMem(page)))
108 		return;
109 
110 	tag = kasan_random_tag();
111 	kasan_unpoison(set_tag(page_address(page), tag),
112 		       PAGE_SIZE << order, init);
113 	for (i = 0; i < (1 << order); i++)
114 		page_kasan_tag_set(page + i, tag);
115 }
116 
117 void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
118 {
119 	if (likely(!PageHighMem(page)))
120 		kasan_poison(page_address(page), PAGE_SIZE << order,
121 			     KASAN_PAGE_FREE, init);
122 }
123 
124 /*
125  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
126  * For larger allocations larger redzones are used.
127  */
128 static inline unsigned int optimal_redzone(unsigned int object_size)
129 {
130 	return
131 		object_size <= 64        - 16   ? 16 :
132 		object_size <= 128       - 32   ? 32 :
133 		object_size <= 512       - 64   ? 64 :
134 		object_size <= 4096      - 128  ? 128 :
135 		object_size <= (1 << 14) - 256  ? 256 :
136 		object_size <= (1 << 15) - 512  ? 512 :
137 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
138 }
139 
140 void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
141 			  slab_flags_t *flags)
142 {
143 	unsigned int ok_size;
144 	unsigned int optimal_size;
145 
146 	/*
147 	 * SLAB_KASAN is used to mark caches as ones that are sanitized by
148 	 * KASAN. Currently this flag is used in two places:
149 	 * 1. In slab_ksize() when calculating the size of the accessible
150 	 *    memory within the object.
151 	 * 2. In slab_common.c to prevent merging of sanitized caches.
152 	 */
153 	*flags |= SLAB_KASAN;
154 
155 	if (!kasan_stack_collection_enabled())
156 		return;
157 
158 	ok_size = *size;
159 
160 	/* Add alloc meta into redzone. */
161 	cache->kasan_info.alloc_meta_offset = *size;
162 	*size += sizeof(struct kasan_alloc_meta);
163 
164 	/*
165 	 * If alloc meta doesn't fit, don't add it.
166 	 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
167 	 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
168 	 * larger sizes.
169 	 */
170 	if (*size > KMALLOC_MAX_SIZE) {
171 		cache->kasan_info.alloc_meta_offset = 0;
172 		*size = ok_size;
173 		/* Continue, since free meta might still fit. */
174 	}
175 
176 	/* Only the generic mode uses free meta or flexible redzones. */
177 	if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) {
178 		cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
179 		return;
180 	}
181 
182 	/*
183 	 * Add free meta into redzone when it's not possible to store
184 	 * it in the object. This is the case when:
185 	 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
186 	 *    be touched after it was freed, or
187 	 * 2. Object has a constructor, which means it's expected to
188 	 *    retain its content until the next allocation, or
189 	 * 3. Object is too small.
190 	 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
191 	 */
192 	if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
193 	    cache->object_size < sizeof(struct kasan_free_meta)) {
194 		ok_size = *size;
195 
196 		cache->kasan_info.free_meta_offset = *size;
197 		*size += sizeof(struct kasan_free_meta);
198 
199 		/* If free meta doesn't fit, don't add it. */
200 		if (*size > KMALLOC_MAX_SIZE) {
201 			cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
202 			*size = ok_size;
203 		}
204 	}
205 
206 	/* Calculate size with optimal redzone. */
207 	optimal_size = cache->object_size + optimal_redzone(cache->object_size);
208 	/* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
209 	if (optimal_size > KMALLOC_MAX_SIZE)
210 		optimal_size = KMALLOC_MAX_SIZE;
211 	/* Use optimal size if the size with added metas is not large enough. */
212 	if (*size < optimal_size)
213 		*size = optimal_size;
214 }
215 
216 void __kasan_cache_create_kmalloc(struct kmem_cache *cache)
217 {
218 	cache->kasan_info.is_kmalloc = true;
219 }
220 
221 size_t __kasan_metadata_size(struct kmem_cache *cache)
222 {
223 	if (!kasan_stack_collection_enabled())
224 		return 0;
225 	return (cache->kasan_info.alloc_meta_offset ?
226 		sizeof(struct kasan_alloc_meta) : 0) +
227 		(cache->kasan_info.free_meta_offset ?
228 		sizeof(struct kasan_free_meta) : 0);
229 }
230 
231 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
232 					      const void *object)
233 {
234 	if (!cache->kasan_info.alloc_meta_offset)
235 		return NULL;
236 	return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset;
237 }
238 
239 #ifdef CONFIG_KASAN_GENERIC
240 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
241 					    const void *object)
242 {
243 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
244 	if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
245 		return NULL;
246 	return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset;
247 }
248 #endif
249 
250 void __kasan_poison_slab(struct slab *slab)
251 {
252 	struct page *page = slab_page(slab);
253 	unsigned long i;
254 
255 	for (i = 0; i < compound_nr(page); i++)
256 		page_kasan_tag_reset(page + i);
257 	kasan_poison(page_address(page), page_size(page),
258 		     KASAN_SLAB_REDZONE, false);
259 }
260 
261 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
262 {
263 	kasan_unpoison(object, cache->object_size, false);
264 }
265 
266 void __kasan_poison_object_data(struct kmem_cache *cache, void *object)
267 {
268 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
269 			KASAN_SLAB_REDZONE, false);
270 }
271 
272 /*
273  * This function assigns a tag to an object considering the following:
274  * 1. A cache might have a constructor, which might save a pointer to a slab
275  *    object somewhere (e.g. in the object itself). We preassign a tag for
276  *    each object in caches with constructors during slab creation and reuse
277  *    the same tag each time a particular object is allocated.
278  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
279  *    accessed after being freed. We preassign tags for objects in these
280  *    caches as well.
281  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
282  *    is stored as an array of indexes instead of a linked list. Assign tags
283  *    based on objects indexes, so that objects that are next to each other
284  *    get different tags.
285  */
286 static inline u8 assign_tag(struct kmem_cache *cache,
287 					const void *object, bool init)
288 {
289 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
290 		return 0xff;
291 
292 	/*
293 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
294 	 * set, assign a tag when the object is being allocated (init == false).
295 	 */
296 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
297 		return init ? KASAN_TAG_KERNEL : kasan_random_tag();
298 
299 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
300 #ifdef CONFIG_SLAB
301 	/* For SLAB assign tags based on the object index in the freelist. */
302 	return (u8)obj_to_index(cache, virt_to_slab(object), (void *)object);
303 #else
304 	/*
305 	 * For SLUB assign a random tag during slab creation, otherwise reuse
306 	 * the already assigned tag.
307 	 */
308 	return init ? kasan_random_tag() : get_tag(object);
309 #endif
310 }
311 
312 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
313 						const void *object)
314 {
315 	struct kasan_alloc_meta *alloc_meta;
316 
317 	if (kasan_stack_collection_enabled()) {
318 		alloc_meta = kasan_get_alloc_meta(cache, object);
319 		if (alloc_meta)
320 			__memset(alloc_meta, 0, sizeof(*alloc_meta));
321 	}
322 
323 	/* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
324 	object = set_tag(object, assign_tag(cache, object, true));
325 
326 	return (void *)object;
327 }
328 
329 static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object,
330 				unsigned long ip, bool quarantine, bool init)
331 {
332 	u8 tag;
333 	void *tagged_object;
334 
335 	if (!kasan_arch_is_ready())
336 		return false;
337 
338 	tag = get_tag(object);
339 	tagged_object = object;
340 	object = kasan_reset_tag(object);
341 
342 	if (is_kfence_address(object))
343 		return false;
344 
345 	if (unlikely(nearest_obj(cache, virt_to_slab(object), object) !=
346 	    object)) {
347 		kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE);
348 		return true;
349 	}
350 
351 	/* RCU slabs could be legally used after free within the RCU period */
352 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
353 		return false;
354 
355 	if (!kasan_byte_accessible(tagged_object)) {
356 		kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE);
357 		return true;
358 	}
359 
360 	kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
361 			KASAN_SLAB_FREE, init);
362 
363 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine))
364 		return false;
365 
366 	if (kasan_stack_collection_enabled())
367 		kasan_set_free_info(cache, object, tag);
368 
369 	return kasan_quarantine_put(cache, object);
370 }
371 
372 bool __kasan_slab_free(struct kmem_cache *cache, void *object,
373 				unsigned long ip, bool init)
374 {
375 	return ____kasan_slab_free(cache, object, ip, true, init);
376 }
377 
378 static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip)
379 {
380 	if (ptr != page_address(virt_to_head_page(ptr))) {
381 		kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE);
382 		return true;
383 	}
384 
385 	if (!kasan_byte_accessible(ptr)) {
386 		kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE);
387 		return true;
388 	}
389 
390 	/*
391 	 * The object will be poisoned by kasan_poison_pages() or
392 	 * kasan_slab_free_mempool().
393 	 */
394 
395 	return false;
396 }
397 
398 void __kasan_kfree_large(void *ptr, unsigned long ip)
399 {
400 	____kasan_kfree_large(ptr, ip);
401 }
402 
403 void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
404 {
405 	struct folio *folio;
406 
407 	folio = virt_to_folio(ptr);
408 
409 	/*
410 	 * Even though this function is only called for kmem_cache_alloc and
411 	 * kmalloc backed mempool allocations, those allocations can still be
412 	 * !PageSlab() when the size provided to kmalloc is larger than
413 	 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
414 	 */
415 	if (unlikely(!folio_test_slab(folio))) {
416 		if (____kasan_kfree_large(ptr, ip))
417 			return;
418 		kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false);
419 	} else {
420 		struct slab *slab = folio_slab(folio);
421 
422 		____kasan_slab_free(slab->slab_cache, ptr, ip, false, false);
423 	}
424 }
425 
426 static void set_alloc_info(struct kmem_cache *cache, void *object,
427 				gfp_t flags, bool is_kmalloc)
428 {
429 	struct kasan_alloc_meta *alloc_meta;
430 
431 	/* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */
432 	if (cache->kasan_info.is_kmalloc && !is_kmalloc)
433 		return;
434 
435 	alloc_meta = kasan_get_alloc_meta(cache, object);
436 	if (alloc_meta)
437 		kasan_set_track(&alloc_meta->alloc_track, flags);
438 }
439 
440 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
441 					void *object, gfp_t flags, bool init)
442 {
443 	u8 tag;
444 	void *tagged_object;
445 
446 	if (gfpflags_allow_blocking(flags))
447 		kasan_quarantine_reduce();
448 
449 	if (unlikely(object == NULL))
450 		return NULL;
451 
452 	if (is_kfence_address(object))
453 		return (void *)object;
454 
455 	/*
456 	 * Generate and assign random tag for tag-based modes.
457 	 * Tag is ignored in set_tag() for the generic mode.
458 	 */
459 	tag = assign_tag(cache, object, false);
460 	tagged_object = set_tag(object, tag);
461 
462 	/*
463 	 * Unpoison the whole object.
464 	 * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning.
465 	 */
466 	kasan_unpoison(tagged_object, cache->object_size, init);
467 
468 	/* Save alloc info (if possible) for non-kmalloc() allocations. */
469 	if (kasan_stack_collection_enabled())
470 		set_alloc_info(cache, (void *)object, flags, false);
471 
472 	return tagged_object;
473 }
474 
475 static inline void *____kasan_kmalloc(struct kmem_cache *cache,
476 				const void *object, size_t size, gfp_t flags)
477 {
478 	unsigned long redzone_start;
479 	unsigned long redzone_end;
480 
481 	if (gfpflags_allow_blocking(flags))
482 		kasan_quarantine_reduce();
483 
484 	if (unlikely(object == NULL))
485 		return NULL;
486 
487 	if (is_kfence_address(kasan_reset_tag(object)))
488 		return (void *)object;
489 
490 	/*
491 	 * The object has already been unpoisoned by kasan_slab_alloc() for
492 	 * kmalloc() or by kasan_krealloc() for krealloc().
493 	 */
494 
495 	/*
496 	 * The redzone has byte-level precision for the generic mode.
497 	 * Partially poison the last object granule to cover the unaligned
498 	 * part of the redzone.
499 	 */
500 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
501 		kasan_poison_last_granule((void *)object, size);
502 
503 	/* Poison the aligned part of the redzone. */
504 	redzone_start = round_up((unsigned long)(object + size),
505 				KASAN_GRANULE_SIZE);
506 	redzone_end = round_up((unsigned long)(object + cache->object_size),
507 				KASAN_GRANULE_SIZE);
508 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
509 			   KASAN_SLAB_REDZONE, false);
510 
511 	/*
512 	 * Save alloc info (if possible) for kmalloc() allocations.
513 	 * This also rewrites the alloc info when called from kasan_krealloc().
514 	 */
515 	if (kasan_stack_collection_enabled())
516 		set_alloc_info(cache, (void *)object, flags, true);
517 
518 	/* Keep the tag that was set by kasan_slab_alloc(). */
519 	return (void *)object;
520 }
521 
522 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
523 					size_t size, gfp_t flags)
524 {
525 	return ____kasan_kmalloc(cache, object, size, flags);
526 }
527 EXPORT_SYMBOL(__kasan_kmalloc);
528 
529 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
530 						gfp_t flags)
531 {
532 	unsigned long redzone_start;
533 	unsigned long redzone_end;
534 
535 	if (gfpflags_allow_blocking(flags))
536 		kasan_quarantine_reduce();
537 
538 	if (unlikely(ptr == NULL))
539 		return NULL;
540 
541 	/*
542 	 * The object has already been unpoisoned by kasan_unpoison_pages() for
543 	 * alloc_pages() or by kasan_krealloc() for krealloc().
544 	 */
545 
546 	/*
547 	 * The redzone has byte-level precision for the generic mode.
548 	 * Partially poison the last object granule to cover the unaligned
549 	 * part of the redzone.
550 	 */
551 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
552 		kasan_poison_last_granule(ptr, size);
553 
554 	/* Poison the aligned part of the redzone. */
555 	redzone_start = round_up((unsigned long)(ptr + size),
556 				KASAN_GRANULE_SIZE);
557 	redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
558 	kasan_poison((void *)redzone_start, redzone_end - redzone_start,
559 		     KASAN_PAGE_REDZONE, false);
560 
561 	return (void *)ptr;
562 }
563 
564 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
565 {
566 	struct slab *slab;
567 
568 	if (unlikely(object == ZERO_SIZE_PTR))
569 		return (void *)object;
570 
571 	/*
572 	 * Unpoison the object's data.
573 	 * Part of it might already have been unpoisoned, but it's unknown
574 	 * how big that part is.
575 	 */
576 	kasan_unpoison(object, size, false);
577 
578 	slab = virt_to_slab(object);
579 
580 	/* Piggy-back on kmalloc() instrumentation to poison the redzone. */
581 	if (unlikely(!slab))
582 		return __kasan_kmalloc_large(object, size, flags);
583 	else
584 		return ____kasan_kmalloc(slab->slab_cache, object, size, flags);
585 }
586 
587 bool __kasan_check_byte(const void *address, unsigned long ip)
588 {
589 	if (!kasan_byte_accessible(address)) {
590 		kasan_report((unsigned long)address, 1, false, ip);
591 		return false;
592 	}
593 	return true;
594 }
595