xref: /linux/mm/kasan/common.c (revision 15a1fbdcfb519c2bd291ed01c6c94e0b89537a77)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common generic and tag-based KASAN code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License version 2 as
13  * published by the Free Software Foundation.
14  *
15  */
16 
17 #include <linux/export.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kasan.h>
21 #include <linux/kernel.h>
22 #include <linux/kmemleak.h>
23 #include <linux/linkage.h>
24 #include <linux/memblock.h>
25 #include <linux/memory.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/printk.h>
29 #include <linux/sched.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/slab.h>
32 #include <linux/stacktrace.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/vmalloc.h>
36 #include <linux/bug.h>
37 #include <linux/uaccess.h>
38 
39 #include <asm/cacheflush.h>
40 #include <asm/tlbflush.h>
41 
42 #include "kasan.h"
43 #include "../slab.h"
44 
45 static inline int in_irqentry_text(unsigned long ptr)
46 {
47 	return (ptr >= (unsigned long)&__irqentry_text_start &&
48 		ptr < (unsigned long)&__irqentry_text_end) ||
49 		(ptr >= (unsigned long)&__softirqentry_text_start &&
50 		 ptr < (unsigned long)&__softirqentry_text_end);
51 }
52 
53 static inline unsigned int filter_irq_stacks(unsigned long *entries,
54 					     unsigned int nr_entries)
55 {
56 	unsigned int i;
57 
58 	for (i = 0; i < nr_entries; i++) {
59 		if (in_irqentry_text(entries[i])) {
60 			/* Include the irqentry function into the stack. */
61 			return i + 1;
62 		}
63 	}
64 	return nr_entries;
65 }
66 
67 static inline depot_stack_handle_t save_stack(gfp_t flags)
68 {
69 	unsigned long entries[KASAN_STACK_DEPTH];
70 	unsigned int nr_entries;
71 
72 	nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
73 	nr_entries = filter_irq_stacks(entries, nr_entries);
74 	return stack_depot_save(entries, nr_entries, flags);
75 }
76 
77 static inline void set_track(struct kasan_track *track, gfp_t flags)
78 {
79 	track->pid = current->pid;
80 	track->stack = save_stack(flags);
81 }
82 
83 void kasan_enable_current(void)
84 {
85 	current->kasan_depth++;
86 }
87 
88 void kasan_disable_current(void)
89 {
90 	current->kasan_depth--;
91 }
92 
93 bool __kasan_check_read(const volatile void *p, unsigned int size)
94 {
95 	return check_memory_region((unsigned long)p, size, false, _RET_IP_);
96 }
97 EXPORT_SYMBOL(__kasan_check_read);
98 
99 bool __kasan_check_write(const volatile void *p, unsigned int size)
100 {
101 	return check_memory_region((unsigned long)p, size, true, _RET_IP_);
102 }
103 EXPORT_SYMBOL(__kasan_check_write);
104 
105 #undef memset
106 void *memset(void *addr, int c, size_t len)
107 {
108 	check_memory_region((unsigned long)addr, len, true, _RET_IP_);
109 
110 	return __memset(addr, c, len);
111 }
112 
113 #ifdef __HAVE_ARCH_MEMMOVE
114 #undef memmove
115 void *memmove(void *dest, const void *src, size_t len)
116 {
117 	check_memory_region((unsigned long)src, len, false, _RET_IP_);
118 	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
119 
120 	return __memmove(dest, src, len);
121 }
122 #endif
123 
124 #undef memcpy
125 void *memcpy(void *dest, const void *src, size_t len)
126 {
127 	check_memory_region((unsigned long)src, len, false, _RET_IP_);
128 	check_memory_region((unsigned long)dest, len, true, _RET_IP_);
129 
130 	return __memcpy(dest, src, len);
131 }
132 
133 /*
134  * Poisons the shadow memory for 'size' bytes starting from 'addr'.
135  * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
136  */
137 void kasan_poison_shadow(const void *address, size_t size, u8 value)
138 {
139 	void *shadow_start, *shadow_end;
140 
141 	/*
142 	 * Perform shadow offset calculation based on untagged address, as
143 	 * some of the callers (e.g. kasan_poison_object_data) pass tagged
144 	 * addresses to this function.
145 	 */
146 	address = reset_tag(address);
147 
148 	shadow_start = kasan_mem_to_shadow(address);
149 	shadow_end = kasan_mem_to_shadow(address + size);
150 
151 	__memset(shadow_start, value, shadow_end - shadow_start);
152 }
153 
154 void kasan_unpoison_shadow(const void *address, size_t size)
155 {
156 	u8 tag = get_tag(address);
157 
158 	/*
159 	 * Perform shadow offset calculation based on untagged address, as
160 	 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
161 	 * addresses to this function.
162 	 */
163 	address = reset_tag(address);
164 
165 	kasan_poison_shadow(address, size, tag);
166 
167 	if (size & KASAN_SHADOW_MASK) {
168 		u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
169 
170 		if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
171 			*shadow = tag;
172 		else
173 			*shadow = size & KASAN_SHADOW_MASK;
174 	}
175 }
176 
177 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
178 {
179 	void *base = task_stack_page(task);
180 	size_t size = sp - base;
181 
182 	kasan_unpoison_shadow(base, size);
183 }
184 
185 /* Unpoison the entire stack for a task. */
186 void kasan_unpoison_task_stack(struct task_struct *task)
187 {
188 	__kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
189 }
190 
191 /* Unpoison the stack for the current task beyond a watermark sp value. */
192 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
193 {
194 	/*
195 	 * Calculate the task stack base address.  Avoid using 'current'
196 	 * because this function is called by early resume code which hasn't
197 	 * yet set up the percpu register (%gs).
198 	 */
199 	void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
200 
201 	kasan_unpoison_shadow(base, watermark - base);
202 }
203 
204 /*
205  * Clear all poison for the region between the current SP and a provided
206  * watermark value, as is sometimes required prior to hand-crafted asm function
207  * returns in the middle of functions.
208  */
209 void kasan_unpoison_stack_above_sp_to(const void *watermark)
210 {
211 	const void *sp = __builtin_frame_address(0);
212 	size_t size = watermark - sp;
213 
214 	if (WARN_ON(sp > watermark))
215 		return;
216 	kasan_unpoison_shadow(sp, size);
217 }
218 
219 void kasan_alloc_pages(struct page *page, unsigned int order)
220 {
221 	u8 tag;
222 	unsigned long i;
223 
224 	if (unlikely(PageHighMem(page)))
225 		return;
226 
227 	tag = random_tag();
228 	for (i = 0; i < (1 << order); i++)
229 		page_kasan_tag_set(page + i, tag);
230 	kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
231 }
232 
233 void kasan_free_pages(struct page *page, unsigned int order)
234 {
235 	if (likely(!PageHighMem(page)))
236 		kasan_poison_shadow(page_address(page),
237 				PAGE_SIZE << order,
238 				KASAN_FREE_PAGE);
239 }
240 
241 /*
242  * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
243  * For larger allocations larger redzones are used.
244  */
245 static inline unsigned int optimal_redzone(unsigned int object_size)
246 {
247 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
248 		return 0;
249 
250 	return
251 		object_size <= 64        - 16   ? 16 :
252 		object_size <= 128       - 32   ? 32 :
253 		object_size <= 512       - 64   ? 64 :
254 		object_size <= 4096      - 128  ? 128 :
255 		object_size <= (1 << 14) - 256  ? 256 :
256 		object_size <= (1 << 15) - 512  ? 512 :
257 		object_size <= (1 << 16) - 1024 ? 1024 : 2048;
258 }
259 
260 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
261 			slab_flags_t *flags)
262 {
263 	unsigned int orig_size = *size;
264 	unsigned int redzone_size;
265 	int redzone_adjust;
266 
267 	/* Add alloc meta. */
268 	cache->kasan_info.alloc_meta_offset = *size;
269 	*size += sizeof(struct kasan_alloc_meta);
270 
271 	/* Add free meta. */
272 	if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
273 	    (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
274 	     cache->object_size < sizeof(struct kasan_free_meta))) {
275 		cache->kasan_info.free_meta_offset = *size;
276 		*size += sizeof(struct kasan_free_meta);
277 	}
278 
279 	redzone_size = optimal_redzone(cache->object_size);
280 	redzone_adjust = redzone_size -	(*size - cache->object_size);
281 	if (redzone_adjust > 0)
282 		*size += redzone_adjust;
283 
284 	*size = min_t(unsigned int, KMALLOC_MAX_SIZE,
285 			max(*size, cache->object_size + redzone_size));
286 
287 	/*
288 	 * If the metadata doesn't fit, don't enable KASAN at all.
289 	 */
290 	if (*size <= cache->kasan_info.alloc_meta_offset ||
291 			*size <= cache->kasan_info.free_meta_offset) {
292 		cache->kasan_info.alloc_meta_offset = 0;
293 		cache->kasan_info.free_meta_offset = 0;
294 		*size = orig_size;
295 		return;
296 	}
297 
298 	*flags |= SLAB_KASAN;
299 }
300 
301 size_t kasan_metadata_size(struct kmem_cache *cache)
302 {
303 	return (cache->kasan_info.alloc_meta_offset ?
304 		sizeof(struct kasan_alloc_meta) : 0) +
305 		(cache->kasan_info.free_meta_offset ?
306 		sizeof(struct kasan_free_meta) : 0);
307 }
308 
309 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
310 					const void *object)
311 {
312 	return (void *)object + cache->kasan_info.alloc_meta_offset;
313 }
314 
315 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
316 				      const void *object)
317 {
318 	BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
319 	return (void *)object + cache->kasan_info.free_meta_offset;
320 }
321 
322 
323 static void kasan_set_free_info(struct kmem_cache *cache,
324 		void *object, u8 tag)
325 {
326 	struct kasan_alloc_meta *alloc_meta;
327 	u8 idx = 0;
328 
329 	alloc_meta = get_alloc_info(cache, object);
330 
331 #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY
332 	idx = alloc_meta->free_track_idx;
333 	alloc_meta->free_pointer_tag[idx] = tag;
334 	alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS;
335 #endif
336 
337 	set_track(&alloc_meta->free_track[idx], GFP_NOWAIT);
338 }
339 
340 void kasan_poison_slab(struct page *page)
341 {
342 	unsigned long i;
343 
344 	for (i = 0; i < compound_nr(page); i++)
345 		page_kasan_tag_reset(page + i);
346 	kasan_poison_shadow(page_address(page), page_size(page),
347 			KASAN_KMALLOC_REDZONE);
348 }
349 
350 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
351 {
352 	kasan_unpoison_shadow(object, cache->object_size);
353 }
354 
355 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
356 {
357 	kasan_poison_shadow(object,
358 			round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
359 			KASAN_KMALLOC_REDZONE);
360 }
361 
362 /*
363  * This function assigns a tag to an object considering the following:
364  * 1. A cache might have a constructor, which might save a pointer to a slab
365  *    object somewhere (e.g. in the object itself). We preassign a tag for
366  *    each object in caches with constructors during slab creation and reuse
367  *    the same tag each time a particular object is allocated.
368  * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
369  *    accessed after being freed. We preassign tags for objects in these
370  *    caches as well.
371  * 3. For SLAB allocator we can't preassign tags randomly since the freelist
372  *    is stored as an array of indexes instead of a linked list. Assign tags
373  *    based on objects indexes, so that objects that are next to each other
374  *    get different tags.
375  */
376 static u8 assign_tag(struct kmem_cache *cache, const void *object,
377 			bool init, bool keep_tag)
378 {
379 	/*
380 	 * 1. When an object is kmalloc()'ed, two hooks are called:
381 	 *    kasan_slab_alloc() and kasan_kmalloc(). We assign the
382 	 *    tag only in the first one.
383 	 * 2. We reuse the same tag for krealloc'ed objects.
384 	 */
385 	if (keep_tag)
386 		return get_tag(object);
387 
388 	/*
389 	 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
390 	 * set, assign a tag when the object is being allocated (init == false).
391 	 */
392 	if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
393 		return init ? KASAN_TAG_KERNEL : random_tag();
394 
395 	/* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
396 #ifdef CONFIG_SLAB
397 	/* For SLAB assign tags based on the object index in the freelist. */
398 	return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
399 #else
400 	/*
401 	 * For SLUB assign a random tag during slab creation, otherwise reuse
402 	 * the already assigned tag.
403 	 */
404 	return init ? random_tag() : get_tag(object);
405 #endif
406 }
407 
408 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
409 						const void *object)
410 {
411 	struct kasan_alloc_meta *alloc_info;
412 
413 	if (!(cache->flags & SLAB_KASAN))
414 		return (void *)object;
415 
416 	alloc_info = get_alloc_info(cache, object);
417 	__memset(alloc_info, 0, sizeof(*alloc_info));
418 
419 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
420 		object = set_tag(object,
421 				assign_tag(cache, object, true, false));
422 
423 	return (void *)object;
424 }
425 
426 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
427 {
428 	if (IS_ENABLED(CONFIG_KASAN_GENERIC))
429 		return shadow_byte < 0 ||
430 			shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
431 
432 	/* else CONFIG_KASAN_SW_TAGS: */
433 	if ((u8)shadow_byte == KASAN_TAG_INVALID)
434 		return true;
435 	if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
436 		return true;
437 
438 	return false;
439 }
440 
441 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
442 			      unsigned long ip, bool quarantine)
443 {
444 	s8 shadow_byte;
445 	u8 tag;
446 	void *tagged_object;
447 	unsigned long rounded_up_size;
448 
449 	tag = get_tag(object);
450 	tagged_object = object;
451 	object = reset_tag(object);
452 
453 	if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
454 	    object)) {
455 		kasan_report_invalid_free(tagged_object, ip);
456 		return true;
457 	}
458 
459 	/* RCU slabs could be legally used after free within the RCU period */
460 	if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
461 		return false;
462 
463 	shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
464 	if (shadow_invalid(tag, shadow_byte)) {
465 		kasan_report_invalid_free(tagged_object, ip);
466 		return true;
467 	}
468 
469 	rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
470 	kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
471 
472 	if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
473 			unlikely(!(cache->flags & SLAB_KASAN)))
474 		return false;
475 
476 	kasan_set_free_info(cache, object, tag);
477 
478 	quarantine_put(get_free_info(cache, object), cache);
479 
480 	return IS_ENABLED(CONFIG_KASAN_GENERIC);
481 }
482 
483 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
484 {
485 	return __kasan_slab_free(cache, object, ip, true);
486 }
487 
488 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
489 				size_t size, gfp_t flags, bool keep_tag)
490 {
491 	unsigned long redzone_start;
492 	unsigned long redzone_end;
493 	u8 tag = 0xff;
494 
495 	if (gfpflags_allow_blocking(flags))
496 		quarantine_reduce();
497 
498 	if (unlikely(object == NULL))
499 		return NULL;
500 
501 	redzone_start = round_up((unsigned long)(object + size),
502 				KASAN_SHADOW_SCALE_SIZE);
503 	redzone_end = round_up((unsigned long)object + cache->object_size,
504 				KASAN_SHADOW_SCALE_SIZE);
505 
506 	if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
507 		tag = assign_tag(cache, object, false, keep_tag);
508 
509 	/* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
510 	kasan_unpoison_shadow(set_tag(object, tag), size);
511 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
512 		KASAN_KMALLOC_REDZONE);
513 
514 	if (cache->flags & SLAB_KASAN)
515 		set_track(&get_alloc_info(cache, object)->alloc_track, flags);
516 
517 	return set_tag(object, tag);
518 }
519 
520 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
521 					gfp_t flags)
522 {
523 	return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
524 }
525 
526 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
527 				size_t size, gfp_t flags)
528 {
529 	return __kasan_kmalloc(cache, object, size, flags, true);
530 }
531 EXPORT_SYMBOL(kasan_kmalloc);
532 
533 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
534 						gfp_t flags)
535 {
536 	struct page *page;
537 	unsigned long redzone_start;
538 	unsigned long redzone_end;
539 
540 	if (gfpflags_allow_blocking(flags))
541 		quarantine_reduce();
542 
543 	if (unlikely(ptr == NULL))
544 		return NULL;
545 
546 	page = virt_to_page(ptr);
547 	redzone_start = round_up((unsigned long)(ptr + size),
548 				KASAN_SHADOW_SCALE_SIZE);
549 	redzone_end = (unsigned long)ptr + page_size(page);
550 
551 	kasan_unpoison_shadow(ptr, size);
552 	kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
553 		KASAN_PAGE_REDZONE);
554 
555 	return (void *)ptr;
556 }
557 
558 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
559 {
560 	struct page *page;
561 
562 	if (unlikely(object == ZERO_SIZE_PTR))
563 		return (void *)object;
564 
565 	page = virt_to_head_page(object);
566 
567 	if (unlikely(!PageSlab(page)))
568 		return kasan_kmalloc_large(object, size, flags);
569 	else
570 		return __kasan_kmalloc(page->slab_cache, object, size,
571 						flags, true);
572 }
573 
574 void kasan_poison_kfree(void *ptr, unsigned long ip)
575 {
576 	struct page *page;
577 
578 	page = virt_to_head_page(ptr);
579 
580 	if (unlikely(!PageSlab(page))) {
581 		if (ptr != page_address(page)) {
582 			kasan_report_invalid_free(ptr, ip);
583 			return;
584 		}
585 		kasan_poison_shadow(ptr, page_size(page), KASAN_FREE_PAGE);
586 	} else {
587 		__kasan_slab_free(page->slab_cache, ptr, ip, false);
588 	}
589 }
590 
591 void kasan_kfree_large(void *ptr, unsigned long ip)
592 {
593 	if (ptr != page_address(virt_to_head_page(ptr)))
594 		kasan_report_invalid_free(ptr, ip);
595 	/* The object will be poisoned by page_alloc. */
596 }
597 
598 #ifndef CONFIG_KASAN_VMALLOC
599 int kasan_module_alloc(void *addr, size_t size)
600 {
601 	void *ret;
602 	size_t scaled_size;
603 	size_t shadow_size;
604 	unsigned long shadow_start;
605 
606 	shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
607 	scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
608 	shadow_size = round_up(scaled_size, PAGE_SIZE);
609 
610 	if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
611 		return -EINVAL;
612 
613 	ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
614 			shadow_start + shadow_size,
615 			GFP_KERNEL,
616 			PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
617 			__builtin_return_address(0));
618 
619 	if (ret) {
620 		__memset(ret, KASAN_SHADOW_INIT, shadow_size);
621 		find_vm_area(addr)->flags |= VM_KASAN;
622 		kmemleak_ignore(ret);
623 		return 0;
624 	}
625 
626 	return -ENOMEM;
627 }
628 
629 void kasan_free_shadow(const struct vm_struct *vm)
630 {
631 	if (vm->flags & VM_KASAN)
632 		vfree(kasan_mem_to_shadow(vm->addr));
633 }
634 #endif
635 
636 extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip);
637 
638 void kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip)
639 {
640 	unsigned long flags = user_access_save();
641 	__kasan_report(addr, size, is_write, ip);
642 	user_access_restore(flags);
643 }
644 
645 #ifdef CONFIG_MEMORY_HOTPLUG
646 static bool shadow_mapped(unsigned long addr)
647 {
648 	pgd_t *pgd = pgd_offset_k(addr);
649 	p4d_t *p4d;
650 	pud_t *pud;
651 	pmd_t *pmd;
652 	pte_t *pte;
653 
654 	if (pgd_none(*pgd))
655 		return false;
656 	p4d = p4d_offset(pgd, addr);
657 	if (p4d_none(*p4d))
658 		return false;
659 	pud = pud_offset(p4d, addr);
660 	if (pud_none(*pud))
661 		return false;
662 
663 	/*
664 	 * We can't use pud_large() or pud_huge(), the first one is
665 	 * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
666 	 * pud_bad(), if pud is bad then it's bad because it's huge.
667 	 */
668 	if (pud_bad(*pud))
669 		return true;
670 	pmd = pmd_offset(pud, addr);
671 	if (pmd_none(*pmd))
672 		return false;
673 
674 	if (pmd_bad(*pmd))
675 		return true;
676 	pte = pte_offset_kernel(pmd, addr);
677 	return !pte_none(*pte);
678 }
679 
680 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
681 			unsigned long action, void *data)
682 {
683 	struct memory_notify *mem_data = data;
684 	unsigned long nr_shadow_pages, start_kaddr, shadow_start;
685 	unsigned long shadow_end, shadow_size;
686 
687 	nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
688 	start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
689 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
690 	shadow_size = nr_shadow_pages << PAGE_SHIFT;
691 	shadow_end = shadow_start + shadow_size;
692 
693 	if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
694 		WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
695 		return NOTIFY_BAD;
696 
697 	switch (action) {
698 	case MEM_GOING_ONLINE: {
699 		void *ret;
700 
701 		/*
702 		 * If shadow is mapped already than it must have been mapped
703 		 * during the boot. This could happen if we onlining previously
704 		 * offlined memory.
705 		 */
706 		if (shadow_mapped(shadow_start))
707 			return NOTIFY_OK;
708 
709 		ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
710 					shadow_end, GFP_KERNEL,
711 					PAGE_KERNEL, VM_NO_GUARD,
712 					pfn_to_nid(mem_data->start_pfn),
713 					__builtin_return_address(0));
714 		if (!ret)
715 			return NOTIFY_BAD;
716 
717 		kmemleak_ignore(ret);
718 		return NOTIFY_OK;
719 	}
720 	case MEM_CANCEL_ONLINE:
721 	case MEM_OFFLINE: {
722 		struct vm_struct *vm;
723 
724 		/*
725 		 * shadow_start was either mapped during boot by kasan_init()
726 		 * or during memory online by __vmalloc_node_range().
727 		 * In the latter case we can use vfree() to free shadow.
728 		 * Non-NULL result of the find_vm_area() will tell us if
729 		 * that was the second case.
730 		 *
731 		 * Currently it's not possible to free shadow mapped
732 		 * during boot by kasan_init(). It's because the code
733 		 * to do that hasn't been written yet. So we'll just
734 		 * leak the memory.
735 		 */
736 		vm = find_vm_area((void *)shadow_start);
737 		if (vm)
738 			vfree((void *)shadow_start);
739 	}
740 	}
741 
742 	return NOTIFY_OK;
743 }
744 
745 static int __init kasan_memhotplug_init(void)
746 {
747 	hotplug_memory_notifier(kasan_mem_notifier, 0);
748 
749 	return 0;
750 }
751 
752 core_initcall(kasan_memhotplug_init);
753 #endif
754 
755 #ifdef CONFIG_KASAN_VMALLOC
756 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
757 				      void *unused)
758 {
759 	unsigned long page;
760 	pte_t pte;
761 
762 	if (likely(!pte_none(*ptep)))
763 		return 0;
764 
765 	page = __get_free_page(GFP_KERNEL);
766 	if (!page)
767 		return -ENOMEM;
768 
769 	memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
770 	pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
771 
772 	spin_lock(&init_mm.page_table_lock);
773 	if (likely(pte_none(*ptep))) {
774 		set_pte_at(&init_mm, addr, ptep, pte);
775 		page = 0;
776 	}
777 	spin_unlock(&init_mm.page_table_lock);
778 	if (page)
779 		free_page(page);
780 	return 0;
781 }
782 
783 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
784 {
785 	unsigned long shadow_start, shadow_end;
786 	int ret;
787 
788 	if (!is_vmalloc_or_module_addr((void *)addr))
789 		return 0;
790 
791 	shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
792 	shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
793 	shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
794 	shadow_end = ALIGN(shadow_end, PAGE_SIZE);
795 
796 	ret = apply_to_page_range(&init_mm, shadow_start,
797 				  shadow_end - shadow_start,
798 				  kasan_populate_vmalloc_pte, NULL);
799 	if (ret)
800 		return ret;
801 
802 	flush_cache_vmap(shadow_start, shadow_end);
803 
804 	/*
805 	 * We need to be careful about inter-cpu effects here. Consider:
806 	 *
807 	 *   CPU#0				  CPU#1
808 	 * WRITE_ONCE(p, vmalloc(100));		while (x = READ_ONCE(p)) ;
809 	 *					p[99] = 1;
810 	 *
811 	 * With compiler instrumentation, that ends up looking like this:
812 	 *
813 	 *   CPU#0				  CPU#1
814 	 * // vmalloc() allocates memory
815 	 * // let a = area->addr
816 	 * // we reach kasan_populate_vmalloc
817 	 * // and call kasan_unpoison_shadow:
818 	 * STORE shadow(a), unpoison_val
819 	 * ...
820 	 * STORE shadow(a+99), unpoison_val	x = LOAD p
821 	 * // rest of vmalloc process		<data dependency>
822 	 * STORE p, a				LOAD shadow(x+99)
823 	 *
824 	 * If there is no barrier between the end of unpoisioning the shadow
825 	 * and the store of the result to p, the stores could be committed
826 	 * in a different order by CPU#0, and CPU#1 could erroneously observe
827 	 * poison in the shadow.
828 	 *
829 	 * We need some sort of barrier between the stores.
830 	 *
831 	 * In the vmalloc() case, this is provided by a smp_wmb() in
832 	 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
833 	 * get_vm_area() and friends, the caller gets shadow allocated but
834 	 * doesn't have any pages mapped into the virtual address space that
835 	 * has been reserved. Mapping those pages in will involve taking and
836 	 * releasing a page-table lock, which will provide the barrier.
837 	 */
838 
839 	return 0;
840 }
841 
842 /*
843  * Poison the shadow for a vmalloc region. Called as part of the
844  * freeing process at the time the region is freed.
845  */
846 void kasan_poison_vmalloc(const void *start, unsigned long size)
847 {
848 	if (!is_vmalloc_or_module_addr(start))
849 		return;
850 
851 	size = round_up(size, KASAN_SHADOW_SCALE_SIZE);
852 	kasan_poison_shadow(start, size, KASAN_VMALLOC_INVALID);
853 }
854 
855 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
856 {
857 	if (!is_vmalloc_or_module_addr(start))
858 		return;
859 
860 	kasan_unpoison_shadow(start, size);
861 }
862 
863 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
864 					void *unused)
865 {
866 	unsigned long page;
867 
868 	page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
869 
870 	spin_lock(&init_mm.page_table_lock);
871 
872 	if (likely(!pte_none(*ptep))) {
873 		pte_clear(&init_mm, addr, ptep);
874 		free_page(page);
875 	}
876 	spin_unlock(&init_mm.page_table_lock);
877 
878 	return 0;
879 }
880 
881 /*
882  * Release the backing for the vmalloc region [start, end), which
883  * lies within the free region [free_region_start, free_region_end).
884  *
885  * This can be run lazily, long after the region was freed. It runs
886  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
887  * infrastructure.
888  *
889  * How does this work?
890  * -------------------
891  *
892  * We have a region that is page aligned, labelled as A.
893  * That might not map onto the shadow in a way that is page-aligned:
894  *
895  *                    start                     end
896  *                    v                         v
897  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
898  *  -------- -------- --------          -------- --------
899  *      |        |       |                 |        |
900  *      |        |       |         /-------/        |
901  *      \-------\|/------/         |/---------------/
902  *              |||                ||
903  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
904  *                 (1)      (2)      (3)
905  *
906  * First we align the start upwards and the end downwards, so that the
907  * shadow of the region aligns with shadow page boundaries. In the
908  * example, this gives us the shadow page (2). This is the shadow entirely
909  * covered by this allocation.
910  *
911  * Then we have the tricky bits. We want to know if we can free the
912  * partially covered shadow pages - (1) and (3) in the example. For this,
913  * we are given the start and end of the free region that contains this
914  * allocation. Extending our previous example, we could have:
915  *
916  *  free_region_start                                    free_region_end
917  *  |                 start                     end      |
918  *  v                 v                         v        v
919  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
920  *  -------- -------- --------          -------- --------
921  *      |        |       |                 |        |
922  *      |        |       |         /-------/        |
923  *      \-------\|/------/         |/---------------/
924  *              |||                ||
925  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
926  *                 (1)      (2)      (3)
927  *
928  * Once again, we align the start of the free region up, and the end of
929  * the free region down so that the shadow is page aligned. So we can free
930  * page (1) - we know no allocation currently uses anything in that page,
931  * because all of it is in the vmalloc free region. But we cannot free
932  * page (3), because we can't be sure that the rest of it is unused.
933  *
934  * We only consider pages that contain part of the original region for
935  * freeing: we don't try to free other pages from the free region or we'd
936  * end up trying to free huge chunks of virtual address space.
937  *
938  * Concurrency
939  * -----------
940  *
941  * How do we know that we're not freeing a page that is simultaneously
942  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
943  *
944  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
945  * at the same time. While we run under free_vmap_area_lock, the population
946  * code does not.
947  *
948  * free_vmap_area_lock instead operates to ensure that the larger range
949  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
950  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
951  * no space identified as free will become used while we are running. This
952  * means that so long as we are careful with alignment and only free shadow
953  * pages entirely covered by the free region, we will not run in to any
954  * trouble - any simultaneous allocations will be for disjoint regions.
955  */
956 void kasan_release_vmalloc(unsigned long start, unsigned long end,
957 			   unsigned long free_region_start,
958 			   unsigned long free_region_end)
959 {
960 	void *shadow_start, *shadow_end;
961 	unsigned long region_start, region_end;
962 	unsigned long size;
963 
964 	region_start = ALIGN(start, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
965 	region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
966 
967 	free_region_start = ALIGN(free_region_start,
968 				  PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
969 
970 	if (start != region_start &&
971 	    free_region_start < region_start)
972 		region_start -= PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
973 
974 	free_region_end = ALIGN_DOWN(free_region_end,
975 				     PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE);
976 
977 	if (end != region_end &&
978 	    free_region_end > region_end)
979 		region_end += PAGE_SIZE * KASAN_SHADOW_SCALE_SIZE;
980 
981 	shadow_start = kasan_mem_to_shadow((void *)region_start);
982 	shadow_end = kasan_mem_to_shadow((void *)region_end);
983 
984 	if (shadow_end > shadow_start) {
985 		size = shadow_end - shadow_start;
986 		apply_to_existing_page_range(&init_mm,
987 					     (unsigned long)shadow_start,
988 					     size, kasan_depopulate_vmalloc_pte,
989 					     NULL);
990 		flush_tlb_kernel_range((unsigned long)shadow_start,
991 				       (unsigned long)shadow_end);
992 	}
993 }
994 #endif
995