xref: /linux/mm/internal.h (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /* internal.h: mm/ internal definitions
2  *
3  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
4  * Written by David Howells (dhowells@redhat.com)
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version
9  * 2 of the License, or (at your option) any later version.
10  */
11 #ifndef __MM_INTERNAL_H
12 #define __MM_INTERNAL_H
13 
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 
17 /*
18  * The set of flags that only affect watermark checking and reclaim
19  * behaviour. This is used by the MM to obey the caller constraints
20  * about IO, FS and watermark checking while ignoring placement
21  * hints such as HIGHMEM usage.
22  */
23 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
24 			__GFP_NOWARN|__GFP_REPEAT|__GFP_NOFAIL|\
25 			__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC)
26 
27 /* The GFP flags allowed during early boot */
28 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
29 
30 /* Control allocation cpuset and node placement constraints */
31 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
32 
33 /* Do not use these with a slab allocator */
34 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
35 
36 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
37 		unsigned long floor, unsigned long ceiling);
38 
39 static inline void set_page_count(struct page *page, int v)
40 {
41 	atomic_set(&page->_count, v);
42 }
43 
44 extern int __do_page_cache_readahead(struct address_space *mapping,
45 		struct file *filp, pgoff_t offset, unsigned long nr_to_read,
46 		unsigned long lookahead_size);
47 
48 /*
49  * Submit IO for the read-ahead request in file_ra_state.
50  */
51 static inline unsigned long ra_submit(struct file_ra_state *ra,
52 		struct address_space *mapping, struct file *filp)
53 {
54 	return __do_page_cache_readahead(mapping, filp,
55 					ra->start, ra->size, ra->async_size);
56 }
57 
58 /*
59  * Turn a non-refcounted page (->_count == 0) into refcounted with
60  * a count of one.
61  */
62 static inline void set_page_refcounted(struct page *page)
63 {
64 	VM_BUG_ON_PAGE(PageTail(page), page);
65 	VM_BUG_ON_PAGE(atomic_read(&page->_count), page);
66 	set_page_count(page, 1);
67 }
68 
69 static inline void __get_page_tail_foll(struct page *page,
70 					bool get_page_head)
71 {
72 	/*
73 	 * If we're getting a tail page, the elevated page->_count is
74 	 * required only in the head page and we will elevate the head
75 	 * page->_count and tail page->_mapcount.
76 	 *
77 	 * We elevate page_tail->_mapcount for tail pages to force
78 	 * page_tail->_count to be zero at all times to avoid getting
79 	 * false positives from get_page_unless_zero() with
80 	 * speculative page access (like in
81 	 * page_cache_get_speculative()) on tail pages.
82 	 */
83 	VM_BUG_ON_PAGE(atomic_read(&compound_head(page)->_count) <= 0, page);
84 	if (get_page_head)
85 		atomic_inc(&compound_head(page)->_count);
86 	get_huge_page_tail(page);
87 }
88 
89 /*
90  * This is meant to be called as the FOLL_GET operation of
91  * follow_page() and it must be called while holding the proper PT
92  * lock while the pte (or pmd_trans_huge) is still mapping the page.
93  */
94 static inline void get_page_foll(struct page *page)
95 {
96 	if (unlikely(PageTail(page)))
97 		/*
98 		 * This is safe only because
99 		 * __split_huge_page_refcount() can't run under
100 		 * get_page_foll() because we hold the proper PT lock.
101 		 */
102 		__get_page_tail_foll(page, true);
103 	else {
104 		/*
105 		 * Getting a normal page or the head of a compound page
106 		 * requires to already have an elevated page->_count.
107 		 */
108 		VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
109 		atomic_inc(&page->_count);
110 	}
111 }
112 
113 extern unsigned long highest_memmap_pfn;
114 
115 /*
116  * in mm/vmscan.c:
117  */
118 extern int isolate_lru_page(struct page *page);
119 extern void putback_lru_page(struct page *page);
120 extern bool zone_reclaimable(struct zone *zone);
121 
122 /*
123  * in mm/rmap.c:
124  */
125 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
126 
127 /*
128  * in mm/page_alloc.c
129  */
130 
131 /*
132  * Structure for holding the mostly immutable allocation parameters passed
133  * between functions involved in allocations, including the alloc_pages*
134  * family of functions.
135  *
136  * nodemask, migratetype and high_zoneidx are initialized only once in
137  * __alloc_pages_nodemask() and then never change.
138  *
139  * zonelist, preferred_zone and classzone_idx are set first in
140  * __alloc_pages_nodemask() for the fast path, and might be later changed
141  * in __alloc_pages_slowpath(). All other functions pass the whole strucure
142  * by a const pointer.
143  */
144 struct alloc_context {
145 	struct zonelist *zonelist;
146 	nodemask_t *nodemask;
147 	struct zone *preferred_zone;
148 	int classzone_idx;
149 	int migratetype;
150 	enum zone_type high_zoneidx;
151 	bool spread_dirty_pages;
152 };
153 
154 /*
155  * Locate the struct page for both the matching buddy in our
156  * pair (buddy1) and the combined O(n+1) page they form (page).
157  *
158  * 1) Any buddy B1 will have an order O twin B2 which satisfies
159  * the following equation:
160  *     B2 = B1 ^ (1 << O)
161  * For example, if the starting buddy (buddy2) is #8 its order
162  * 1 buddy is #10:
163  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
164  *
165  * 2) Any buddy B will have an order O+1 parent P which
166  * satisfies the following equation:
167  *     P = B & ~(1 << O)
168  *
169  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
170  */
171 static inline unsigned long
172 __find_buddy_index(unsigned long page_idx, unsigned int order)
173 {
174 	return page_idx ^ (1 << order);
175 }
176 
177 extern int __isolate_free_page(struct page *page, unsigned int order);
178 extern void __free_pages_bootmem(struct page *page, unsigned long pfn,
179 					unsigned int order);
180 extern void prep_compound_page(struct page *page, unsigned int order);
181 #ifdef CONFIG_MEMORY_FAILURE
182 extern bool is_free_buddy_page(struct page *page);
183 #endif
184 extern int user_min_free_kbytes;
185 
186 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
187 
188 /*
189  * in mm/compaction.c
190  */
191 /*
192  * compact_control is used to track pages being migrated and the free pages
193  * they are being migrated to during memory compaction. The free_pfn starts
194  * at the end of a zone and migrate_pfn begins at the start. Movable pages
195  * are moved to the end of a zone during a compaction run and the run
196  * completes when free_pfn <= migrate_pfn
197  */
198 struct compact_control {
199 	struct list_head freepages;	/* List of free pages to migrate to */
200 	struct list_head migratepages;	/* List of pages being migrated */
201 	unsigned long nr_freepages;	/* Number of isolated free pages */
202 	unsigned long nr_migratepages;	/* Number of pages to migrate */
203 	unsigned long free_pfn;		/* isolate_freepages search base */
204 	unsigned long migrate_pfn;	/* isolate_migratepages search base */
205 	unsigned long last_migrated_pfn;/* Not yet flushed page being freed */
206 	enum migrate_mode mode;		/* Async or sync migration mode */
207 	bool ignore_skip_hint;		/* Scan blocks even if marked skip */
208 	int order;			/* order a direct compactor needs */
209 	const gfp_t gfp_mask;		/* gfp mask of a direct compactor */
210 	const int alloc_flags;		/* alloc flags of a direct compactor */
211 	const int classzone_idx;	/* zone index of a direct compactor */
212 	struct zone *zone;
213 	int contended;			/* Signal need_sched() or lock
214 					 * contention detected during
215 					 * compaction
216 					 */
217 };
218 
219 unsigned long
220 isolate_freepages_range(struct compact_control *cc,
221 			unsigned long start_pfn, unsigned long end_pfn);
222 unsigned long
223 isolate_migratepages_range(struct compact_control *cc,
224 			   unsigned long low_pfn, unsigned long end_pfn);
225 int find_suitable_fallback(struct free_area *area, unsigned int order,
226 			int migratetype, bool only_stealable, bool *can_steal);
227 
228 #endif
229 
230 /*
231  * This function returns the order of a free page in the buddy system. In
232  * general, page_zone(page)->lock must be held by the caller to prevent the
233  * page from being allocated in parallel and returning garbage as the order.
234  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
235  * page cannot be allocated or merged in parallel. Alternatively, it must
236  * handle invalid values gracefully, and use page_order_unsafe() below.
237  */
238 static inline unsigned int page_order(struct page *page)
239 {
240 	/* PageBuddy() must be checked by the caller */
241 	return page_private(page);
242 }
243 
244 /*
245  * Like page_order(), but for callers who cannot afford to hold the zone lock.
246  * PageBuddy() should be checked first by the caller to minimize race window,
247  * and invalid values must be handled gracefully.
248  *
249  * READ_ONCE is used so that if the caller assigns the result into a local
250  * variable and e.g. tests it for valid range before using, the compiler cannot
251  * decide to remove the variable and inline the page_private(page) multiple
252  * times, potentially observing different values in the tests and the actual
253  * use of the result.
254  */
255 #define page_order_unsafe(page)		READ_ONCE(page_private(page))
256 
257 static inline bool is_cow_mapping(vm_flags_t flags)
258 {
259 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
260 }
261 
262 /* mm/util.c */
263 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
264 		struct vm_area_struct *prev, struct rb_node *rb_parent);
265 
266 #ifdef CONFIG_MMU
267 extern long populate_vma_page_range(struct vm_area_struct *vma,
268 		unsigned long start, unsigned long end, int *nonblocking);
269 extern void munlock_vma_pages_range(struct vm_area_struct *vma,
270 			unsigned long start, unsigned long end);
271 static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
272 {
273 	munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
274 }
275 
276 /*
277  * must be called with vma's mmap_sem held for read or write, and page locked.
278  */
279 extern void mlock_vma_page(struct page *page);
280 extern unsigned int munlock_vma_page(struct page *page);
281 
282 /*
283  * Clear the page's PageMlocked().  This can be useful in a situation where
284  * we want to unconditionally remove a page from the pagecache -- e.g.,
285  * on truncation or freeing.
286  *
287  * It is legal to call this function for any page, mlocked or not.
288  * If called for a page that is still mapped by mlocked vmas, all we do
289  * is revert to lazy LRU behaviour -- semantics are not broken.
290  */
291 extern void clear_page_mlock(struct page *page);
292 
293 /*
294  * mlock_migrate_page - called only from migrate_misplaced_transhuge_page()
295  * (because that does not go through the full procedure of migration ptes):
296  * to migrate the Mlocked page flag; update statistics.
297  */
298 static inline void mlock_migrate_page(struct page *newpage, struct page *page)
299 {
300 	if (TestClearPageMlocked(page)) {
301 		int nr_pages = hpage_nr_pages(page);
302 
303 		/* Holding pmd lock, no change in irq context: __mod is safe */
304 		__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
305 		SetPageMlocked(newpage);
306 		__mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
307 	}
308 }
309 
310 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
311 
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 extern unsigned long vma_address(struct page *page,
314 				 struct vm_area_struct *vma);
315 #endif
316 #else /* !CONFIG_MMU */
317 static inline void clear_page_mlock(struct page *page) { }
318 static inline void mlock_vma_page(struct page *page) { }
319 static inline void mlock_migrate_page(struct page *new, struct page *old) { }
320 
321 #endif /* !CONFIG_MMU */
322 
323 /*
324  * Return the mem_map entry representing the 'offset' subpage within
325  * the maximally aligned gigantic page 'base'.  Handle any discontiguity
326  * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
327  */
328 static inline struct page *mem_map_offset(struct page *base, int offset)
329 {
330 	if (unlikely(offset >= MAX_ORDER_NR_PAGES))
331 		return nth_page(base, offset);
332 	return base + offset;
333 }
334 
335 /*
336  * Iterator over all subpages within the maximally aligned gigantic
337  * page 'base'.  Handle any discontiguity in the mem_map.
338  */
339 static inline struct page *mem_map_next(struct page *iter,
340 						struct page *base, int offset)
341 {
342 	if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
343 		unsigned long pfn = page_to_pfn(base) + offset;
344 		if (!pfn_valid(pfn))
345 			return NULL;
346 		return pfn_to_page(pfn);
347 	}
348 	return iter + 1;
349 }
350 
351 /*
352  * FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node,
353  * so all functions starting at paging_init should be marked __init
354  * in those cases. SPARSEMEM, however, allows for memory hotplug,
355  * and alloc_bootmem_node is not used.
356  */
357 #ifdef CONFIG_SPARSEMEM
358 #define __paginginit __meminit
359 #else
360 #define __paginginit __init
361 #endif
362 
363 /* Memory initialisation debug and verification */
364 enum mminit_level {
365 	MMINIT_WARNING,
366 	MMINIT_VERIFY,
367 	MMINIT_TRACE
368 };
369 
370 #ifdef CONFIG_DEBUG_MEMORY_INIT
371 
372 extern int mminit_loglevel;
373 
374 #define mminit_dprintk(level, prefix, fmt, arg...) \
375 do { \
376 	if (level < mminit_loglevel) { \
377 		if (level <= MMINIT_WARNING) \
378 			printk(KERN_WARNING "mminit::" prefix " " fmt, ##arg); \
379 		else \
380 			printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
381 	} \
382 } while (0)
383 
384 extern void mminit_verify_pageflags_layout(void);
385 extern void mminit_verify_zonelist(void);
386 #else
387 
388 static inline void mminit_dprintk(enum mminit_level level,
389 				const char *prefix, const char *fmt, ...)
390 {
391 }
392 
393 static inline void mminit_verify_pageflags_layout(void)
394 {
395 }
396 
397 static inline void mminit_verify_zonelist(void)
398 {
399 }
400 #endif /* CONFIG_DEBUG_MEMORY_INIT */
401 
402 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
403 #if defined(CONFIG_SPARSEMEM)
404 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
405 				unsigned long *end_pfn);
406 #else
407 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
408 				unsigned long *end_pfn)
409 {
410 }
411 #endif /* CONFIG_SPARSEMEM */
412 
413 #define ZONE_RECLAIM_NOSCAN	-2
414 #define ZONE_RECLAIM_FULL	-1
415 #define ZONE_RECLAIM_SOME	0
416 #define ZONE_RECLAIM_SUCCESS	1
417 
418 extern int hwpoison_filter(struct page *p);
419 
420 extern u32 hwpoison_filter_dev_major;
421 extern u32 hwpoison_filter_dev_minor;
422 extern u64 hwpoison_filter_flags_mask;
423 extern u64 hwpoison_filter_flags_value;
424 extern u64 hwpoison_filter_memcg;
425 extern u32 hwpoison_filter_enable;
426 
427 extern unsigned long vm_mmap_pgoff(struct file *, unsigned long,
428         unsigned long, unsigned long,
429         unsigned long, unsigned long);
430 
431 extern void set_pageblock_order(void);
432 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
433 					    struct list_head *page_list);
434 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
435 #define ALLOC_WMARK_MIN		WMARK_MIN
436 #define ALLOC_WMARK_LOW		WMARK_LOW
437 #define ALLOC_WMARK_HIGH	WMARK_HIGH
438 #define ALLOC_NO_WATERMARKS	0x04 /* don't check watermarks at all */
439 
440 /* Mask to get the watermark bits */
441 #define ALLOC_WMARK_MASK	(ALLOC_NO_WATERMARKS-1)
442 
443 #define ALLOC_HARDER		0x10 /* try to alloc harder */
444 #define ALLOC_HIGH		0x20 /* __GFP_HIGH set */
445 #define ALLOC_CPUSET		0x40 /* check for correct cpuset */
446 #define ALLOC_CMA		0x80 /* allow allocations from CMA areas */
447 #define ALLOC_FAIR		0x100 /* fair zone allocation */
448 
449 enum ttu_flags;
450 struct tlbflush_unmap_batch;
451 
452 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
453 void try_to_unmap_flush(void);
454 void try_to_unmap_flush_dirty(void);
455 #else
456 static inline void try_to_unmap_flush(void)
457 {
458 }
459 static inline void try_to_unmap_flush_dirty(void)
460 {
461 }
462 
463 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
464 #endif	/* __MM_INTERNAL_H */
465