xref: /linux/mm/internal.h (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /* internal.h: mm/ internal definitions
2  *
3  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #ifndef __MM_INTERNAL_H
12 #define __MM_INTERNAL_H
13 
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/pagemap.h>
17 #include <linux/tracepoint-defs.h>
18 
19 /*
20  * The set of flags that only affect watermark checking and reclaim
21  * behaviour. This is used by the MM to obey the caller constraints
22  * about IO, FS and watermark checking while ignoring placement
23  * hints such as HIGHMEM usage.
24  */
25 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
26 			__GFP_NOWARN|__GFP_REPEAT|__GFP_NOFAIL|\
27 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
28 			__GFP_ATOMIC)
29 
30 /* The GFP flags allowed during early boot */
31 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
32 
33 /* Control allocation cpuset and node placement constraints */
34 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
35 
36 /* Do not use these with a slab allocator */
37 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
38 
39 void page_writeback_init(void);
40 
41 int do_swap_page(struct vm_fault *vmf);
42 
43 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
44 		unsigned long floor, unsigned long ceiling);
45 
46 static inline bool can_madv_dontneed_vma(struct vm_area_struct *vma)
47 {
48 	return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
49 }
50 
51 void unmap_page_range(struct mmu_gather *tlb,
52 			     struct vm_area_struct *vma,
53 			     unsigned long addr, unsigned long end,
54 			     struct zap_details *details);
55 
56 extern int __do_page_cache_readahead(struct address_space *mapping,
57 		struct file *filp, pgoff_t offset, unsigned long nr_to_read,
58 		unsigned long lookahead_size);
59 
60 /*
61  * Submit IO for the read-ahead request in file_ra_state.
62  */
63 static inline unsigned long ra_submit(struct file_ra_state *ra,
64 		struct address_space *mapping, struct file *filp)
65 {
66 	return __do_page_cache_readahead(mapping, filp,
67 					ra->start, ra->size, ra->async_size);
68 }
69 
70 /*
71  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
72  * a count of one.
73  */
74 static inline void set_page_refcounted(struct page *page)
75 {
76 	VM_BUG_ON_PAGE(PageTail(page), page);
77 	VM_BUG_ON_PAGE(page_ref_count(page), page);
78 	set_page_count(page, 1);
79 }
80 
81 extern unsigned long highest_memmap_pfn;
82 
83 /*
84  * in mm/vmscan.c:
85  */
86 extern int isolate_lru_page(struct page *page);
87 extern void putback_lru_page(struct page *page);
88 extern bool pgdat_reclaimable(struct pglist_data *pgdat);
89 
90 /*
91  * in mm/rmap.c:
92  */
93 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
94 
95 /*
96  * in mm/page_alloc.c
97  */
98 
99 /*
100  * Structure for holding the mostly immutable allocation parameters passed
101  * between functions involved in allocations, including the alloc_pages*
102  * family of functions.
103  *
104  * nodemask, migratetype and high_zoneidx are initialized only once in
105  * __alloc_pages_nodemask() and then never change.
106  *
107  * zonelist, preferred_zone and classzone_idx are set first in
108  * __alloc_pages_nodemask() for the fast path, and might be later changed
109  * in __alloc_pages_slowpath(). All other functions pass the whole strucure
110  * by a const pointer.
111  */
112 struct alloc_context {
113 	struct zonelist *zonelist;
114 	nodemask_t *nodemask;
115 	struct zoneref *preferred_zoneref;
116 	int migratetype;
117 	enum zone_type high_zoneidx;
118 	bool spread_dirty_pages;
119 };
120 
121 #define ac_classzone_idx(ac) zonelist_zone_idx(ac->preferred_zoneref)
122 
123 /*
124  * Locate the struct page for both the matching buddy in our
125  * pair (buddy1) and the combined O(n+1) page they form (page).
126  *
127  * 1) Any buddy B1 will have an order O twin B2 which satisfies
128  * the following equation:
129  *     B2 = B1 ^ (1 << O)
130  * For example, if the starting buddy (buddy2) is #8 its order
131  * 1 buddy is #10:
132  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
133  *
134  * 2) Any buddy B will have an order O+1 parent P which
135  * satisfies the following equation:
136  *     P = B & ~(1 << O)
137  *
138  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
139  */
140 static inline unsigned long
141 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
142 {
143 	return page_pfn ^ (1 << order);
144 }
145 
146 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
147 				unsigned long end_pfn, struct zone *zone);
148 
149 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
150 				unsigned long end_pfn, struct zone *zone)
151 {
152 	if (zone->contiguous)
153 		return pfn_to_page(start_pfn);
154 
155 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
156 }
157 
158 extern int __isolate_free_page(struct page *page, unsigned int order);
159 extern void __free_pages_bootmem(struct page *page, unsigned long pfn,
160 					unsigned int order);
161 extern void prep_compound_page(struct page *page, unsigned int order);
162 extern void post_alloc_hook(struct page *page, unsigned int order,
163 					gfp_t gfp_flags);
164 extern int user_min_free_kbytes;
165 
166 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
167 
168 /*
169  * in mm/compaction.c
170  */
171 /*
172  * compact_control is used to track pages being migrated and the free pages
173  * they are being migrated to during memory compaction. The free_pfn starts
174  * at the end of a zone and migrate_pfn begins at the start. Movable pages
175  * are moved to the end of a zone during a compaction run and the run
176  * completes when free_pfn <= migrate_pfn
177  */
178 struct compact_control {
179 	struct list_head freepages;	/* List of free pages to migrate to */
180 	struct list_head migratepages;	/* List of pages being migrated */
181 	unsigned long nr_freepages;	/* Number of isolated free pages */
182 	unsigned long nr_migratepages;	/* Number of pages to migrate */
183 	unsigned long total_migrate_scanned;
184 	unsigned long total_free_scanned;
185 	unsigned long free_pfn;		/* isolate_freepages search base */
186 	unsigned long migrate_pfn;	/* isolate_migratepages search base */
187 	unsigned long last_migrated_pfn;/* Not yet flushed page being freed */
188 	enum migrate_mode mode;		/* Async or sync migration mode */
189 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
190 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
191 	bool direct_compaction;		/* False from kcompactd or /proc/... */
192 	bool whole_zone;		/* Whole zone should/has been scanned */
193 	int order;			/* order a direct compactor needs */
194 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
195 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
196 	const int classzone_idx;	/* zone index of a direct compactor */
197 	struct zone *zone;
198 	bool contended;			/* Signal lock or sched contention */
199 };
200 
201 unsigned long
202 isolate_freepages_range(struct compact_control *cc,
203 			unsigned long start_pfn, unsigned long end_pfn);
204 unsigned long
205 isolate_migratepages_range(struct compact_control *cc,
206 			   unsigned long low_pfn, unsigned long end_pfn);
207 int find_suitable_fallback(struct free_area *area, unsigned int order,
208 			int migratetype, bool only_stealable, bool *can_steal);
209 
210 #endif
211 
212 /*
213  * This function returns the order of a free page in the buddy system. In
214  * general, page_zone(page)->lock must be held by the caller to prevent the
215  * page from being allocated in parallel and returning garbage as the order.
216  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
217  * page cannot be allocated or merged in parallel. Alternatively, it must
218  * handle invalid values gracefully, and use page_order_unsafe() below.
219  */
220 static inline unsigned int page_order(struct page *page)
221 {
222 	/* PageBuddy() must be checked by the caller */
223 	return page_private(page);
224 }
225 
226 /*
227  * Like page_order(), but for callers who cannot afford to hold the zone lock.
228  * PageBuddy() should be checked first by the caller to minimize race window,
229  * and invalid values must be handled gracefully.
230  *
231  * READ_ONCE is used so that if the caller assigns the result into a local
232  * variable and e.g. tests it for valid range before using, the compiler cannot
233  * decide to remove the variable and inline the page_private(page) multiple
234  * times, potentially observing different values in the tests and the actual
235  * use of the result.
236  */
237 #define page_order_unsafe(page)		READ_ONCE(page_private(page))
238 
239 static inline bool is_cow_mapping(vm_flags_t flags)
240 {
241 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
242 }
243 
244 /*
245  * These three helpers classifies VMAs for virtual memory accounting.
246  */
247 
248 /*
249  * Executable code area - executable, not writable, not stack
250  */
251 static inline bool is_exec_mapping(vm_flags_t flags)
252 {
253 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
254 }
255 
256 /*
257  * Stack area - atomatically grows in one direction
258  *
259  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
260  * do_mmap() forbids all other combinations.
261  */
262 static inline bool is_stack_mapping(vm_flags_t flags)
263 {
264 	return (flags & VM_STACK) == VM_STACK;
265 }
266 
267 /*
268  * Data area - private, writable, not stack
269  */
270 static inline bool is_data_mapping(vm_flags_t flags)
271 {
272 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
273 }
274 
275 /* mm/util.c */
276 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
277 		struct vm_area_struct *prev, struct rb_node *rb_parent);
278 
279 #ifdef CONFIG_MMU
280 extern long populate_vma_page_range(struct vm_area_struct *vma,
281 		unsigned long start, unsigned long end, int *nonblocking);
282 extern void munlock_vma_pages_range(struct vm_area_struct *vma,
283 			unsigned long start, unsigned long end);
284 static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
285 {
286 	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
287 }
288 
289 /*
290  * must be called with vma's mmap_sem held for read or write, and page locked.
291  */
292 extern void mlock_vma_page(struct page *page);
293 extern unsigned int munlock_vma_page(struct page *page);
294 
295 /*
296  * Clear the page's PageMlocked().  This can be useful in a situation where
297  * we want to unconditionally remove a page from the pagecache -- e.g.,
298  * on truncation or freeing.
299  *
300  * It is legal to call this function for any page, mlocked or not.
301  * If called for a page that is still mapped by mlocked vmas, all we do
302  * is revert to lazy LRU behaviour -- semantics are not broken.
303  */
304 extern void clear_page_mlock(struct page *page);
305 
306 /*
307  * mlock_migrate_page - called only from migrate_misplaced_transhuge_page()
308  * (because that does not go through the full procedure of migration ptes):
309  * to migrate the Mlocked page flag; update statistics.
310  */
311 static inline void mlock_migrate_page(struct page *newpage, struct page *page)
312 {
313 	if (TestClearPageMlocked(page)) {
314 		int nr_pages = hpage_nr_pages(page);
315 
316 		/* Holding pmd lock, no change in irq context: __mod is safe */
317 		__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
318 		SetPageMlocked(newpage);
319 		__mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
320 	}
321 }
322 
323 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
324 
325 /*
326  * At what user virtual address is page expected in @vma?
327  */
328 static inline unsigned long
329 __vma_address(struct page *page, struct vm_area_struct *vma)
330 {
331 	pgoff_t pgoff = page_to_pgoff(page);
332 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
333 }
334 
335 static inline unsigned long
336 vma_address(struct page *page, struct vm_area_struct *vma)
337 {
338 	unsigned long start, end;
339 
340 	start = __vma_address(page, vma);
341 	end = start + PAGE_SIZE * (hpage_nr_pages(page) - 1);
342 
343 	/* page should be within @vma mapping range */
344 	VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma);
345 
346 	return max(start, vma->vm_start);
347 }
348 
349 #else /* !CONFIG_MMU */
350 static inline void clear_page_mlock(struct page *page) { }
351 static inline void mlock_vma_page(struct page *page) { }
352 static inline void mlock_migrate_page(struct page *new, struct page *old) { }
353 
354 #endif /* !CONFIG_MMU */
355 
356 /*
357  * Return the mem_map entry representing the 'offset' subpage within
358  * the maximally aligned gigantic page 'base'.  Handle any discontiguity
359  * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
360  */
361 static inline struct page *mem_map_offset(struct page *base, int offset)
362 {
363 	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
364 		return nth_page(base, offset);
365 	return base + offset;
366 }
367 
368 /*
369  * Iterator over all subpages within the maximally aligned gigantic
370  * page 'base'.  Handle any discontiguity in the mem_map.
371  */
372 static inline struct page *mem_map_next(struct page *iter,
373 						struct page *base, int offset)
374 {
375 	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
376 		unsigned long pfn = page_to_pfn(base) + offset;
377 		if (!pfn_valid(pfn))
378 			return NULL;
379 		return pfn_to_page(pfn);
380 	}
381 	return iter + 1;
382 }
383 
384 /*
385  * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node,
386  * so all functions starting at paging_init should be marked __init
387  * in those cases. SPARSEMEM, however, allows for memory hotplug,
388  * and alloc_bootmem_node is not used.
389  */
390 #ifdef CONFIG_SPARSEMEM
391 #define __paginginit __meminit
392 #else
393 #define __paginginit __init
394 #endif
395 
396 /* Memory initialisation debug and verification */
397 enum mminit_level {
398 	MMINIT_WARNING,
399 	MMINIT_VERIFY,
400 	MMINIT_TRACE
401 };
402 
403 #ifdef CONFIG_DEBUG_MEMORY_INIT
404 
405 extern int mminit_loglevel;
406 
407 #define mminit_dprintk(level, prefix, fmt, arg...) \
408 do { \
409 	if (level < mminit_loglevel) { \
410 		if (level <= MMINIT_WARNING) \
411 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
412 		else \
413 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
414 	} \
415 } while (0)
416 
417 extern void mminit_verify_pageflags_layout(void);
418 extern void mminit_verify_zonelist(void);
419 #else
420 
421 static inline void mminit_dprintk(enum mminit_level level,
422 				const char *prefix, const char *fmt, ...)
423 {
424 }
425 
426 static inline void mminit_verify_pageflags_layout(void)
427 {
428 }
429 
430 static inline void mminit_verify_zonelist(void)
431 {
432 }
433 #endif /* CONFIG_DEBUG_MEMORY_INIT */
434 
435 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
436 #if defined(CONFIG_SPARSEMEM)
437 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
438 				unsigned long *end_pfn);
439 #else
440 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
441 				unsigned long *end_pfn)
442 {
443 }
444 #endif /* CONFIG_SPARSEMEM */
445 
446 #define NODE_RECLAIM_NOSCAN	-2
447 #define NODE_RECLAIM_FULL	-1
448 #define NODE_RECLAIM_SOME	0
449 #define NODE_RECLAIM_SUCCESS	1
450 
451 extern int hwpoison_filter(struct page *p);
452 
453 extern u32 hwpoison_filter_dev_major;
454 extern u32 hwpoison_filter_dev_minor;
455 extern u64 hwpoison_filter_flags_mask;
456 extern u64 hwpoison_filter_flags_value;
457 extern u64 hwpoison_filter_memcg;
458 extern u32 hwpoison_filter_enable;
459 
460 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
461         unsigned long, unsigned long,
462         unsigned long, unsigned long);
463 
464 extern void set_pageblock_order(void);
465 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
466 					    struct list_head *page_list);
467 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
468 #define ALLOC_WMARK_MIN		WMARK_MIN
469 #define ALLOC_WMARK_LOW		WMARK_LOW
470 #define ALLOC_WMARK_HIGH	WMARK_HIGH
471 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
472 
473 /* Mask to get the watermark bits */
474 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
475 
476 #define ALLOC_HARDER		0x10 /* try to alloc harder */
477 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
478 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
479 #define ALLOC_CMA		0x80 /* allow allocations from CMA areas */
480 
481 enum ttu_flags;
482 struct tlbflush_unmap_batch;
483 
484 
485 /*
486  * only for MM internal work items which do not depend on
487  * any allocations or locks which might depend on allocations
488  */
489 extern struct workqueue_struct *mm_percpu_wq;
490 
491 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
492 void try_to_unmap_flush(void);
493 void try_to_unmap_flush_dirty(void);
494 #else
495 static inline void try_to_unmap_flush(void)
496 {
497 }
498 static inline void try_to_unmap_flush_dirty(void)
499 {
500 }
501 
502 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
503 
504 extern const struct trace_print_flags pageflag_names[];
505 extern const struct trace_print_flags vmaflag_names[];
506 extern const struct trace_print_flags gfpflag_names[];
507 
508 #endif	/* __MM_INTERNAL_H */
509