xref: /linux/mm/internal.h (revision a48b0872e69428d3d02994dcfad3519f01def7fa)
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9 
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/tracepoint-defs.h>
14 
15 /*
16  * The set of flags that only affect watermark checking and reclaim
17  * behaviour. This is used by the MM to obey the caller constraints
18  * about IO, FS and watermark checking while ignoring placement
19  * hints such as HIGHMEM usage.
20  */
21 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
22 			__GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
23 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
24 			__GFP_ATOMIC)
25 
26 /* The GFP flags allowed during early boot */
27 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
28 
29 /* Control allocation cpuset and node placement constraints */
30 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
31 
32 /* Do not use these with a slab allocator */
33 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
34 
35 void page_writeback_init(void);
36 
37 vm_fault_t do_swap_page(struct vm_fault *vmf);
38 
39 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
40 		unsigned long floor, unsigned long ceiling);
41 
42 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
43 {
44 	return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
45 }
46 
47 void unmap_page_range(struct mmu_gather *tlb,
48 			     struct vm_area_struct *vma,
49 			     unsigned long addr, unsigned long end,
50 			     struct zap_details *details);
51 
52 void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read,
53 		unsigned long lookahead_size);
54 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
55 static inline void force_page_cache_readahead(struct address_space *mapping,
56 		struct file *file, pgoff_t index, unsigned long nr_to_read)
57 {
58 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
59 	force_page_cache_ra(&ractl, nr_to_read);
60 }
61 
62 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
63 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
64 
65 /**
66  * page_evictable - test whether a page is evictable
67  * @page: the page to test
68  *
69  * Test whether page is evictable--i.e., should be placed on active/inactive
70  * lists vs unevictable list.
71  *
72  * Reasons page might not be evictable:
73  * (1) page's mapping marked unevictable
74  * (2) page is part of an mlocked VMA
75  *
76  */
77 static inline bool page_evictable(struct page *page)
78 {
79 	bool ret;
80 
81 	/* Prevent address_space of inode and swap cache from being freed */
82 	rcu_read_lock();
83 	ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
84 	rcu_read_unlock();
85 	return ret;
86 }
87 
88 /*
89  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
90  * a count of one.
91  */
92 static inline void set_page_refcounted(struct page *page)
93 {
94 	VM_BUG_ON_PAGE(PageTail(page), page);
95 	VM_BUG_ON_PAGE(page_ref_count(page), page);
96 	set_page_count(page, 1);
97 }
98 
99 /*
100  * When kernel touch the user page, the user page may be have been marked
101  * poison but still mapped in user space, if without this page, the kernel
102  * can guarantee the data integrity and operation success, the kernel is
103  * better to check the posion status and avoid touching it, be good not to
104  * panic, coredump for process fatal signal is a sample case matching this
105  * scenario. Or if kernel can't guarantee the data integrity, it's better
106  * not to call this function, let kernel touch the poison page and get to
107  * panic.
108  */
109 static inline bool is_page_poisoned(struct page *page)
110 {
111 	if (PageHWPoison(page))
112 		return true;
113 	else if (PageHuge(page) && PageHWPoison(compound_head(page)))
114 		return true;
115 
116 	return false;
117 }
118 
119 extern unsigned long highest_memmap_pfn;
120 
121 /*
122  * Maximum number of reclaim retries without progress before the OOM
123  * killer is consider the only way forward.
124  */
125 #define MAX_RECLAIM_RETRIES 16
126 
127 /*
128  * in mm/vmscan.c:
129  */
130 extern int isolate_lru_page(struct page *page);
131 extern void putback_lru_page(struct page *page);
132 
133 /*
134  * in mm/rmap.c:
135  */
136 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
137 
138 /*
139  * in mm/page_alloc.c
140  */
141 
142 /*
143  * Structure for holding the mostly immutable allocation parameters passed
144  * between functions involved in allocations, including the alloc_pages*
145  * family of functions.
146  *
147  * nodemask, migratetype and highest_zoneidx are initialized only once in
148  * __alloc_pages() and then never change.
149  *
150  * zonelist, preferred_zone and highest_zoneidx are set first in
151  * __alloc_pages() for the fast path, and might be later changed
152  * in __alloc_pages_slowpath(). All other functions pass the whole structure
153  * by a const pointer.
154  */
155 struct alloc_context {
156 	struct zonelist *zonelist;
157 	nodemask_t *nodemask;
158 	struct zoneref *preferred_zoneref;
159 	int migratetype;
160 
161 	/*
162 	 * highest_zoneidx represents highest usable zone index of
163 	 * the allocation request. Due to the nature of the zone,
164 	 * memory on lower zone than the highest_zoneidx will be
165 	 * protected by lowmem_reserve[highest_zoneidx].
166 	 *
167 	 * highest_zoneidx is also used by reclaim/compaction to limit
168 	 * the target zone since higher zone than this index cannot be
169 	 * usable for this allocation request.
170 	 */
171 	enum zone_type highest_zoneidx;
172 	bool spread_dirty_pages;
173 };
174 
175 /*
176  * Locate the struct page for both the matching buddy in our
177  * pair (buddy1) and the combined O(n+1) page they form (page).
178  *
179  * 1) Any buddy B1 will have an order O twin B2 which satisfies
180  * the following equation:
181  *     B2 = B1 ^ (1 << O)
182  * For example, if the starting buddy (buddy2) is #8 its order
183  * 1 buddy is #10:
184  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
185  *
186  * 2) Any buddy B will have an order O+1 parent P which
187  * satisfies the following equation:
188  *     P = B & ~(1 << O)
189  *
190  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
191  */
192 static inline unsigned long
193 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
194 {
195 	return page_pfn ^ (1 << order);
196 }
197 
198 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
199 				unsigned long end_pfn, struct zone *zone);
200 
201 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
202 				unsigned long end_pfn, struct zone *zone)
203 {
204 	if (zone->contiguous)
205 		return pfn_to_page(start_pfn);
206 
207 	return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
208 }
209 
210 extern int __isolate_free_page(struct page *page, unsigned int order);
211 extern void __putback_isolated_page(struct page *page, unsigned int order,
212 				    int mt);
213 extern void memblock_free_pages(struct page *page, unsigned long pfn,
214 					unsigned int order);
215 extern void __free_pages_core(struct page *page, unsigned int order);
216 extern void prep_compound_page(struct page *page, unsigned int order);
217 extern void post_alloc_hook(struct page *page, unsigned int order,
218 					gfp_t gfp_flags);
219 extern int user_min_free_kbytes;
220 
221 extern void free_unref_page(struct page *page);
222 extern void free_unref_page_list(struct list_head *list);
223 
224 extern void zone_pcp_update(struct zone *zone);
225 extern void zone_pcp_reset(struct zone *zone);
226 extern void zone_pcp_disable(struct zone *zone);
227 extern void zone_pcp_enable(struct zone *zone);
228 
229 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
230 
231 /*
232  * in mm/compaction.c
233  */
234 /*
235  * compact_control is used to track pages being migrated and the free pages
236  * they are being migrated to during memory compaction. The free_pfn starts
237  * at the end of a zone and migrate_pfn begins at the start. Movable pages
238  * are moved to the end of a zone during a compaction run and the run
239  * completes when free_pfn <= migrate_pfn
240  */
241 struct compact_control {
242 	struct list_head freepages;	/* List of free pages to migrate to */
243 	struct list_head migratepages;	/* List of pages being migrated */
244 	unsigned int nr_freepages;	/* Number of isolated free pages */
245 	unsigned int nr_migratepages;	/* Number of pages to migrate */
246 	unsigned long free_pfn;		/* isolate_freepages search base */
247 	/*
248 	 * Acts as an in/out parameter to page isolation for migration.
249 	 * isolate_migratepages uses it as a search base.
250 	 * isolate_migratepages_block will update the value to the next pfn
251 	 * after the last isolated one.
252 	 */
253 	unsigned long migrate_pfn;
254 	unsigned long fast_start_pfn;	/* a pfn to start linear scan from */
255 	struct zone *zone;
256 	unsigned long total_migrate_scanned;
257 	unsigned long total_free_scanned;
258 	unsigned short fast_search_fail;/* failures to use free list searches */
259 	short search_order;		/* order to start a fast search at */
260 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
261 	int order;			/* order a direct compactor needs */
262 	int migratetype;		/* migratetype of direct compactor */
263 	const unsigned int alloc_flags;	/* alloc flags of a direct compactor */
264 	const int highest_zoneidx;	/* zone index of a direct compactor */
265 	enum migrate_mode mode;		/* Async or sync migration mode */
266 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
267 	bool no_set_skip_hint;		/* Don't mark blocks for skipping */
268 	bool ignore_block_suitable;	/* Scan blocks considered unsuitable */
269 	bool direct_compaction;		/* False from kcompactd or /proc/... */
270 	bool proactive_compaction;	/* kcompactd proactive compaction */
271 	bool whole_zone;		/* Whole zone should/has been scanned */
272 	bool contended;			/* Signal lock or sched contention */
273 	bool rescan;			/* Rescanning the same pageblock */
274 	bool alloc_contig;		/* alloc_contig_range allocation */
275 };
276 
277 /*
278  * Used in direct compaction when a page should be taken from the freelists
279  * immediately when one is created during the free path.
280  */
281 struct capture_control {
282 	struct compact_control *cc;
283 	struct page *page;
284 };
285 
286 unsigned long
287 isolate_freepages_range(struct compact_control *cc,
288 			unsigned long start_pfn, unsigned long end_pfn);
289 int
290 isolate_migratepages_range(struct compact_control *cc,
291 			   unsigned long low_pfn, unsigned long end_pfn);
292 int find_suitable_fallback(struct free_area *area, unsigned int order,
293 			int migratetype, bool only_stealable, bool *can_steal);
294 
295 #endif
296 
297 /*
298  * This function returns the order of a free page in the buddy system. In
299  * general, page_zone(page)->lock must be held by the caller to prevent the
300  * page from being allocated in parallel and returning garbage as the order.
301  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
302  * page cannot be allocated or merged in parallel. Alternatively, it must
303  * handle invalid values gracefully, and use buddy_order_unsafe() below.
304  */
305 static inline unsigned int buddy_order(struct page *page)
306 {
307 	/* PageBuddy() must be checked by the caller */
308 	return page_private(page);
309 }
310 
311 /*
312  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
313  * PageBuddy() should be checked first by the caller to minimize race window,
314  * and invalid values must be handled gracefully.
315  *
316  * READ_ONCE is used so that if the caller assigns the result into a local
317  * variable and e.g. tests it for valid range before using, the compiler cannot
318  * decide to remove the variable and inline the page_private(page) multiple
319  * times, potentially observing different values in the tests and the actual
320  * use of the result.
321  */
322 #define buddy_order_unsafe(page)	READ_ONCE(page_private(page))
323 
324 /*
325  * These three helpers classifies VMAs for virtual memory accounting.
326  */
327 
328 /*
329  * Executable code area - executable, not writable, not stack
330  */
331 static inline bool is_exec_mapping(vm_flags_t flags)
332 {
333 	return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
334 }
335 
336 /*
337  * Stack area - automatically grows in one direction
338  *
339  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
340  * do_mmap() forbids all other combinations.
341  */
342 static inline bool is_stack_mapping(vm_flags_t flags)
343 {
344 	return (flags & VM_STACK) == VM_STACK;
345 }
346 
347 /*
348  * Data area - private, writable, not stack
349  */
350 static inline bool is_data_mapping(vm_flags_t flags)
351 {
352 	return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
353 }
354 
355 /* mm/util.c */
356 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
357 		struct vm_area_struct *prev);
358 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
359 
360 #ifdef CONFIG_MMU
361 extern long populate_vma_page_range(struct vm_area_struct *vma,
362 		unsigned long start, unsigned long end, int *nonblocking);
363 extern void munlock_vma_pages_range(struct vm_area_struct *vma,
364 			unsigned long start, unsigned long end);
365 static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
366 {
367 	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
368 }
369 
370 /*
371  * must be called with vma's mmap_lock held for read or write, and page locked.
372  */
373 extern void mlock_vma_page(struct page *page);
374 extern unsigned int munlock_vma_page(struct page *page);
375 
376 /*
377  * Clear the page's PageMlocked().  This can be useful in a situation where
378  * we want to unconditionally remove a page from the pagecache -- e.g.,
379  * on truncation or freeing.
380  *
381  * It is legal to call this function for any page, mlocked or not.
382  * If called for a page that is still mapped by mlocked vmas, all we do
383  * is revert to lazy LRU behaviour -- semantics are not broken.
384  */
385 extern void clear_page_mlock(struct page *page);
386 
387 /*
388  * mlock_migrate_page - called only from migrate_misplaced_transhuge_page()
389  * (because that does not go through the full procedure of migration ptes):
390  * to migrate the Mlocked page flag; update statistics.
391  */
392 static inline void mlock_migrate_page(struct page *newpage, struct page *page)
393 {
394 	if (TestClearPageMlocked(page)) {
395 		int nr_pages = thp_nr_pages(page);
396 
397 		/* Holding pmd lock, no change in irq context: __mod is safe */
398 		__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
399 		SetPageMlocked(newpage);
400 		__mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
401 	}
402 }
403 
404 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
405 
406 /*
407  * At what user virtual address is page expected in @vma?
408  */
409 static inline unsigned long
410 __vma_address(struct page *page, struct vm_area_struct *vma)
411 {
412 	pgoff_t pgoff = page_to_pgoff(page);
413 	return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
414 }
415 
416 static inline unsigned long
417 vma_address(struct page *page, struct vm_area_struct *vma)
418 {
419 	unsigned long start, end;
420 
421 	start = __vma_address(page, vma);
422 	end = start + thp_size(page) - PAGE_SIZE;
423 
424 	/* page should be within @vma mapping range */
425 	VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma);
426 
427 	return max(start, vma->vm_start);
428 }
429 
430 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
431 						    struct file *fpin)
432 {
433 	int flags = vmf->flags;
434 
435 	if (fpin)
436 		return fpin;
437 
438 	/*
439 	 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
440 	 * anything, so we only pin the file and drop the mmap_lock if only
441 	 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
442 	 */
443 	if (fault_flag_allow_retry_first(flags) &&
444 	    !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
445 		fpin = get_file(vmf->vma->vm_file);
446 		mmap_read_unlock(vmf->vma->vm_mm);
447 	}
448 	return fpin;
449 }
450 
451 #else /* !CONFIG_MMU */
452 static inline void clear_page_mlock(struct page *page) { }
453 static inline void mlock_vma_page(struct page *page) { }
454 static inline void mlock_migrate_page(struct page *new, struct page *old) { }
455 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
456 {
457 }
458 #endif /* !CONFIG_MMU */
459 
460 /*
461  * Return the mem_map entry representing the 'offset' subpage within
462  * the maximally aligned gigantic page 'base'.  Handle any discontiguity
463  * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
464  */
465 static inline struct page *mem_map_offset(struct page *base, int offset)
466 {
467 	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
468 		return nth_page(base, offset);
469 	return base + offset;
470 }
471 
472 /*
473  * Iterator over all subpages within the maximally aligned gigantic
474  * page 'base'.  Handle any discontiguity in the mem_map.
475  */
476 static inline struct page *mem_map_next(struct page *iter,
477 						struct page *base, int offset)
478 {
479 	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
480 		unsigned long pfn = page_to_pfn(base) + offset;
481 		if (!pfn_valid(pfn))
482 			return NULL;
483 		return pfn_to_page(pfn);
484 	}
485 	return iter + 1;
486 }
487 
488 /* Memory initialisation debug and verification */
489 enum mminit_level {
490 	MMINIT_WARNING,
491 	MMINIT_VERIFY,
492 	MMINIT_TRACE
493 };
494 
495 #ifdef CONFIG_DEBUG_MEMORY_INIT
496 
497 extern int mminit_loglevel;
498 
499 #define mminit_dprintk(level, prefix, fmt, arg...) \
500 do { \
501 	if (level < mminit_loglevel) { \
502 		if (level <= MMINIT_WARNING) \
503 			pr_warn("mminit::" prefix " " fmt, ##arg);	\
504 		else \
505 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
506 	} \
507 } while (0)
508 
509 extern void mminit_verify_pageflags_layout(void);
510 extern void mminit_verify_zonelist(void);
511 #else
512 
513 static inline void mminit_dprintk(enum mminit_level level,
514 				const char *prefix, const char *fmt, ...)
515 {
516 }
517 
518 static inline void mminit_verify_pageflags_layout(void)
519 {
520 }
521 
522 static inline void mminit_verify_zonelist(void)
523 {
524 }
525 #endif /* CONFIG_DEBUG_MEMORY_INIT */
526 
527 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
528 #if defined(CONFIG_SPARSEMEM)
529 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
530 				unsigned long *end_pfn);
531 #else
532 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
533 				unsigned long *end_pfn)
534 {
535 }
536 #endif /* CONFIG_SPARSEMEM */
537 
538 #define NODE_RECLAIM_NOSCAN	-2
539 #define NODE_RECLAIM_FULL	-1
540 #define NODE_RECLAIM_SOME	0
541 #define NODE_RECLAIM_SUCCESS	1
542 
543 #ifdef CONFIG_NUMA
544 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
545 #else
546 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
547 				unsigned int order)
548 {
549 	return NODE_RECLAIM_NOSCAN;
550 }
551 #endif
552 
553 extern int hwpoison_filter(struct page *p);
554 
555 extern u32 hwpoison_filter_dev_major;
556 extern u32 hwpoison_filter_dev_minor;
557 extern u64 hwpoison_filter_flags_mask;
558 extern u64 hwpoison_filter_flags_value;
559 extern u64 hwpoison_filter_memcg;
560 extern u32 hwpoison_filter_enable;
561 
562 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
563         unsigned long, unsigned long,
564         unsigned long, unsigned long);
565 
566 extern void set_pageblock_order(void);
567 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
568 					    struct list_head *page_list);
569 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
570 #define ALLOC_WMARK_MIN		WMARK_MIN
571 #define ALLOC_WMARK_LOW		WMARK_LOW
572 #define ALLOC_WMARK_HIGH	WMARK_HIGH
573 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
574 
575 /* Mask to get the watermark bits */
576 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
577 
578 /*
579  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
580  * cannot assume a reduced access to memory reserves is sufficient for
581  * !MMU
582  */
583 #ifdef CONFIG_MMU
584 #define ALLOC_OOM		0x08
585 #else
586 #define ALLOC_OOM		ALLOC_NO_WATERMARKS
587 #endif
588 
589 #define ALLOC_HARDER		 0x10 /* try to alloc harder */
590 #define ALLOC_HIGH		 0x20 /* __GFP_HIGH set */
591 #define ALLOC_CPUSET		 0x40 /* check for correct cpuset */
592 #define ALLOC_CMA		 0x80 /* allow allocations from CMA areas */
593 #ifdef CONFIG_ZONE_DMA32
594 #define ALLOC_NOFRAGMENT	0x100 /* avoid mixing pageblock types */
595 #else
596 #define ALLOC_NOFRAGMENT	  0x0
597 #endif
598 #define ALLOC_KSWAPD		0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
599 
600 enum ttu_flags;
601 struct tlbflush_unmap_batch;
602 
603 
604 /*
605  * only for MM internal work items which do not depend on
606  * any allocations or locks which might depend on allocations
607  */
608 extern struct workqueue_struct *mm_percpu_wq;
609 
610 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
611 void try_to_unmap_flush(void);
612 void try_to_unmap_flush_dirty(void);
613 void flush_tlb_batched_pending(struct mm_struct *mm);
614 #else
615 static inline void try_to_unmap_flush(void)
616 {
617 }
618 static inline void try_to_unmap_flush_dirty(void)
619 {
620 }
621 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
622 {
623 }
624 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
625 
626 extern const struct trace_print_flags pageflag_names[];
627 extern const struct trace_print_flags vmaflag_names[];
628 extern const struct trace_print_flags gfpflag_names[];
629 
630 static inline bool is_migrate_highatomic(enum migratetype migratetype)
631 {
632 	return migratetype == MIGRATE_HIGHATOMIC;
633 }
634 
635 static inline bool is_migrate_highatomic_page(struct page *page)
636 {
637 	return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
638 }
639 
640 void setup_zone_pageset(struct zone *zone);
641 
642 struct migration_target_control {
643 	int nid;		/* preferred node id */
644 	nodemask_t *nmask;
645 	gfp_t gfp_mask;
646 };
647 
648 /*
649  * mm/vmalloc.c
650  */
651 #ifdef CONFIG_MMU
652 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
653                 pgprot_t prot, struct page **pages, unsigned int page_shift);
654 #else
655 static inline
656 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
657                 pgprot_t prot, struct page **pages, unsigned int page_shift)
658 {
659 	return -EINVAL;
660 }
661 #endif
662 
663 void vunmap_range_noflush(unsigned long start, unsigned long end);
664 
665 #endif	/* __MM_INTERNAL_H */
666