1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/tracepoint-defs.h> 14 15 /* 16 * The set of flags that only affect watermark checking and reclaim 17 * behaviour. This is used by the MM to obey the caller constraints 18 * about IO, FS and watermark checking while ignoring placement 19 * hints such as HIGHMEM usage. 20 */ 21 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 24 __GFP_ATOMIC) 25 26 /* The GFP flags allowed during early boot */ 27 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 28 29 /* Control allocation cpuset and node placement constraints */ 30 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 31 32 /* Do not use these with a slab allocator */ 33 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 34 35 void page_writeback_init(void); 36 37 vm_fault_t do_swap_page(struct vm_fault *vmf); 38 39 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 40 unsigned long floor, unsigned long ceiling); 41 42 static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 43 { 44 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); 45 } 46 47 void unmap_page_range(struct mmu_gather *tlb, 48 struct vm_area_struct *vma, 49 unsigned long addr, unsigned long end, 50 struct zap_details *details); 51 52 void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, 53 unsigned long lookahead_size); 54 void force_page_cache_ra(struct readahead_control *, unsigned long nr); 55 static inline void force_page_cache_readahead(struct address_space *mapping, 56 struct file *file, pgoff_t index, unsigned long nr_to_read) 57 { 58 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 59 force_page_cache_ra(&ractl, nr_to_read); 60 } 61 62 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 63 pgoff_t end, struct pagevec *pvec, pgoff_t *indices); 64 65 /** 66 * page_evictable - test whether a page is evictable 67 * @page: the page to test 68 * 69 * Test whether page is evictable--i.e., should be placed on active/inactive 70 * lists vs unevictable list. 71 * 72 * Reasons page might not be evictable: 73 * (1) page's mapping marked unevictable 74 * (2) page is part of an mlocked VMA 75 * 76 */ 77 static inline bool page_evictable(struct page *page) 78 { 79 bool ret; 80 81 /* Prevent address_space of inode and swap cache from being freed */ 82 rcu_read_lock(); 83 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 84 rcu_read_unlock(); 85 return ret; 86 } 87 88 /* 89 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 90 * a count of one. 91 */ 92 static inline void set_page_refcounted(struct page *page) 93 { 94 VM_BUG_ON_PAGE(PageTail(page), page); 95 VM_BUG_ON_PAGE(page_ref_count(page), page); 96 set_page_count(page, 1); 97 } 98 99 extern unsigned long highest_memmap_pfn; 100 101 /* 102 * Maximum number of reclaim retries without progress before the OOM 103 * killer is consider the only way forward. 104 */ 105 #define MAX_RECLAIM_RETRIES 16 106 107 /* 108 * in mm/vmscan.c: 109 */ 110 extern int isolate_lru_page(struct page *page); 111 extern void putback_lru_page(struct page *page); 112 113 /* 114 * in mm/rmap.c: 115 */ 116 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 117 118 /* 119 * in mm/page_alloc.c 120 */ 121 122 /* 123 * Structure for holding the mostly immutable allocation parameters passed 124 * between functions involved in allocations, including the alloc_pages* 125 * family of functions. 126 * 127 * nodemask, migratetype and highest_zoneidx are initialized only once in 128 * __alloc_pages() and then never change. 129 * 130 * zonelist, preferred_zone and highest_zoneidx are set first in 131 * __alloc_pages() for the fast path, and might be later changed 132 * in __alloc_pages_slowpath(). All other functions pass the whole structure 133 * by a const pointer. 134 */ 135 struct alloc_context { 136 struct zonelist *zonelist; 137 nodemask_t *nodemask; 138 struct zoneref *preferred_zoneref; 139 int migratetype; 140 141 /* 142 * highest_zoneidx represents highest usable zone index of 143 * the allocation request. Due to the nature of the zone, 144 * memory on lower zone than the highest_zoneidx will be 145 * protected by lowmem_reserve[highest_zoneidx]. 146 * 147 * highest_zoneidx is also used by reclaim/compaction to limit 148 * the target zone since higher zone than this index cannot be 149 * usable for this allocation request. 150 */ 151 enum zone_type highest_zoneidx; 152 bool spread_dirty_pages; 153 }; 154 155 /* 156 * Locate the struct page for both the matching buddy in our 157 * pair (buddy1) and the combined O(n+1) page they form (page). 158 * 159 * 1) Any buddy B1 will have an order O twin B2 which satisfies 160 * the following equation: 161 * B2 = B1 ^ (1 << O) 162 * For example, if the starting buddy (buddy2) is #8 its order 163 * 1 buddy is #10: 164 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 165 * 166 * 2) Any buddy B will have an order O+1 parent P which 167 * satisfies the following equation: 168 * P = B & ~(1 << O) 169 * 170 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 171 */ 172 static inline unsigned long 173 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 174 { 175 return page_pfn ^ (1 << order); 176 } 177 178 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 179 unsigned long end_pfn, struct zone *zone); 180 181 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 182 unsigned long end_pfn, struct zone *zone) 183 { 184 if (zone->contiguous) 185 return pfn_to_page(start_pfn); 186 187 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 188 } 189 190 extern int __isolate_free_page(struct page *page, unsigned int order); 191 extern void __putback_isolated_page(struct page *page, unsigned int order, 192 int mt); 193 extern void memblock_free_pages(struct page *page, unsigned long pfn, 194 unsigned int order); 195 extern void __free_pages_core(struct page *page, unsigned int order); 196 extern void prep_compound_page(struct page *page, unsigned int order); 197 extern void post_alloc_hook(struct page *page, unsigned int order, 198 gfp_t gfp_flags); 199 extern int user_min_free_kbytes; 200 201 extern void free_unref_page(struct page *page); 202 extern void free_unref_page_list(struct list_head *list); 203 204 extern void zone_pcp_update(struct zone *zone); 205 extern void zone_pcp_reset(struct zone *zone); 206 extern void zone_pcp_disable(struct zone *zone); 207 extern void zone_pcp_enable(struct zone *zone); 208 209 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 210 211 /* 212 * in mm/compaction.c 213 */ 214 /* 215 * compact_control is used to track pages being migrated and the free pages 216 * they are being migrated to during memory compaction. The free_pfn starts 217 * at the end of a zone and migrate_pfn begins at the start. Movable pages 218 * are moved to the end of a zone during a compaction run and the run 219 * completes when free_pfn <= migrate_pfn 220 */ 221 struct compact_control { 222 struct list_head freepages; /* List of free pages to migrate to */ 223 struct list_head migratepages; /* List of pages being migrated */ 224 unsigned int nr_freepages; /* Number of isolated free pages */ 225 unsigned int nr_migratepages; /* Number of pages to migrate */ 226 unsigned long free_pfn; /* isolate_freepages search base */ 227 /* 228 * Acts as an in/out parameter to page isolation for migration. 229 * isolate_migratepages uses it as a search base. 230 * isolate_migratepages_block will update the value to the next pfn 231 * after the last isolated one. 232 */ 233 unsigned long migrate_pfn; 234 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 235 struct zone *zone; 236 unsigned long total_migrate_scanned; 237 unsigned long total_free_scanned; 238 unsigned short fast_search_fail;/* failures to use free list searches */ 239 short search_order; /* order to start a fast search at */ 240 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 241 int order; /* order a direct compactor needs */ 242 int migratetype; /* migratetype of direct compactor */ 243 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 244 const int highest_zoneidx; /* zone index of a direct compactor */ 245 enum migrate_mode mode; /* Async or sync migration mode */ 246 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 247 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 248 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 249 bool direct_compaction; /* False from kcompactd or /proc/... */ 250 bool proactive_compaction; /* kcompactd proactive compaction */ 251 bool whole_zone; /* Whole zone should/has been scanned */ 252 bool contended; /* Signal lock or sched contention */ 253 bool rescan; /* Rescanning the same pageblock */ 254 bool alloc_contig; /* alloc_contig_range allocation */ 255 }; 256 257 /* 258 * Used in direct compaction when a page should be taken from the freelists 259 * immediately when one is created during the free path. 260 */ 261 struct capture_control { 262 struct compact_control *cc; 263 struct page *page; 264 }; 265 266 unsigned long 267 isolate_freepages_range(struct compact_control *cc, 268 unsigned long start_pfn, unsigned long end_pfn); 269 int 270 isolate_migratepages_range(struct compact_control *cc, 271 unsigned long low_pfn, unsigned long end_pfn); 272 int find_suitable_fallback(struct free_area *area, unsigned int order, 273 int migratetype, bool only_stealable, bool *can_steal); 274 275 #endif 276 277 /* 278 * This function returns the order of a free page in the buddy system. In 279 * general, page_zone(page)->lock must be held by the caller to prevent the 280 * page from being allocated in parallel and returning garbage as the order. 281 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 282 * page cannot be allocated or merged in parallel. Alternatively, it must 283 * handle invalid values gracefully, and use buddy_order_unsafe() below. 284 */ 285 static inline unsigned int buddy_order(struct page *page) 286 { 287 /* PageBuddy() must be checked by the caller */ 288 return page_private(page); 289 } 290 291 /* 292 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 293 * PageBuddy() should be checked first by the caller to minimize race window, 294 * and invalid values must be handled gracefully. 295 * 296 * READ_ONCE is used so that if the caller assigns the result into a local 297 * variable and e.g. tests it for valid range before using, the compiler cannot 298 * decide to remove the variable and inline the page_private(page) multiple 299 * times, potentially observing different values in the tests and the actual 300 * use of the result. 301 */ 302 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 303 304 /* 305 * These three helpers classifies VMAs for virtual memory accounting. 306 */ 307 308 /* 309 * Executable code area - executable, not writable, not stack 310 */ 311 static inline bool is_exec_mapping(vm_flags_t flags) 312 { 313 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 314 } 315 316 /* 317 * Stack area - automatically grows in one direction 318 * 319 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 320 * do_mmap() forbids all other combinations. 321 */ 322 static inline bool is_stack_mapping(vm_flags_t flags) 323 { 324 return (flags & VM_STACK) == VM_STACK; 325 } 326 327 /* 328 * Data area - private, writable, not stack 329 */ 330 static inline bool is_data_mapping(vm_flags_t flags) 331 { 332 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 333 } 334 335 /* mm/util.c */ 336 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 337 struct vm_area_struct *prev); 338 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); 339 340 #ifdef CONFIG_MMU 341 extern long populate_vma_page_range(struct vm_area_struct *vma, 342 unsigned long start, unsigned long end, int *nonblocking); 343 extern void munlock_vma_pages_range(struct vm_area_struct *vma, 344 unsigned long start, unsigned long end); 345 static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 346 { 347 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 348 } 349 350 /* 351 * must be called with vma's mmap_lock held for read or write, and page locked. 352 */ 353 extern void mlock_vma_page(struct page *page); 354 extern unsigned int munlock_vma_page(struct page *page); 355 356 /* 357 * Clear the page's PageMlocked(). This can be useful in a situation where 358 * we want to unconditionally remove a page from the pagecache -- e.g., 359 * on truncation or freeing. 360 * 361 * It is legal to call this function for any page, mlocked or not. 362 * If called for a page that is still mapped by mlocked vmas, all we do 363 * is revert to lazy LRU behaviour -- semantics are not broken. 364 */ 365 extern void clear_page_mlock(struct page *page); 366 367 /* 368 * mlock_migrate_page - called only from migrate_misplaced_transhuge_page() 369 * (because that does not go through the full procedure of migration ptes): 370 * to migrate the Mlocked page flag; update statistics. 371 */ 372 static inline void mlock_migrate_page(struct page *newpage, struct page *page) 373 { 374 if (TestClearPageMlocked(page)) { 375 int nr_pages = thp_nr_pages(page); 376 377 /* Holding pmd lock, no change in irq context: __mod is safe */ 378 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 379 SetPageMlocked(newpage); 380 __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages); 381 } 382 } 383 384 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 385 386 /* 387 * At what user virtual address is page expected in vma? 388 * Returns -EFAULT if all of the page is outside the range of vma. 389 * If page is a compound head, the entire compound page is considered. 390 */ 391 static inline unsigned long 392 vma_address(struct page *page, struct vm_area_struct *vma) 393 { 394 pgoff_t pgoff; 395 unsigned long address; 396 397 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 398 pgoff = page_to_pgoff(page); 399 if (pgoff >= vma->vm_pgoff) { 400 address = vma->vm_start + 401 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 402 /* Check for address beyond vma (or wrapped through 0?) */ 403 if (address < vma->vm_start || address >= vma->vm_end) 404 address = -EFAULT; 405 } else if (PageHead(page) && 406 pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) { 407 /* Test above avoids possibility of wrap to 0 on 32-bit */ 408 address = vma->vm_start; 409 } else { 410 address = -EFAULT; 411 } 412 return address; 413 } 414 415 /* 416 * Then at what user virtual address will none of the page be found in vma? 417 * Assumes that vma_address() already returned a good starting address. 418 * If page is a compound head, the entire compound page is considered. 419 */ 420 static inline unsigned long 421 vma_address_end(struct page *page, struct vm_area_struct *vma) 422 { 423 pgoff_t pgoff; 424 unsigned long address; 425 426 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 427 pgoff = page_to_pgoff(page) + compound_nr(page); 428 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 429 /* Check for address beyond vma (or wrapped through 0?) */ 430 if (address < vma->vm_start || address > vma->vm_end) 431 address = vma->vm_end; 432 return address; 433 } 434 435 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 436 struct file *fpin) 437 { 438 int flags = vmf->flags; 439 440 if (fpin) 441 return fpin; 442 443 /* 444 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 445 * anything, so we only pin the file and drop the mmap_lock if only 446 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 447 */ 448 if (fault_flag_allow_retry_first(flags) && 449 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 450 fpin = get_file(vmf->vma->vm_file); 451 mmap_read_unlock(vmf->vma->vm_mm); 452 } 453 return fpin; 454 } 455 456 #else /* !CONFIG_MMU */ 457 static inline void clear_page_mlock(struct page *page) { } 458 static inline void mlock_vma_page(struct page *page) { } 459 static inline void mlock_migrate_page(struct page *new, struct page *old) { } 460 static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 461 { 462 } 463 #endif /* !CONFIG_MMU */ 464 465 /* 466 * Return the mem_map entry representing the 'offset' subpage within 467 * the maximally aligned gigantic page 'base'. Handle any discontiguity 468 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 469 */ 470 static inline struct page *mem_map_offset(struct page *base, int offset) 471 { 472 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 473 return nth_page(base, offset); 474 return base + offset; 475 } 476 477 /* 478 * Iterator over all subpages within the maximally aligned gigantic 479 * page 'base'. Handle any discontiguity in the mem_map. 480 */ 481 static inline struct page *mem_map_next(struct page *iter, 482 struct page *base, int offset) 483 { 484 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 485 unsigned long pfn = page_to_pfn(base) + offset; 486 if (!pfn_valid(pfn)) 487 return NULL; 488 return pfn_to_page(pfn); 489 } 490 return iter + 1; 491 } 492 493 /* Memory initialisation debug and verification */ 494 enum mminit_level { 495 MMINIT_WARNING, 496 MMINIT_VERIFY, 497 MMINIT_TRACE 498 }; 499 500 #ifdef CONFIG_DEBUG_MEMORY_INIT 501 502 extern int mminit_loglevel; 503 504 #define mminit_dprintk(level, prefix, fmt, arg...) \ 505 do { \ 506 if (level < mminit_loglevel) { \ 507 if (level <= MMINIT_WARNING) \ 508 pr_warn("mminit::" prefix " " fmt, ##arg); \ 509 else \ 510 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 511 } \ 512 } while (0) 513 514 extern void mminit_verify_pageflags_layout(void); 515 extern void mminit_verify_zonelist(void); 516 #else 517 518 static inline void mminit_dprintk(enum mminit_level level, 519 const char *prefix, const char *fmt, ...) 520 { 521 } 522 523 static inline void mminit_verify_pageflags_layout(void) 524 { 525 } 526 527 static inline void mminit_verify_zonelist(void) 528 { 529 } 530 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 531 532 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 533 #if defined(CONFIG_SPARSEMEM) 534 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 535 unsigned long *end_pfn); 536 #else 537 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 538 unsigned long *end_pfn) 539 { 540 } 541 #endif /* CONFIG_SPARSEMEM */ 542 543 #define NODE_RECLAIM_NOSCAN -2 544 #define NODE_RECLAIM_FULL -1 545 #define NODE_RECLAIM_SOME 0 546 #define NODE_RECLAIM_SUCCESS 1 547 548 #ifdef CONFIG_NUMA 549 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 550 #else 551 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 552 unsigned int order) 553 { 554 return NODE_RECLAIM_NOSCAN; 555 } 556 #endif 557 558 extern int hwpoison_filter(struct page *p); 559 560 extern u32 hwpoison_filter_dev_major; 561 extern u32 hwpoison_filter_dev_minor; 562 extern u64 hwpoison_filter_flags_mask; 563 extern u64 hwpoison_filter_flags_value; 564 extern u64 hwpoison_filter_memcg; 565 extern u32 hwpoison_filter_enable; 566 567 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 568 unsigned long, unsigned long, 569 unsigned long, unsigned long); 570 571 extern void set_pageblock_order(void); 572 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 573 struct list_head *page_list); 574 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 575 #define ALLOC_WMARK_MIN WMARK_MIN 576 #define ALLOC_WMARK_LOW WMARK_LOW 577 #define ALLOC_WMARK_HIGH WMARK_HIGH 578 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 579 580 /* Mask to get the watermark bits */ 581 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 582 583 /* 584 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 585 * cannot assume a reduced access to memory reserves is sufficient for 586 * !MMU 587 */ 588 #ifdef CONFIG_MMU 589 #define ALLOC_OOM 0x08 590 #else 591 #define ALLOC_OOM ALLOC_NO_WATERMARKS 592 #endif 593 594 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 595 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 596 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 597 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 598 #ifdef CONFIG_ZONE_DMA32 599 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 600 #else 601 #define ALLOC_NOFRAGMENT 0x0 602 #endif 603 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 604 605 enum ttu_flags; 606 struct tlbflush_unmap_batch; 607 608 609 /* 610 * only for MM internal work items which do not depend on 611 * any allocations or locks which might depend on allocations 612 */ 613 extern struct workqueue_struct *mm_percpu_wq; 614 615 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 616 void try_to_unmap_flush(void); 617 void try_to_unmap_flush_dirty(void); 618 void flush_tlb_batched_pending(struct mm_struct *mm); 619 #else 620 static inline void try_to_unmap_flush(void) 621 { 622 } 623 static inline void try_to_unmap_flush_dirty(void) 624 { 625 } 626 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 627 { 628 } 629 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 630 631 extern const struct trace_print_flags pageflag_names[]; 632 extern const struct trace_print_flags vmaflag_names[]; 633 extern const struct trace_print_flags gfpflag_names[]; 634 635 static inline bool is_migrate_highatomic(enum migratetype migratetype) 636 { 637 return migratetype == MIGRATE_HIGHATOMIC; 638 } 639 640 static inline bool is_migrate_highatomic_page(struct page *page) 641 { 642 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 643 } 644 645 void setup_zone_pageset(struct zone *zone); 646 647 struct migration_target_control { 648 int nid; /* preferred node id */ 649 nodemask_t *nmask; 650 gfp_t gfp_mask; 651 }; 652 653 /* 654 * mm/vmalloc.c 655 */ 656 #ifdef CONFIG_MMU 657 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 658 pgprot_t prot, struct page **pages, unsigned int page_shift); 659 #else 660 static inline 661 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 662 pgprot_t prot, struct page **pages, unsigned int page_shift) 663 { 664 return -EINVAL; 665 } 666 #endif 667 668 void vunmap_range_noflush(unsigned long start, unsigned long end); 669 670 #endif /* __MM_INTERNAL_H */ 671