1 /* SPDX-License-Identifier: GPL-2.0-or-later */ 2 /* internal.h: mm/ internal definitions 3 * 4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved. 5 * Written by David Howells (dhowells@redhat.com) 6 */ 7 #ifndef __MM_INTERNAL_H 8 #define __MM_INTERNAL_H 9 10 #include <linux/fs.h> 11 #include <linux/mm.h> 12 #include <linux/pagemap.h> 13 #include <linux/tracepoint-defs.h> 14 15 /* 16 * The set of flags that only affect watermark checking and reclaim 17 * behaviour. This is used by the MM to obey the caller constraints 18 * about IO, FS and watermark checking while ignoring placement 19 * hints such as HIGHMEM usage. 20 */ 21 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\ 22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\ 23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\ 24 __GFP_ATOMIC) 25 26 /* The GFP flags allowed during early boot */ 27 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS)) 28 29 /* Control allocation cpuset and node placement constraints */ 30 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE) 31 32 /* Do not use these with a slab allocator */ 33 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK) 34 35 void page_writeback_init(void); 36 37 vm_fault_t do_swap_page(struct vm_fault *vmf); 38 39 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 40 unsigned long floor, unsigned long ceiling); 41 42 static inline bool can_madv_lru_vma(struct vm_area_struct *vma) 43 { 44 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP)); 45 } 46 47 void unmap_page_range(struct mmu_gather *tlb, 48 struct vm_area_struct *vma, 49 unsigned long addr, unsigned long end, 50 struct zap_details *details); 51 52 void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read, 53 unsigned long lookahead_size); 54 void force_page_cache_ra(struct readahead_control *, unsigned long nr); 55 static inline void force_page_cache_readahead(struct address_space *mapping, 56 struct file *file, pgoff_t index, unsigned long nr_to_read) 57 { 58 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index); 59 force_page_cache_ra(&ractl, nr_to_read); 60 } 61 62 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 63 pgoff_t end, struct pagevec *pvec, pgoff_t *indices); 64 65 /** 66 * page_evictable - test whether a page is evictable 67 * @page: the page to test 68 * 69 * Test whether page is evictable--i.e., should be placed on active/inactive 70 * lists vs unevictable list. 71 * 72 * Reasons page might not be evictable: 73 * (1) page's mapping marked unevictable 74 * (2) page is part of an mlocked VMA 75 * 76 */ 77 static inline bool page_evictable(struct page *page) 78 { 79 bool ret; 80 81 /* Prevent address_space of inode and swap cache from being freed */ 82 rcu_read_lock(); 83 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page); 84 rcu_read_unlock(); 85 return ret; 86 } 87 88 /* 89 * Turn a non-refcounted page (->_refcount == 0) into refcounted with 90 * a count of one. 91 */ 92 static inline void set_page_refcounted(struct page *page) 93 { 94 VM_BUG_ON_PAGE(PageTail(page), page); 95 VM_BUG_ON_PAGE(page_ref_count(page), page); 96 set_page_count(page, 1); 97 } 98 99 extern unsigned long highest_memmap_pfn; 100 101 /* 102 * Maximum number of reclaim retries without progress before the OOM 103 * killer is consider the only way forward. 104 */ 105 #define MAX_RECLAIM_RETRIES 16 106 107 /* 108 * in mm/vmscan.c: 109 */ 110 extern int isolate_lru_page(struct page *page); 111 extern void putback_lru_page(struct page *page); 112 113 /* 114 * in mm/rmap.c: 115 */ 116 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address); 117 118 /* 119 * in mm/memcontrol.c: 120 */ 121 extern bool cgroup_memory_nokmem; 122 123 /* 124 * in mm/page_alloc.c 125 */ 126 127 /* 128 * Structure for holding the mostly immutable allocation parameters passed 129 * between functions involved in allocations, including the alloc_pages* 130 * family of functions. 131 * 132 * nodemask, migratetype and highest_zoneidx are initialized only once in 133 * __alloc_pages() and then never change. 134 * 135 * zonelist, preferred_zone and highest_zoneidx are set first in 136 * __alloc_pages() for the fast path, and might be later changed 137 * in __alloc_pages_slowpath(). All other functions pass the whole structure 138 * by a const pointer. 139 */ 140 struct alloc_context { 141 struct zonelist *zonelist; 142 nodemask_t *nodemask; 143 struct zoneref *preferred_zoneref; 144 int migratetype; 145 146 /* 147 * highest_zoneidx represents highest usable zone index of 148 * the allocation request. Due to the nature of the zone, 149 * memory on lower zone than the highest_zoneidx will be 150 * protected by lowmem_reserve[highest_zoneidx]. 151 * 152 * highest_zoneidx is also used by reclaim/compaction to limit 153 * the target zone since higher zone than this index cannot be 154 * usable for this allocation request. 155 */ 156 enum zone_type highest_zoneidx; 157 bool spread_dirty_pages; 158 }; 159 160 /* 161 * Locate the struct page for both the matching buddy in our 162 * pair (buddy1) and the combined O(n+1) page they form (page). 163 * 164 * 1) Any buddy B1 will have an order O twin B2 which satisfies 165 * the following equation: 166 * B2 = B1 ^ (1 << O) 167 * For example, if the starting buddy (buddy2) is #8 its order 168 * 1 buddy is #10: 169 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 170 * 171 * 2) Any buddy B will have an order O+1 parent P which 172 * satisfies the following equation: 173 * P = B & ~(1 << O) 174 * 175 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 176 */ 177 static inline unsigned long 178 __find_buddy_pfn(unsigned long page_pfn, unsigned int order) 179 { 180 return page_pfn ^ (1 << order); 181 } 182 183 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 184 unsigned long end_pfn, struct zone *zone); 185 186 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn, 187 unsigned long end_pfn, struct zone *zone) 188 { 189 if (zone->contiguous) 190 return pfn_to_page(start_pfn); 191 192 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone); 193 } 194 195 extern int __isolate_free_page(struct page *page, unsigned int order); 196 extern void __putback_isolated_page(struct page *page, unsigned int order, 197 int mt); 198 extern void memblock_free_pages(struct page *page, unsigned long pfn, 199 unsigned int order); 200 extern void __free_pages_core(struct page *page, unsigned int order); 201 extern void prep_compound_page(struct page *page, unsigned int order); 202 extern void post_alloc_hook(struct page *page, unsigned int order, 203 gfp_t gfp_flags); 204 extern int user_min_free_kbytes; 205 206 extern void free_unref_page(struct page *page, unsigned int order); 207 extern void free_unref_page_list(struct list_head *list); 208 209 extern void zone_pcp_update(struct zone *zone, int cpu_online); 210 extern void zone_pcp_reset(struct zone *zone); 211 extern void zone_pcp_disable(struct zone *zone); 212 extern void zone_pcp_enable(struct zone *zone); 213 214 #if defined CONFIG_COMPACTION || defined CONFIG_CMA 215 216 /* 217 * in mm/compaction.c 218 */ 219 /* 220 * compact_control is used to track pages being migrated and the free pages 221 * they are being migrated to during memory compaction. The free_pfn starts 222 * at the end of a zone and migrate_pfn begins at the start. Movable pages 223 * are moved to the end of a zone during a compaction run and the run 224 * completes when free_pfn <= migrate_pfn 225 */ 226 struct compact_control { 227 struct list_head freepages; /* List of free pages to migrate to */ 228 struct list_head migratepages; /* List of pages being migrated */ 229 unsigned int nr_freepages; /* Number of isolated free pages */ 230 unsigned int nr_migratepages; /* Number of pages to migrate */ 231 unsigned long free_pfn; /* isolate_freepages search base */ 232 /* 233 * Acts as an in/out parameter to page isolation for migration. 234 * isolate_migratepages uses it as a search base. 235 * isolate_migratepages_block will update the value to the next pfn 236 * after the last isolated one. 237 */ 238 unsigned long migrate_pfn; 239 unsigned long fast_start_pfn; /* a pfn to start linear scan from */ 240 struct zone *zone; 241 unsigned long total_migrate_scanned; 242 unsigned long total_free_scanned; 243 unsigned short fast_search_fail;/* failures to use free list searches */ 244 short search_order; /* order to start a fast search at */ 245 const gfp_t gfp_mask; /* gfp mask of a direct compactor */ 246 int order; /* order a direct compactor needs */ 247 int migratetype; /* migratetype of direct compactor */ 248 const unsigned int alloc_flags; /* alloc flags of a direct compactor */ 249 const int highest_zoneidx; /* zone index of a direct compactor */ 250 enum migrate_mode mode; /* Async or sync migration mode */ 251 bool ignore_skip_hint; /* Scan blocks even if marked skip */ 252 bool no_set_skip_hint; /* Don't mark blocks for skipping */ 253 bool ignore_block_suitable; /* Scan blocks considered unsuitable */ 254 bool direct_compaction; /* False from kcompactd or /proc/... */ 255 bool proactive_compaction; /* kcompactd proactive compaction */ 256 bool whole_zone; /* Whole zone should/has been scanned */ 257 bool contended; /* Signal lock or sched contention */ 258 bool rescan; /* Rescanning the same pageblock */ 259 bool alloc_contig; /* alloc_contig_range allocation */ 260 }; 261 262 /* 263 * Used in direct compaction when a page should be taken from the freelists 264 * immediately when one is created during the free path. 265 */ 266 struct capture_control { 267 struct compact_control *cc; 268 struct page *page; 269 }; 270 271 unsigned long 272 isolate_freepages_range(struct compact_control *cc, 273 unsigned long start_pfn, unsigned long end_pfn); 274 int 275 isolate_migratepages_range(struct compact_control *cc, 276 unsigned long low_pfn, unsigned long end_pfn); 277 int find_suitable_fallback(struct free_area *area, unsigned int order, 278 int migratetype, bool only_stealable, bool *can_steal); 279 280 #endif 281 282 /* 283 * This function returns the order of a free page in the buddy system. In 284 * general, page_zone(page)->lock must be held by the caller to prevent the 285 * page from being allocated in parallel and returning garbage as the order. 286 * If a caller does not hold page_zone(page)->lock, it must guarantee that the 287 * page cannot be allocated or merged in parallel. Alternatively, it must 288 * handle invalid values gracefully, and use buddy_order_unsafe() below. 289 */ 290 static inline unsigned int buddy_order(struct page *page) 291 { 292 /* PageBuddy() must be checked by the caller */ 293 return page_private(page); 294 } 295 296 /* 297 * Like buddy_order(), but for callers who cannot afford to hold the zone lock. 298 * PageBuddy() should be checked first by the caller to minimize race window, 299 * and invalid values must be handled gracefully. 300 * 301 * READ_ONCE is used so that if the caller assigns the result into a local 302 * variable and e.g. tests it for valid range before using, the compiler cannot 303 * decide to remove the variable and inline the page_private(page) multiple 304 * times, potentially observing different values in the tests and the actual 305 * use of the result. 306 */ 307 #define buddy_order_unsafe(page) READ_ONCE(page_private(page)) 308 309 /* 310 * These three helpers classifies VMAs for virtual memory accounting. 311 */ 312 313 /* 314 * Executable code area - executable, not writable, not stack 315 */ 316 static inline bool is_exec_mapping(vm_flags_t flags) 317 { 318 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC; 319 } 320 321 /* 322 * Stack area - automatically grows in one direction 323 * 324 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous: 325 * do_mmap() forbids all other combinations. 326 */ 327 static inline bool is_stack_mapping(vm_flags_t flags) 328 { 329 return (flags & VM_STACK) == VM_STACK; 330 } 331 332 /* 333 * Data area - private, writable, not stack 334 */ 335 static inline bool is_data_mapping(vm_flags_t flags) 336 { 337 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE; 338 } 339 340 /* mm/util.c */ 341 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, 342 struct vm_area_struct *prev); 343 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma); 344 345 #ifdef CONFIG_MMU 346 extern long populate_vma_page_range(struct vm_area_struct *vma, 347 unsigned long start, unsigned long end, int *nonblocking); 348 extern void munlock_vma_pages_range(struct vm_area_struct *vma, 349 unsigned long start, unsigned long end); 350 static inline void munlock_vma_pages_all(struct vm_area_struct *vma) 351 { 352 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end); 353 } 354 355 /* 356 * must be called with vma's mmap_lock held for read or write, and page locked. 357 */ 358 extern void mlock_vma_page(struct page *page); 359 extern unsigned int munlock_vma_page(struct page *page); 360 361 /* 362 * Clear the page's PageMlocked(). This can be useful in a situation where 363 * we want to unconditionally remove a page from the pagecache -- e.g., 364 * on truncation or freeing. 365 * 366 * It is legal to call this function for any page, mlocked or not. 367 * If called for a page that is still mapped by mlocked vmas, all we do 368 * is revert to lazy LRU behaviour -- semantics are not broken. 369 */ 370 extern void clear_page_mlock(struct page *page); 371 372 /* 373 * mlock_migrate_page - called only from migrate_misplaced_transhuge_page() 374 * (because that does not go through the full procedure of migration ptes): 375 * to migrate the Mlocked page flag; update statistics. 376 */ 377 static inline void mlock_migrate_page(struct page *newpage, struct page *page) 378 { 379 if (TestClearPageMlocked(page)) { 380 int nr_pages = thp_nr_pages(page); 381 382 /* Holding pmd lock, no change in irq context: __mod is safe */ 383 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages); 384 SetPageMlocked(newpage); 385 __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages); 386 } 387 } 388 389 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma); 390 391 /* 392 * At what user virtual address is page expected in vma? 393 * Returns -EFAULT if all of the page is outside the range of vma. 394 * If page is a compound head, the entire compound page is considered. 395 */ 396 static inline unsigned long 397 vma_address(struct page *page, struct vm_area_struct *vma) 398 { 399 pgoff_t pgoff; 400 unsigned long address; 401 402 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 403 pgoff = page_to_pgoff(page); 404 if (pgoff >= vma->vm_pgoff) { 405 address = vma->vm_start + 406 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 407 /* Check for address beyond vma (or wrapped through 0?) */ 408 if (address < vma->vm_start || address >= vma->vm_end) 409 address = -EFAULT; 410 } else if (PageHead(page) && 411 pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) { 412 /* Test above avoids possibility of wrap to 0 on 32-bit */ 413 address = vma->vm_start; 414 } else { 415 address = -EFAULT; 416 } 417 return address; 418 } 419 420 /* 421 * Then at what user virtual address will none of the page be found in vma? 422 * Assumes that vma_address() already returned a good starting address. 423 * If page is a compound head, the entire compound page is considered. 424 */ 425 static inline unsigned long 426 vma_address_end(struct page *page, struct vm_area_struct *vma) 427 { 428 pgoff_t pgoff; 429 unsigned long address; 430 431 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */ 432 pgoff = page_to_pgoff(page) + compound_nr(page); 433 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 434 /* Check for address beyond vma (or wrapped through 0?) */ 435 if (address < vma->vm_start || address > vma->vm_end) 436 address = vma->vm_end; 437 return address; 438 } 439 440 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf, 441 struct file *fpin) 442 { 443 int flags = vmf->flags; 444 445 if (fpin) 446 return fpin; 447 448 /* 449 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or 450 * anything, so we only pin the file and drop the mmap_lock if only 451 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt. 452 */ 453 if (fault_flag_allow_retry_first(flags) && 454 !(flags & FAULT_FLAG_RETRY_NOWAIT)) { 455 fpin = get_file(vmf->vma->vm_file); 456 mmap_read_unlock(vmf->vma->vm_mm); 457 } 458 return fpin; 459 } 460 461 #else /* !CONFIG_MMU */ 462 static inline void clear_page_mlock(struct page *page) { } 463 static inline void mlock_vma_page(struct page *page) { } 464 static inline void mlock_migrate_page(struct page *new, struct page *old) { } 465 static inline void vunmap_range_noflush(unsigned long start, unsigned long end) 466 { 467 } 468 #endif /* !CONFIG_MMU */ 469 470 /* 471 * Return the mem_map entry representing the 'offset' subpage within 472 * the maximally aligned gigantic page 'base'. Handle any discontiguity 473 * in the mem_map at MAX_ORDER_NR_PAGES boundaries. 474 */ 475 static inline struct page *mem_map_offset(struct page *base, int offset) 476 { 477 if (unlikely(offset >= MAX_ORDER_NR_PAGES)) 478 return nth_page(base, offset); 479 return base + offset; 480 } 481 482 /* 483 * Iterator over all subpages within the maximally aligned gigantic 484 * page 'base'. Handle any discontiguity in the mem_map. 485 */ 486 static inline struct page *mem_map_next(struct page *iter, 487 struct page *base, int offset) 488 { 489 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) { 490 unsigned long pfn = page_to_pfn(base) + offset; 491 if (!pfn_valid(pfn)) 492 return NULL; 493 return pfn_to_page(pfn); 494 } 495 return iter + 1; 496 } 497 498 /* Memory initialisation debug and verification */ 499 enum mminit_level { 500 MMINIT_WARNING, 501 MMINIT_VERIFY, 502 MMINIT_TRACE 503 }; 504 505 #ifdef CONFIG_DEBUG_MEMORY_INIT 506 507 extern int mminit_loglevel; 508 509 #define mminit_dprintk(level, prefix, fmt, arg...) \ 510 do { \ 511 if (level < mminit_loglevel) { \ 512 if (level <= MMINIT_WARNING) \ 513 pr_warn("mminit::" prefix " " fmt, ##arg); \ 514 else \ 515 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \ 516 } \ 517 } while (0) 518 519 extern void mminit_verify_pageflags_layout(void); 520 extern void mminit_verify_zonelist(void); 521 #else 522 523 static inline void mminit_dprintk(enum mminit_level level, 524 const char *prefix, const char *fmt, ...) 525 { 526 } 527 528 static inline void mminit_verify_pageflags_layout(void) 529 { 530 } 531 532 static inline void mminit_verify_zonelist(void) 533 { 534 } 535 #endif /* CONFIG_DEBUG_MEMORY_INIT */ 536 537 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */ 538 #if defined(CONFIG_SPARSEMEM) 539 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn, 540 unsigned long *end_pfn); 541 #else 542 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn, 543 unsigned long *end_pfn) 544 { 545 } 546 #endif /* CONFIG_SPARSEMEM */ 547 548 #define NODE_RECLAIM_NOSCAN -2 549 #define NODE_RECLAIM_FULL -1 550 #define NODE_RECLAIM_SOME 0 551 #define NODE_RECLAIM_SUCCESS 1 552 553 #ifdef CONFIG_NUMA 554 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int); 555 #else 556 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask, 557 unsigned int order) 558 { 559 return NODE_RECLAIM_NOSCAN; 560 } 561 #endif 562 563 extern int hwpoison_filter(struct page *p); 564 565 extern u32 hwpoison_filter_dev_major; 566 extern u32 hwpoison_filter_dev_minor; 567 extern u64 hwpoison_filter_flags_mask; 568 extern u64 hwpoison_filter_flags_value; 569 extern u64 hwpoison_filter_memcg; 570 extern u32 hwpoison_filter_enable; 571 572 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long, 573 unsigned long, unsigned long, 574 unsigned long, unsigned long); 575 576 extern void set_pageblock_order(void); 577 unsigned int reclaim_clean_pages_from_list(struct zone *zone, 578 struct list_head *page_list); 579 /* The ALLOC_WMARK bits are used as an index to zone->watermark */ 580 #define ALLOC_WMARK_MIN WMARK_MIN 581 #define ALLOC_WMARK_LOW WMARK_LOW 582 #define ALLOC_WMARK_HIGH WMARK_HIGH 583 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */ 584 585 /* Mask to get the watermark bits */ 586 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1) 587 588 /* 589 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we 590 * cannot assume a reduced access to memory reserves is sufficient for 591 * !MMU 592 */ 593 #ifdef CONFIG_MMU 594 #define ALLOC_OOM 0x08 595 #else 596 #define ALLOC_OOM ALLOC_NO_WATERMARKS 597 #endif 598 599 #define ALLOC_HARDER 0x10 /* try to alloc harder */ 600 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */ 601 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */ 602 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */ 603 #ifdef CONFIG_ZONE_DMA32 604 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */ 605 #else 606 #define ALLOC_NOFRAGMENT 0x0 607 #endif 608 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */ 609 610 enum ttu_flags; 611 struct tlbflush_unmap_batch; 612 613 614 /* 615 * only for MM internal work items which do not depend on 616 * any allocations or locks which might depend on allocations 617 */ 618 extern struct workqueue_struct *mm_percpu_wq; 619 620 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH 621 void try_to_unmap_flush(void); 622 void try_to_unmap_flush_dirty(void); 623 void flush_tlb_batched_pending(struct mm_struct *mm); 624 #else 625 static inline void try_to_unmap_flush(void) 626 { 627 } 628 static inline void try_to_unmap_flush_dirty(void) 629 { 630 } 631 static inline void flush_tlb_batched_pending(struct mm_struct *mm) 632 { 633 } 634 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */ 635 636 extern const struct trace_print_flags pageflag_names[]; 637 extern const struct trace_print_flags vmaflag_names[]; 638 extern const struct trace_print_flags gfpflag_names[]; 639 640 static inline bool is_migrate_highatomic(enum migratetype migratetype) 641 { 642 return migratetype == MIGRATE_HIGHATOMIC; 643 } 644 645 static inline bool is_migrate_highatomic_page(struct page *page) 646 { 647 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC; 648 } 649 650 void setup_zone_pageset(struct zone *zone); 651 652 struct migration_target_control { 653 int nid; /* preferred node id */ 654 nodemask_t *nmask; 655 gfp_t gfp_mask; 656 }; 657 658 /* 659 * mm/vmalloc.c 660 */ 661 #ifdef CONFIG_MMU 662 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 663 pgprot_t prot, struct page **pages, unsigned int page_shift); 664 #else 665 static inline 666 int vmap_pages_range_noflush(unsigned long addr, unsigned long end, 667 pgprot_t prot, struct page **pages, unsigned int page_shift) 668 { 669 return -EINVAL; 670 } 671 #endif 672 673 void vunmap_range_noflush(unsigned long start, unsigned long end); 674 675 #endif /* __MM_INTERNAL_H */ 676