1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/tracepoint-defs.h> 14 15 struct folio_batch; 16 17 /* 18 * The set of flags that only affect watermark checking and reclaim 19 * behaviour. This is used by the MM to obey the caller constraints 20 * about IO, FS and watermark checking while ignoring placement 21 * hints such as HIGHMEM usage. 22 */ 23 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 24 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 25 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 26 __GFP_ATOMIC|__GFP_NOLOCKDEP) 27 28 /* The GFP flags allowed during early boot */ 29 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 30 31 /* Control allocation cpuset and node placement constraints */ 32 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 33 34 /* Do not use these with a slab allocator */ 35 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 36 37 void page_writeback_init(void); 38 39 static inline void *folio_raw_mapping(struct folio *folio) 40 { 41 unsigned long mapping = (unsigned long)folio->mapping; 42 43 return (void *)(mapping & ~PAGE_MAPPING_FLAGS); 44 } 45 46 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 47 int nr_throttled); 48 static inline void acct_reclaim_writeback(struct folio *folio) 49 { 50 pg_data_t *pgdat = folio_pgdat(folio); 51 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 52 53 if (nr_throttled) 54 __acct_reclaim_writeback(pgdat, folio, nr_throttled); 55 } 56 57 static inline void wake_throttle_isolated(pg_data_t *pgdat) 58 { 59 wait_queue_head_t *wqh; 60 61 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 62 if (waitqueue_active(wqh)) 63 wake_up(wqh); 64 } 65 66 vm_fault_t do_swap_page(struct vm_fault *vmf); 67 void folio_rotate_reclaimable(struct folio *folio); 68 bool __folio_end_writeback(struct folio *folio); 69 70 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 71 unsigned long floor, unsigned long ceiling); 72 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 73 74 static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 75 { 76 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); 77 } 78 79 struct zap_details; 80 void unmap_page_range(struct mmu_gather *tlb, 81 struct vm_area_struct *vma, 82 unsigned long addr, unsigned long end, 83 struct zap_details *details); 84 85 void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, 86 unsigned long lookahead_size); 87 void force_page_cache_ra(struct readahead_control *, unsigned long nr); 88 static inline void force_page_cache_readahead(struct address_space *mapping, 89 struct file *file, pgoff_t index, unsigned long nr_to_read) 90 { 91 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 92 force_page_cache_ra(&ractl, nr_to_read); 93 } 94 95 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 96 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 97 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 98 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 99 void filemap_free_folio(struct address_space *mapping, struct folio *folio); 100 int truncate_inode_folio(struct address_space *mapping, struct folio *folio); 101 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, 102 loff_t end); 103 104 /** 105 * folio_evictable - Test whether a folio is evictable. 106 * @folio: The folio to test. 107 * 108 * Test whether @folio is evictable -- i.e., should be placed on 109 * active/inactive lists vs unevictable list. 110 * 111 * Reasons folio might not be evictable: 112 * 1. folio's mapping marked unevictable 113 * 2. One of the pages in the folio is part of an mlocked VMA 114 */ 115 static inline bool folio_evictable(struct folio *folio) 116 { 117 bool ret; 118 119 /* Prevent address_space of inode and swap cache from being freed */ 120 rcu_read_lock(); 121 ret = !mapping_unevictable(folio_mapping(folio)) && 122 !folio_test_mlocked(folio); 123 rcu_read_unlock(); 124 return ret; 125 } 126 127 static inline bool page_evictable(struct page *page) 128 { 129 bool ret; 130 131 /* Prevent address_space of inode and swap cache from being freed */ 132 rcu_read_lock(); 133 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 134 rcu_read_unlock(); 135 return ret; 136 } 137 138 /* 139 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 140 * a count of one. 141 */ 142 static inline void set_page_refcounted(struct page *page) 143 { 144 VM_BUG_ON_PAGE(PageTail(page), page); 145 VM_BUG_ON_PAGE(page_ref_count(page), page); 146 set_page_count(page, 1); 147 } 148 149 extern unsigned long highest_memmap_pfn; 150 151 /* 152 * Maximum number of reclaim retries without progress before the OOM 153 * killer is consider the only way forward. 154 */ 155 #define MAX_RECLAIM_RETRIES 16 156 157 /* 158 * in mm/vmscan.c: 159 */ 160 extern int isolate_lru_page(struct page *page); 161 extern void putback_lru_page(struct page *page); 162 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 163 164 /* 165 * in mm/rmap.c: 166 */ 167 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 168 169 /* 170 * in mm/page_alloc.c 171 */ 172 173 /* 174 * Structure for holding the mostly immutable allocation parameters passed 175 * between functions involved in allocations, including the alloc_pages* 176 * family of functions. 177 * 178 * nodemask, migratetype and highest_zoneidx are initialized only once in 179 * __alloc_pages() and then never change. 180 * 181 * zonelist, preferred_zone and highest_zoneidx are set first in 182 * __alloc_pages() for the fast path, and might be later changed 183 * in __alloc_pages_slowpath(). All other functions pass the whole structure 184 * by a const pointer. 185 */ 186 struct alloc_context { 187 struct zonelist *zonelist; 188 nodemask_t *nodemask; 189 struct zoneref *preferred_zoneref; 190 int migratetype; 191 192 /* 193 * highest_zoneidx represents highest usable zone index of 194 * the allocation request. Due to the nature of the zone, 195 * memory on lower zone than the highest_zoneidx will be 196 * protected by lowmem_reserve[highest_zoneidx]. 197 * 198 * highest_zoneidx is also used by reclaim/compaction to limit 199 * the target zone since higher zone than this index cannot be 200 * usable for this allocation request. 201 */ 202 enum zone_type highest_zoneidx; 203 bool spread_dirty_pages; 204 }; 205 206 /* 207 * Locate the struct page for both the matching buddy in our 208 * pair (buddy1) and the combined O(n+1) page they form (page). 209 * 210 * 1) Any buddy B1 will have an order O twin B2 which satisfies 211 * the following equation: 212 * B2 = B1 ^ (1 << O) 213 * For example, if the starting buddy (buddy2) is #8 its order 214 * 1 buddy is #10: 215 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 216 * 217 * 2) Any buddy B will have an order O+1 parent P which 218 * satisfies the following equation: 219 * P = B & ~(1 << O) 220 * 221 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 222 */ 223 static inline unsigned long 224 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 225 { 226 return page_pfn ^ (1 << order); 227 } 228 229 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 230 unsigned long end_pfn, struct zone *zone); 231 232 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 233 unsigned long end_pfn, struct zone *zone) 234 { 235 if (zone->contiguous) 236 return pfn_to_page(start_pfn); 237 238 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 239 } 240 241 extern int __isolate_free_page(struct page *page, unsigned int order); 242 extern void __putback_isolated_page(struct page *page, unsigned int order, 243 int mt); 244 extern void memblock_free_pages(struct page *page, unsigned long pfn, 245 unsigned int order); 246 extern void __free_pages_core(struct page *page, unsigned int order); 247 extern void prep_compound_page(struct page *page, unsigned int order); 248 extern void post_alloc_hook(struct page *page, unsigned int order, 249 gfp_t gfp_flags); 250 extern int user_min_free_kbytes; 251 252 extern void free_unref_page(struct page *page, unsigned int order); 253 extern void free_unref_page_list(struct list_head *list); 254 255 extern void zone_pcp_update(struct zone *zone, int cpu_online); 256 extern void zone_pcp_reset(struct zone *zone); 257 extern void zone_pcp_disable(struct zone *zone); 258 extern void zone_pcp_enable(struct zone *zone); 259 260 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 261 phys_addr_t min_addr, 262 int nid, bool exact_nid); 263 264 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 265 266 /* 267 * in mm/compaction.c 268 */ 269 /* 270 * compact_control is used to track pages being migrated and the free pages 271 * they are being migrated to during memory compaction. The free_pfn starts 272 * at the end of a zone and migrate_pfn begins at the start. Movable pages 273 * are moved to the end of a zone during a compaction run and the run 274 * completes when free_pfn <= migrate_pfn 275 */ 276 struct compact_control { 277 struct list_head freepages; /* List of free pages to migrate to */ 278 struct list_head migratepages; /* List of pages being migrated */ 279 unsigned int nr_freepages; /* Number of isolated free pages */ 280 unsigned int nr_migratepages; /* Number of pages to migrate */ 281 unsigned long free_pfn; /* isolate_freepages search base */ 282 /* 283 * Acts as an in/out parameter to page isolation for migration. 284 * isolate_migratepages uses it as a search base. 285 * isolate_migratepages_block will update the value to the next pfn 286 * after the last isolated one. 287 */ 288 unsigned long migrate_pfn; 289 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 290 struct zone *zone; 291 unsigned long total_migrate_scanned; 292 unsigned long total_free_scanned; 293 unsigned short fast_search_fail;/* failures to use free list searches */ 294 short search_order; /* order to start a fast search at */ 295 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 296 int order; /* order a direct compactor needs */ 297 int migratetype; /* migratetype of direct compactor */ 298 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 299 const int highest_zoneidx; /* zone index of a direct compactor */ 300 enum migrate_mode mode; /* Async or sync migration mode */ 301 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 302 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 303 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 304 bool direct_compaction; /* False from kcompactd or /proc/... */ 305 bool proactive_compaction; /* kcompactd proactive compaction */ 306 bool whole_zone; /* Whole zone should/has been scanned */ 307 bool contended; /* Signal lock or sched contention */ 308 bool rescan; /* Rescanning the same pageblock */ 309 bool alloc_contig; /* alloc_contig_range allocation */ 310 }; 311 312 /* 313 * Used in direct compaction when a page should be taken from the freelists 314 * immediately when one is created during the free path. 315 */ 316 struct capture_control { 317 struct compact_control *cc; 318 struct page *page; 319 }; 320 321 unsigned long 322 isolate_freepages_range(struct compact_control *cc, 323 unsigned long start_pfn, unsigned long end_pfn); 324 int 325 isolate_migratepages_range(struct compact_control *cc, 326 unsigned long low_pfn, unsigned long end_pfn); 327 #endif 328 int find_suitable_fallback(struct free_area *area, unsigned int order, 329 int migratetype, bool only_stealable, bool *can_steal); 330 331 /* 332 * This function returns the order of a free page in the buddy system. In 333 * general, page_zone(page)->lock must be held by the caller to prevent the 334 * page from being allocated in parallel and returning garbage as the order. 335 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 336 * page cannot be allocated or merged in parallel. Alternatively, it must 337 * handle invalid values gracefully, and use buddy_order_unsafe() below. 338 */ 339 static inline unsigned int buddy_order(struct page *page) 340 { 341 /* PageBuddy() must be checked by the caller */ 342 return page_private(page); 343 } 344 345 /* 346 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 347 * PageBuddy() should be checked first by the caller to minimize race window, 348 * and invalid values must be handled gracefully. 349 * 350 * READ_ONCE is used so that if the caller assigns the result into a local 351 * variable and e.g. tests it for valid range before using, the compiler cannot 352 * decide to remove the variable and inline the page_private(page) multiple 353 * times, potentially observing different values in the tests and the actual 354 * use of the result. 355 */ 356 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 357 358 /* 359 * These three helpers classifies VMAs for virtual memory accounting. 360 */ 361 362 /* 363 * Executable code area - executable, not writable, not stack 364 */ 365 static inline bool is_exec_mapping(vm_flags_t flags) 366 { 367 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 368 } 369 370 /* 371 * Stack area - automatically grows in one direction 372 * 373 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 374 * do_mmap() forbids all other combinations. 375 */ 376 static inline bool is_stack_mapping(vm_flags_t flags) 377 { 378 return (flags & VM_STACK) == VM_STACK; 379 } 380 381 /* 382 * Data area - private, writable, not stack 383 */ 384 static inline bool is_data_mapping(vm_flags_t flags) 385 { 386 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 387 } 388 389 /* mm/util.c */ 390 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 391 struct vm_area_struct *prev); 392 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); 393 394 #ifdef CONFIG_MMU 395 void unmap_mapping_folio(struct folio *folio); 396 extern long populate_vma_page_range(struct vm_area_struct *vma, 397 unsigned long start, unsigned long end, int *locked); 398 extern long faultin_vma_page_range(struct vm_area_struct *vma, 399 unsigned long start, unsigned long end, 400 bool write, int *locked); 401 extern void munlock_vma_pages_range(struct vm_area_struct *vma, 402 unsigned long start, unsigned long end); 403 static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 404 { 405 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 406 } 407 408 /* 409 * must be called with vma's mmap_lock held for read or write, and page locked. 410 */ 411 extern void mlock_vma_page(struct page *page); 412 extern unsigned int munlock_vma_page(struct page *page); 413 414 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags, 415 unsigned long len); 416 417 /* 418 * Clear the page's PageMlocked(). This can be useful in a situation where 419 * we want to unconditionally remove a page from the pagecache -- e.g., 420 * on truncation or freeing. 421 * 422 * It is legal to call this function for any page, mlocked or not. 423 * If called for a page that is still mapped by mlocked vmas, all we do 424 * is revert to lazy LRU behaviour -- semantics are not broken. 425 */ 426 extern void clear_page_mlock(struct page *page); 427 428 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 429 430 /* 431 * At what user virtual address is page expected in vma? 432 * Returns -EFAULT if all of the page is outside the range of vma. 433 * If page is a compound head, the entire compound page is considered. 434 */ 435 static inline unsigned long 436 vma_address(struct page *page, struct vm_area_struct *vma) 437 { 438 pgoff_t pgoff; 439 unsigned long address; 440 441 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 442 pgoff = page_to_pgoff(page); 443 if (pgoff >= vma->vm_pgoff) { 444 address = vma->vm_start + 445 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 446 /* Check for address beyond vma (or wrapped through 0?) */ 447 if (address < vma->vm_start || address >= vma->vm_end) 448 address = -EFAULT; 449 } else if (PageHead(page) && 450 pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) { 451 /* Test above avoids possibility of wrap to 0 on 32-bit */ 452 address = vma->vm_start; 453 } else { 454 address = -EFAULT; 455 } 456 return address; 457 } 458 459 /* 460 * Then at what user virtual address will none of the page be found in vma? 461 * Assumes that vma_address() already returned a good starting address. 462 * If page is a compound head, the entire compound page is considered. 463 */ 464 static inline unsigned long 465 vma_address_end(struct page *page, struct vm_area_struct *vma) 466 { 467 pgoff_t pgoff; 468 unsigned long address; 469 470 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 471 pgoff = page_to_pgoff(page) + compound_nr(page); 472 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 473 /* Check for address beyond vma (or wrapped through 0?) */ 474 if (address < vma->vm_start || address > vma->vm_end) 475 address = vma->vm_end; 476 return address; 477 } 478 479 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 480 struct file *fpin) 481 { 482 int flags = vmf->flags; 483 484 if (fpin) 485 return fpin; 486 487 /* 488 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 489 * anything, so we only pin the file and drop the mmap_lock if only 490 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 491 */ 492 if (fault_flag_allow_retry_first(flags) && 493 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 494 fpin = get_file(vmf->vma->vm_file); 495 mmap_read_unlock(vmf->vma->vm_mm); 496 } 497 return fpin; 498 } 499 #else /* !CONFIG_MMU */ 500 static inline void unmap_mapping_folio(struct folio *folio) { } 501 static inline void clear_page_mlock(struct page *page) { } 502 static inline void mlock_vma_page(struct page *page) { } 503 static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 504 { 505 } 506 #endif /* !CONFIG_MMU */ 507 508 /* 509 * Return the mem_map entry representing the 'offset' subpage within 510 * the maximally aligned gigantic page 'base'. Handle any discontiguity 511 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 512 */ 513 static inline struct page *mem_map_offset(struct page *base, int offset) 514 { 515 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 516 return nth_page(base, offset); 517 return base + offset; 518 } 519 520 /* 521 * Iterator over all subpages within the maximally aligned gigantic 522 * page 'base'. Handle any discontiguity in the mem_map. 523 */ 524 static inline struct page *mem_map_next(struct page *iter, 525 struct page *base, int offset) 526 { 527 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 528 unsigned long pfn = page_to_pfn(base) + offset; 529 if (!pfn_valid(pfn)) 530 return NULL; 531 return pfn_to_page(pfn); 532 } 533 return iter + 1; 534 } 535 536 /* Memory initialisation debug and verification */ 537 enum mminit_level { 538 MMINIT_WARNING, 539 MMINIT_VERIFY, 540 MMINIT_TRACE 541 }; 542 543 #ifdef CONFIG_DEBUG_MEMORY_INIT 544 545 extern int mminit_loglevel; 546 547 #define mminit_dprintk(level, prefix, fmt, arg...) \ 548 do { \ 549 if (level < mminit_loglevel) { \ 550 if (level <= MMINIT_WARNING) \ 551 pr_warn("mminit::" prefix " " fmt, ##arg); \ 552 else \ 553 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 554 } \ 555 } while (0) 556 557 extern void mminit_verify_pageflags_layout(void); 558 extern void mminit_verify_zonelist(void); 559 #else 560 561 static inline void mminit_dprintk(enum mminit_level level, 562 const char *prefix, const char *fmt, ...) 563 { 564 } 565 566 static inline void mminit_verify_pageflags_layout(void) 567 { 568 } 569 570 static inline void mminit_verify_zonelist(void) 571 { 572 } 573 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 574 575 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 576 #if defined(CONFIG_SPARSEMEM) 577 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 578 unsigned long *end_pfn); 579 #else 580 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 581 unsigned long *end_pfn) 582 { 583 } 584 #endif /* CONFIG_SPARSEMEM */ 585 586 #define NODE_RECLAIM_NOSCAN -2 587 #define NODE_RECLAIM_FULL -1 588 #define NODE_RECLAIM_SOME 0 589 #define NODE_RECLAIM_SUCCESS 1 590 591 #ifdef CONFIG_NUMA 592 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 593 extern int find_next_best_node(int node, nodemask_t *used_node_mask); 594 #else 595 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 596 unsigned int order) 597 { 598 return NODE_RECLAIM_NOSCAN; 599 } 600 static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 601 { 602 return NUMA_NO_NODE; 603 } 604 #endif 605 606 extern int hwpoison_filter(struct page *p); 607 608 extern u32 hwpoison_filter_dev_major; 609 extern u32 hwpoison_filter_dev_minor; 610 extern u64 hwpoison_filter_flags_mask; 611 extern u64 hwpoison_filter_flags_value; 612 extern u64 hwpoison_filter_memcg; 613 extern u32 hwpoison_filter_enable; 614 615 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 616 unsigned long, unsigned long, 617 unsigned long, unsigned long); 618 619 extern void set_pageblock_order(void); 620 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 621 struct list_head *page_list); 622 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 623 #define ALLOC_WMARK_MIN WMARK_MIN 624 #define ALLOC_WMARK_LOW WMARK_LOW 625 #define ALLOC_WMARK_HIGH WMARK_HIGH 626 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 627 628 /* Mask to get the watermark bits */ 629 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 630 631 /* 632 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 633 * cannot assume a reduced access to memory reserves is sufficient for 634 * !MMU 635 */ 636 #ifdef CONFIG_MMU 637 #define ALLOC_OOM 0x08 638 #else 639 #define ALLOC_OOM ALLOC_NO_WATERMARKS 640 #endif 641 642 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 643 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 644 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 645 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 646 #ifdef CONFIG_ZONE_DMA32 647 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 648 #else 649 #define ALLOC_NOFRAGMENT 0x0 650 #endif 651 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 652 653 enum ttu_flags; 654 struct tlbflush_unmap_batch; 655 656 657 /* 658 * only for MM internal work items which do not depend on 659 * any allocations or locks which might depend on allocations 660 */ 661 extern struct workqueue_struct *mm_percpu_wq; 662 663 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 664 void try_to_unmap_flush(void); 665 void try_to_unmap_flush_dirty(void); 666 void flush_tlb_batched_pending(struct mm_struct *mm); 667 #else 668 static inline void try_to_unmap_flush(void) 669 { 670 } 671 static inline void try_to_unmap_flush_dirty(void) 672 { 673 } 674 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 675 { 676 } 677 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 678 679 extern const struct trace_print_flags pageflag_names[]; 680 extern const struct trace_print_flags vmaflag_names[]; 681 extern const struct trace_print_flags gfpflag_names[]; 682 683 static inline bool is_migrate_highatomic(enum migratetype migratetype) 684 { 685 return migratetype == MIGRATE_HIGHATOMIC; 686 } 687 688 static inline bool is_migrate_highatomic_page(struct page *page) 689 { 690 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 691 } 692 693 void setup_zone_pageset(struct zone *zone); 694 695 struct migration_target_control { 696 int nid; /* preferred node id */ 697 nodemask_t *nmask; 698 gfp_t gfp_mask; 699 }; 700 701 /* 702 * mm/vmalloc.c 703 */ 704 #ifdef CONFIG_MMU 705 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 706 pgprot_t prot, struct page **pages, unsigned int page_shift); 707 #else 708 static inline 709 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 710 pgprot_t prot, struct page **pages, unsigned int page_shift) 711 { 712 return -EINVAL; 713 } 714 #endif 715 716 void vunmap_range_noflush(unsigned long start, unsigned long end); 717 718 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 719 unsigned long addr, int page_nid, int *flags); 720 721 #endif /* __MM_INTERNAL_H */ 722