xref: /linux/mm/internal.h (revision f3c11cf5cae044668f888a50abb37b29600ca197)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/khugepaged.h>
12 #include <linux/mm.h>
13 #include <linux/mm_inline.h>
14 #include <linux/pagemap.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/swapops.h>
18 #include <linux/swap_cgroup.h>
19 #include <linux/tracepoint-defs.h>
20 
21 /* Internal core VMA manipulation functions. */
22 #include "vma.h"
23 
24 struct folio_batch;
25 
26 /*
27  * The set of flags that only affect watermark checking and reclaim
28  * behaviour. This is used by the MM to obey the caller constraints
29  * about IO, FS and watermark checking while ignoring placement
30  * hints such as HIGHMEM usage.
31  */
32 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
33 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
34 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
35 			__GFP_NOLOCKDEP)
36 
37 /* The GFP flags allowed during early boot */
38 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
39 
40 /* Control allocation cpuset and node placement constraints */
41 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
42 
43 /* Do not use these with a slab allocator */
44 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
45 
46 /*
47  * Different from WARN_ON_ONCE(), no warning will be issued
48  * when we specify __GFP_NOWARN.
49  */
50 #define WARN_ON_ONCE_GFP(cond, gfp)	({				\
51 	static bool __section(".data.once") __warned;			\
52 	int __ret_warn_once = !!(cond);					\
53 									\
54 	if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
55 		__warned = true;					\
56 		WARN_ON(1);						\
57 	}								\
58 	unlikely(__ret_warn_once);					\
59 })
60 
61 void page_writeback_init(void);
62 
63 /*
64  * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
65  * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit
66  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
67  * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
68  */
69 #define ENTIRELY_MAPPED		0x800000
70 #define FOLIO_PAGES_MAPPED	(ENTIRELY_MAPPED - 1)
71 
72 /*
73  * Flags passed to __show_mem() and show_free_areas() to suppress output in
74  * various contexts.
75  */
76 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
77 
78 /*
79  * How many individual pages have an elevated _mapcount.  Excludes
80  * the folio's entire_mapcount.
81  *
82  * Don't use this function outside of debugging code.
83  */
84 static inline int folio_nr_pages_mapped(const struct folio *folio)
85 {
86 	return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
87 }
88 
89 /*
90  * Retrieve the first entry of a folio based on a provided entry within the
91  * folio. We cannot rely on folio->swap as there is no guarantee that it has
92  * been initialized. Used for calling arch_swap_restore()
93  */
94 static inline swp_entry_t folio_swap(swp_entry_t entry,
95 		const struct folio *folio)
96 {
97 	swp_entry_t swap = {
98 		.val = ALIGN_DOWN(entry.val, folio_nr_pages(folio)),
99 	};
100 
101 	return swap;
102 }
103 
104 static inline void *folio_raw_mapping(const struct folio *folio)
105 {
106 	unsigned long mapping = (unsigned long)folio->mapping;
107 
108 	return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
109 }
110 
111 #ifdef CONFIG_MMU
112 
113 /* Flags for folio_pte_batch(). */
114 typedef int __bitwise fpb_t;
115 
116 /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */
117 #define FPB_IGNORE_DIRTY		((__force fpb_t)BIT(0))
118 
119 /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */
120 #define FPB_IGNORE_SOFT_DIRTY		((__force fpb_t)BIT(1))
121 
122 static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags)
123 {
124 	if (flags & FPB_IGNORE_DIRTY)
125 		pte = pte_mkclean(pte);
126 	if (likely(flags & FPB_IGNORE_SOFT_DIRTY))
127 		pte = pte_clear_soft_dirty(pte);
128 	return pte_wrprotect(pte_mkold(pte));
129 }
130 
131 /**
132  * folio_pte_batch - detect a PTE batch for a large folio
133  * @folio: The large folio to detect a PTE batch for.
134  * @addr: The user virtual address the first page is mapped at.
135  * @start_ptep: Page table pointer for the first entry.
136  * @pte: Page table entry for the first page.
137  * @max_nr: The maximum number of table entries to consider.
138  * @flags: Flags to modify the PTE batch semantics.
139  * @any_writable: Optional pointer to indicate whether any entry except the
140  *		  first one is writable.
141  * @any_young: Optional pointer to indicate whether any entry except the
142  *		  first one is young.
143  * @any_dirty: Optional pointer to indicate whether any entry except the
144  *		  first one is dirty.
145  *
146  * Detect a PTE batch: consecutive (present) PTEs that map consecutive
147  * pages of the same large folio.
148  *
149  * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN,
150  * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and
151  * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY).
152  *
153  * start_ptep must map any page of the folio. max_nr must be at least one and
154  * must be limited by the caller so scanning cannot exceed a single page table.
155  *
156  * Return: the number of table entries in the batch.
157  */
158 static inline int folio_pte_batch(struct folio *folio, unsigned long addr,
159 		pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags,
160 		bool *any_writable, bool *any_young, bool *any_dirty)
161 {
162 	unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio);
163 	const pte_t *end_ptep = start_ptep + max_nr;
164 	pte_t expected_pte, *ptep;
165 	bool writable, young, dirty;
166 	int nr;
167 
168 	if (any_writable)
169 		*any_writable = false;
170 	if (any_young)
171 		*any_young = false;
172 	if (any_dirty)
173 		*any_dirty = false;
174 
175 	VM_WARN_ON_FOLIO(!pte_present(pte), folio);
176 	VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio);
177 	VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio);
178 
179 	nr = pte_batch_hint(start_ptep, pte);
180 	expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags);
181 	ptep = start_ptep + nr;
182 
183 	while (ptep < end_ptep) {
184 		pte = ptep_get(ptep);
185 		if (any_writable)
186 			writable = !!pte_write(pte);
187 		if (any_young)
188 			young = !!pte_young(pte);
189 		if (any_dirty)
190 			dirty = !!pte_dirty(pte);
191 		pte = __pte_batch_clear_ignored(pte, flags);
192 
193 		if (!pte_same(pte, expected_pte))
194 			break;
195 
196 		/*
197 		 * Stop immediately once we reached the end of the folio. In
198 		 * corner cases the next PFN might fall into a different
199 		 * folio.
200 		 */
201 		if (pte_pfn(pte) >= folio_end_pfn)
202 			break;
203 
204 		if (any_writable)
205 			*any_writable |= writable;
206 		if (any_young)
207 			*any_young |= young;
208 		if (any_dirty)
209 			*any_dirty |= dirty;
210 
211 		nr = pte_batch_hint(ptep, pte);
212 		expected_pte = pte_advance_pfn(expected_pte, nr);
213 		ptep += nr;
214 	}
215 
216 	return min(ptep - start_ptep, max_nr);
217 }
218 
219 /**
220  * pte_move_swp_offset - Move the swap entry offset field of a swap pte
221  *	 forward or backward by delta
222  * @pte: The initial pte state; is_swap_pte(pte) must be true and
223  *	 non_swap_entry() must be false.
224  * @delta: The direction and the offset we are moving; forward if delta
225  *	 is positive; backward if delta is negative
226  *
227  * Moves the swap offset, while maintaining all other fields, including
228  * swap type, and any swp pte bits. The resulting pte is returned.
229  */
230 static inline pte_t pte_move_swp_offset(pte_t pte, long delta)
231 {
232 	swp_entry_t entry = pte_to_swp_entry(pte);
233 	pte_t new = __swp_entry_to_pte(__swp_entry(swp_type(entry),
234 						   (swp_offset(entry) + delta)));
235 
236 	if (pte_swp_soft_dirty(pte))
237 		new = pte_swp_mksoft_dirty(new);
238 	if (pte_swp_exclusive(pte))
239 		new = pte_swp_mkexclusive(new);
240 	if (pte_swp_uffd_wp(pte))
241 		new = pte_swp_mkuffd_wp(new);
242 
243 	return new;
244 }
245 
246 
247 /**
248  * pte_next_swp_offset - Increment the swap entry offset field of a swap pte.
249  * @pte: The initial pte state; is_swap_pte(pte) must be true and
250  *	 non_swap_entry() must be false.
251  *
252  * Increments the swap offset, while maintaining all other fields, including
253  * swap type, and any swp pte bits. The resulting pte is returned.
254  */
255 static inline pte_t pte_next_swp_offset(pte_t pte)
256 {
257 	return pte_move_swp_offset(pte, 1);
258 }
259 
260 /**
261  * swap_pte_batch - detect a PTE batch for a set of contiguous swap entries
262  * @start_ptep: Page table pointer for the first entry.
263  * @max_nr: The maximum number of table entries to consider.
264  * @pte: Page table entry for the first entry.
265  *
266  * Detect a batch of contiguous swap entries: consecutive (non-present) PTEs
267  * containing swap entries all with consecutive offsets and targeting the same
268  * swap type, all with matching swp pte bits.
269  *
270  * max_nr must be at least one and must be limited by the caller so scanning
271  * cannot exceed a single page table.
272  *
273  * Return: the number of table entries in the batch.
274  */
275 static inline int swap_pte_batch(pte_t *start_ptep, int max_nr, pte_t pte)
276 {
277 	pte_t expected_pte = pte_next_swp_offset(pte);
278 	const pte_t *end_ptep = start_ptep + max_nr;
279 	swp_entry_t entry = pte_to_swp_entry(pte);
280 	pte_t *ptep = start_ptep + 1;
281 	unsigned short cgroup_id;
282 
283 	VM_WARN_ON(max_nr < 1);
284 	VM_WARN_ON(!is_swap_pte(pte));
285 	VM_WARN_ON(non_swap_entry(entry));
286 
287 	cgroup_id = lookup_swap_cgroup_id(entry);
288 	while (ptep < end_ptep) {
289 		pte = ptep_get(ptep);
290 
291 		if (!pte_same(pte, expected_pte))
292 			break;
293 		if (lookup_swap_cgroup_id(pte_to_swp_entry(pte)) != cgroup_id)
294 			break;
295 		expected_pte = pte_next_swp_offset(expected_pte);
296 		ptep++;
297 	}
298 
299 	return ptep - start_ptep;
300 }
301 #endif /* CONFIG_MMU */
302 
303 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
304 						int nr_throttled);
305 static inline void acct_reclaim_writeback(struct folio *folio)
306 {
307 	pg_data_t *pgdat = folio_pgdat(folio);
308 	int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
309 
310 	if (nr_throttled)
311 		__acct_reclaim_writeback(pgdat, folio, nr_throttled);
312 }
313 
314 static inline void wake_throttle_isolated(pg_data_t *pgdat)
315 {
316 	wait_queue_head_t *wqh;
317 
318 	wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
319 	if (waitqueue_active(wqh))
320 		wake_up(wqh);
321 }
322 
323 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf);
324 vm_fault_t do_swap_page(struct vm_fault *vmf);
325 void folio_rotate_reclaimable(struct folio *folio);
326 bool __folio_end_writeback(struct folio *folio);
327 void deactivate_file_folio(struct folio *folio);
328 void folio_activate(struct folio *folio);
329 
330 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
331 		   struct vm_area_struct *start_vma, unsigned long floor,
332 		   unsigned long ceiling, bool mm_wr_locked);
333 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
334 
335 struct zap_details;
336 void unmap_page_range(struct mmu_gather *tlb,
337 			     struct vm_area_struct *vma,
338 			     unsigned long addr, unsigned long end,
339 			     struct zap_details *details);
340 
341 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
342 		unsigned int order);
343 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
344 static inline void force_page_cache_readahead(struct address_space *mapping,
345 		struct file *file, pgoff_t index, unsigned long nr_to_read)
346 {
347 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
348 	force_page_cache_ra(&ractl, nr_to_read);
349 }
350 
351 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
352 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
353 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
354 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
355 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
356 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
357 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
358 		loff_t end);
359 long mapping_evict_folio(struct address_space *mapping, struct folio *folio);
360 unsigned long mapping_try_invalidate(struct address_space *mapping,
361 		pgoff_t start, pgoff_t end, unsigned long *nr_failed);
362 
363 /**
364  * folio_evictable - Test whether a folio is evictable.
365  * @folio: The folio to test.
366  *
367  * Test whether @folio is evictable -- i.e., should be placed on
368  * active/inactive lists vs unevictable list.
369  *
370  * Reasons folio might not be evictable:
371  * 1. folio's mapping marked unevictable
372  * 2. One of the pages in the folio is part of an mlocked VMA
373  */
374 static inline bool folio_evictable(struct folio *folio)
375 {
376 	bool ret;
377 
378 	/* Prevent address_space of inode and swap cache from being freed */
379 	rcu_read_lock();
380 	ret = !mapping_unevictable(folio_mapping(folio)) &&
381 			!folio_test_mlocked(folio);
382 	rcu_read_unlock();
383 	return ret;
384 }
385 
386 /*
387  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
388  * a count of one.
389  */
390 static inline void set_page_refcounted(struct page *page)
391 {
392 	VM_BUG_ON_PAGE(PageTail(page), page);
393 	VM_BUG_ON_PAGE(page_ref_count(page), page);
394 	set_page_count(page, 1);
395 }
396 
397 /*
398  * Return true if a folio needs ->release_folio() calling upon it.
399  */
400 static inline bool folio_needs_release(struct folio *folio)
401 {
402 	struct address_space *mapping = folio_mapping(folio);
403 
404 	return folio_has_private(folio) ||
405 		(mapping && mapping_release_always(mapping));
406 }
407 
408 extern unsigned long highest_memmap_pfn;
409 
410 /*
411  * Maximum number of reclaim retries without progress before the OOM
412  * killer is consider the only way forward.
413  */
414 #define MAX_RECLAIM_RETRIES 16
415 
416 /*
417  * in mm/vmscan.c:
418  */
419 bool folio_isolate_lru(struct folio *folio);
420 void folio_putback_lru(struct folio *folio);
421 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
422 
423 /*
424  * in mm/rmap.c:
425  */
426 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
427 
428 /*
429  * in mm/page_alloc.c
430  */
431 #define K(x) ((x) << (PAGE_SHIFT-10))
432 
433 extern char * const zone_names[MAX_NR_ZONES];
434 
435 /* perform sanity checks on struct pages being allocated or freed */
436 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
437 
438 extern int min_free_kbytes;
439 
440 void setup_per_zone_wmarks(void);
441 void calculate_min_free_kbytes(void);
442 int __meminit init_per_zone_wmark_min(void);
443 void page_alloc_sysctl_init(void);
444 
445 /*
446  * Structure for holding the mostly immutable allocation parameters passed
447  * between functions involved in allocations, including the alloc_pages*
448  * family of functions.
449  *
450  * nodemask, migratetype and highest_zoneidx are initialized only once in
451  * __alloc_pages() and then never change.
452  *
453  * zonelist, preferred_zone and highest_zoneidx are set first in
454  * __alloc_pages() for the fast path, and might be later changed
455  * in __alloc_pages_slowpath(). All other functions pass the whole structure
456  * by a const pointer.
457  */
458 struct alloc_context {
459 	struct zonelist *zonelist;
460 	nodemask_t *nodemask;
461 	struct zoneref *preferred_zoneref;
462 	int migratetype;
463 
464 	/*
465 	 * highest_zoneidx represents highest usable zone index of
466 	 * the allocation request. Due to the nature of the zone,
467 	 * memory on lower zone than the highest_zoneidx will be
468 	 * protected by lowmem_reserve[highest_zoneidx].
469 	 *
470 	 * highest_zoneidx is also used by reclaim/compaction to limit
471 	 * the target zone since higher zone than this index cannot be
472 	 * usable for this allocation request.
473 	 */
474 	enum zone_type highest_zoneidx;
475 	bool spread_dirty_pages;
476 };
477 
478 /*
479  * This function returns the order of a free page in the buddy system. In
480  * general, page_zone(page)->lock must be held by the caller to prevent the
481  * page from being allocated in parallel and returning garbage as the order.
482  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
483  * page cannot be allocated or merged in parallel. Alternatively, it must
484  * handle invalid values gracefully, and use buddy_order_unsafe() below.
485  */
486 static inline unsigned int buddy_order(struct page *page)
487 {
488 	/* PageBuddy() must be checked by the caller */
489 	return page_private(page);
490 }
491 
492 /*
493  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
494  * PageBuddy() should be checked first by the caller to minimize race window,
495  * and invalid values must be handled gracefully.
496  *
497  * READ_ONCE is used so that if the caller assigns the result into a local
498  * variable and e.g. tests it for valid range before using, the compiler cannot
499  * decide to remove the variable and inline the page_private(page) multiple
500  * times, potentially observing different values in the tests and the actual
501  * use of the result.
502  */
503 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
504 
505 /*
506  * This function checks whether a page is free && is the buddy
507  * we can coalesce a page and its buddy if
508  * (a) the buddy is not in a hole (check before calling!) &&
509  * (b) the buddy is in the buddy system &&
510  * (c) a page and its buddy have the same order &&
511  * (d) a page and its buddy are in the same zone.
512  *
513  * For recording whether a page is in the buddy system, we set PageBuddy.
514  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
515  *
516  * For recording page's order, we use page_private(page).
517  */
518 static inline bool page_is_buddy(struct page *page, struct page *buddy,
519 				 unsigned int order)
520 {
521 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
522 		return false;
523 
524 	if (buddy_order(buddy) != order)
525 		return false;
526 
527 	/*
528 	 * zone check is done late to avoid uselessly calculating
529 	 * zone/node ids for pages that could never merge.
530 	 */
531 	if (page_zone_id(page) != page_zone_id(buddy))
532 		return false;
533 
534 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
535 
536 	return true;
537 }
538 
539 /*
540  * Locate the struct page for both the matching buddy in our
541  * pair (buddy1) and the combined O(n+1) page they form (page).
542  *
543  * 1) Any buddy B1 will have an order O twin B2 which satisfies
544  * the following equation:
545  *     B2 = B1 ^ (1 << O)
546  * For example, if the starting buddy (buddy2) is #8 its order
547  * 1 buddy is #10:
548  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
549  *
550  * 2) Any buddy B will have an order O+1 parent P which
551  * satisfies the following equation:
552  *     P = B & ~(1 << O)
553  *
554  * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER
555  */
556 static inline unsigned long
557 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
558 {
559 	return page_pfn ^ (1 << order);
560 }
561 
562 /*
563  * Find the buddy of @page and validate it.
564  * @page: The input page
565  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
566  *       function is used in the performance-critical __free_one_page().
567  * @order: The order of the page
568  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
569  *             page_to_pfn().
570  *
571  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
572  * not the same as @page. The validation is necessary before use it.
573  *
574  * Return: the found buddy page or NULL if not found.
575  */
576 static inline struct page *find_buddy_page_pfn(struct page *page,
577 			unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
578 {
579 	unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
580 	struct page *buddy;
581 
582 	buddy = page + (__buddy_pfn - pfn);
583 	if (buddy_pfn)
584 		*buddy_pfn = __buddy_pfn;
585 
586 	if (page_is_buddy(page, buddy, order))
587 		return buddy;
588 	return NULL;
589 }
590 
591 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
592 				unsigned long end_pfn, struct zone *zone);
593 
594 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
595 				unsigned long end_pfn, struct zone *zone)
596 {
597 	if (zone->contiguous)
598 		return pfn_to_page(start_pfn);
599 
600 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
601 }
602 
603 void set_zone_contiguous(struct zone *zone);
604 
605 static inline void clear_zone_contiguous(struct zone *zone)
606 {
607 	zone->contiguous = false;
608 }
609 
610 extern int __isolate_free_page(struct page *page, unsigned int order);
611 extern void __putback_isolated_page(struct page *page, unsigned int order,
612 				    int mt);
613 extern void memblock_free_pages(struct page *page, unsigned long pfn,
614 					unsigned int order);
615 extern void __free_pages_core(struct page *page, unsigned int order,
616 		enum meminit_context context);
617 
618 /*
619  * This will have no effect, other than possibly generating a warning, if the
620  * caller passes in a non-large folio.
621  */
622 static inline void folio_set_order(struct folio *folio, unsigned int order)
623 {
624 	if (WARN_ON_ONCE(!order || !folio_test_large(folio)))
625 		return;
626 
627 	folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order;
628 #ifdef CONFIG_64BIT
629 	folio->_folio_nr_pages = 1U << order;
630 #endif
631 }
632 
633 void __folio_undo_large_rmappable(struct folio *folio);
634 static inline void folio_undo_large_rmappable(struct folio *folio)
635 {
636 	if (folio_order(folio) <= 1 || !folio_test_large_rmappable(folio))
637 		return;
638 
639 	/*
640 	 * At this point, there is no one trying to add the folio to
641 	 * deferred_list. If folio is not in deferred_list, it's safe
642 	 * to check without acquiring the split_queue_lock.
643 	 */
644 	if (data_race(list_empty(&folio->_deferred_list)))
645 		return;
646 
647 	__folio_undo_large_rmappable(folio);
648 }
649 
650 static inline struct folio *page_rmappable_folio(struct page *page)
651 {
652 	struct folio *folio = (struct folio *)page;
653 
654 	if (folio && folio_test_large(folio))
655 		folio_set_large_rmappable(folio);
656 	return folio;
657 }
658 
659 static inline void prep_compound_head(struct page *page, unsigned int order)
660 {
661 	struct folio *folio = (struct folio *)page;
662 
663 	folio_set_order(folio, order);
664 	atomic_set(&folio->_large_mapcount, -1);
665 	atomic_set(&folio->_entire_mapcount, -1);
666 	atomic_set(&folio->_nr_pages_mapped, 0);
667 	atomic_set(&folio->_pincount, 0);
668 	if (order > 1)
669 		INIT_LIST_HEAD(&folio->_deferred_list);
670 }
671 
672 static inline void prep_compound_tail(struct page *head, int tail_idx)
673 {
674 	struct page *p = head + tail_idx;
675 
676 	p->mapping = TAIL_MAPPING;
677 	set_compound_head(p, head);
678 	set_page_private(p, 0);
679 }
680 
681 extern void prep_compound_page(struct page *page, unsigned int order);
682 
683 extern void post_alloc_hook(struct page *page, unsigned int order,
684 					gfp_t gfp_flags);
685 extern bool free_pages_prepare(struct page *page, unsigned int order);
686 
687 extern int user_min_free_kbytes;
688 
689 void free_unref_page(struct page *page, unsigned int order);
690 void free_unref_folios(struct folio_batch *fbatch);
691 
692 extern void zone_pcp_reset(struct zone *zone);
693 extern void zone_pcp_disable(struct zone *zone);
694 extern void zone_pcp_enable(struct zone *zone);
695 extern void zone_pcp_init(struct zone *zone);
696 
697 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
698 			  phys_addr_t min_addr,
699 			  int nid, bool exact_nid);
700 
701 void memmap_init_range(unsigned long, int, unsigned long, unsigned long,
702 		unsigned long, enum meminit_context, struct vmem_altmap *, int);
703 
704 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
705 
706 /*
707  * in mm/compaction.c
708  */
709 /*
710  * compact_control is used to track pages being migrated and the free pages
711  * they are being migrated to during memory compaction. The free_pfn starts
712  * at the end of a zone and migrate_pfn begins at the start. Movable pages
713  * are moved to the end of a zone during a compaction run and the run
714  * completes when free_pfn <= migrate_pfn
715  */
716 struct compact_control {
717 	struct list_head freepages[NR_PAGE_ORDERS];	/* List of free pages to migrate to */
718 	struct list_head migratepages;	/* List of pages being migrated */
719 	unsigned int nr_freepages;	/* Number of isolated free pages */
720 	unsigned int nr_migratepages;	/* Number of pages to migrate */
721 	unsigned long free_pfn;		/* isolate_freepages search base */
722 	/*
723 	 * Acts as an in/out parameter to page isolation for migration.
724 	 * isolate_migratepages uses it as a search base.
725 	 * isolate_migratepages_block will update the value to the next pfn
726 	 * after the last isolated one.
727 	 */
728 	unsigned long migrate_pfn;
729 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
730 	struct zone *zone;
731 	unsigned long total_migrate_scanned;
732 	unsigned long total_free_scanned;
733 	unsigned short fast_search_fail;/* failures to use free list searches */
734 	short search_order;		/* order to start a fast search at */
735 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
736 	int order;			/* order a direct compactor needs */
737 	int migratetype;		/* migratetype of direct compactor */
738 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
739 	const int highest_zoneidx;	/* zone index of a direct compactor */
740 	enum migrate_mode mode;		/* Async or sync migration mode */
741 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
742 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
743 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
744 	bool direct_compaction;		/* False from kcompactd or /proc/... */
745 	bool proactive_compaction;	/* kcompactd proactive compaction */
746 	bool whole_zone;		/* Whole zone should/has been scanned */
747 	bool contended;			/* Signal lock contention */
748 	bool finish_pageblock;		/* Scan the remainder of a pageblock. Used
749 					 * when there are potentially transient
750 					 * isolation or migration failures to
751 					 * ensure forward progress.
752 					 */
753 	bool alloc_contig;		/* alloc_contig_range allocation */
754 };
755 
756 /*
757  * Used in direct compaction when a page should be taken from the freelists
758  * immediately when one is created during the free path.
759  */
760 struct capture_control {
761 	struct compact_control *cc;
762 	struct page *page;
763 };
764 
765 unsigned long
766 isolate_freepages_range(struct compact_control *cc,
767 			unsigned long start_pfn, unsigned long end_pfn);
768 int
769 isolate_migratepages_range(struct compact_control *cc,
770 			   unsigned long low_pfn, unsigned long end_pfn);
771 
772 int __alloc_contig_migrate_range(struct compact_control *cc,
773 					unsigned long start, unsigned long end,
774 					int migratetype);
775 
776 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
777 void init_cma_reserved_pageblock(struct page *page);
778 
779 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
780 
781 int find_suitable_fallback(struct free_area *area, unsigned int order,
782 			int migratetype, bool only_stealable, bool *can_steal);
783 
784 static inline bool free_area_empty(struct free_area *area, int migratetype)
785 {
786 	return list_empty(&area->free_list[migratetype]);
787 }
788 
789 /* mm/util.c */
790 struct anon_vma *folio_anon_vma(struct folio *folio);
791 
792 #ifdef CONFIG_MMU
793 void unmap_mapping_folio(struct folio *folio);
794 extern long populate_vma_page_range(struct vm_area_struct *vma,
795 		unsigned long start, unsigned long end, int *locked);
796 extern long faultin_page_range(struct mm_struct *mm, unsigned long start,
797 		unsigned long end, bool write, int *locked);
798 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
799 			       unsigned long bytes);
800 
801 /*
802  * NOTE: This function can't tell whether the folio is "fully mapped" in the
803  * range.
804  * "fully mapped" means all the pages of folio is associated with the page
805  * table of range while this function just check whether the folio range is
806  * within the range [start, end). Function caller needs to do page table
807  * check if it cares about the page table association.
808  *
809  * Typical usage (like mlock or madvise) is:
810  * Caller knows at least 1 page of folio is associated with page table of VMA
811  * and the range [start, end) is intersect with the VMA range. Caller wants
812  * to know whether the folio is fully associated with the range. It calls
813  * this function to check whether the folio is in the range first. Then checks
814  * the page table to know whether the folio is fully mapped to the range.
815  */
816 static inline bool
817 folio_within_range(struct folio *folio, struct vm_area_struct *vma,
818 		unsigned long start, unsigned long end)
819 {
820 	pgoff_t pgoff, addr;
821 	unsigned long vma_pglen = vma_pages(vma);
822 
823 	VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio);
824 	if (start > end)
825 		return false;
826 
827 	if (start < vma->vm_start)
828 		start = vma->vm_start;
829 
830 	if (end > vma->vm_end)
831 		end = vma->vm_end;
832 
833 	pgoff = folio_pgoff(folio);
834 
835 	/* if folio start address is not in vma range */
836 	if (!in_range(pgoff, vma->vm_pgoff, vma_pglen))
837 		return false;
838 
839 	addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
840 
841 	return !(addr < start || end - addr < folio_size(folio));
842 }
843 
844 static inline bool
845 folio_within_vma(struct folio *folio, struct vm_area_struct *vma)
846 {
847 	return folio_within_range(folio, vma, vma->vm_start, vma->vm_end);
848 }
849 
850 /*
851  * mlock_vma_folio() and munlock_vma_folio():
852  * should be called with vma's mmap_lock held for read or write,
853  * under page table lock for the pte/pmd being added or removed.
854  *
855  * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at
856  * the end of folio_remove_rmap_*(); but new anon folios are managed by
857  * folio_add_lru_vma() calling mlock_new_folio().
858  */
859 void mlock_folio(struct folio *folio);
860 static inline void mlock_vma_folio(struct folio *folio,
861 				struct vm_area_struct *vma)
862 {
863 	/*
864 	 * The VM_SPECIAL check here serves two purposes.
865 	 * 1) VM_IO check prevents migration from double-counting during mlock.
866 	 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
867 	 *    is never left set on a VM_SPECIAL vma, there is an interval while
868 	 *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
869 	 *    still be set while VM_SPECIAL bits are added: so ignore it then.
870 	 */
871 	if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED))
872 		mlock_folio(folio);
873 }
874 
875 void munlock_folio(struct folio *folio);
876 static inline void munlock_vma_folio(struct folio *folio,
877 					struct vm_area_struct *vma)
878 {
879 	/*
880 	 * munlock if the function is called. Ideally, we should only
881 	 * do munlock if any page of folio is unmapped from VMA and
882 	 * cause folio not fully mapped to VMA.
883 	 *
884 	 * But it's not easy to confirm that's the situation. So we
885 	 * always munlock the folio and page reclaim will correct it
886 	 * if it's wrong.
887 	 */
888 	if (unlikely(vma->vm_flags & VM_LOCKED))
889 		munlock_folio(folio);
890 }
891 
892 void mlock_new_folio(struct folio *folio);
893 bool need_mlock_drain(int cpu);
894 void mlock_drain_local(void);
895 void mlock_drain_remote(int cpu);
896 
897 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
898 
899 /**
900  * vma_address - Find the virtual address a page range is mapped at
901  * @vma: The vma which maps this object.
902  * @pgoff: The page offset within its object.
903  * @nr_pages: The number of pages to consider.
904  *
905  * If any page in this range is mapped by this VMA, return the first address
906  * where any of these pages appear.  Otherwise, return -EFAULT.
907  */
908 static inline unsigned long vma_address(struct vm_area_struct *vma,
909 		pgoff_t pgoff, unsigned long nr_pages)
910 {
911 	unsigned long address;
912 
913 	if (pgoff >= vma->vm_pgoff) {
914 		address = vma->vm_start +
915 			((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
916 		/* Check for address beyond vma (or wrapped through 0?) */
917 		if (address < vma->vm_start || address >= vma->vm_end)
918 			address = -EFAULT;
919 	} else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
920 		/* Test above avoids possibility of wrap to 0 on 32-bit */
921 		address = vma->vm_start;
922 	} else {
923 		address = -EFAULT;
924 	}
925 	return address;
926 }
927 
928 /*
929  * Then at what user virtual address will none of the range be found in vma?
930  * Assumes that vma_address() already returned a good starting address.
931  */
932 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
933 {
934 	struct vm_area_struct *vma = pvmw->vma;
935 	pgoff_t pgoff;
936 	unsigned long address;
937 
938 	/* Common case, plus ->pgoff is invalid for KSM */
939 	if (pvmw->nr_pages == 1)
940 		return pvmw->address + PAGE_SIZE;
941 
942 	pgoff = pvmw->pgoff + pvmw->nr_pages;
943 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
944 	/* Check for address beyond vma (or wrapped through 0?) */
945 	if (address < vma->vm_start || address > vma->vm_end)
946 		address = vma->vm_end;
947 	return address;
948 }
949 
950 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
951 						    struct file *fpin)
952 {
953 	int flags = vmf->flags;
954 
955 	if (fpin)
956 		return fpin;
957 
958 	/*
959 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
960 	 * anything, so we only pin the file and drop the mmap_lock if only
961 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
962 	 */
963 	if (fault_flag_allow_retry_first(flags) &&
964 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
965 		fpin = get_file(vmf->vma->vm_file);
966 		release_fault_lock(vmf);
967 	}
968 	return fpin;
969 }
970 #else /* !CONFIG_MMU */
971 static inline void unmap_mapping_folio(struct folio *folio) { }
972 static inline void mlock_new_folio(struct folio *folio) { }
973 static inline bool need_mlock_drain(int cpu) { return false; }
974 static inline void mlock_drain_local(void) { }
975 static inline void mlock_drain_remote(int cpu) { }
976 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
977 {
978 }
979 #endif /* !CONFIG_MMU */
980 
981 /* Memory initialisation debug and verification */
982 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
983 DECLARE_STATIC_KEY_TRUE(deferred_pages);
984 
985 bool __init deferred_grow_zone(struct zone *zone, unsigned int order);
986 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
987 
988 enum mminit_level {
989 	MMINIT_WARNING,
990 	MMINIT_VERIFY,
991 	MMINIT_TRACE
992 };
993 
994 #ifdef CONFIG_DEBUG_MEMORY_INIT
995 
996 extern int mminit_loglevel;
997 
998 #define mminit_dprintk(level, prefix, fmt, arg...) \
999 do { \
1000 	if (level < mminit_loglevel) { \
1001 		if (level <= MMINIT_WARNING) \
1002 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
1003 		else \
1004 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
1005 	} \
1006 } while (0)
1007 
1008 extern void mminit_verify_pageflags_layout(void);
1009 extern void mminit_verify_zonelist(void);
1010 #else
1011 
1012 static inline void mminit_dprintk(enum mminit_level level,
1013 				const char *prefix, const char *fmt, ...)
1014 {
1015 }
1016 
1017 static inline void mminit_verify_pageflags_layout(void)
1018 {
1019 }
1020 
1021 static inline void mminit_verify_zonelist(void)
1022 {
1023 }
1024 #endif /* CONFIG_DEBUG_MEMORY_INIT */
1025 
1026 #define NODE_RECLAIM_NOSCAN	-2
1027 #define NODE_RECLAIM_FULL	-1
1028 #define NODE_RECLAIM_SOME	0
1029 #define NODE_RECLAIM_SUCCESS	1
1030 
1031 #ifdef CONFIG_NUMA
1032 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
1033 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
1034 #else
1035 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
1036 				unsigned int order)
1037 {
1038 	return NODE_RECLAIM_NOSCAN;
1039 }
1040 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
1041 {
1042 	return NUMA_NO_NODE;
1043 }
1044 #endif
1045 
1046 /*
1047  * mm/memory-failure.c
1048  */
1049 #ifdef CONFIG_MEMORY_FAILURE
1050 void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu);
1051 void shake_folio(struct folio *folio);
1052 extern int hwpoison_filter(struct page *p);
1053 
1054 extern u32 hwpoison_filter_dev_major;
1055 extern u32 hwpoison_filter_dev_minor;
1056 extern u64 hwpoison_filter_flags_mask;
1057 extern u64 hwpoison_filter_flags_value;
1058 extern u64 hwpoison_filter_memcg;
1059 extern u32 hwpoison_filter_enable;
1060 #define MAGIC_HWPOISON	0x48575053U	/* HWPS */
1061 void SetPageHWPoisonTakenOff(struct page *page);
1062 void ClearPageHWPoisonTakenOff(struct page *page);
1063 bool take_page_off_buddy(struct page *page);
1064 bool put_page_back_buddy(struct page *page);
1065 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
1066 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
1067 		     struct vm_area_struct *vma, struct list_head *to_kill,
1068 		     unsigned long ksm_addr);
1069 unsigned long page_mapped_in_vma(struct page *page, struct vm_area_struct *vma);
1070 
1071 #else
1072 static inline void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu)
1073 {
1074 }
1075 #endif
1076 
1077 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
1078         unsigned long, unsigned long,
1079         unsigned long, unsigned long);
1080 
1081 extern void set_pageblock_order(void);
1082 struct folio *alloc_migrate_folio(struct folio *src, unsigned long private);
1083 unsigned long reclaim_pages(struct list_head *folio_list);
1084 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1085 					    struct list_head *folio_list);
1086 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1087 #define ALLOC_WMARK_MIN		WMARK_MIN
1088 #define ALLOC_WMARK_LOW		WMARK_LOW
1089 #define ALLOC_WMARK_HIGH	WMARK_HIGH
1090 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
1091 
1092 /* Mask to get the watermark bits */
1093 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
1094 
1095 /*
1096  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
1097  * cannot assume a reduced access to memory reserves is sufficient for
1098  * !MMU
1099  */
1100 #ifdef CONFIG_MMU
1101 #define ALLOC_OOM		0x08
1102 #else
1103 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
1104 #endif
1105 
1106 #define ALLOC_NON_BLOCK		 0x10 /* Caller cannot block. Allow access
1107 				       * to 25% of the min watermark or
1108 				       * 62.5% if __GFP_HIGH is set.
1109 				       */
1110 #define ALLOC_MIN_RESERVE	 0x20 /* __GFP_HIGH set. Allow access to 50%
1111 				       * of the min watermark.
1112 				       */
1113 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
1114 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
1115 #ifdef CONFIG_ZONE_DMA32
1116 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
1117 #else
1118 #define ALLOC_NOFRAGMENT	  0x0
1119 #endif
1120 #define ALLOC_HIGHATOMIC	0x200 /* Allows access to MIGRATE_HIGHATOMIC */
1121 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
1122 
1123 /* Flags that allow allocations below the min watermark. */
1124 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
1125 
1126 enum ttu_flags;
1127 struct tlbflush_unmap_batch;
1128 
1129 
1130 /*
1131  * only for MM internal work items which do not depend on
1132  * any allocations or locks which might depend on allocations
1133  */
1134 extern struct workqueue_struct *mm_percpu_wq;
1135 
1136 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
1137 void try_to_unmap_flush(void);
1138 void try_to_unmap_flush_dirty(void);
1139 void flush_tlb_batched_pending(struct mm_struct *mm);
1140 #else
1141 static inline void try_to_unmap_flush(void)
1142 {
1143 }
1144 static inline void try_to_unmap_flush_dirty(void)
1145 {
1146 }
1147 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
1148 {
1149 }
1150 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
1151 
1152 extern const struct trace_print_flags pageflag_names[];
1153 extern const struct trace_print_flags vmaflag_names[];
1154 extern const struct trace_print_flags gfpflag_names[];
1155 
1156 static inline bool is_migrate_highatomic(enum migratetype migratetype)
1157 {
1158 	return migratetype == MIGRATE_HIGHATOMIC;
1159 }
1160 
1161 void setup_zone_pageset(struct zone *zone);
1162 
1163 struct migration_target_control {
1164 	int nid;		/* preferred node id */
1165 	nodemask_t *nmask;
1166 	gfp_t gfp_mask;
1167 	enum migrate_reason reason;
1168 };
1169 
1170 /*
1171  * mm/filemap.c
1172  */
1173 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
1174 			      struct folio *folio, loff_t fpos, size_t size);
1175 
1176 /*
1177  * mm/vmalloc.c
1178  */
1179 #ifdef CONFIG_MMU
1180 void __init vmalloc_init(void);
1181 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1182                 pgprot_t prot, struct page **pages, unsigned int page_shift);
1183 #else
1184 static inline void vmalloc_init(void)
1185 {
1186 }
1187 
1188 static inline
1189 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end,
1190                 pgprot_t prot, struct page **pages, unsigned int page_shift)
1191 {
1192 	return -EINVAL;
1193 }
1194 #endif
1195 
1196 int __must_check __vmap_pages_range_noflush(unsigned long addr,
1197 			       unsigned long end, pgprot_t prot,
1198 			       struct page **pages, unsigned int page_shift);
1199 
1200 void vunmap_range_noflush(unsigned long start, unsigned long end);
1201 
1202 void __vunmap_range_noflush(unsigned long start, unsigned long end);
1203 
1204 int numa_migrate_check(struct folio *folio, struct vm_fault *vmf,
1205 		      unsigned long addr, int *flags, bool writable,
1206 		      int *last_cpupid);
1207 
1208 void free_zone_device_folio(struct folio *folio);
1209 int migrate_device_coherent_folio(struct folio *folio);
1210 
1211 /*
1212  * mm/gup.c
1213  */
1214 int __must_check try_grab_folio(struct folio *folio, int refs,
1215 				unsigned int flags);
1216 
1217 /*
1218  * mm/huge_memory.c
1219  */
1220 void touch_pud(struct vm_area_struct *vma, unsigned long addr,
1221 	       pud_t *pud, bool write);
1222 void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1223 	       pmd_t *pmd, bool write);
1224 
1225 enum {
1226 	/* mark page accessed */
1227 	FOLL_TOUCH = 1 << 16,
1228 	/* a retry, previous pass started an IO */
1229 	FOLL_TRIED = 1 << 17,
1230 	/* we are working on non-current tsk/mm */
1231 	FOLL_REMOTE = 1 << 18,
1232 	/* pages must be released via unpin_user_page */
1233 	FOLL_PIN = 1 << 19,
1234 	/* gup_fast: prevent fall-back to slow gup */
1235 	FOLL_FAST_ONLY = 1 << 20,
1236 	/* allow unlocking the mmap lock */
1237 	FOLL_UNLOCKABLE = 1 << 21,
1238 	/* VMA lookup+checks compatible with MADV_POPULATE_(READ|WRITE) */
1239 	FOLL_MADV_POPULATE = 1 << 22,
1240 };
1241 
1242 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \
1243 			    FOLL_FAST_ONLY | FOLL_UNLOCKABLE | \
1244 			    FOLL_MADV_POPULATE)
1245 
1246 /*
1247  * Indicates for which pages that are write-protected in the page table,
1248  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
1249  * GUP pin will remain consistent with the pages mapped into the page tables
1250  * of the MM.
1251  *
1252  * Temporary unmapping of PageAnonExclusive() pages or clearing of
1253  * PageAnonExclusive() has to protect against concurrent GUP:
1254  * * Ordinary GUP: Using the PT lock
1255  * * GUP-fast and fork(): mm->write_protect_seq
1256  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
1257  *    folio_try_share_anon_rmap_*()
1258  *
1259  * Must be called with the (sub)page that's actually referenced via the
1260  * page table entry, which might not necessarily be the head page for a
1261  * PTE-mapped THP.
1262  *
1263  * If the vma is NULL, we're coming from the GUP-fast path and might have
1264  * to fallback to the slow path just to lookup the vma.
1265  */
1266 static inline bool gup_must_unshare(struct vm_area_struct *vma,
1267 				    unsigned int flags, struct page *page)
1268 {
1269 	/*
1270 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
1271 	 * has to be writable -- and if it references (part of) an anonymous
1272 	 * folio, that part is required to be marked exclusive.
1273 	 */
1274 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
1275 		return false;
1276 	/*
1277 	 * Note: PageAnon(page) is stable until the page is actually getting
1278 	 * freed.
1279 	 */
1280 	if (!PageAnon(page)) {
1281 		/*
1282 		 * We only care about R/O long-term pining: R/O short-term
1283 		 * pinning does not have the semantics to observe successive
1284 		 * changes through the process page tables.
1285 		 */
1286 		if (!(flags & FOLL_LONGTERM))
1287 			return false;
1288 
1289 		/* We really need the vma ... */
1290 		if (!vma)
1291 			return true;
1292 
1293 		/*
1294 		 * ... because we only care about writable private ("COW")
1295 		 * mappings where we have to break COW early.
1296 		 */
1297 		return is_cow_mapping(vma->vm_flags);
1298 	}
1299 
1300 	/* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */
1301 	if (IS_ENABLED(CONFIG_HAVE_GUP_FAST))
1302 		smp_rmb();
1303 
1304 	/*
1305 	 * Note that PageKsm() pages cannot be exclusive, and consequently,
1306 	 * cannot get pinned.
1307 	 */
1308 	return !PageAnonExclusive(page);
1309 }
1310 
1311 extern bool mirrored_kernelcore;
1312 extern bool memblock_has_mirror(void);
1313 
1314 static __always_inline void vma_set_range(struct vm_area_struct *vma,
1315 					  unsigned long start, unsigned long end,
1316 					  pgoff_t pgoff)
1317 {
1318 	vma->vm_start = start;
1319 	vma->vm_end = end;
1320 	vma->vm_pgoff = pgoff;
1321 }
1322 
1323 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
1324 {
1325 	/*
1326 	 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
1327 	 * enablements, because when without soft-dirty being compiled in,
1328 	 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
1329 	 * will be constantly true.
1330 	 */
1331 	if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
1332 		return false;
1333 
1334 	/*
1335 	 * Soft-dirty is kind of special: its tracking is enabled when the
1336 	 * vma flags not set.
1337 	 */
1338 	return !(vma->vm_flags & VM_SOFTDIRTY);
1339 }
1340 
1341 static inline bool pmd_needs_soft_dirty_wp(struct vm_area_struct *vma, pmd_t pmd)
1342 {
1343 	return vma_soft_dirty_enabled(vma) && !pmd_soft_dirty(pmd);
1344 }
1345 
1346 static inline bool pte_needs_soft_dirty_wp(struct vm_area_struct *vma, pte_t pte)
1347 {
1348 	return vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte);
1349 }
1350 
1351 void __meminit __init_single_page(struct page *page, unsigned long pfn,
1352 				unsigned long zone, int nid);
1353 
1354 /* shrinker related functions */
1355 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg,
1356 			  int priority);
1357 
1358 #ifdef CONFIG_64BIT
1359 static inline int can_do_mseal(unsigned long flags)
1360 {
1361 	if (flags)
1362 		return -EINVAL;
1363 
1364 	return 0;
1365 }
1366 
1367 #else
1368 static inline int can_do_mseal(unsigned long flags)
1369 {
1370 	return -EPERM;
1371 }
1372 #endif
1373 
1374 #ifdef CONFIG_SHRINKER_DEBUG
1375 static inline __printf(2, 0) int shrinker_debugfs_name_alloc(
1376 			struct shrinker *shrinker, const char *fmt, va_list ap)
1377 {
1378 	shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap);
1379 
1380 	return shrinker->name ? 0 : -ENOMEM;
1381 }
1382 
1383 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1384 {
1385 	kfree_const(shrinker->name);
1386 	shrinker->name = NULL;
1387 }
1388 
1389 extern int shrinker_debugfs_add(struct shrinker *shrinker);
1390 extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1391 					      int *debugfs_id);
1392 extern void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1393 				    int debugfs_id);
1394 #else /* CONFIG_SHRINKER_DEBUG */
1395 static inline int shrinker_debugfs_add(struct shrinker *shrinker)
1396 {
1397 	return 0;
1398 }
1399 static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker,
1400 					      const char *fmt, va_list ap)
1401 {
1402 	return 0;
1403 }
1404 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker)
1405 {
1406 }
1407 static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker,
1408 						     int *debugfs_id)
1409 {
1410 	*debugfs_id = -1;
1411 	return NULL;
1412 }
1413 static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry,
1414 					   int debugfs_id)
1415 {
1416 }
1417 #endif /* CONFIG_SHRINKER_DEBUG */
1418 
1419 /* Only track the nodes of mappings with shadow entries */
1420 void workingset_update_node(struct xa_node *node);
1421 extern struct list_lru shadow_nodes;
1422 
1423 /* mremap.c */
1424 unsigned long move_page_tables(struct vm_area_struct *vma,
1425 	unsigned long old_addr, struct vm_area_struct *new_vma,
1426 	unsigned long new_addr, unsigned long len,
1427 	bool need_rmap_locks, bool for_stack);
1428 
1429 #ifdef CONFIG_UNACCEPTED_MEMORY
1430 void accept_page(struct page *page);
1431 #else /* CONFIG_UNACCEPTED_MEMORY */
1432 static inline void accept_page(struct page *page)
1433 {
1434 }
1435 #endif /* CONFIG_UNACCEPTED_MEMORY */
1436 
1437 #endif	/* __MM_INTERNAL_H */
1438