1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/rmap.h> 14 #include <linux/tracepoint-defs.h> 15 16 struct folio_batch; 17 18 /* 19 * The set of flags that only affect watermark checking and reclaim 20 * behaviour. This is used by the MM to obey the caller constraints 21 * about IO, FS and watermark checking while ignoring placement 22 * hints such as HIGHMEM usage. 23 */ 24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 25 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 26 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 27 __GFP_NOLOCKDEP) 28 29 /* The GFP flags allowed during early boot */ 30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 31 32 /* Control allocation cpuset and node placement constraints */ 33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 34 35 /* Do not use these with a slab allocator */ 36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 37 38 /* 39 * Different from WARN_ON_ONCE(), no warning will be issued 40 * when we specify __GFP_NOWARN. 41 */ 42 #define WARN_ON_ONCE_GFP(cond, gfp) ({ \ 43 static bool __section(".data.once") __warned; \ 44 int __ret_warn_once = !!(cond); \ 45 \ 46 if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \ 47 __warned = true; \ 48 WARN_ON(1); \ 49 } \ 50 unlikely(__ret_warn_once); \ 51 }) 52 53 void page_writeback_init(void); 54 55 /* 56 * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages, 57 * its nr_pages_mapped would be 0x400000: choose the ENTIRELY_MAPPED bit 58 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently 59 * leaves nr_pages_mapped at 0, but avoid surprise if it participates later. 60 */ 61 #define ENTIRELY_MAPPED 0x800000 62 #define FOLIO_PAGES_MAPPED (ENTIRELY_MAPPED - 1) 63 64 /* 65 * Flags passed to __show_mem() and show_free_areas() to suppress output in 66 * various contexts. 67 */ 68 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 69 70 /* 71 * How many individual pages have an elevated _mapcount. Excludes 72 * the folio's entire_mapcount. 73 */ 74 static inline int folio_nr_pages_mapped(struct folio *folio) 75 { 76 return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED; 77 } 78 79 static inline void *folio_raw_mapping(struct folio *folio) 80 { 81 unsigned long mapping = (unsigned long)folio->mapping; 82 83 return (void *)(mapping & ~PAGE_MAPPING_FLAGS); 84 } 85 86 #ifdef CONFIG_MMU 87 88 /* Flags for folio_pte_batch(). */ 89 typedef int __bitwise fpb_t; 90 91 /* Compare PTEs after pte_mkclean(), ignoring the dirty bit. */ 92 #define FPB_IGNORE_DIRTY ((__force fpb_t)BIT(0)) 93 94 /* Compare PTEs after pte_clear_soft_dirty(), ignoring the soft-dirty bit. */ 95 #define FPB_IGNORE_SOFT_DIRTY ((__force fpb_t)BIT(1)) 96 97 static inline pte_t __pte_batch_clear_ignored(pte_t pte, fpb_t flags) 98 { 99 if (flags & FPB_IGNORE_DIRTY) 100 pte = pte_mkclean(pte); 101 if (likely(flags & FPB_IGNORE_SOFT_DIRTY)) 102 pte = pte_clear_soft_dirty(pte); 103 return pte_wrprotect(pte_mkold(pte)); 104 } 105 106 /** 107 * folio_pte_batch - detect a PTE batch for a large folio 108 * @folio: The large folio to detect a PTE batch for. 109 * @addr: The user virtual address the first page is mapped at. 110 * @start_ptep: Page table pointer for the first entry. 111 * @pte: Page table entry for the first page. 112 * @max_nr: The maximum number of table entries to consider. 113 * @flags: Flags to modify the PTE batch semantics. 114 * @any_writable: Optional pointer to indicate whether any entry except the 115 * first one is writable. 116 * 117 * Detect a PTE batch: consecutive (present) PTEs that map consecutive 118 * pages of the same large folio. 119 * 120 * All PTEs inside a PTE batch have the same PTE bits set, excluding the PFN, 121 * the accessed bit, writable bit, dirty bit (with FPB_IGNORE_DIRTY) and 122 * soft-dirty bit (with FPB_IGNORE_SOFT_DIRTY). 123 * 124 * start_ptep must map any page of the folio. max_nr must be at least one and 125 * must be limited by the caller so scanning cannot exceed a single page table. 126 * 127 * Return: the number of table entries in the batch. 128 */ 129 static inline int folio_pte_batch(struct folio *folio, unsigned long addr, 130 pte_t *start_ptep, pte_t pte, int max_nr, fpb_t flags, 131 bool *any_writable) 132 { 133 unsigned long folio_end_pfn = folio_pfn(folio) + folio_nr_pages(folio); 134 const pte_t *end_ptep = start_ptep + max_nr; 135 pte_t expected_pte, *ptep; 136 bool writable; 137 int nr; 138 139 if (any_writable) 140 *any_writable = false; 141 142 VM_WARN_ON_FOLIO(!pte_present(pte), folio); 143 VM_WARN_ON_FOLIO(!folio_test_large(folio) || max_nr < 1, folio); 144 VM_WARN_ON_FOLIO(page_folio(pfn_to_page(pte_pfn(pte))) != folio, folio); 145 146 nr = pte_batch_hint(start_ptep, pte); 147 expected_pte = __pte_batch_clear_ignored(pte_advance_pfn(pte, nr), flags); 148 ptep = start_ptep + nr; 149 150 while (ptep < end_ptep) { 151 pte = ptep_get(ptep); 152 if (any_writable) 153 writable = !!pte_write(pte); 154 pte = __pte_batch_clear_ignored(pte, flags); 155 156 if (!pte_same(pte, expected_pte)) 157 break; 158 159 /* 160 * Stop immediately once we reached the end of the folio. In 161 * corner cases the next PFN might fall into a different 162 * folio. 163 */ 164 if (pte_pfn(pte) >= folio_end_pfn) 165 break; 166 167 if (any_writable) 168 *any_writable |= writable; 169 170 nr = pte_batch_hint(ptep, pte); 171 expected_pte = pte_advance_pfn(expected_pte, nr); 172 ptep += nr; 173 } 174 175 return min(ptep - start_ptep, max_nr); 176 } 177 #endif /* CONFIG_MMU */ 178 179 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio, 180 int nr_throttled); 181 static inline void acct_reclaim_writeback(struct folio *folio) 182 { 183 pg_data_t *pgdat = folio_pgdat(folio); 184 int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled); 185 186 if (nr_throttled) 187 __acct_reclaim_writeback(pgdat, folio, nr_throttled); 188 } 189 190 static inline void wake_throttle_isolated(pg_data_t *pgdat) 191 { 192 wait_queue_head_t *wqh; 193 194 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED]; 195 if (waitqueue_active(wqh)) 196 wake_up(wqh); 197 } 198 199 vm_fault_t vmf_anon_prepare(struct vm_fault *vmf); 200 vm_fault_t do_swap_page(struct vm_fault *vmf); 201 void folio_rotate_reclaimable(struct folio *folio); 202 bool __folio_end_writeback(struct folio *folio); 203 void deactivate_file_folio(struct folio *folio); 204 void folio_activate(struct folio *folio); 205 206 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 207 struct vm_area_struct *start_vma, unsigned long floor, 208 unsigned long ceiling, bool mm_wr_locked); 209 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte); 210 211 struct zap_details; 212 void unmap_page_range(struct mmu_gather *tlb, 213 struct vm_area_struct *vma, 214 unsigned long addr, unsigned long end, 215 struct zap_details *details); 216 217 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *, 218 unsigned int order); 219 void force_page_cache_ra(struct readahead_control *, unsigned long nr); 220 static inline void force_page_cache_readahead(struct address_space *mapping, 221 struct file *file, pgoff_t index, unsigned long nr_to_read) 222 { 223 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 224 force_page_cache_ra(&ractl, nr_to_read); 225 } 226 227 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 228 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 229 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 230 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices); 231 void filemap_free_folio(struct address_space *mapping, struct folio *folio); 232 int truncate_inode_folio(struct address_space *mapping, struct folio *folio); 233 bool truncate_inode_partial_folio(struct folio *folio, loff_t start, 234 loff_t end); 235 long mapping_evict_folio(struct address_space *mapping, struct folio *folio); 236 unsigned long mapping_try_invalidate(struct address_space *mapping, 237 pgoff_t start, pgoff_t end, unsigned long *nr_failed); 238 239 /** 240 * folio_evictable - Test whether a folio is evictable. 241 * @folio: The folio to test. 242 * 243 * Test whether @folio is evictable -- i.e., should be placed on 244 * active/inactive lists vs unevictable list. 245 * 246 * Reasons folio might not be evictable: 247 * 1. folio's mapping marked unevictable 248 * 2. One of the pages in the folio is part of an mlocked VMA 249 */ 250 static inline bool folio_evictable(struct folio *folio) 251 { 252 bool ret; 253 254 /* Prevent address_space of inode and swap cache from being freed */ 255 rcu_read_lock(); 256 ret = !mapping_unevictable(folio_mapping(folio)) && 257 !folio_test_mlocked(folio); 258 rcu_read_unlock(); 259 return ret; 260 } 261 262 /* 263 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 264 * a count of one. 265 */ 266 static inline void set_page_refcounted(struct page *page) 267 { 268 VM_BUG_ON_PAGE(PageTail(page), page); 269 VM_BUG_ON_PAGE(page_ref_count(page), page); 270 set_page_count(page, 1); 271 } 272 273 /* 274 * Return true if a folio needs ->release_folio() calling upon it. 275 */ 276 static inline bool folio_needs_release(struct folio *folio) 277 { 278 struct address_space *mapping = folio_mapping(folio); 279 280 return folio_has_private(folio) || 281 (mapping && mapping_release_always(mapping)); 282 } 283 284 extern unsigned long highest_memmap_pfn; 285 286 /* 287 * Maximum number of reclaim retries without progress before the OOM 288 * killer is consider the only way forward. 289 */ 290 #define MAX_RECLAIM_RETRIES 16 291 292 /* 293 * in mm/vmscan.c: 294 */ 295 bool isolate_lru_page(struct page *page); 296 bool folio_isolate_lru(struct folio *folio); 297 void putback_lru_page(struct page *page); 298 void folio_putback_lru(struct folio *folio); 299 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason); 300 301 /* 302 * in mm/rmap.c: 303 */ 304 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 305 306 /* 307 * in mm/page_alloc.c 308 */ 309 #define K(x) ((x) << (PAGE_SHIFT-10)) 310 311 extern char * const zone_names[MAX_NR_ZONES]; 312 313 /* perform sanity checks on struct pages being allocated or freed */ 314 DECLARE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled); 315 316 extern int min_free_kbytes; 317 318 void setup_per_zone_wmarks(void); 319 void calculate_min_free_kbytes(void); 320 int __meminit init_per_zone_wmark_min(void); 321 void page_alloc_sysctl_init(void); 322 323 /* 324 * Structure for holding the mostly immutable allocation parameters passed 325 * between functions involved in allocations, including the alloc_pages* 326 * family of functions. 327 * 328 * nodemask, migratetype and highest_zoneidx are initialized only once in 329 * __alloc_pages() and then never change. 330 * 331 * zonelist, preferred_zone and highest_zoneidx are set first in 332 * __alloc_pages() for the fast path, and might be later changed 333 * in __alloc_pages_slowpath(). All other functions pass the whole structure 334 * by a const pointer. 335 */ 336 struct alloc_context { 337 struct zonelist *zonelist; 338 nodemask_t *nodemask; 339 struct zoneref *preferred_zoneref; 340 int migratetype; 341 342 /* 343 * highest_zoneidx represents highest usable zone index of 344 * the allocation request. Due to the nature of the zone, 345 * memory on lower zone than the highest_zoneidx will be 346 * protected by lowmem_reserve[highest_zoneidx]. 347 * 348 * highest_zoneidx is also used by reclaim/compaction to limit 349 * the target zone since higher zone than this index cannot be 350 * usable for this allocation request. 351 */ 352 enum zone_type highest_zoneidx; 353 bool spread_dirty_pages; 354 }; 355 356 /* 357 * This function returns the order of a free page in the buddy system. In 358 * general, page_zone(page)->lock must be held by the caller to prevent the 359 * page from being allocated in parallel and returning garbage as the order. 360 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 361 * page cannot be allocated or merged in parallel. Alternatively, it must 362 * handle invalid values gracefully, and use buddy_order_unsafe() below. 363 */ 364 static inline unsigned int buddy_order(struct page *page) 365 { 366 /* PageBuddy() must be checked by the caller */ 367 return page_private(page); 368 } 369 370 /* 371 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 372 * PageBuddy() should be checked first by the caller to minimize race window, 373 * and invalid values must be handled gracefully. 374 * 375 * READ_ONCE is used so that if the caller assigns the result into a local 376 * variable and e.g. tests it for valid range before using, the compiler cannot 377 * decide to remove the variable and inline the page_private(page) multiple 378 * times, potentially observing different values in the tests and the actual 379 * use of the result. 380 */ 381 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 382 383 /* 384 * This function checks whether a page is free && is the buddy 385 * we can coalesce a page and its buddy if 386 * (a) the buddy is not in a hole (check before calling!) && 387 * (b) the buddy is in the buddy system && 388 * (c) a page and its buddy have the same order && 389 * (d) a page and its buddy are in the same zone. 390 * 391 * For recording whether a page is in the buddy system, we set PageBuddy. 392 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 393 * 394 * For recording page's order, we use page_private(page). 395 */ 396 static inline bool page_is_buddy(struct page *page, struct page *buddy, 397 unsigned int order) 398 { 399 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 400 return false; 401 402 if (buddy_order(buddy) != order) 403 return false; 404 405 /* 406 * zone check is done late to avoid uselessly calculating 407 * zone/node ids for pages that could never merge. 408 */ 409 if (page_zone_id(page) != page_zone_id(buddy)) 410 return false; 411 412 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 413 414 return true; 415 } 416 417 /* 418 * Locate the struct page for both the matching buddy in our 419 * pair (buddy1) and the combined O(n+1) page they form (page). 420 * 421 * 1) Any buddy B1 will have an order O twin B2 which satisfies 422 * the following equation: 423 * B2 = B1 ^ (1 << O) 424 * For example, if the starting buddy (buddy2) is #8 its order 425 * 1 buddy is #10: 426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 427 * 428 * 2) Any buddy B will have an order O+1 parent P which 429 * satisfies the following equation: 430 * P = B & ~(1 << O) 431 * 432 * Assumption: *_mem_map is contiguous at least up to MAX_PAGE_ORDER 433 */ 434 static inline unsigned long 435 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 436 { 437 return page_pfn ^ (1 << order); 438 } 439 440 /* 441 * Find the buddy of @page and validate it. 442 * @page: The input page 443 * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the 444 * function is used in the performance-critical __free_one_page(). 445 * @order: The order of the page 446 * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to 447 * page_to_pfn(). 448 * 449 * The found buddy can be a non PageBuddy, out of @page's zone, or its order is 450 * not the same as @page. The validation is necessary before use it. 451 * 452 * Return: the found buddy page or NULL if not found. 453 */ 454 static inline struct page *find_buddy_page_pfn(struct page *page, 455 unsigned long pfn, unsigned int order, unsigned long *buddy_pfn) 456 { 457 unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order); 458 struct page *buddy; 459 460 buddy = page + (__buddy_pfn - pfn); 461 if (buddy_pfn) 462 *buddy_pfn = __buddy_pfn; 463 464 if (page_is_buddy(page, buddy, order)) 465 return buddy; 466 return NULL; 467 } 468 469 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 470 unsigned long end_pfn, struct zone *zone); 471 472 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 473 unsigned long end_pfn, struct zone *zone) 474 { 475 if (zone->contiguous) 476 return pfn_to_page(start_pfn); 477 478 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 479 } 480 481 void set_zone_contiguous(struct zone *zone); 482 483 static inline void clear_zone_contiguous(struct zone *zone) 484 { 485 zone->contiguous = false; 486 } 487 488 extern int __isolate_free_page(struct page *page, unsigned int order); 489 extern void __putback_isolated_page(struct page *page, unsigned int order, 490 int mt); 491 extern void memblock_free_pages(struct page *page, unsigned long pfn, 492 unsigned int order); 493 extern void __free_pages_core(struct page *page, unsigned int order); 494 495 /* 496 * This will have no effect, other than possibly generating a warning, if the 497 * caller passes in a non-large folio. 498 */ 499 static inline void folio_set_order(struct folio *folio, unsigned int order) 500 { 501 if (WARN_ON_ONCE(!order || !folio_test_large(folio))) 502 return; 503 504 folio->_flags_1 = (folio->_flags_1 & ~0xffUL) | order; 505 #ifdef CONFIG_64BIT 506 folio->_folio_nr_pages = 1U << order; 507 #endif 508 } 509 510 void folio_undo_large_rmappable(struct folio *folio); 511 512 static inline struct folio *page_rmappable_folio(struct page *page) 513 { 514 struct folio *folio = (struct folio *)page; 515 516 folio_prep_large_rmappable(folio); 517 return folio; 518 } 519 520 static inline void prep_compound_head(struct page *page, unsigned int order) 521 { 522 struct folio *folio = (struct folio *)page; 523 524 folio_set_order(folio, order); 525 atomic_set(&folio->_entire_mapcount, -1); 526 atomic_set(&folio->_nr_pages_mapped, 0); 527 atomic_set(&folio->_pincount, 0); 528 } 529 530 static inline void prep_compound_tail(struct page *head, int tail_idx) 531 { 532 struct page *p = head + tail_idx; 533 534 p->mapping = TAIL_MAPPING; 535 set_compound_head(p, head); 536 set_page_private(p, 0); 537 } 538 539 extern void prep_compound_page(struct page *page, unsigned int order); 540 541 extern void post_alloc_hook(struct page *page, unsigned int order, 542 gfp_t gfp_flags); 543 extern bool free_pages_prepare(struct page *page, unsigned int order); 544 545 extern int user_min_free_kbytes; 546 547 void free_unref_page(struct page *page, unsigned int order); 548 void free_unref_folios(struct folio_batch *fbatch); 549 550 extern void zone_pcp_reset(struct zone *zone); 551 extern void zone_pcp_disable(struct zone *zone); 552 extern void zone_pcp_enable(struct zone *zone); 553 extern void zone_pcp_init(struct zone *zone); 554 555 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align, 556 phys_addr_t min_addr, 557 int nid, bool exact_nid); 558 559 void memmap_init_range(unsigned long, int, unsigned long, unsigned long, 560 unsigned long, enum meminit_context, struct vmem_altmap *, int); 561 562 563 int split_free_page(struct page *free_page, 564 unsigned int order, unsigned long split_pfn_offset); 565 566 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 567 568 /* 569 * in mm/compaction.c 570 */ 571 /* 572 * compact_control is used to track pages being migrated and the free pages 573 * they are being migrated to during memory compaction. The free_pfn starts 574 * at the end of a zone and migrate_pfn begins at the start. Movable pages 575 * are moved to the end of a zone during a compaction run and the run 576 * completes when free_pfn <= migrate_pfn 577 */ 578 struct compact_control { 579 struct list_head freepages[NR_PAGE_ORDERS]; /* List of free pages to migrate to */ 580 struct list_head migratepages; /* List of pages being migrated */ 581 unsigned int nr_freepages; /* Number of isolated free pages */ 582 unsigned int nr_migratepages; /* Number of pages to migrate */ 583 unsigned long free_pfn; /* isolate_freepages search base */ 584 /* 585 * Acts as an in/out parameter to page isolation for migration. 586 * isolate_migratepages uses it as a search base. 587 * isolate_migratepages_block will update the value to the next pfn 588 * after the last isolated one. 589 */ 590 unsigned long migrate_pfn; 591 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 592 struct zone *zone; 593 unsigned long total_migrate_scanned; 594 unsigned long total_free_scanned; 595 unsigned short fast_search_fail;/* failures to use free list searches */ 596 short search_order; /* order to start a fast search at */ 597 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 598 int order; /* order a direct compactor needs */ 599 int migratetype; /* migratetype of direct compactor */ 600 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 601 const int highest_zoneidx; /* zone index of a direct compactor */ 602 enum migrate_mode mode; /* Async or sync migration mode */ 603 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 604 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 605 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 606 bool direct_compaction; /* False from kcompactd or /proc/... */ 607 bool proactive_compaction; /* kcompactd proactive compaction */ 608 bool whole_zone; /* Whole zone should/has been scanned */ 609 bool contended; /* Signal lock contention */ 610 bool finish_pageblock; /* Scan the remainder of a pageblock. Used 611 * when there are potentially transient 612 * isolation or migration failures to 613 * ensure forward progress. 614 */ 615 bool alloc_contig; /* alloc_contig_range allocation */ 616 }; 617 618 /* 619 * Used in direct compaction when a page should be taken from the freelists 620 * immediately when one is created during the free path. 621 */ 622 struct capture_control { 623 struct compact_control *cc; 624 struct page *page; 625 }; 626 627 unsigned long 628 isolate_freepages_range(struct compact_control *cc, 629 unsigned long start_pfn, unsigned long end_pfn); 630 int 631 isolate_migratepages_range(struct compact_control *cc, 632 unsigned long low_pfn, unsigned long end_pfn); 633 634 int __alloc_contig_migrate_range(struct compact_control *cc, 635 unsigned long start, unsigned long end, 636 int migratetype); 637 638 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 639 void init_cma_reserved_pageblock(struct page *page); 640 641 #endif /* CONFIG_COMPACTION || CONFIG_CMA */ 642 643 int find_suitable_fallback(struct free_area *area, unsigned int order, 644 int migratetype, bool only_stealable, bool *can_steal); 645 646 static inline bool free_area_empty(struct free_area *area, int migratetype) 647 { 648 return list_empty(&area->free_list[migratetype]); 649 } 650 651 /* 652 * These three helpers classifies VMAs for virtual memory accounting. 653 */ 654 655 /* 656 * Executable code area - executable, not writable, not stack 657 */ 658 static inline bool is_exec_mapping(vm_flags_t flags) 659 { 660 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 661 } 662 663 /* 664 * Stack area (including shadow stacks) 665 * 666 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 667 * do_mmap() forbids all other combinations. 668 */ 669 static inline bool is_stack_mapping(vm_flags_t flags) 670 { 671 return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK); 672 } 673 674 /* 675 * Data area - private, writable, not stack 676 */ 677 static inline bool is_data_mapping(vm_flags_t flags) 678 { 679 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 680 } 681 682 /* mm/util.c */ 683 struct anon_vma *folio_anon_vma(struct folio *folio); 684 685 #ifdef CONFIG_MMU 686 void unmap_mapping_folio(struct folio *folio); 687 extern long populate_vma_page_range(struct vm_area_struct *vma, 688 unsigned long start, unsigned long end, int *locked); 689 extern long faultin_vma_page_range(struct vm_area_struct *vma, 690 unsigned long start, unsigned long end, 691 bool write, int *locked); 692 extern bool mlock_future_ok(struct mm_struct *mm, unsigned long flags, 693 unsigned long bytes); 694 695 /* 696 * NOTE: This function can't tell whether the folio is "fully mapped" in the 697 * range. 698 * "fully mapped" means all the pages of folio is associated with the page 699 * table of range while this function just check whether the folio range is 700 * within the range [start, end). Function caller needs to do page table 701 * check if it cares about the page table association. 702 * 703 * Typical usage (like mlock or madvise) is: 704 * Caller knows at least 1 page of folio is associated with page table of VMA 705 * and the range [start, end) is intersect with the VMA range. Caller wants 706 * to know whether the folio is fully associated with the range. It calls 707 * this function to check whether the folio is in the range first. Then checks 708 * the page table to know whether the folio is fully mapped to the range. 709 */ 710 static inline bool 711 folio_within_range(struct folio *folio, struct vm_area_struct *vma, 712 unsigned long start, unsigned long end) 713 { 714 pgoff_t pgoff, addr; 715 unsigned long vma_pglen = vma_pages(vma); 716 717 VM_WARN_ON_FOLIO(folio_test_ksm(folio), folio); 718 if (start > end) 719 return false; 720 721 if (start < vma->vm_start) 722 start = vma->vm_start; 723 724 if (end > vma->vm_end) 725 end = vma->vm_end; 726 727 pgoff = folio_pgoff(folio); 728 729 /* if folio start address is not in vma range */ 730 if (!in_range(pgoff, vma->vm_pgoff, vma_pglen)) 731 return false; 732 733 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 734 735 return !(addr < start || end - addr < folio_size(folio)); 736 } 737 738 static inline bool 739 folio_within_vma(struct folio *folio, struct vm_area_struct *vma) 740 { 741 return folio_within_range(folio, vma, vma->vm_start, vma->vm_end); 742 } 743 744 /* 745 * mlock_vma_folio() and munlock_vma_folio(): 746 * should be called with vma's mmap_lock held for read or write, 747 * under page table lock for the pte/pmd being added or removed. 748 * 749 * mlock is usually called at the end of folio_add_*_rmap_*(), munlock at 750 * the end of folio_remove_rmap_*(); but new anon folios are managed by 751 * folio_add_lru_vma() calling mlock_new_folio(). 752 */ 753 void mlock_folio(struct folio *folio); 754 static inline void mlock_vma_folio(struct folio *folio, 755 struct vm_area_struct *vma) 756 { 757 /* 758 * The VM_SPECIAL check here serves two purposes. 759 * 1) VM_IO check prevents migration from double-counting during mlock. 760 * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED 761 * is never left set on a VM_SPECIAL vma, there is an interval while 762 * file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may 763 * still be set while VM_SPECIAL bits are added: so ignore it then. 764 */ 765 if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED)) 766 mlock_folio(folio); 767 } 768 769 void munlock_folio(struct folio *folio); 770 static inline void munlock_vma_folio(struct folio *folio, 771 struct vm_area_struct *vma) 772 { 773 /* 774 * munlock if the function is called. Ideally, we should only 775 * do munlock if any page of folio is unmapped from VMA and 776 * cause folio not fully mapped to VMA. 777 * 778 * But it's not easy to confirm that's the situation. So we 779 * always munlock the folio and page reclaim will correct it 780 * if it's wrong. 781 */ 782 if (unlikely(vma->vm_flags & VM_LOCKED)) 783 munlock_folio(folio); 784 } 785 786 void mlock_new_folio(struct folio *folio); 787 bool need_mlock_drain(int cpu); 788 void mlock_drain_local(void); 789 void mlock_drain_remote(int cpu); 790 791 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 792 793 /* 794 * Return the start of user virtual address at the specific offset within 795 * a vma. 796 */ 797 static inline unsigned long 798 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages, 799 struct vm_area_struct *vma) 800 { 801 unsigned long address; 802 803 if (pgoff >= vma->vm_pgoff) { 804 address = vma->vm_start + 805 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 806 /* Check for address beyond vma (or wrapped through 0?) */ 807 if (address < vma->vm_start || address >= vma->vm_end) 808 address = -EFAULT; 809 } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) { 810 /* Test above avoids possibility of wrap to 0 on 32-bit */ 811 address = vma->vm_start; 812 } else { 813 address = -EFAULT; 814 } 815 return address; 816 } 817 818 /* 819 * Return the start of user virtual address of a page within a vma. 820 * Returns -EFAULT if all of the page is outside the range of vma. 821 * If page is a compound head, the entire compound page is considered. 822 */ 823 static inline unsigned long 824 vma_address(struct page *page, struct vm_area_struct *vma) 825 { 826 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 827 return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma); 828 } 829 830 /* 831 * Then at what user virtual address will none of the range be found in vma? 832 * Assumes that vma_address() already returned a good starting address. 833 */ 834 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw) 835 { 836 struct vm_area_struct *vma = pvmw->vma; 837 pgoff_t pgoff; 838 unsigned long address; 839 840 /* Common case, plus ->pgoff is invalid for KSM */ 841 if (pvmw->nr_pages == 1) 842 return pvmw->address + PAGE_SIZE; 843 844 pgoff = pvmw->pgoff + pvmw->nr_pages; 845 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 846 /* Check for address beyond vma (or wrapped through 0?) */ 847 if (address < vma->vm_start || address > vma->vm_end) 848 address = vma->vm_end; 849 return address; 850 } 851 852 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 853 struct file *fpin) 854 { 855 int flags = vmf->flags; 856 857 if (fpin) 858 return fpin; 859 860 /* 861 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 862 * anything, so we only pin the file and drop the mmap_lock if only 863 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 864 */ 865 if (fault_flag_allow_retry_first(flags) && 866 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 867 fpin = get_file(vmf->vma->vm_file); 868 release_fault_lock(vmf); 869 } 870 return fpin; 871 } 872 #else /* !CONFIG_MMU */ 873 static inline void unmap_mapping_folio(struct folio *folio) { } 874 static inline void mlock_new_folio(struct folio *folio) { } 875 static inline bool need_mlock_drain(int cpu) { return false; } 876 static inline void mlock_drain_local(void) { } 877 static inline void mlock_drain_remote(int cpu) { } 878 static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 879 { 880 } 881 #endif /* !CONFIG_MMU */ 882 883 /* Memory initialisation debug and verification */ 884 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 885 DECLARE_STATIC_KEY_TRUE(deferred_pages); 886 887 bool __init deferred_grow_zone(struct zone *zone, unsigned int order); 888 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 889 890 enum mminit_level { 891 MMINIT_WARNING, 892 MMINIT_VERIFY, 893 MMINIT_TRACE 894 }; 895 896 #ifdef CONFIG_DEBUG_MEMORY_INIT 897 898 extern int mminit_loglevel; 899 900 #define mminit_dprintk(level, prefix, fmt, arg...) \ 901 do { \ 902 if (level < mminit_loglevel) { \ 903 if (level <= MMINIT_WARNING) \ 904 pr_warn("mminit::" prefix " " fmt, ##arg); \ 905 else \ 906 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 907 } \ 908 } while (0) 909 910 extern void mminit_verify_pageflags_layout(void); 911 extern void mminit_verify_zonelist(void); 912 #else 913 914 static inline void mminit_dprintk(enum mminit_level level, 915 const char *prefix, const char *fmt, ...) 916 { 917 } 918 919 static inline void mminit_verify_pageflags_layout(void) 920 { 921 } 922 923 static inline void mminit_verify_zonelist(void) 924 { 925 } 926 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 927 928 #define NODE_RECLAIM_NOSCAN -2 929 #define NODE_RECLAIM_FULL -1 930 #define NODE_RECLAIM_SOME 0 931 #define NODE_RECLAIM_SUCCESS 1 932 933 #ifdef CONFIG_NUMA 934 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 935 extern int find_next_best_node(int node, nodemask_t *used_node_mask); 936 #else 937 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 938 unsigned int order) 939 { 940 return NODE_RECLAIM_NOSCAN; 941 } 942 static inline int find_next_best_node(int node, nodemask_t *used_node_mask) 943 { 944 return NUMA_NO_NODE; 945 } 946 #endif 947 948 /* 949 * mm/memory-failure.c 950 */ 951 extern int hwpoison_filter(struct page *p); 952 953 extern u32 hwpoison_filter_dev_major; 954 extern u32 hwpoison_filter_dev_minor; 955 extern u64 hwpoison_filter_flags_mask; 956 extern u64 hwpoison_filter_flags_value; 957 extern u64 hwpoison_filter_memcg; 958 extern u32 hwpoison_filter_enable; 959 960 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 961 unsigned long, unsigned long, 962 unsigned long, unsigned long); 963 964 extern void set_pageblock_order(void); 965 unsigned long reclaim_pages(struct list_head *folio_list, bool ignore_references); 966 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 967 struct list_head *folio_list); 968 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 969 #define ALLOC_WMARK_MIN WMARK_MIN 970 #define ALLOC_WMARK_LOW WMARK_LOW 971 #define ALLOC_WMARK_HIGH WMARK_HIGH 972 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 973 974 /* Mask to get the watermark bits */ 975 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 976 977 /* 978 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 979 * cannot assume a reduced access to memory reserves is sufficient for 980 * !MMU 981 */ 982 #ifdef CONFIG_MMU 983 #define ALLOC_OOM 0x08 984 #else 985 #define ALLOC_OOM ALLOC_NO_WATERMARKS 986 #endif 987 988 #define ALLOC_NON_BLOCK 0x10 /* Caller cannot block. Allow access 989 * to 25% of the min watermark or 990 * 62.5% if __GFP_HIGH is set. 991 */ 992 #define ALLOC_MIN_RESERVE 0x20 /* __GFP_HIGH set. Allow access to 50% 993 * of the min watermark. 994 */ 995 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 996 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 997 #ifdef CONFIG_ZONE_DMA32 998 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 999 #else 1000 #define ALLOC_NOFRAGMENT 0x0 1001 #endif 1002 #define ALLOC_HIGHATOMIC 0x200 /* Allows access to MIGRATE_HIGHATOMIC */ 1003 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 1004 1005 /* Flags that allow allocations below the min watermark. */ 1006 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM) 1007 1008 enum ttu_flags; 1009 struct tlbflush_unmap_batch; 1010 1011 1012 /* 1013 * only for MM internal work items which do not depend on 1014 * any allocations or locks which might depend on allocations 1015 */ 1016 extern struct workqueue_struct *mm_percpu_wq; 1017 1018 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 1019 void try_to_unmap_flush(void); 1020 void try_to_unmap_flush_dirty(void); 1021 void flush_tlb_batched_pending(struct mm_struct *mm); 1022 #else 1023 static inline void try_to_unmap_flush(void) 1024 { 1025 } 1026 static inline void try_to_unmap_flush_dirty(void) 1027 { 1028 } 1029 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 1030 { 1031 } 1032 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 1033 1034 extern const struct trace_print_flags pageflag_names[]; 1035 extern const struct trace_print_flags pagetype_names[]; 1036 extern const struct trace_print_flags vmaflag_names[]; 1037 extern const struct trace_print_flags gfpflag_names[]; 1038 1039 static inline bool is_migrate_highatomic(enum migratetype migratetype) 1040 { 1041 return migratetype == MIGRATE_HIGHATOMIC; 1042 } 1043 1044 static inline bool is_migrate_highatomic_page(struct page *page) 1045 { 1046 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 1047 } 1048 1049 void setup_zone_pageset(struct zone *zone); 1050 1051 struct migration_target_control { 1052 int nid; /* preferred node id */ 1053 nodemask_t *nmask; 1054 gfp_t gfp_mask; 1055 }; 1056 1057 /* 1058 * mm/filemap.c 1059 */ 1060 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 1061 struct folio *folio, loff_t fpos, size_t size); 1062 1063 /* 1064 * mm/vmalloc.c 1065 */ 1066 #ifdef CONFIG_MMU 1067 void __init vmalloc_init(void); 1068 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 1069 pgprot_t prot, struct page **pages, unsigned int page_shift); 1070 #else 1071 static inline void vmalloc_init(void) 1072 { 1073 } 1074 1075 static inline 1076 int __must_check vmap_pages_range_noflush(unsigned long addr, unsigned long end, 1077 pgprot_t prot, struct page **pages, unsigned int page_shift) 1078 { 1079 return -EINVAL; 1080 } 1081 #endif 1082 1083 int __must_check __vmap_pages_range_noflush(unsigned long addr, 1084 unsigned long end, pgprot_t prot, 1085 struct page **pages, unsigned int page_shift); 1086 1087 void vunmap_range_noflush(unsigned long start, unsigned long end); 1088 1089 void __vunmap_range_noflush(unsigned long start, unsigned long end); 1090 1091 int numa_migrate_prep(struct folio *folio, struct vm_area_struct *vma, 1092 unsigned long addr, int page_nid, int *flags); 1093 1094 void free_zone_device_page(struct page *page); 1095 int migrate_device_coherent_page(struct page *page); 1096 1097 /* 1098 * mm/gup.c 1099 */ 1100 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags); 1101 int __must_check try_grab_page(struct page *page, unsigned int flags); 1102 1103 /* 1104 * mm/huge_memory.c 1105 */ 1106 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma, 1107 unsigned long addr, pmd_t *pmd, 1108 unsigned int flags); 1109 1110 /* 1111 * mm/mmap.c 1112 */ 1113 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi, 1114 struct vm_area_struct *vma, 1115 unsigned long delta); 1116 1117 enum { 1118 /* mark page accessed */ 1119 FOLL_TOUCH = 1 << 16, 1120 /* a retry, previous pass started an IO */ 1121 FOLL_TRIED = 1 << 17, 1122 /* we are working on non-current tsk/mm */ 1123 FOLL_REMOTE = 1 << 18, 1124 /* pages must be released via unpin_user_page */ 1125 FOLL_PIN = 1 << 19, 1126 /* gup_fast: prevent fall-back to slow gup */ 1127 FOLL_FAST_ONLY = 1 << 20, 1128 /* allow unlocking the mmap lock */ 1129 FOLL_UNLOCKABLE = 1 << 21, 1130 }; 1131 1132 #define INTERNAL_GUP_FLAGS (FOLL_TOUCH | FOLL_TRIED | FOLL_REMOTE | FOLL_PIN | \ 1133 FOLL_FAST_ONLY | FOLL_UNLOCKABLE) 1134 1135 /* 1136 * Indicates for which pages that are write-protected in the page table, 1137 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 1138 * GUP pin will remain consistent with the pages mapped into the page tables 1139 * of the MM. 1140 * 1141 * Temporary unmapping of PageAnonExclusive() pages or clearing of 1142 * PageAnonExclusive() has to protect against concurrent GUP: 1143 * * Ordinary GUP: Using the PT lock 1144 * * GUP-fast and fork(): mm->write_protect_seq 1145 * * GUP-fast and KSM or temporary unmapping (swap, migration): see 1146 * folio_try_share_anon_rmap_*() 1147 * 1148 * Must be called with the (sub)page that's actually referenced via the 1149 * page table entry, which might not necessarily be the head page for a 1150 * PTE-mapped THP. 1151 * 1152 * If the vma is NULL, we're coming from the GUP-fast path and might have 1153 * to fallback to the slow path just to lookup the vma. 1154 */ 1155 static inline bool gup_must_unshare(struct vm_area_struct *vma, 1156 unsigned int flags, struct page *page) 1157 { 1158 /* 1159 * FOLL_WRITE is implicitly handled correctly as the page table entry 1160 * has to be writable -- and if it references (part of) an anonymous 1161 * folio, that part is required to be marked exclusive. 1162 */ 1163 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 1164 return false; 1165 /* 1166 * Note: PageAnon(page) is stable until the page is actually getting 1167 * freed. 1168 */ 1169 if (!PageAnon(page)) { 1170 /* 1171 * We only care about R/O long-term pining: R/O short-term 1172 * pinning does not have the semantics to observe successive 1173 * changes through the process page tables. 1174 */ 1175 if (!(flags & FOLL_LONGTERM)) 1176 return false; 1177 1178 /* We really need the vma ... */ 1179 if (!vma) 1180 return true; 1181 1182 /* 1183 * ... because we only care about writable private ("COW") 1184 * mappings where we have to break COW early. 1185 */ 1186 return is_cow_mapping(vma->vm_flags); 1187 } 1188 1189 /* Paired with a memory barrier in folio_try_share_anon_rmap_*(). */ 1190 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 1191 smp_rmb(); 1192 1193 /* 1194 * During GUP-fast we might not get called on the head page for a 1195 * hugetlb page that is mapped using cont-PTE, because GUP-fast does 1196 * not work with the abstracted hugetlb PTEs that always point at the 1197 * head page. For hugetlb, PageAnonExclusive only applies on the head 1198 * page (as it cannot be partially COW-shared), so lookup the head page. 1199 */ 1200 if (unlikely(!PageHead(page) && PageHuge(page))) 1201 page = compound_head(page); 1202 1203 /* 1204 * Note that PageKsm() pages cannot be exclusive, and consequently, 1205 * cannot get pinned. 1206 */ 1207 return !PageAnonExclusive(page); 1208 } 1209 1210 extern bool mirrored_kernelcore; 1211 extern bool memblock_has_mirror(void); 1212 1213 static __always_inline void vma_set_range(struct vm_area_struct *vma, 1214 unsigned long start, unsigned long end, 1215 pgoff_t pgoff) 1216 { 1217 vma->vm_start = start; 1218 vma->vm_end = end; 1219 vma->vm_pgoff = pgoff; 1220 } 1221 1222 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma) 1223 { 1224 /* 1225 * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty 1226 * enablements, because when without soft-dirty being compiled in, 1227 * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY) 1228 * will be constantly true. 1229 */ 1230 if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY)) 1231 return false; 1232 1233 /* 1234 * Soft-dirty is kind of special: its tracking is enabled when the 1235 * vma flags not set. 1236 */ 1237 return !(vma->vm_flags & VM_SOFTDIRTY); 1238 } 1239 1240 static inline void vma_iter_config(struct vma_iterator *vmi, 1241 unsigned long index, unsigned long last) 1242 { 1243 __mas_set_range(&vmi->mas, index, last - 1); 1244 } 1245 1246 /* 1247 * VMA Iterator functions shared between nommu and mmap 1248 */ 1249 static inline int vma_iter_prealloc(struct vma_iterator *vmi, 1250 struct vm_area_struct *vma) 1251 { 1252 return mas_preallocate(&vmi->mas, vma, GFP_KERNEL); 1253 } 1254 1255 static inline void vma_iter_clear(struct vma_iterator *vmi) 1256 { 1257 mas_store_prealloc(&vmi->mas, NULL); 1258 } 1259 1260 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi) 1261 { 1262 return mas_walk(&vmi->mas); 1263 } 1264 1265 /* Store a VMA with preallocated memory */ 1266 static inline void vma_iter_store(struct vma_iterator *vmi, 1267 struct vm_area_struct *vma) 1268 { 1269 1270 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE) 1271 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 1272 vmi->mas.index > vma->vm_start)) { 1273 pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n", 1274 vmi->mas.index, vma->vm_start, vma->vm_start, 1275 vma->vm_end, vmi->mas.index, vmi->mas.last); 1276 } 1277 if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start && 1278 vmi->mas.last < vma->vm_start)) { 1279 pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n", 1280 vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end, 1281 vmi->mas.index, vmi->mas.last); 1282 } 1283 #endif 1284 1285 if (vmi->mas.status != ma_start && 1286 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1287 vma_iter_invalidate(vmi); 1288 1289 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 1290 mas_store_prealloc(&vmi->mas, vma); 1291 } 1292 1293 static inline int vma_iter_store_gfp(struct vma_iterator *vmi, 1294 struct vm_area_struct *vma, gfp_t gfp) 1295 { 1296 if (vmi->mas.status != ma_start && 1297 ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start))) 1298 vma_iter_invalidate(vmi); 1299 1300 __mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1); 1301 mas_store_gfp(&vmi->mas, vma, gfp); 1302 if (unlikely(mas_is_err(&vmi->mas))) 1303 return -ENOMEM; 1304 1305 return 0; 1306 } 1307 1308 /* 1309 * VMA lock generalization 1310 */ 1311 struct vma_prepare { 1312 struct vm_area_struct *vma; 1313 struct vm_area_struct *adj_next; 1314 struct file *file; 1315 struct address_space *mapping; 1316 struct anon_vma *anon_vma; 1317 struct vm_area_struct *insert; 1318 struct vm_area_struct *remove; 1319 struct vm_area_struct *remove2; 1320 }; 1321 1322 void __meminit __init_single_page(struct page *page, unsigned long pfn, 1323 unsigned long zone, int nid); 1324 1325 /* shrinker related functions */ 1326 unsigned long shrink_slab(gfp_t gfp_mask, int nid, struct mem_cgroup *memcg, 1327 int priority); 1328 1329 #ifdef CONFIG_SHRINKER_DEBUG 1330 static inline __printf(2, 0) int shrinker_debugfs_name_alloc( 1331 struct shrinker *shrinker, const char *fmt, va_list ap) 1332 { 1333 shrinker->name = kvasprintf_const(GFP_KERNEL, fmt, ap); 1334 1335 return shrinker->name ? 0 : -ENOMEM; 1336 } 1337 1338 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) 1339 { 1340 kfree_const(shrinker->name); 1341 shrinker->name = NULL; 1342 } 1343 1344 extern int shrinker_debugfs_add(struct shrinker *shrinker); 1345 extern struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, 1346 int *debugfs_id); 1347 extern void shrinker_debugfs_remove(struct dentry *debugfs_entry, 1348 int debugfs_id); 1349 #else /* CONFIG_SHRINKER_DEBUG */ 1350 static inline int shrinker_debugfs_add(struct shrinker *shrinker) 1351 { 1352 return 0; 1353 } 1354 static inline int shrinker_debugfs_name_alloc(struct shrinker *shrinker, 1355 const char *fmt, va_list ap) 1356 { 1357 return 0; 1358 } 1359 static inline void shrinker_debugfs_name_free(struct shrinker *shrinker) 1360 { 1361 } 1362 static inline struct dentry *shrinker_debugfs_detach(struct shrinker *shrinker, 1363 int *debugfs_id) 1364 { 1365 *debugfs_id = -1; 1366 return NULL; 1367 } 1368 static inline void shrinker_debugfs_remove(struct dentry *debugfs_entry, 1369 int debugfs_id) 1370 { 1371 } 1372 #endif /* CONFIG_SHRINKER_DEBUG */ 1373 1374 /* Only track the nodes of mappings with shadow entries */ 1375 void workingset_update_node(struct xa_node *node); 1376 extern struct list_lru shadow_nodes; 1377 1378 #endif /* __MM_INTERNAL_H */ 1379